
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 8418 Vigil Security
Category: Standards Track August 2018
ISSN: 2070-1721

 Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm
 with X25519 and X448 in the Cryptographic Message Syntax (CMS)

Abstract

 This document describes the conventions for using the Elliptic Curve
 Diffie-Hellman (ECDH) key agreement algorithm with curve25519 and
 curve448 in the Cryptographic Message Syntax (CMS).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8418.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Housley Standards Track [Page 1]

RFC 8418 Using X25519 and X448 with CMS August 2018

Table of Contents

 1. Introduction ..2
 1.1. Terminology ..3
 1.2. ASN.1 ..3
 2. Key Agreement ...3
 2.1. ANSI-X9.63-KDF ...4
 2.2. HKDF ...5
 3. Enveloped-data Conventions5
 3.1. EnvelopedData Fields6
 3.2. KeyAgreeRecipientInfo Fields6
 4. Authenticated-data Conventions7
 4.1. AuthenticatedData Fields8
 4.2. KeyAgreeRecipientInfo Fields8
 5. Authenticated-enveloped-data Conventions8
 5.1. AuthEnvelopedData Fields8
 5.2. KeyAgreeRecipientInfo Fields8
 6. Certificate Conventions ...9
 7. Key Agreement Algorithm Identifiers9
 8. SMIMECapabilities Attribute Conventions10
 9. Security Considerations ..11
 10. IANA Considerations ...12
 11. References ..13
 11.1. Normative References13
 11.2. Informative References14
 Appendix A. ASN.1 Module ..16
 Acknowledgements ..18
 Author’s Address ..18

1. Introduction

 This document describes the conventions for using Elliptic Curve
 Diffie-Hellman (ECDH) key agreement using curve25519 and curve448
 [CURVES] in the Cryptographic Message Syntax (CMS) [CMS]. Key
 agreement is supported in three CMS content types: the enveloped-data
 content type [CMS], authenticated-data content type [CMS], and the
 authenticated-enveloped-data content type [AUTHENV].

 The conventions for using some Elliptic Curve Cryptography (ECC)
 algorithms in CMS are described in [CMSECC]. These conventions cover
 the use of ECDH with some curves other than curve25519 and curve448
 [CURVES]. Those other curves are not deprecated.

 Using curve25519 with Diffie-Hellman key agreement is referred to as
 "X25519". Using curve448 with Diffie-Hellman key agreement is
 referred to as "X448".

Housley Standards Track [Page 2]

RFC 8418 Using X25519 and X448 with CMS August 2018

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. ASN.1

 CMS values are generated using ASN.1 [X680], which uses the Basic
 Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
 [X690].

2. Key Agreement

 In 1976, Diffie and Hellman described a means for two parties to
 agree upon a shared secret value in a manner that prevents
 eavesdroppers from learning the shared secret value [DH1976]. This
 secret may then be converted into pairwise symmetric keying material
 for use with other cryptographic algorithms. Over the years, many
 variants of this fundamental technique have been developed. This
 document describes the conventions for using Ephemeral-Static
 Elliptic Curve Diffie-Hellman (ECDH) key agreement using X25519 and
 X448 [CURVES].

 The originator MUST use an ephemeral public/private key pair that is
 generated on the same elliptic curve as the public key of the
 recipient. The ephemeral key pair MUST be used for a single CMS-
 protected content type, and then it MUST be discarded. The
 originator obtains the recipient’s static public key from the
 recipient’s certificate [PROFILE].

 X25519 is described in Section 6.1 of [CURVES], and X448 is described
 in Section 6.2 of [CURVES]. Conforming implementations MUST check
 whether the computed Diffie-Hellman shared secret is the all-zero
 value, and abort if so, as described in Section 6 of [CURVES]. If an
 alternative implementation of these elliptic curves to that
 documented in Section 6 of [CURVES] is employed, then the additional
 checks specified in Section 7 of [CURVES] SHOULD be performed.

 In [CURVES], the shared secret value that is produced by ECDH is
 called K. (In some other specifications, the shared secret value is
 called Z.) A Key Derivation Function (KDF) is used to produce a
 pairwise key-encryption key (KEK) from the shared secret value (K),
 the length of the KEK, and the DER-encoded ECC-CMS-SharedInfo
 structure [CMSECC].

Housley Standards Track [Page 3]

RFC 8418 Using X25519 and X448 with CMS August 2018

 The ECC-CMS-SharedInfo definition from [CMSECC] is repeated here for
 convenience.

 ECC-CMS-SharedInfo ::= SEQUENCE {
 keyInfo AlgorithmIdentifier,
 entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
 suppPubInfo [2] EXPLICIT OCTET STRING }

 The ECC-CMS-SharedInfo keyInfo field contains the object identifier
 of the key-encryption algorithm and associated parameters. This
 algorithm will be used to wrap the content-encryption key. For
 example, the AES Key Wrap algorithm [AESKW] does not need parameters,
 so the algorithm identifier parameters are absent.

 The ECC-CMS-SharedInfo entityUInfo field optionally contains
 additional keying material supplied by the sending agent. Note that
 [CMS] requires implementations to accept a KeyAgreeRecipientInfo
 SEQUENCE that includes the ukm field. If the ukm field is present,
 the ukm is placed in the entityUInfo field. By including the ukm, a
 different KEK is generated even when the originator ephemeral private
 key is improperly used more than once. Therefore, if the ukm field
 is present, it MUST be selected in a manner that provides, with very
 high probability, a unique value; however, there is no security
 benefit to using a ukm value that is longer than the KEK that will be
 produced by the KDF.

 The ECC-CMS-SharedInfo suppPubInfo field contains the length of the
 generated KEK, in bits, represented as a 32-bit number in network
 byte order. For example, the key length for AES-256 [AES] would be
 0x00000100.

2.1. ANSI-X9.63-KDF

 The ANSI-X9.63-KDF key derivation function is a simple construct
 based on a one-way hash function described in American National
 Standard X9.63 [X963]. This KDF is also described in Section 3.6.1
 of [SEC1].

 Three values are concatenated to produce the input string to the KDF:
 1. The shared secret value generated by ECDH, K.
 2. The iteration counter, starting with one, as described below.
 3. The DER-encoded ECC-CMS-SharedInfo structure.

 To generate a key-encryption key (KEK), the KDF generates one or more
 keying material (KM) blocks, with the counter starting at 0x00000001,
 and incrementing the counter for each subsequent KM block until
 enough material has been generated. The 32-bit counter is

Housley Standards Track [Page 4]

RFC 8418 Using X25519 and X448 with CMS August 2018

 represented in network byte order. The KM blocks are concatenated
 left to right, and then the leftmost portion of the result is used as
 the pairwise key-encryption key, KEK:

 KM(i) = Hash(K || INT32(counter=i) || DER(ECC-CMS-SharedInfo))

 KEK = KM(counter=1) || KM(counter=2) ...

2.2. HKDF

 The Extract-and-Expand HMAC-based Key Derivation Function (HKDF) is a
 robust construct based on a one-way hash function described in RFC
 5869 [HKDF]. HKDF is comprised of two steps: HKDF-Extract followed
 by HKDF-Expand.

 Three values are used as inputs to the HKDF:
 1. The shared secret value generated by ECDH, K.
 2. The length in octets of the keying data to be generated.
 3. The DER-encoded ECC-CMS-SharedInfo structure.

 The ECC-CMS-SharedInfo structure optionally includes the ukm. If the
 ukm is present, the ukm is also used as the HKDF salt. HKDF uses an
 appropriate number of zero octets when no salt is provided.

 The length of the generated KEK is used in two places, once in bits
 and once in octets. The ECC-CMS-SharedInfo structure includes the
 length of the generated KEK in bits. The HKDF-Expand function takes
 an argument for the length of the generated KEK in octets.

 In summary, to produce the pairwise key-encryption key, KEK:

 if ukm is provided, then salt = ukm, else salt is not provided
 PRK = HKDF-Extract(salt, K)

 KEK = HKDF-Expand(PRK, DER(ECC-CMS-SharedInfo), SizeInOctets(KEK))

3. Enveloped-data Conventions

 The CMS enveloped-data content type [CMS] consists of an encrypted
 content and wrapped content-encryption keys for one or more
 recipients. The ECDH key agreement algorithm is used to generate a
 pairwise KEK between the originator and a particular recipient.
 Then, the KEK is used to wrap the content-encryption key for that
 recipient. When there is more than one recipient, the same content-
 encryption key MUST be wrapped for each of them.

Housley Standards Track [Page 5]

RFC 8418 Using X25519 and X448 with CMS August 2018

 A compliant implementation MUST meet the requirements for
 constructing an enveloped-data content type in Section 6 of [CMS].

 A content-encryption key MUST be randomly generated for each instance
 of an enveloped-data content type. The content-encryption key is
 used to encrypt the content.

3.1. EnvelopedData Fields

 The enveloped-data content type is ASN.1 encoded using the
 EnvelopedData syntax. The fields of the EnvelopedData syntax MUST be
 populated as described in Section 6 of [CMS]. The RecipientInfo
 choice is described in Section 6.2 of [CMS], and repeated here for
 convenience.

 RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari [1] KeyAgreeRecipientInfo,
 kekri [2] KEKRecipientInfo,
 pwri [3] PasswordRecipientinfo,
 ori [4] OtherRecipientInfo }

 For the recipients that use X25519 or X448, the RecipientInfo kari
 choice MUST be used.

3.2. KeyAgreeRecipientInfo Fields

 The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
 described in this section when X25519 or X448 is employed for one or
 more recipients.

 The KeyAgreeRecipientInfo version MUST be 3.

 The KeyAgreeRecipientInfo originator provides three alternatives for
 identifying the originator’s public key, and the originatorKey
 alternative MUST be used. The originatorKey MUST contain an
 ephemeral key for the originator. The originatorKey algorithm field
 MUST contain the id-X25519 or the id-X448 object identifier. The
 originator’s ephemeral public key MUST be encoded as an OCTET STRING.

 The object identifiers for X25519 and X448 have been assigned in
 [RFC8410]. They are repeated below for convenience.

Housley Standards Track [Page 6]

RFC 8418 Using X25519 and X448 with CMS August 2018

 When using X25519, the public key contains exactly 32 octets, and the
 id-X25519 object identifier is used:

 id-X25519 OBJECT IDENTIFIER ::= { 1 3 101 110 }

 When using X448, the public key contains exactly 56 octets, and the
 id-X448 object identifier is used:

 id-X448 OBJECT IDENTIFIER ::= { 1 3 101 111 }

 KeyAgreeRecipientInfo ukm is optional. The processing of the ukm
 with the ANSI-X9.63-KDF key derivation function is described in
 Section 2.1, and the processing of the ukm with the HKDF key
 derivation function is described in Section 2.2.

 The KeyAgreeRecipientInfo keyEncryptionAlgorithm MUST contain the
 object identifier of the key-encryption algorithm that will be used
 to wrap the content-encryption key. The conventions for using
 AES-128, AES-192, and AES-256 in the key wrap mode are specified in
 [CMSAES].

 The KeyAgreeRecipientInfo recipientEncryptedKeys includes a recipient
 identifier and encrypted key for one or more recipients. The
 RecipientEncryptedKey KeyAgreeRecipientIdentifier MUST contain either
 the issuerAndSerialNumber identifying the recipient’s certificate or
 the RecipientKeyIdentifier containing the subject key identifier from
 the recipient’s certificate. In both cases, the recipient’s
 certificate contains the recipient’s static X25519 or X448 public
 key. The RecipientEncryptedKey EncryptedKey MUST contain the
 content-encryption key encrypted with the pairwise key-encryption key
 using the algorithm specified by the KeyWrapAlgorithm.

4. Authenticated-data Conventions

 The CMS authenticated-data content type [CMS] consists of an
 authenticated content, a message authentication code (MAC), and
 encrypted authentication keys for one or more recipients. The ECDH
 key agreement algorithm is used to generate a pairwise KEK between
 the originator and a particular recipient. Then, the KEK is used to
 wrap the authentication key for that recipient. When there is more
 than one recipient, the same authentication key MUST be wrapped for
 each of them.

 A compliant implementation MUST meet the requirements for
 constructing an authenticated-data content type in Section 9 of
 [CMS].

Housley Standards Track [Page 7]

RFC 8418 Using X25519 and X448 with CMS August 2018

 An authentication key MUST be randomly generated for each instance of
 an authenticated-data content type. The authentication key is used
 to compute the MAC over the content.

4.1. AuthenticatedData Fields

 The authenticated-data content type is ASN.1 encoded using the
 AuthenticatedData syntax. The fields of the AuthenticatedData syntax
 MUST be populated as described in [CMS]; for the recipients that use
 X25519 or X448, the RecipientInfo kari choice MUST be used.

4.2. KeyAgreeRecipientInfo Fields

 The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
 described in Section 3.2 of this document.

5. Authenticated-enveloped-data Conventions

 The CMS authenticated-enveloped-data content type [AUTHENV] consists
 of an authenticated and encrypted content and encrypted content-
 authenticated-encryption keys for one or more recipients. The ECDH
 key agreement algorithm is used to generate a pairwise KEK between
 the originator and a particular recipient. Then, the KEK is used to
 wrap the content-authenticated-encryption key for that recipient.
 When there is more than one recipient, the same content-
 authenticated-encryption key MUST be wrapped for each of them.

 A compliant implementation MUST meet the requirements for
 constructing an authenticated-data content type in Section 2 of
 [AUTHENV].

 A content-authenticated-encryption key MUST be randomly generated for
 each instance of an authenticated-enveloped-data content type. The
 content-authenticated-encryption key is used to authenticate and
 encrypt the content.

5.1. AuthEnvelopedData Fields

 The authenticated-enveloped-data content type is ASN.1 encoded using
 the AuthEnvelopedData syntax. The fields of the AuthEnvelopedData
 syntax MUST be populated as described in [AUTHENV]; for the
 recipients that use X25519 or X448, the RecipientInfo kari choice
 MUST be used.

5.2. KeyAgreeRecipientInfo Fields

 The fields of the KeyAgreeRecipientInfo syntax MUST be populated as
 described in Section 3.2 of this document.

Housley Standards Track [Page 8]

RFC 8418 Using X25519 and X448 with CMS August 2018

6. Certificate Conventions

 RFC 5280 [PROFILE] specifies the profile for using X.509 Certificates
 in Internet applications. A recipient static public key is needed
 for X25519 or X448, and the originator obtains that public key from
 the recipient’s certificate. The conventions for carrying X25519 and
 X448 public keys are specified in [RFC8410].

7. Key Agreement Algorithm Identifiers

 The following object identifiers are assigned in [CMSECC] to indicate
 ECDH with ANSI-X9.63-KDF using various one-way hash functions. These
 are expected to be used as AlgorithmIdentifiers with a parameter that
 specifies the key-encryption algorithm. These are repeated here for
 convenience.

 secg-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) certicom(132) schemes(1) }

 dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 1 }

 dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 2 }

 dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 3 }

 The following object identifiers are assigned to indicate ECDH with
 HKDF using various one-way hash functions. These are expected to be
 used as AlgorithmIdentifiers with a parameter that specifies the
 key-encryption algorithm.

 smime-alg OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) alg(3) }

 dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
 smime-alg 19 }

 dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
 smime-alg 20 }

 dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
 smime-alg 21 }

Housley Standards Track [Page 9]

RFC 8418 Using X25519 and X448 with CMS August 2018

8. SMIMECapabilities Attribute Conventions

 A sending agent MAY announce to other agents that it supports ECDH
 key agreement using the SMIMECapabilities signed attribute in a
 signed message [SMIME] or a certificate [CERTCAP]. Following the
 pattern established in [CMSECC], the SMIMECapabilities associated
 with ECDH carries a DER-encoded object identifier that identifies
 support for ECDH in conjunction with a particular KDF, and it
 includes a parameter that names the key wrap algorithm.

 The following SMIMECapabilities values (in hexadecimal) from [CMSECC]
 might be of interest to implementations that support X25519 and X448:

 ECDH with ANSI-X9.63-KDF using SHA-256; uses AES-128 key wrap:
 30 15 06 06 2B 81 04 01 0B 01 30 0B 06 09 60 86 48 01 65 03 04
 01 05

 ECDH with ANSI-X9.63-KDF using SHA-384; uses AES-128 key wrap:
 30 15 06 06 2B 81 04 01 0B 02 30 0B 06 09 60 86 48 01 65 03 04
 01 05

 ECDH with ANSI-X9.63-KDF using SHA-512; uses AES-128 key wrap:
 30 15 06 06 2B 81 04 01 0B 03 30 0B 06 09 60 86 48 01 65 03 04
 01 05

 ECDH with ANSI-X9.63-KDF using SHA-256; uses AES-256 key wrap:
 30 15 06 06 2B 81 04 01 0B 01 30 0B 06 09 60 86 48 01 65 03 04
 01 2D

 ECDH with ANSI-X9.63-KDF using SHA-384; uses AES-256 key wrap:
 30 15 06 06 2B 81 04 01 0B 02 30 0B 06 09 60 86 48 01 65 03 04
 01 2D

 ECDH with ANSI-X9.63-KDF using SHA-512; uses AES-256 key wrap:
 30 15 06 06 2B 81 04 01 0B 03 30 0B 06 09 60 86 48 01 65 03 04
 01 2D

Housley Standards Track [Page 10]

RFC 8418 Using X25519 and X448 with CMS August 2018

 The following SMIMECapabilities values (in hexadecimal) based on the
 algorithm identifiers in Section 7 of this document might be of
 interest to implementations that support X25519 and X448:

 ECDH with HKDF using SHA-256; uses AES-128 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 13 30 0B 06 09 60 86
 48 01 65 03 04 01 05

 ECDH with HKDF using SHA-384; uses AES-128 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 14 30 0B 06 09 60 86
 48 01 65 03 04 01 05

 ECDH with HKDF using SHA-512; uses AES-128 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 15 30 0B 06 09 60 86
 48 01 65 03 04 01 05

 ECDH with HKDF using SHA-256; uses AES-256 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 13 30 0B 06 09 60 86
 48 01 65 03 04 01 2D

 ECDH with HKDF using SHA-384; uses AES-256 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 14 30 0B 06 09 60 86
 48 01 65 03 04 01 2D

 ECDH with HKDF using SHA-512; uses AES-256 key wrap:
 30 1A 06 0B 2A 86 48 86 F7 0D 01 09 10 03 15 30 0B 06 09 60 86
 48 01 65 03 04 01 2D

9. Security Considerations

 Please consult the security considerations of [CMS] for security
 considerations related to the enveloped-data content type and the
 authenticated-data content type.

 Please consult the security considerations of [AUTHENV] for security
 considerations related to the authenticated-enveloped-data content
 type.

 Please consult the security considerations of [CURVES] for security
 considerations related to the use of X25519 and X448.

 The originator uses an ephemeral public/private key pair that is
 generated on the same elliptic curve as the public key of the
 recipient. The ephemeral key pair is used for a single CMS protected
 content type, and then it is discarded. If the originator wants to
 be able to decrypt the content (for enveloped-data and authenticated-
 enveloped-data) or check the authentication (for authenticated-data),
 then the originator needs to treat themselves as a recipient.

Housley Standards Track [Page 11]

RFC 8418 Using X25519 and X448 with CMS August 2018

 As specified in [CMS], implementations MUST support processing of the
 KeyAgreeRecipientInfo ukm field; this ensures that interoperability
 is not a concern whether the ukm is present or absent. The ukm is
 placed in the entityUInfo field of the ECC-CMS-SharedInfo structure.
 When present, the ukm ensures that a different key-encryption key is
 generated, even when the originator ephemeral private key is
 improperly used more than once.

10. IANA Considerations

 One object identifier for the ASN.1 module in Appendix A was assigned
 in the "SMI Security for S/MIME Module Identifiers
 (1.2.840.113549.1.9.16.0)" registry on [IANA-SMI]:

 id-mod-cms-ecdh-alg-2017 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) mod(0) 67 }

 Three object identifiers for the Key Agreement Algorithm Identifiers
 in Section 7 were assigned in the "SMI Security for S/MIME Algorithms
 (1.2.840.113549.1.9.16.3)" registry on [IANA-SMI]:

 smime-alg OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) alg(3) }

 dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
 smime-alg 19 }

 dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
 smime-alg 20 }

 dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
 smime-alg 21 }

Housley Standards Track [Page 12]

RFC 8418 Using X25519 and X448 with CMS August 2018

11. References

11.1. Normative References

 [AUTHENV] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 DOI 10.17487/RFC5083, November 2007,
 <https://www.rfc-editor.org/info/rfc5083>.

 [CERTCAP] Santesson, S., "X.509 Certificate Extension for
 Secure/Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, DOI 10.17487/RFC4262, December
 2005, <https://www.rfc-editor.org/info/rfc4262>.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [CMSASN1] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 DOI 10.17487/RFC5911, June 2010,
 <https://www.rfc-editor.org/info/rfc5911>.

 [CMSECC] Turner, S. and D. Brown, "Use of Elliptic Curve
 Cryptography (ECC) Algorithms in Cryptographic Message
 Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January
 2010, <https://www.rfc-editor.org/info/rfc5753>.

 [CURVES] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [HKDF] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [PROFILE] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Housley Standards Track [Page 13]

RFC 8418 Using X25519 and X448 with CMS August 2018

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8410] Josefsson, S., and J. Schaad, "Algorithm Identifiers for
 Ed25519,Ed448, Ed448ph, X25519, and X448 for Use in the
 Internet X.509 Public Key Infrastructure", RFC 8410,
 DOI 10.17487/RFC8410, August 2018,
 <https://www.rfc-editor.org/info/rfc8410>.

 [SEC1] Standards for Efficient Cryptography, "SEC 1: Elliptic
 Curve Cryptography", Cericom Research, version 2.0, May
 2009, <http://www.secg.org/sec1-v2.pdf>.

 [SMIME] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, DOI 10.17487/RFC5751, January
 2010, <https://www.rfc-editor.org/info/rfc5751>.

 [X680] ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, ISO/IEC 8824-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.680/en>.

 [X690] ITU-T, "Information technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1, August
 2015, <https://www.itu.int/rec/T-REC-X.690/en>.

11.2. Informative References

 [AES] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [AESKW] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [CMSAES] Schaad, J., "Use of the Advanced Encryption Standard (AES)
 Encryption Algorithm in Cryptographic Message Syntax
 (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,
 <https://www.rfc-editor.org/info/rfc3565>.

 [DH1976] Diffie, W., and M. E. Hellman, "New Directions in
 Cryptography", IEEE Trans. on Info. Theory, Vol. IT-22,
 November 1976, pp. 644-654.

Housley Standards Track [Page 14]

RFC 8418 Using X25519 and X448 with CMS August 2018

 [IANA-SMI] IANA, "Structure of Management Information (SMI) Numbers
 (MIB Module Registrations)",
 <https://www.iana.org/assignments/smi-numbers>.

 [X963] American National Standards Institute, "Public-Key
 Cryptography for the Financial Services Industry: Key
 Agreement and Key Transport Using Elliptic Curve
 Cryptography", American National Standard X9.63-2001,
 November 2001.

Housley Standards Track [Page 15]

RFC 8418 Using X25519 and X448 with CMS August 2018

Appendix A. ASN.1 Module

 CMSECDHAlgs-2017
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-ecdh-alg-2017(67) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORTS ALL

 IMPORTS

 KeyWrapAlgorithm
 FROM CryptographicMessageSyntaxAlgorithms-2009 -- in [CMSASN1]
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cmsalg-2001-02(37) }

 KEY-AGREE, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- in [CMSASN1]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 dhSinglePass-stdDH-sha256kdf-scheme,
 dhSinglePass-stdDH-sha384kdf-scheme,
 dhSinglePass-stdDH-sha512kdf-scheme,
 kaa-dhSinglePass-stdDH-sha256kdf-scheme,
 kaa-dhSinglePass-stdDH-sha384kdf-scheme,
 kaa-dhSinglePass-stdDH-sha512kdf-scheme,
 cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme,
 cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme,
 cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme
 FROM CMSECCAlgs-2009-02 -- in [CMSECC]
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0)
 id-mod-cms-ecc-alg-2009-02(46) }
 ;

Housley Standards Track [Page 16]

RFC 8418 Using X25519 and X448 with CMS August 2018

 --
 -- Object Identifiers
 --

 smime-alg OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) alg(3) }

 dhSinglePass-stdDH-hkdf-sha256-scheme OBJECT IDENTIFIER ::= {
 smime-alg 19 }

 dhSinglePass-stdDH-hkdf-sha384-scheme OBJECT IDENTIFIER ::= {
 smime-alg 20 }

 dhSinglePass-stdDH-hkdf-sha512-scheme OBJECT IDENTIFIER ::= {
 smime-alg 21 }

 --
 -- Extend the Key Agreement Algorithms in [CMSECC]
 --

 KeyAgreementAlgs KEY-AGREE ::= { ...,
 kaa-dhSinglePass-stdDH-sha256kdf-scheme |
 kaa-dhSinglePass-stdDH-sha384kdf-scheme |
 kaa-dhSinglePass-stdDH-sha512kdf-scheme |
 kaa-dhSinglePass-stdDH-hkdf-sha256-scheme |
 kaa-dhSinglePass-stdDH-hkdf-sha384-scheme |
 kaa-dhSinglePass-stdDH-hkdf-sha512-scheme }

 kaa-dhSinglePass-stdDH-hkdf-sha256-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-hkdf-sha256-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha256-scheme }

 kaa-dhSinglePass-stdDH-hkdf-sha384-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-hkdf-sha384-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha384-scheme }

 kaa-dhSinglePass-stdDH-hkdf-sha512-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-hkdf-sha512-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-hkdf-sha512-scheme }

Housley Standards Track [Page 17]

RFC 8418 Using X25519 and X448 with CMS August 2018

 --
 -- Extend the S/MIME CAPS in [CMSECC]
 --

 SMimeCAPS SMIME-CAPS ::= { ...,
 kaa-dhSinglePass-stdDH-sha256kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha384kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha512kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-hkdf-sha256-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-hkdf-sha384-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-hkdf-sha512-scheme.&smimeCaps }

 cap-kaa-dhSinglePass-stdDH-hkdf-sha256-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha256-scheme }

 cap-kaa-dhSinglePass-stdDH-hkdf-sha384-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha384-scheme}

 cap-kaa-dhSinglePass-stdDH-hkdf-sha512-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-hkdf-sha512-scheme }

 END

Acknowledgements

 Many thanks to Roni Even, Daniel Migault, Eric Rescorla, Jim Schaad,
 Stefan Santesson, and Sean Turner for their review and insightful
 suggestions.

Author’s Address

 Russ Housley
 918 Spring Knoll Drive
 Herndon, VA 20170
 United States of America

 Email: housley@vigilsec.com

Housley Standards Track [Page 18]

