
Independent Submission E. Fokschaner
Request for Comments: 8565 1 April 2019
Category: Informational
ISSN: 2070-1721

 Hypertext Jeopardy Protocol (HTJP/1.0)

Abstract

 The Hypertext Jeopardy Protocol (HTJP) inverts the request/response
 semantics of the Hypertext Transfer Protocol (HTTP). Using
 conventional HTTP, one connects to a server, asks a question, and
 expects a correct answer. Using HTJP, one connects to a server,
 sends an answer, and expects a correct question. This document
 specifies the semantics of HTJP.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8565.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Fokschaner Informational [Page 1]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

Table of Contents

 1. Introduction . 2
 2. Conventions Used in This Document 3
 3. Comparison with HTTP . 3
 4. Response and Request Semantics 4
 4.1. Applicability of Postel’s Robustness Principle 4
 4.2. Identifying the Server Associated with an HTJP Response . 5
 4.3. Temporal Considerations 5
 4.4. Pseudo-Valid HTJP Messages 6
 4.5. HTTP Responses That Are Not Requestable 6
 5. Caches and Proxies . 7
 6. IANA Considerations . 7
 7. Security Considerations 7
 7.1. Securing HTTP against HTJP 7
 7.1.1. Anti-HTJP-Nonce Header 8
 7.2. HTJPS . 8
 8. References . 9
 8.1. Normative References 9
 8.2. Informative References 10
 Appendix A. Hypertext Double Jeopardy Protocol 11
 Acknowledgements . 11
 Author’s Address . 11

1. Introduction

 The Hypertext Jeopardy Protocol (HTJP) 1.0 is a stateless
 application-level response/request protocol that functions as the
 semantic inverse of the Hypertext Transfer Protocol (HTTP) 1.1 .

 It can roughly be specified in relation to HTTP by the following
 rules:

 o Where an HTTP client would send an HTTP request message, an HTJP
 client would send an HTTP response message.

 o Where an HTTP server would send an HTTP response message, an HTJP
 server would send an HTTP request message.

 o The HTTP request sent as an HTJP response should be an HTTP
 request that (if sent to the appropriate HTTP server) would elicit
 the HTTP response sent in the HTJP request.

 HTJP is compatible with the HTTP/1.1 specification, at least in
 spirit, if not in letter.

Fokschaner Informational [Page 2]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 HTJP has novel applications in all the following areas:

 o Generative automated testing of HTTP implementations and HTTP-
 based applications.

 o Monitoring of HTTP-based applications in production.

 o Forensic and diagnostic reconstruction of HTTP requests from HTTP
 response logs.

 o Discovery of first-party and third-party security vulnerabilities.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Comparison with HTTP

 It is a little-known fact that HTTP/1.1 already defines itself to be
 its own inverse mode of operation. Section 3.1 of RFC 7230
 [RFC7230], which describes the start line of the HTTP message format,
 states:

 In theory, a client could receive requests and a server could
 receive responses, distinguishing them by their different start-
 line formats, but, in practice, servers are implemented to only
 expect a request [...] and clients are implemented to only expect
 a response.

 It is only convention that HTTP clients send HTTP requests and that
 HTTP servers send HTTP responses. Therefore, HTJP is just HTTP with
 some alternative conventions. It is not a distinct protocol.
 Furthermore, since all messages in HTJP are indistinguishable from
 HTTP messages, an HTJP peer would have no way of identifying itself
 explicitly as using HTJP rather than HTTP.

 Therefore, we describe HTJP as a "pseudo-protocol" in order to
 distinguish clients, servers, and conversations that are using the
 HTTP conventions laid out in this document from those that use
 conventions that are more commonly associated with HTTP.

Fokschaner Informational [Page 3]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

4. Response and Request Semantics

 An HTJP request MUST be an HTTP response message. An HTJP response
 message MUST be an HTTP request message that, if issued to the
 appropriate HTTP server, would elicit the HTTP response specified by
 the HTJP request being replied to.

 As described in Section 3, HTJP is unconventional but valid HTTP, and
 so the entirety of the HTTP specification (as defined in [RFC7230],
 [RFC7231], [RFC7232], [RFC7233], [RFC7234], and [RFC7235]) MUST be
 respected when doing so is consistent with HTJP’s unique semantics.

 The following example illustrates a typical message exchange for an
 HTJP request concerning the same hypothetical server from Section 2.1
 of RFC 7230 [RFC7230].

 Client request:

 HTTP/1.1 200 OK
 Date: Mon, 27 Jul 2009 12:28:53 GMT
 Server: Apache
 Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
 ETag: "34aa387-d-1568eb00"
 Accept-Ranges: bytes
 Content-Length: 51
 Vary: Accept-Encoding
 Content-Type: text/plain

 Hello World! My payload includes a trailing CRLF.

 Server response:

 GET /hello.txt HTTP/1.1
 Host: www.example.com

4.1. Applicability of Postel’s Robustness Principle

 Implementations of HTJP SHOULD respect Postel’s Robustness Principle
 [IAB-PROTOCOL-MAINTENANCE].

 Applied to HTJP, Postel’s Robustness Principle implies that, given
 the choice of multiple valid HTJP responses for an HTJP request, one
 SHOULD prefer a response that is more adherent to the HTTP standard
 or uses fewer HTTP features. For example, sometimes a User-Agent
 header has no bearing on the HTTP response from an HTTP server. On
 seeing such a response in an HTJP request, an HTJP server could
 validly respond with a practically unlimited number of permutations
 on the User-Agent header value. However, it SHOULD prefer to respond

Fokschaner Informational [Page 4]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 with an HTTP request that has no User-Agent header whatsoever, in
 keeping with Postel’s Robustness Principle.

 The same consideration applies when encountering an HTJP request for
 which there are both valid and "pseudo-valid" (Section 4.4) HTJP
 responses available.

4.2. Identifying the Server Associated with an HTJP Response

 It may be of interest to a user of HTJP to try issuing an HTJP
 response as an HTTP request to the appropriate server. This brings
 up the issue of correctly identifying the host to which the HTJP
 response should be sent. Much of the time this will be able to be
 determined from the Host header field of the HTJP response. The Host
 header is required by conformant HTTP/1.1 requests. In the case that
 the Host header is not present (for example, if the HTJP response is
 an HTTP/1.0 request rather than HTTP/1.1), an HTJP response MAY use
 the absolute URI form in the HTTP request line, to add clarity about
 the target host if it would be validly accepted by the server. This
 specific example is complicated by the fact that prior to HTTP/1.1 it
 was not required that implementations accept the absolute URI form.
 For this reason, it is also possible to phrase the HTJP response as
 an HTTP request to a Forward Proxy server, which would have accepted,
 indeed needed, the absolute URI request line prior to and after
 HTTP/1.1. As a last resort, it may be possible to heuristically
 derive the target host of an HTJP response from the HTJP request; for
 example, the HTJP request may have absolute references to other HTTP
 resources that seem to come from the same host.

4.3. Temporal Considerations

 When an HTJP response is issued, there is no guarantee that, by the
 time the response is received by an HTJP client, the HTTP server that
 is associated with said response will still reply with it. Providing
 any guarantee about "when" an HTTP server would reply with said
 response is obviously a theoretically unsolvable problem and
 therefore outside the scope of this HTJP specification. It is only
 required that the HTJP response be correct at some point in the range
 of the 32-bit Unix Timestamp; see "Seconds Since the Epoch"
 (Section 4.16) of Unix General Concepts [UNIX-General-Concepts].

 HTJP servers that are responding with an HTTP request for a volatile
 resource, and with high confidence in the time range at which the
 resource would be in the state described by the HTJP request, MAY add
 a Date header to the HTJP response. This is in conformance with the
 ability for HTTP requests to carry a Date header; see Section 7.1.1.2
 of [RFC7231].

Fokschaner Informational [Page 5]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 HTJP clients can try to demand more temporal certainty by adding a
 Date header to their HTTP response, embedding criteria for the time
 of the HTTP response in the HTTP response itself. Of course, the
 client might still only receive that exact HTTP response if it
 manages to deliver the HTTP request at the precise time of the
 previously requested Date header, and even then it is still not
 guaranteed due to HTTP caching et cetera.

4.4. Pseudo-Valid HTJP Messages

 In the wild, HTTP clients and servers have been known to occasionally
 exchange HTTP messages that are not conformant to any HTTP
 specification. For this reason, we will identify a class of messages
 that are, on the one hand, invalid HTTP messages, yet at the same
 time, correctly answerable HTJP requests or correct answers to an
 HTJP request, as "pseudo-valid" HTJP messages.

 Consider, for example, an HTTP server that erroneously reports a
 Content-Length header field of zero when sending an HTTP payload of
 non-zero length. Despite this HTTP message violating the HTTP
 specification, it is possible for an HTJP server to receive such a
 message and correctly respond to it, satisfying the HTJP semantics in
 doing so.

 This applies to both HTJP requests and HTJP responses. There may be
 times when the only valid HTJP response is an invalid HTTP request.
 When there are both valid and invalid HTTP requests that could
 satisfy the HTJP request, Postel’s Robustness Principle SHOULD be
 applied, as described in Section 4.1.

4.5. HTTP Responses That Are Not Requestable

 Given that an HTJP response MUST be an HTTP request, and that HTTP
 requests do not have a status field (such as a status code), there is
 no way for an HTJP response to signal a failure in response to an
 HTJP request, via a status code or otherwise. The correct HTJP
 response to an HTJP request when a server cannot determine an HTTP
 request that elicits the HTTP response is to not respond at all. The
 HTJP responder MAY close the connection; however, the HTJP requester
 MUST NOT interpret the closing of the connection as a response. This
 can have issues when HTJP servers are hosted behind non-HTJP-aware
 HTTP proxies, as the proxy may inject a 5xx HTTP response, which
 could be misinterpreted as an HTJP response. See more on proxies in
 Section 5.

Fokschaner Informational [Page 6]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

5. Caches and Proxies

 Despite being valid HTTP traffic, support for caching and proxying of
 HTJP traffic is unfortunately not widespread. It is estimated that
 currently approximately 0.0% of all HTTP-aware intermediaries
 gracefully handle HTJP traffic. For this reason, it is currently
 RECOMMENDED that HTJP should not be deployed behind an HTTP proxying
 or caching layer. Support will likely increase proportionally to
 HTJP’s popularity in production.

6. IANA Considerations

 In order that implementations of this specification can operate
 correctly, and in accordance with [BCP90], the following new HTTP
 header field would need to be registered in the "Message Headers"
 registry maintained at
 <https://www.iana.org/assignments/message-headers/>. To find out the
 details of this registration, an application should send an HTJP
 request to a suitable server specifying the Anti-HTJP-Nonce value
 that the server would have supplied had the IANA registration been
 made.

 +-------------------+----------+---------------+---------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+---------------+---------------+
 | Anti-HTJP-Nonce | http | informational | Section 7.1.1 |
 +-------------------+----------+---------------+---------------+

7. Security Considerations

7.1. Securing HTTP against HTJP

 An incomplete implementation of HTJP is inadvisable from a security
 perspective. A complete implementation of HTJP may have interesting
 security features that are worthy of detailed examination. Due to
 its semantics, the issuing of a successfully authorized HTTP response
 to an HTJP server will result in a reply containing the HTTP request
 that elicits said response, including any credentials, tokens,
 cookies, or other authorization materials that were required to
 elicit that response.

Fokschaner Informational [Page 7]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 As an example:

 Client request:

 HTTP/1.1 200 OK
 Date: Mon, 27 Jul 2009 12:28:53 GMT
 Content-Length: 61
 Content-Type: text/plain

 Some predictable information accessed using authorization.

 Server response:
 (line breaks in the Authorization header are for RFC formatting)

 GET /information.txt HTTP/1.1
 Host: authorised-usage-service.example.com
 Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
 eyJzdWIiOiJodGpwIiwibmFtZSI6IkV2ZXJ5b25lIiwiaWF0IjowfQ.
 JOL-kIObgTI0MzFfm1yVFFkIo1xf7DZGjY_oedRBZW0

 Given that we cannot prevent anyone from attempting to implement
 HTJP, it is RECOMMENDED to consider how HTJP impacts security when
 using HTTP.

 Note that it was only possible to query for the credentialed HTTP
 request because the response to the authorized request was
 predictable. HTTP servers could mitigate this vulnerability exposed
 by HTJP by only serving a response that is at least as secret as the
 credentials themselves in response to an authorized request.

7.1.1. Anti-HTJP-Nonce Header

 A generic solution to this problem is to use an "Anti-HTJP-Nonce"
 HTTP header in HTTP responses. The value of an "Anti-HTJP-Nonce"
 header SHOULD be a cryptographically secure random number in any
 encoding that is valid for an HTTP header value. The length of this
 number SHOULD be determined by the producer of the HTTP response,
 accounting for their method of random number generation and their
 threat model.

7.2. HTJPS

 HTJP, being just HTTP, has most of the same security concerns and
 features as HTTP itself. For example, the use of HTJP over an
 encrypted connection, such as TLS 1.3 [RFC8446], similar to HTTP
 Secure (HTTPS), is referred to as HTJP Secure (HTJPS). However, it
 is important to note that, unlike with HTTPS, it is not expected that
 the hostname you are securely communicating with is the same hostname

Fokschaner Informational [Page 8]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 as featured in the Host headers or absolute URIs of the HTJP messages
 themselves, as HTJP messages are typically referring to other HTTP
 hosts. This excludes the case of a server that supports both
 conventional HTTP and HTJP, where it is possible to make HTJP
 requests securely to the same host that is also the subject of the
 HTJP requests being made.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <https://www.rfc-editor.org/info/rfc7232>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",
 RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <https://www.rfc-editor.org/info/rfc7233>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

Fokschaner Informational [Page 9]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [UNIX-General-Concepts]
 "General Concepts", Chapter 4 of "The Open Group Base
 Specifications, Issue 7", 2018 edition, IEEE
 Std 1003.1-2017, 2018, <http://pubs.opengroup.org/
 onlinepubs/9699919799/basedefs/V1_chap04.html>.

8.2. Informative References

 [BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004, <https://www.rfc-editor.org/info/bcp90>.

 [IAB-PROTOCOL-MAINTENANCE]
 Thomson, M., "The Harmful Consequences of the Robustness
 Principle", Work in Progress, draft-iab-protocol-
 maintenance-02, March 2019.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Fokschaner Informational [Page 10]

RFC 8565 Hypertext Jeopardy Protocol 1.0 1 April 2019

Appendix A. Hypertext Double Jeopardy Protocol

 Also worth mentioning, in case one encounters it in the wild, is the
 Hypertext Double Jeopardy Protocol (HTJ2P). The Hypertext Double
 Jeopardy Protocol 1.0 is a stateless application-level request/
 response protocol that functions as the inverse of the Hypertext
 Jeopardy Protocol (HTJP) 1.0 .

 An HTJ2P response MUST be an HTTP response which would be issued for
 an HTTP request delivered as the HTJ2P request. Implementations of
 HTJ2P have groundbreaking potential in the fields of HTTP caching,
 and in the implementation of HTJP.

Acknowledgements

 The author thanks Alex Trebek for his distinguished contributions to
 culture and society. The author thanks Peter Phillips for the
 suggestion of the Anti-HTJP-Nonce header. The author also wishes to
 thank anyone who has ever built a tool or a technology that made
 people ask "Why?".

Author’s Address

 Edmund Fokschaner

 Email: edfokschaner@gmail.com

Fokschaner Informational [Page 11]

