
Internet Research Task Force (IRTF) M. Mosko
Request for Comments: 8609 PARC, Inc.
Category: Experimental I. Solis
ISSN: 2070-1721 LinkedIn
 C. Wood
 University of California Irvine
 July 2019

 Content-Centric Networking (CCNx) Messages in TLV Format

Abstract

 Content-Centric Networking (CCNx) is a network protocol that uses a
 hierarchical name to forward requests and to match responses to
 requests. This document specifies the encoding of CCNx messages in a
 TLV packet format, including the TLV types used by each message
 element and the encoding of each value. The semantics of CCNx
 messages follow the encoding-independent CCNx Semantics
 specification.

 This document is a product of the Information Centric Networking
 research group (ICNRG). The document received wide review among
 ICNRG participants and has two full implementations currently in
 active use, which have informed the technical maturity of the
 protocol specification.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Research Task
 Force (IRTF). The IRTF publishes the results of Internet-related
 research and development activities. These results might not be
 suitable for deployment. This RFC represents the consensus of the
 Information-Centric Networking Research Group of the Internet
 Research Task Force (IRTF). Documents approved for publication by
 the IRSG are not candidates for any level of Internet Standard; see
 Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8609.

Mosko, et al. Experimental [Page 1]

RFC 8609 CCNx TLV July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 5
 2. Definitions . 5
 3. Type-Length-Value (TLV) Packets 5
 3.1. Overall Packet Format 7
 3.2. Fixed Headers . 8
 3.2.1. Interest Fixed Header 9
 3.2.1.1. Interest HopLimit 9
 3.2.2. Content Object Fixed Header 9
 3.2.3. Interest Return Fixed Header 10
 3.2.3.1. Interest Return HopLimit 10
 3.2.3.2. Interest Return Flags 10
 3.2.3.3. Return Code 10
 3.3. Global Formats . 11
 3.3.1. Pad . 11
 3.3.2. Organization-Specific TLVs 12
 3.3.3. Hash Format . 12
 3.3.4. Link . 13
 3.4. Hop-by-Hop TLV Headers 14
 3.4.1. Interest Lifetime 14
 3.4.2. Recommended Cache Time 15
 3.4.3. Message Hash . 16
 3.5. Top-Level Types . 17
 3.6. CCNx Message TLV . 18
 3.6.1. Name . 19
 3.6.1.1. Name Segments 20
 3.6.1.2. Interest Payload ID 20
 3.6.2. Message TLVs . 21
 3.6.2.1. Interest Message TLVs 21
 3.6.2.2. Content Object Message TLVs 23
 3.6.3. Payload . 25
 3.6.4. Validation . 25
 3.6.4.1. Validation Algorithm 25
 3.6.4.2. Validation Payload 32

Mosko, et al. Experimental [Page 2]

RFC 8609 CCNx TLV July 2019

 4. IANA Considerations . 33
 4.1. Packet Type Registry 33
 4.2. Interest Return Code Registry 34
 4.3. Hop-by-Hop Type Registry 35
 4.4. Top-Level Type Registry 36
 4.5. Name Segment Type Registry 37
 4.6. Message Type Registry 37
 4.7. Payload Type Registry 38
 4.8. Validation Algorithm Type Registry 39
 4.9. Validation-Dependent Data Type Registry 40
 4.10. Hash Function Type Registry 40
 5. Security Considerations 41
 6. References . 44
 6.1. Normative References 44
 6.2. Informative References 44
 Authors’ Addresses . 46

1. Introduction

 This document specifies a Type-Length-Value (TLV) packet format and
 the TLV type and value encodings for CCNx messages. A full
 description of the CCNx network protocol, providing an encoding-free
 description of CCNx messages and message elements, may be found in
 [RFC8569]. CCNx is a network protocol that uses a hierarchical name
 to forward requests and to match responses to requests. It does not
 use endpoint addresses; the Internet Protocol does. Restrictions in
 a request can limit the response by the public key of the response’s
 signer or the cryptographic hash of the response. Every CCNx
 forwarder along the path does the name matching and restriction
 checking. The CCNx protocol fits within the broader framework of
 Information-Centric Networking (ICN) protocols [RFC7927].

 This document describes a TLV scheme using a fixed 2-byte T and a
 fixed 2-byte L field. The rational for this choice is described in
 Section 5. Briefly, this choice avoids multiple encodings of the
 same value (aliases) and reduces the work of a validator to ensure
 compliance. Unlike some uses of TLV in networking, each network hop
 must evaluate the encoding, so even small validation latencies at
 each hop could add up to a large overall forwarding delay. For very
 small packets or low-throughput links, where the extra bytes may
 become a concern, one may use a TLV compression protocol, for
 example, [compress] and [CCNxz].

 This document uses the terms CCNx Packet, CCNx Message, and CCNx
 Message TLV. A CCNx Packet refers to the entire Layer 3 datagram as
 specified in Section 3.1. A CCNx Message is the ABNF token defined
 in the CCNx Semantics document [RFC8569]. A CCNx Message TLV refers
 to the encoding of a CCNx Message as specified in Section 3.6.

Mosko, et al. Experimental [Page 3]

RFC 8609 CCNx TLV July 2019

 This document specifies:

 o the CCNx Packet format,

 o the CCNx Message TLV format,

 o the TLV types used by CCNx messages,

 o the encoding of values for each type,

 o top-level types that exist at the outermost containment,

 o Interest TLVs that exist within Interest containment, and

 o Content Object TLVs that exist within Content Object containment.

 This document is supplemented by these documents:

 o [RFC8569], which covers message semantics and the protocol
 operation regarding Interest and Content Object, including the
 Interest Return protocol.

 o [CCNxURI], which covers the CCNx URI notation.

 The type values in Section 4 conform to the IANA-assigned numbers for
 the CCNx protocol. This document uses the symbolic names defined in
 that section. All TLV type values are relative to their parent
 containers. For example, each level of a nested TLV structure might
 define a "type = 1" with a completely different meaning.

 Packets are represented as 32-bit wide words using ASCII art. Due to
 the nested levels of TLV encoding and the presence of optional fields
 and variable sizes, there is no concise way to represent all
 possibilities. We use the convention that ASCII art fields enclosed
 by vertical bars "|" represent exact bit widths. Fields with a
 forward slash "/" are variable bit widths, which we typically pad out
 to word alignment for picture readability.

 The document represents the consensus of the ICN RG. It is the first
 ICN protocol from the RG, created from the early CCNx protocol [nnc]
 with significant revision and input from the ICN community and RG
 members. The document has received critical reading by several
 members of the ICN community and the RG. The authors and RG chairs
 approve of the contents. The document is sponsored under the IRTF
 and is not issued by the IETF and is not an IETF standard. This is
 an experimental protocol and may not be suitable for any specific
 application and the specification may change in the future.

Mosko, et al. Experimental [Page 4]

RFC 8609 CCNx TLV July 2019

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Definitions

 These definitions summarize items defined in [RFC8569]. This
 document defines their encodings.

 o Name: A hierarchically structured variable-length identifier. It
 is an ordered list of path segments, which are variable-length
 octet strings. In human-readable form, it is represented in URI
 format as "ccnx:/path/part". There is no host or query string.
 See [CCNxURI] for complete details.

 o Interest: A message requesting a Content Object with a matching
 Name and other optional selectors to choose from multiple objects
 with the same Name. Any Content Object with a Name and attributes
 that matches the Name and optional selectors of the Interest is
 said to satisfy the Interest.

 o Content Object: A data object sent in response to an Interest
 request. It has an optional Name and a content payload that are
 bound together via cryptographic means.

3. Type-Length-Value (TLV) Packets

 We use 16-bit Type and 16-bit Length fields to encode TLV-based
 packets. This provides 65,536 different possible types and value
 field lengths of up to 64 KiB. With 65,536 possible types at each
 level of TLV encoding, there should be sufficient space for basic
 protocol types, while also allowing ample room for experimentation,
 application use, vendor extensions, and growth. This encoding does
 not allow for jumbo packets beyond 64 KiB total length. If used on a
 media that allows for jumbo frames, we suggest defining a media
 adaptation envelope that allows for multiple smaller frames.

Mosko, et al. Experimental [Page 5]

RFC 8609 CCNx TLV July 2019

 +--------+------------------+---------------------------------------+
 | Abbrev | Name | Description |
 +--------+------------------+---------------------------------------+
T_ORG	Vendor Specific	Information specific to a vendor
	Information	implementation (Section 3.3.2).
T_PAD	Padding	Adds padding to a field (Section
		3.3.1).
n/a	Experimental	Experimental use.
 +--------+------------------+---------------------------------------+

 Table 1: Reserved TLV Types

 There are several global TLV definitions that we reserve at all
 hierarchical contexts. The TLV types in the range 0x1000 - 0x1FFF
 are Reserved for Experimental Use. The TLV type T_ORG is also
 Reserved for Vendor Extensions (see Section 3.3.2). The TLV type
 T_PAD is used to optionally pad a field out to some desired
 alignment.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Type | Length |
 +---------------+---------------+---------------+---------------+

 Figure 1: Type and Length encoding

 The Length field contains the length of the Value field in octets.
 It does not include the length of the Type and Length fields. The
 Length MAY be zero.

 TLV structures are nestable, allowing the Value field of one TLV
 structure to contain additional TLV structures. The enclosing TLV
 structure is called the container of the enclosed TLV.

 Type values are context dependent. Within a TLV container, one may
 reuse previous type values for new context-dependent purposes.

Mosko, et al. Experimental [Page 6]

RFC 8609 CCNx TLV July 2019

3.1. Overall Packet Format

 Each CCNx Packet includes the 8-byte fixed header, described below,
 followed by a set of TLV fields. These fields are optional hop-by-
 hop headers and the Packet Payload.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PacketType | PacketLength |
 +---------------+---------------+---------------+---------------+
 | PacketType-specific fields | HeaderLength |
 +---------------+---------------+---------------+---------------+
 / Optional hop-by-hop header TLVs /
 +---------------+---------------+---------------+---------------+
 / PacketPayload TLVs /
 +---------------+---------------+---------------+---------------+

 Figure 2: Overall Packet Format

 The PacketPayload of a CCNx Packet is the protocol message itself.
 The Content Object Hash is computed over the PacketPayload only,
 excluding the fixed and hop-by-hop headers, as those might change
 from hop to hop. Signed information or similarity hashes should not
 include any of the fixed or hop-by-hop headers. The PacketPayload
 should be self-sufficient in the event that the fixed and hop-by-hop
 headers are removed. See Message Hash (Section 3.4.3).

 Following the CCNx Message TLV, the PacketPayload may include
 optional Validation TLVs.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | CCNx Message TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationAlgorithm TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationPayload TLV (ValidationAlg required) /
 +---------------+---------------+---------------+---------------+

 Figure 3: PacketPayload TLVs

 After discarding the fixed and hop-by-hop headers, the remaining
 PacketPayload should be a valid protocol message. Therefore, the
 PacketPayload always begins with 4 bytes of type-length that
 specifies the protocol message (whether it is an Interest, Content
 Object, or other message type) and its total length. The embedding

Mosko, et al. Experimental [Page 7]

RFC 8609 CCNx TLV July 2019

 of a self-sufficient protocol data unit inside the fixed and hop-by-
 hop headers allows a network stack to discard the headers and operate
 only on the embedded message. It also decouples the PacketType field
 -- which specifies how to forward the packet -- from the
 PacketPayload.

 The range of bytes protected by the Validation includes the CCNx
 Message TLV and the ValidationAlgorithm TLV.

 The ContentObjectHash begins with the CCNx Message TLV and ends at
 the tail of the CCNx Packet.

3.2. Fixed Headers

 In Figure 2, the fixed header fields are:

 o Version: defines the version of the packet, which MUST be 1.

 o HeaderLength: The length of the fixed header (8 bytes) and hop-by-
 hop headers. The minimum value MUST be 8.

 o PacketType: describes forwarder actions to take on the packet.

 o PacketLength: Total octets of packet including all headers (fixed
 header plus hop-by-hop headers) and protocol message.

 o PacketType-specific Fields: specific PacketTypes define the use of
 these bits.

 The PacketType field indicates how the forwarder should process the
 packet. A Request Packet (Interest) has PacketType PT_INTEREST, a
 Response (Content Object) has PacketType PT_CONTENT, and an Interest
 Return has PacketType PT_RETURN.

 HeaderLength is the number of octets from the start of the CCNx
 Packet (Version) to the end of the hop-by-hop headers. PacketLength
 is the number of octets from the start of the packet to the end of
 the packet. Both lengths have a minimum value of 8 (the fixed header
 itself).

 The PacketType-specific fields are reserved bits whose use depends on
 the PacketType. They are used for network-level signaling.

Mosko, et al. Experimental [Page 8]

RFC 8609 CCNx TLV July 2019

3.2.1. Interest Fixed Header

 If the PacketType is PT_INTEREST, it indicates that the packet should
 be forwarded following the Interest pipeline in Section 2.4.4 of
 [RFC8569]. For this type of packet, the Fixed Header includes a
 field for a HopLimit as well as Reserved and Flags fields. The
 Reserved field MUST be set to 0 in an Interest. There are currently
 no flags defined, so the Flags field MUST be set to 0.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_INTEREST | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

 Figure 4: Interest Header

3.2.1.1. Interest HopLimit

 For an Interest message, the HopLimit is a counter that is
 decremented with each hop. It limits the distance an Interest may
 travel on the network. The node originating the Interest MAY put in
 any value up to the maximum of 255. Each node that receives an
 Interest with a HopLimit decrements the value upon reception. If the
 value is 0 after the decrement, the Interest MUST NOT be forwarded
 off the node.

 It is an error to receive an Interest from a remote node with the
 HopLimit field set to 0.

3.2.2. Content Object Fixed Header

 If the PacketType is PT_CONTENT, it indicates that the packet should
 be forwarded following the Content Object pipeline in Section 2.4.4
 of [RFC8569]. A Content Object defines a Flags field; however, there
 are currently no flags defined, so the Flags field must be set to 0.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_CONTENT | PacketLength |
 +---------------+---------------+---------------+---------------+
 | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

 Figure 5: Content Object Header

Mosko, et al. Experimental [Page 9]

RFC 8609 CCNx TLV July 2019

3.2.3. Interest Return Fixed Header

 If the PacketType is PT_RETURN, it indicates that the packet should
 be processed following the Interest Return rules in Section 10 of
 [RFC8569]. The only difference between this Interest Return message
 and the original Interest is that the PacketType is changed to
 PT_RETURN and a ReturnCode is put into the ReturnCode field. All
 other fields are unchanged from the Interest packet. The purpose of
 this encoding is to prevent packet length changes so no additional
 bytes are needed to return an Interest to the previous hop.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_RETURN | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | ReturnCode | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

 Figure 6: Interest Return Header

3.2.3.1. Interest Return HopLimit

 This is the original Interest’s HopLimit, as received before
 decrement at the node sending the Interest Return.

3.2.3.2. Interest Return Flags

 These are the original Flags as set in the Interest.

3.2.3.3. Return Code

 This section maps the Return Code name [RFC8569] to the TLV symbolic
 name. Section 4.2 maps the symbolic names to numeric values. This
 field is set by the node creating the Interest Return.

 A return code of "0" MUST NOT be used, as it indicates that the
 returning system did not modify the Return Code field.

Mosko, et al. Experimental [Page 10]

RFC 8609 CCNx TLV July 2019

 +-------------------------------------+-----------------------------+
 | Return Type | Name in RFC 8569 |
 +-------------------------------------+-----------------------------+
T_RETURN_NO_ROUTE	No Route
T_RETURN_LIMIT_EXCEEDED	Hop Limit Exceeded
T_RETURN_NO_RESOURCES	No Resources
T_RETURN_PATH_ERROR	Path Error
T_RETURN_PROHIBITED	Prohibited
T_RETURN_CONGESTED	Congested
T_RETURN_MTU_TOO_LARGE	MTU too large
T_RETURN_UNSUPPORTED_HASH_RESTRICTI	Unsupported ContentObjectHa
ON	shRestriction
T_RETURN_MALFORMED_INTEREST	Malformed Interest
 +-------------------------------------+-----------------------------+

 Table 2: Return Codes

3.3. Global Formats

 This section defines global formats that may be nested within other
 TLVs.

3.3.1. Pad

 The pad type may be used by sources that prefer word-aligned data.
 Padding 4-byte words, for example, would use a 1-byte, 2-byte, and
 3-byte Length. Padding 8-byte words would use a (0, 1, 2, 3, 5, 6,
 7)-byte Length.

 One MUST NOT pad inside a Name. Apart from that, a pad MAY be
 inserted after any other TLV in the CCNx Message TLV or in the
 ValidationAlgorithm TLV. In the remainder of this document, we will
 not show optional Pad TLVs.

Mosko, et al. Experimental [Page 11]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAD | Length |
 +---------------+---------------+---------------+---------------+
 / variable-length pad MUST be zeros /
 +---------------+---------------+---------------+---------------+

 Figure 7: Pad Encoding

3.3.2. Organization-Specific TLVs

 Organization-specific TLVs (also known as Vendor TLVs) MUST use the
 T_ORG type. The Length field is the length of the organization-
 specific information plus 3. The Value begins with the 3 byte
 organization number derived from the network byte order encoding of
 the IANA "Private Enterprise Numbers" registry [IANA-PEN], followed
 by the organization-specific information.

 A T_ORG MAY be used as a path segment in a Name. It is treated like
 any other path segment.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_ORG | Length (3+value length) |
 +---------------+---------------+---------------+---------------+
 | PEN[0] | PEN[1] | PEN[2] | /
 +---------------+---------------+---------------+ +
 / Vendor Specific Value /
 +---------------+---------------+---------------+---------------+

 Figure 8: Organization-Specific TLVs

3.3.3. Hash Format

 Hash values are used in several fields throughout a packet. This TLV
 encoding is commonly embedded inside those fields to specify the
 specific hash function used and its value. Note that the reserved
 TLV types are also reserved here for user-defined experimental
 functions.

 The LENGTH field of the hash value MUST be less than or equal to the
 hash function length. If the LENGTH is less than the full length, it
 is taken as the left LENGTH bytes of the hash function output. Only
 specified truncations are allowed, not arbitrary truncations.

Mosko, et al. Experimental [Page 12]

RFC 8609 CCNx TLV July 2019

 This nested format is used because it allows binary comparison of
 hash values for certain fields without a router needing to understand
 a new hash function. For example, the KeyIdRestriction is bit-wise
 compared between an Interest’s KeyIdRestriction field and a
 ContentObject’s KeyId field. This format means the outer field
 values do not change with differing hash functions so a router can
 still identify those fields and do a binary comparison of the hash
 TLV without need to understand the specific hash used. An
 alternative approach, such as using T_KEYID_SHA512-256, would require
 each router keeps an up-to-date parser and supporting user-defined
 hash functions here would explode the parsing state-space.

 A CCNx entity MUST support the hash type T_SHA-256. An entity MAY
 support the remaining hash types.

 +-----------+------------------------+
 | Abbrev | Lengths (octets) |
 +-----------+------------------------+
 | T_SHA-256 | 32 |
 | | |
 | T_SHA-512 | 64, 32 |
 | | |
 | n/a | Experimental TLV types |
 +-----------+------------------------+

 Table 3: CCNx Hash Functions

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_FOO | 36 |
 +---------------+---------------+---------------+---------------+
 | T_SHA512 | 32 |
 +---------------+---------------+---------------+---------------+
 / 32-byte hash value /
 +---------------+---------------+---------------+---------------+

 Figure 9: Example nesting inside type T_FOO

3.3.4. Link

 A Link is the tuple: {Name, [KeyIdRestr], [ContentObjectHashRestr]}.
 It is a general encoding that is used in both the payload of a
 Content Object with PayloadType = "Link" and in a Content Object’s
 KeyLink field. A Link is essentially the body of an Interest.

Mosko, et al. Experimental [Page 13]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 / Mandatory CCNx Name /
 +---------------+---------------+---------------+---------------+
 / Optional KeyIdRestriction /
 +---------------+---------------+---------------+---------------+
 / Optional ContentObjectHashRestriction /
 +---------------+---------------+---------------+---------------+

 Figure 10: Link Encoding

3.4. Hop-by-Hop TLV Headers

 Hop-by-hop TLV headers are unordered and meaning MUST NOT be attached
 to their ordering. Three hop-by-hop headers are described in this
 document:

 +-------------+--------------------+--------------------------------+
 | Abbrev | Name | Description |
 +-------------+--------------------+--------------------------------+
T_INTLIFE	Interest Lifetime	The time an Interest should
	(Section 3.4.1)	stay pending at an
		intermediate node.
T_CACHETIME	Recommended Cache	The Recommended Cache Time for
	Time (Section	Content Objects.
	3.4.2)	
T_MSGHASH	Message Hash	A cryptographic hash (Section
	(Section 3.4.3)	3.3.3).
 +-------------+--------------------+--------------------------------+

 Table 4: Hop-by-Hop Header Types

 Additional hop-by-hop headers are defined in higher level
 specifications such as the fragmentation specification.

3.4.1. Interest Lifetime

 The Interest Lifetime is the time that an Interest should stay
 pending at an intermediate node. It is expressed in milliseconds as
 an unsigned integer in network byte order.

 A value of 0 (encoded as 1 byte 0x00) indicates the Interest does not
 elicit a Content Object response. It should still be forwarded, but
 no reply is expected and a forwarder could skip creating a PIT entry.

Mosko, et al. Experimental [Page 14]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_INTLIFE | Length |
 +---------------+---------------+---------------+---------------+
 / /
 / Lifetime (Length octets) /
 / /
 +---------------+---------------+---------------+---------------+

 Figure 11: Interest Lifetime Encoding

3.4.2. Recommended Cache Time

 The Recommended Cache Time (RCT) is a measure of the useful lifetime
 of a Content Object as assigned by a content producer or upstream
 node. It serves as a guideline to the Content Store cache in
 determining how long to keep the Content Object. It is a
 recommendation only and may be ignored by the cache. This is in
 contrast to the ExpiryTime (described in Section 3.6.2.2.2) which
 takes precedence over the RCT and must be obeyed.

 Because the Recommended Cache Time is an optional hop-by-hop header
 and not a part of the signed message, a content producer may re-issue
 a previously signed Content Object with an updated RCT without
 needing to re-sign the message. There is little ill effect from an
 attacker changing the RCT as the RCT serves as a guideline only.

 The Recommended Cache Time (a millisecond timestamp) is an unsigned
 integer in network byte order that indicates the time when the
 payload expires (as the number of milliseconds since the epoch in
 UTC). It is a 64-bit field.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CACHETIME | 8 |
 +---------------+---------------+---------------+---------------+
 / /
 / Recommended Cache Time /
 / /
 +---------------+---------------+---------------+---------------+

 Figure 12: Recommended Cache Time Encoding

Mosko, et al. Experimental [Page 15]

RFC 8609 CCNx TLV July 2019

3.4.3. Message Hash

 Within a trusted domain, an operator may calculate the message hash
 at a border device and insert that value into the hop-by-hop headers
 of a message. An egress device should remove the value. This
 permits intermediate devices within that trusted domain to match
 against a ContentObjectHashRestriction without calculating it at
 every hop.

 The message hash is a cryptographic hash from the start of the CCNx
 Message TLV to the end of the packet. It is used to match against
 the ContentObjectHashRestriction (Section 3.6.2.1.2). The Message
 Hash may be of longer length than an Interest’s restriction, in which
 case the device should use the left bytes of the Message Hash to
 check against the Interest’s value.

 The Message Hash may only carry one hash type and there may only be
 one Message Hash header.

 The Message Hash header is unprotected, so this header is only of
 practical use within a trusted domain, such as an operator’s
 autonomous system.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_MSGHASH | (length + 4) |
 +---------------+---------------+---------------+---------------+
 | hash type | length |
 +---------------+---------------+---------------+---------------+
 / hash value /
 +---------------+---------------+---------------+---------------+

 Figure 13: Message Hash Header

Mosko, et al. Experimental [Page 16]

RFC 8609 CCNx TLV July 2019

3.5. Top-Level Types

 The top-level TLV types listed below exist at the outermost level of
 a CCNx Message TLV.

 +----------------------+------------+-------------------------------+
 | Abbrev | Name | Description |
 +----------------------+------------+-------------------------------+
T_INTEREST	Interest	An Interest MessageType.
	(Section	
	3.6)	
T_OBJECT	Content	A Content Object MessageType
	Object	
	(Section	
	3.6)	
T_VALIDATION_ALG	Validation	The method of message
	Algorithm	verification such as a
	(Section	Message Integrity Check
	3.6.4.1)	(MIC), Message Authentication
		Code (MAC), or cryptographic
		signature.
T_VALIDATION_PAYLOAD	Validation	The validation output, such
	Payload	as the CRC32C code or the RSA
	(Section	signature.
	3.6.4.2)	
 +----------------------+------------+-------------------------------+

 Table 5: CCNx Top Level Types

Mosko, et al. Experimental [Page 17]

RFC 8609 CCNx TLV July 2019

3.6. CCNx Message TLV

 This is the format for the CCNx Message itself. The CCNx Message TLV
 is the portion of the CCNx Packet between the hop-by-hop headers and
 the Validation TLVs. The figure below is an expansion of the "CCNx
 Message TLV" depicted in the beginning of Section 3. The CCNx
 Message TLV begins with MessageType and runs through the optional
 Payload. The same general format is used for both Interest and
 Content Object messages which are differentiated by the MessageType
 field. The first enclosed TLV of a CCNx Message TLV is always the
 Name TLV, if present. This is followed by an optional Message TLVs
 and an optional Payload TLV.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 / Name TLV (Type = T_NAME) /
 +---------------+---------------+---------------+---------------+
 / Optional Message TLVs (Various Types) /
 +---------------+---------------+---------------+---------------+
 / Optional Payload TLV (Type = T_PAYLOAD) /
 +---------------+---------------+---------------+---------------+

 Figure 14: CCNx Message TLV Encoding

 +-----------+---------------+---------------------------------------+
 | Abbrev | Name | Description |
 +-----------+---------------+---------------------------------------+
T_NAME	Name (Section	The CCNx Name requested in an
	3.6.1)	Interest or published in a Content
		Object.
T_PAYLOAD	Payload	The message payload.
	(Section	
	3.6.3)	
 +-----------+---------------+---------------------------------------+

 Table 6: CCNx Message TLV Types

Mosko, et al. Experimental [Page 18]

RFC 8609 CCNx TLV July 2019

3.6.1. Name

 A Name is a TLV encoded sequence of segments. The table below lists
 the type values appropriate for these name segments. A Name MUST NOT
 include Pad TLVs.

 As described in CCNx Semantics [RFC8569], using the CCNx URI
 [CCNxURI] notation, a T_NAME with zero length corresponds to "ccnx:/"
 (the default route). The message grammar does not allow the first
 name segment to have zero length in a CCNx Message TLV Name. In the
 TLV encoding, "ccnx:/" corresponds to T_NAME with zero length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_NAME | Length |
 +---------------+---------------+---------------+---------------+
 / Name segment TLVs /
 +---------------+---------------+---------------+---------------+

 Figure 15: Name Encoding

 +---------------+-------------+-------------------------------------+
 | Symbolic Name | Name | Description |
 +---------------+-------------+-------------------------------------+
T_NAMESEGMENT	Name	A generic name segment.
	segment	
	(Section	
	3.6.1.1)	
T_IPID	Interest	An identifier that represents the
	Payload ID	Interest Payload field. As an
	(Section	example, the Payload ID might be a
	3.6.1.2)	hash of the Interest Payload. This
		provides a way to differentiate
		between Interests based on their
		payloads without having to parse
		all the bytes of the payload
		itself, and instead using only this
		Payload ID name segment.
T_APP:00 -	Application	Application-specific payload in a
T_APP:4096	Components	name segment. An application may
	(Section	apply its own semantics to the 4096
	3.6.1.1)	reserved types.
 +---------------+-------------+-------------------------------------+

 Table 7: CCNx Name Types

Mosko, et al. Experimental [Page 19]

RFC 8609 CCNx TLV July 2019

3.6.1.1. Name Segments

 4096 special application payload name segments are allocated. These
 have application semantics applied to them. A good convention is to
 put the application’s identity in the name prior to using these name
 segments.

 For example, a name like "ccnx:/foo/bar/hi" would be encoded as:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | (T_NAME) | 0x14 (20) |
 +---------------+---------------+---------------+---------------+
 | (T_NAME_SEGMENT) | 0x03 (3) |
 +---------------+---------------+---------------+---------------+
 | f o o |(T_NAME_SEGMENT)
 +---------------+---------------+---------------+---------------+
 | | 0x03 (3) | b |
 +---------------+---------------+---------------+---------------+
 | a r | (T_NAME_SEGMENT) |
 +---------------+---------------+---------------+---------------+
 | 0x02 (2) | h | i |
 +---------------+---------------+---------------+---------------+

 Figure 16: Name Encoding Example

3.6.1.2. Interest Payload ID

 The InterestPayloadID is a name segment created by the origin of an
 Interest to represent the Interest Payload. This allows the proper
 multiplexing of Interests based on their name if they have different
 payloads. A common representation is to use a hash of the Interest
 Payload as the InterestPayloadID.

 As part of the Value of the TLV, the InterestPayloadID contains a
 one-octet identifier of the method used to create the
 InterestPayloadID followed by a variable-length octet string. An
 implementation is not required to implement any of the methods to
 receive an Interest; the InterestPayloadID may be treated only as an
 opaque octet string for the purposes of multiplexing Interests with
 different payloads. Only a device creating an InterestPayloadID name
 segment or a device verifying such a segment needs to implement the
 algorithms.

 It uses the encoding of hash values specified in Section 3.3.3.

Mosko, et al. Experimental [Page 20]

RFC 8609 CCNx TLV July 2019

 In normal operations, we recommend displaying the InterestPayloadID
 as an opaque octet string in a CCNx URI, as this is the common
 denominator for implementation parsing.

 The InterestPayloadID, even if it is a hash, should not convey any
 security context. If a system requires confirmation that a specific
 entity created the InterestPayload, it should use a cryptographic
 signature on the Interest via the ValidationAlgorithm and
 ValidationPayload or use its own methods inside the Interest Payload.

3.6.2. Message TLVs

 Each message type (Interest or Content Object) is associated with a
 set of optional Message TLVs. Additional specification documents may
 extend the types associated with each.

3.6.2.1. Interest Message TLVs

 There are two Message TLVs currently associated with an Interest
 message: the KeyIdRestriction selector and the ContentObjectHashRestr
 selector are used to narrow the universe of acceptable Content
 Objects that would satisfy the Interest.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional KeyIdRestriction TLV /
 +---+
 / Optional ContentObjectHashRestriction TLV /
 +---+

 Figure 17: Interest Message TLVs

Mosko, et al. Experimental [Page 21]

RFC 8609 CCNx TLV July 2019

 +----------------+------------------------------+-------------------+
 | Abbrev | Name | Description |
 +----------------+------------------------------+-------------------+
T_KEYIDRESTR	KeyIdRestriction (Section	A representation
	3.6.2.1.1)	(as per Section
		3.3.3) of the
		KeyId
T_OBJHASHRESTR	ContentObjectHashRestriction	A representation
	(Section 3.6.2.1.2)	(as per Section
		3.3.3) of the
		hash of the
		specific Content
		Object that would
		satisfy the
		Interest.
 +----------------+------------------------------+-------------------+

 Table 8: CCNx Interest Message TLV Types

3.6.2.1.1. KeyIdRestriction

 An Interest MAY include a KeyIdRestriction selector. This ensures
 that only Content Objects with matching KeyIds will satisfy the
 Interest. See Section 3.6.4.1.4.1 for the format of a KeyId.

3.6.2.1.2. ContentObjectHashRestriction

 An Interest MAY contain a ContentObjectHashRestriction selector.
 This is the hash of the Content Object -- the self-certifying name
 restriction that must be verified in the network, if an Interest
 carried this restriction (see Message Hash (Section 3.4.3)). The
 LENGTH MUST be from one of the allowed values for that hash (see
 Section 3.3.3).

 The ContentObjectHashRestriction SHOULD be of type T_SHA-256 and of
 length 32 bytes.

Mosko, et al. Experimental [Page 22]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_OBJHASHRESTR | (LENGTH+4) |
 +---------------+---------------+---------------+---------------+
 | hash type | LENGTH |
 +---------------+---------------+---------------+---------------+
 / LENGTH octets of hash /
 +---------------+---------------+---------------+---------------+

 Figure 18: ContentObjectHashRestriction Encoding

3.6.2.2. Content Object Message TLVs

 The following message TLVs are currently defined for Content Objects:
 PayloadType (optional) and ExpiryTime (optional).

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional PayloadType TLV /
 +---+
 / Optional ExpiryTime TLV /
 +---+

 Figure 19: Content Object Message TLVs

 +-------------+-------------+---------------------------------------+
 | Abbrev | Name | Description |
 +-------------+-------------+---------------------------------------+
T_PAYLDTYPE	PayloadType	Indicates the type of Payload
	(Section	contents.
	3.6.2.2.1)	
T_EXPIRY	ExpiryTime	The time at which the Payload
	(Section	expires, as expressed in the number
	3.6.2.2.2)	of milliseconds since the epoch in
		UTC. If missing, Content Object may
		be used as long as desired.
 +-------------+-------------+---------------------------------------+

 Table 9: CCNx Content Object Message TLV Types

Mosko, et al. Experimental [Page 23]

RFC 8609 CCNx TLV July 2019

3.6.2.2.1. PayloadType

 The PayloadType is an octet representing the general type of the
 Payload TLV.

 o T_PAYLOADTYPE_DATA: Data (possibly encrypted)

 o T_PAYLOADTYPE_KEY: Key

 o T_PAYLOADTYPE_LINK: Link

 The Data type indicates that the Payload of the ContentObject is
 opaque application bytes. The Key type indicates that the Payload is
 a DER-encoded public key. The Link type indicates that the Payload
 is one or more Links (Section 3.3.4). If this field is missing, a
 Data type is assumed.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLDTYPE | 1 |
 +---------------+---------------+---------------+---------------+
 | PayloadType |
 +---------------+

 Figure 20: PayloadType Encoding

3.6.2.2.2. ExpiryTime

 The ExpiryTime is the time at which the Payload expires, as expressed
 by a timestamp containing the number of milliseconds since the epoch
 in UTC. It is a network byte order unsigned integer in a 64-bit
 field. A cache or end system should not respond with a Content
 Object past its ExpiryTime. Routers forwarding a Content Object do
 not need to check the ExpiryTime. If the ExpiryTime field is
 missing, the Content Object has no expressed expiration, and a cache
 or end system may use the Content Object for as long as desired.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EXPIRY | 8 |
 +---------------+---------------+---------------+---------------+
 / ExpiryTime /
 / /
 +---------------+---------------+---------------+---------------+

 Figure 21: ExpiryTime encoding

Mosko, et al. Experimental [Page 24]

RFC 8609 CCNx TLV July 2019

3.6.3. Payload

 The Payload TLV contains the content of the packet. It MAY be of
 zero length. If a packet does not have any payload, this field
 SHOULD be omitted, rather than being of zero length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLOAD | Length |
 +---------------+---------------+---------------+---------------+
 / Payload Contents /
 +---------------+---------------+---------------+---------------+

 Figure 22: Payload Encoding

3.6.4. Validation

 Both Interests and Content Objects have the option to include
 information about how to validate the CCNx Message. This information
 is contained in two TLVs: the ValidationAlgorithm TLV and the
 ValidationPayload TLV. The ValidationAlgorithm TLV specifies the
 mechanism to be used to verify the CCNx Message. Examples include
 verification with a Message Integrity Check (MIC), a Message
 Authentication Code (MAC), or a cryptographic signature. The
 ValidationPayload TLV contains the validation output, such as the
 CRC32C code or the RSA signature.

 An Interest would most likely only use a MIC type of validation -- a
 CRC, checksum, or digest.

3.6.4.1. Validation Algorithm

 The ValidationAlgorithm is a set of nested TLVs containing all of the
 information needed to verify the message. The outermost container
 has type = T_VALIDATION_ALG. The first nested TLV defines the
 specific type of validation to be performed on the message. The type
 is identified with the "ValidationType" as shown in the figure below
 and elaborated in the table below. Nested within that container are
 the TLVs for any ValidationType-dependent data -- for example, a Key
 Id, Key Locator, etc.

 Complete examples of several types may be found in Section 3.6.4.1.5.

Mosko, et al. Experimental [Page 25]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | ValidationAlgLength |
 +---------------+---------------+---------------+---------------+
 | ValidationType | Length |
 +---------------+---------------+---------------+---------------+
 / ValidationType-dependent data /
 +---------------+---------------+---------------+---------------+

 Figure 23: Validation Algorithm Encoding

 +-----------------+---------------+---------------------------------+
 | Abbrev | Name | Description |
 +-----------------+---------------+---------------------------------+
T_CRC32C	CRC32C	Castagnoli CRC32 (iSCSI, ext4,
	(Section	etc.) with normal form
	3.6.4.1.1)	polynomial 0x1EDC6F41.
T_HMAC-SHA256	HMAC-SHA256	HMAC (RFC 2104) using SHA256
	(Section	hash.
	3.6.4.1.2)	
T_RSA-SHA256	RSA-SHA256	RSA public-key signature using
	(Section	SHA256 digest.
	3.6.4.1.3)	
T_EC-SECP-256K1	SECP-256K1	Elliptic Curve signature with
	(Section	SECP-256K1 parameters (see
	3.6.4.1.3)	[ECC]).
T_EC-SECP-384R1	SECP-384R1	Elliptic Curve signature with
	(Section	SECP-384R1 parameters (see
	3.6.4.1.3)	[ECC]).
 +-----------------+---------------+---------------------------------+

 Table 10: CCNx Validation Types

3.6.4.1.1. Message Integrity Checks

 MICs do not require additional data in order to perform the
 verification. An example is CRC32C that has a zero-length value.

Mosko, et al. Experimental [Page 26]

RFC 8609 CCNx TLV July 2019

3.6.4.1.2. Message Authentication Codes

 MACs are useful for communication between two trusting parties who
 have already shared secret keys. An example is the HMAC algorithm.
 A MAC uses the KeyId field to identify which shared secret is in use.
 The meaning of the KeyId is specific to the two parties involved and
 could be simply an integer to enumerate keys. If a new MAC requires
 an additional field, such as an Initialization Vector, that field
 would need to be defined as part of the updated specification.

3.6.4.1.3. Signature

 Signature type Validators specify a digest mechanism and a signing
 algorithm to verify the message. Examples include an RSA signature
 on a SHA256 digest, an Elliptic Curve signature with SECP-256K1
 parameters, etc. These Validators require a KeyId and a mechanism
 for locating the publisher’s public key (a KeyLocator) -- and
 optionally a PublicKey or Certificate or KeyLink.

3.6.4.1.4. Validation-Dependent Data

 Different Validation Algorithms require access to different pieces of
 data contained in the ValidationAlgorithm TLV. As described above,
 Key Ids, Key Locators, Public Keys, Certificates, Links, and Key
 Names all play a role in different Validation Algorithms. Any number
 of Validation-Dependent Data containers can be present in a
 Validation Algorithm TLV.

Mosko, et al. Experimental [Page 27]

RFC 8609 CCNx TLV July 2019

 Below is a table of CCNx ValidationType-dependent data types:

 +-------------+-----------------+-----------------------------------+
 | Abbrev | Name | Description |
 +-------------+-----------------+-----------------------------------+
T_KEYID	SignerKeyId	An identifier of the shared
	(Section	secret or public key associated
	3.6.4.1.4.1)	with a MAC or Signature.
T_PUBLICKEY	Public Key	DER-encoded public key.
	(Section	
	3.6.4.1.4.2)	
T_CERT	Certificate	DER-encoded X.509 certificate.
	(Section	
	3.6.4.1.4.3)	
T_KEYLINK	KeyLink	A CCNx Link object.
	(Section	
	3.6.4.1.4.4)	
T_SIGTIME	SignatureTime	A millisecond timestamp
	(Section	indicating the time when the
	3.6.4.1.4.5)	signature was created.
 +-------------+-----------------+-----------------------------------+

 Table 11: CCNx Validation-Dependent Data Types

3.6.4.1.4.1. KeyId

 The KeyId for a signature is the publisher key identifier. It is
 similar to a Subject Key Identifier from X.509 (see Section 4.2.1.2
 of [RFC5280]). It should be derived from the key used to sign, such
 as from the SHA-256 hash of the key. It applies to both public and
 private key systems and to symmetric key systems.

 The KeyId is represented using the hash format in Section 3.3.3. If
 an application protocol uses a non-hash identifier, it should use one
 of the reserved values.

Mosko, et al. Experimental [Page 28]

RFC 8609 CCNx TLV July 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_KEYID | LENGTH+4 |
 +---------------+---------------+---------------+---------------+
 | <hash type> | LENGTH |
 +---------------+---------------+---------------+---------------+
 / LENGTH octets of hash /
 +---------------+---------------+---------------+---------------+

 Figure 24: KeyId Encoding

3.6.4.1.4.2. Public Key

 A Public Key is a DER-encoded Subject Public Key Info block, as in an
 X.509 certificate.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PUBLICKEY | Length |
 +---------------+---------------+---------------+---------------+
 / Public Key (DER-encoded SPKI) /
 +---------------+---------------+---------------+---------------+

 Figure 25: Public Key Encoding

3.6.4.1.4.3. Certificate

 A Certificate is a DER-encoded X.509 certificate. The KeyId
 (Section 3.6.4.1.4.1) is derived from this encoding.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CERT | Length |
 +---------------+---------------+---------------+---------------+
 / Certificate (DER-encoded X.509) /
 +---------------+---------------+---------------+---------------+

 Figure 26: Certificate Encoding

Mosko, et al. Experimental [Page 29]

RFC 8609 CCNx TLV July 2019

3.6.4.1.4.4. KeyLink

 A KeyLink type KeyLocator is a Link.

 The KeyLink ContentObjectHashRestr, if included, is the digest of the
 Content Object identified by KeyLink, not the digest of the public
 key. Likewise, the KeyIdRestr of the KeyLink is the KeyId of the
 ContentObject, not necessarily of the wrapped key.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_KEYLINK | Length |
 +---------------+---------------+-------------------------------+
 / Link /
 +---+

 Figure 27: KeyLink Encoding

3.6.4.1.4.5. SignatureTime

 The SignatureTime is a millisecond timestamp indicating the time at
 which a signature was created. The signer sets this field to the
 current time when creating a signature. A verifier may use this time
 to determine whether or not the signature was created during the
 validity period of a key, or if it occurred in a reasonable sequence
 with other associated signatures. The SignatureTime is unrelated to
 any time associated with the actual CCNx Message, which could have
 been created long before the signature. The default behavior is to
 always include a SignatureTime when creating an authenticated message
 (e.g., HMAC or RSA).

 SignatureTime is an unsigned integer in network byte order that
 indicates when the signature was created (as the number of
 milliseconds since the epoch in UTC). It is a fixed 64-bit field.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_SIGTIME | 8 |
 +---------------+---------------+-------------------------------+
 / SignatureTime /
 +---+

 Figure 28: SignatureTime Encoding

Mosko, et al. Experimental [Page 30]

RFC 8609 CCNx TLV July 2019

3.6.4.1.5. Validation Examples

 As an example of a MIC-type validation, the encoding for CRC32C
 validation would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 4 |
 +---------------+---------------+---------------+---------------+
 | T_CRC32C | 0 |
 +---------------+---------------+---------------+---------------+

 Figure 29: CRC32C Encoding Example

 As an example of a MAC-type validation, the encoding for an HMAC
 using a SHA256 hash would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 40 |
 +---------------+---------------+---------------+---------------+
 | T_HMAC-SHA256 | 36 |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+

 Figure 30: HMAC-SHA256 Encoding Example

Mosko, et al. Experimental [Page 31]

RFC 8609 CCNx TLV July 2019

 As an example of a Signature-type validation, the encoding for an RSA
 public-key signature using a SHA256 digest and Public Key would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 44 octets + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_RSA-SHA256 | 40 octets + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+
 | T_PUBLICKEY | Variable Length (˜160 octets)|
 +---------------+---------------+---------------+---------------+
 / Public Key (DER-encoded SPKI) /
 +---------------+---------------+---------------+---------------+

 Figure 31: RSA-SHA256 Encoding Example

3.6.4.2. Validation Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_PAYLOAD | ValidationPayloadLength |
 +---------------+---------------+---------------+---------------+
 / Type-dependent data /
 +---------------+---------------+---------------+---------------+

 Figure 32: Validation Payload Encoding

 The ValidationPayload contains the validation output, such as the
 CRC32C code or the RSA signature.

Mosko, et al. Experimental [Page 32]

RFC 8609 CCNx TLV July 2019

4. IANA Considerations

 This section details each kind of CCNx protocol value that can be
 registered. Each type registry can be updated by incrementally
 expanding the type space, i.e., by allocating and reserving new
 types. As per [RFC8126], this section details the creation of the
 "Content-Centric Networking (CCNx)" registry and several
 subregistries.

4.1. Packet Type Registry

 IANA has created the "CCNx Packet Types" registry and allocated the
 packet types described below. The registration procedure is RFC
 Required. The Type value is 1 octet. The range is 0x00-0xFF.

 +------+-------------+----------------------------------+
 | Type | Name | Reference |
 +------+-------------+----------------------------------+
 | 0x00 | PT_INTEREST | Fixed Header Types (Section 3.2) |
 | | | |
 | 0x01 | PT_CONTENT | Fixed Header Types (Section 3.2) |
 | | | |
 | 0x02 | PT_RETURN | Fixed Header Types (Section 3.2) |
 +------+-------------+----------------------------------+

 Packet Types

Mosko, et al. Experimental [Page 33]

RFC 8609 CCNx TLV July 2019

4.2. Interest Return Code Registry

 IANA has created the "CCNx Interest Return Code Types" registry and
 allocated the Interest Return code types described below. The
 registration procedure is Specification Required. The Type value is
 1 octet. The range is 0x00-0xFF.

 +------+---------------------------------------+--------------------+
 | Type | Name | Reference |
 +------+---------------------------------------+--------------------+
0x00	Reserved	
0x01	T_RETURN_NO_ROUTE	Fixed Header Types
		(Section 3.2.3.3)
0x02	T_RETURN_LIMIT_EXCEEDED	Fixed Header Types
		(Section 3.2.3.3)
0x03	T_RETURN_NO_RESOURCES	Fixed Header Types
		(Section 3.2.3.3)
0x04	T_RETURN_PATH_ERROR	Fixed Header Types
		(Section 3.2.3.3)
0x05	T_RETURN_PROHIBITED	Fixed Header Types
		(Section 3.2.3.3)
0x06	T_RETURN_CONGESTED	Fixed Header Types
		(Section 3.2.3.3)
0x07	T_RETURN_MTU_TOO_LARGE	Fixed Header Types
		(Section 3.2.3.3)
0x08	T_RETURN_UNSUPPORTED_HASH_RESTRICTION	Fixed Header Types
		(Section 3.2.3.3)
0x09	T_RETURN_MALFORMED_INTEREST	Fixed Header Types
		(Section 3.2.3.3)
 +------+---------------------------------------+--------------------+

 CCNx Interest Return Types

Mosko, et al. Experimental [Page 34]

RFC 8609 CCNx TLV July 2019

4.3. Hop-by-Hop Type Registry

 IANA has created the "CCNx Hop-by-Hop Types" registry and allocated
 the hop-by-hop types described below. The registration procedure is
 RFC Required. The Type value is 2 octets. The range is
 0x0000-0xFFFF.

 +---------------+-------------+-------------------------------------+
 | Type | Name | Reference |
 +---------------+-------------+-------------------------------------+
0x0000	Reserved	
0x0001	T_INTLIFE	Hop-by-hop TLV headers (Section
		3.4)
0x0002	T_CACHETIME	Hop-by-hop TLV headers (Section
		3.4)
0x0003	T_MSGHASH	Hop-by-hop TLV headers (Section
		3.4)
0x0004 -	Reserved	
0x0007		
0x0FFE	T_PAD	Pad (Section 3.3.1)
0x0FFF	T_ORG	Organization-Specific TLVs (Section
		3.3.2)
0x1000-0x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+-------------+-------------------------------------+

 CCNx Hop-by-Hop Types

Mosko, et al. Experimental [Page 35]

RFC 8609 CCNx TLV July 2019

4.4. Top-Level Type Registry

 IANA has created the "CCNx Top-Level Types" registry and allocated
 the top-level types described below. The registration procedure is
 RFC Required. The Type value is 2 octets. The range is
 0x0000-0xFFFF.

 +--------+----------------------+-------------------------------+
 | Type | Name | Reference |
 +--------+----------------------+-------------------------------+
 | 0x0000 | Reserved | |
 | | | |
 | 0x0001 | T_INTEREST | Top-Level Types (Section 3.5) |
 | | | |
 | 0x0002 | T_OBJECT | Top-Level Types (Section 3.5) |
 | | | |
 | 0x0003 | T_VALIDATION_ALG | Top-Level Types (Section 3.5) |
 | | | |
 | 0x0004 | T_VALIDATION_PAYLOAD | Top-Level Types (Section 3.5) |
 +--------+----------------------+-------------------------------+

 CCNx Top-Level Types

Mosko, et al. Experimental [Page 36]

RFC 8609 CCNx TLV July 2019

4.5. Name Segment Type Registry

 IANA has created the "CCNx Name Segment Types" registry and allocated
 the name segment types described below. The registration procedure
 is Specification Required. The Type value is 2 octets. The range is
 0x0000-0xFFFF.

 +--------------+------------------+---------------------------------+
 | Type | Name | Reference |
 +--------------+------------------+---------------------------------+
0x0000	Reserved	
0x0001	T_NAMESEGMENT	Name (Section 3.6.1)
0x0002	T_IPID	Name (Section 3.6.1)
0x0010 -	Reserved	RFC 8609
0x0013		
0x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
0x1000 -	T_APP:00 -	Application Components (Section
0x1FFF	T_APP:4096	3.6.1)
 +--------------+------------------+---------------------------------+

 CCNx Name Segment Types

4.6. Message Type Registry

 IANA has created the "CCNx Message Types" registry and registered the
 message segment types described below. The registration procedure is
 RFC Required. The Type value is 2 octets. The range is
 0x0000-0xFFFF.

Mosko, et al. Experimental [Page 37]

RFC 8609 CCNx TLV July 2019

 +---------------+----------------+----------------------------------+
 | Type | Name | Reference |
 +---------------+----------------+----------------------------------+
0x0000	T_NAME	Message Types (Section 3.6)
0x0001	T_PAYLOAD	Message Types (Section 3.6)
0x0002	T_KEYIDRESTR	Message Types (Section 3.6)
0x0003	T_OBJHASHRESTR	Message Types (Section 3.6)
0x0005	T_PAYLDTYPE	Content Object Message Types
		(Section 3.6.2.2)
0x0006	T_EXPIRY	Content Object Message Types
		(Section 3.6.2.2)
0x0007 -	Reserved	RFC 8609
0x000C		
0x0FFE	T_PAD	Pad (Section 3.3.1)
0x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
0x1000-0x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+----------------+----------------------------------+

 CCNx Message Types

4.7. Payload Type Registry

 IANA has created the "CCNx Payload Types" registry and allocated the
 payload types described below. The registration procedure is
 Specification Required. The Type value is 1 octet. The range is
 0x00-0xFF.

 +------+--------------------+-----------------------------------+
 | Type | Name | Reference |
 +------+--------------------+-----------------------------------+
 | 0x00 | T_PAYLOADTYPE_DATA | Payload Types (Section 3.6.2.2.1) |
 | | | |
 | 0x01 | T_PAYLOADTYPE_KEY | Payload Types (Section 3.6.2.2.1) |
 | | | |
 | 0x02 | T_PAYLOADTYPE_LINK | Payload Types (Section 3.6.2.2.1) |
 +------+--------------------+-----------------------------------+

 CCNx Payload Types

Mosko, et al. Experimental [Page 38]

RFC 8609 CCNx TLV July 2019

4.8. Validation Algorithm Type Registry

 IANA has created the "CCNx Validation Algorithm Types" registry and
 allocated the validation algorithm types described below. The
 registration procedure is Specification Required. The Type value is
 2 octets. The range is 0x0000-0xFFFF.

 +---------------+-----------------+---------------------------------+
 | Type | Name | Reference |
 +---------------+-----------------+---------------------------------+
0x0000	Reserved	
0x0002	T_CRC32C	Validation Algorithm (Section
		3.6.4.1)
0x0004	T_HMAC-SHA256	Validation Algorithm (Section
		3.6.4.1)
0x0005	T_RSA-SHA256	Validation Algorithm (Section
		3.6.4.1)
0x0006	T_EC-SECP-256K1	Validation Algorithm (Section
		3.6.4.1)
0x0007	T_EC-SECP-384R1	Validation Algorithm (Section
		3.6.4.1)
0x0FFE	T_PAD	Pad (Section 3.3.1)
0x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
0x1000-0x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+-----------------+---------------------------------+

 CCNx Validation Algorithm Types

Mosko, et al. Experimental [Page 39]

RFC 8609 CCNx TLV July 2019

4.9. Validation-Dependent Data Type Registry

 IANA has created the "CCNx Validation-Dependent Data Types" registry
 and allocated the validation-dependent data types described below.
 The registration procedure is RFC Required. The Type value is 2
 octets. The range is 0x0000-0xFFFF.

 +---------------+----------------+----------------------------------+
 | Type | Name | Reference |
 +---------------+----------------+----------------------------------+
0x0000	Reserved	
0x0009	T_KEYID	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000A	T_PUBLICKEYLOC	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000B	T_PUBLICKEY	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000C	T_CERT	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000D	T_LINK	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000E	T_KEYLINK	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x000F	T_SIGTIME	Validation-Dependent Data
		(Section 3.6.4.1.4)
0x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
0x1000-0x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+----------------+----------------------------------+

 CCNx Validation-Dependent Data Types

4.10. Hash Function Type Registry

 IANA has created the "CCNx Hash Function Types" registry and
 allocated the hash function types described below. The registration
 procedure is Specification Required. The Type value is 2 octets.
 The range is 0x0000-0xFFFF.

Mosko, et al. Experimental [Page 40]

RFC 8609 CCNx TLV July 2019

 +---------------+-----------+---------------------------------------+
 | Type | Name | Reference |
 +---------------+-----------+---------------------------------------+
0x0000	Reserved	
0x0001	T_SHA-256	Hash Format (Section 3.3.3)
0x0002	T_SHA-512	Hash Format (Section 3.3.3)
0x0FFF	T_ORG	Organization-Specific TLVs (Section
		3.3.2)
0x1000-0x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+-----------+---------------------------------------+

 CCNx Hash Function Types

5. Security Considerations

 The CCNx protocol is a Layer 3 network protocol, which may also
 operate as an overlay using other transports such as UDP or other
 tunnels. It includes intrinsic support for message authentication
 via a signature (e.g., RSA or elliptic curve) or Message
 Authentication Code (e.g., HMAC). In lieu of an authenticator, it
 may instead use a Message Integrity Check (e.g., SHA or CRC). CCNx
 does not specify an encryption envelope; that function is left to a
 high-layer protocol (e.g., Encrypted Sessions in CCNx [esic]).

 The CCNx Packet format includes the ability to attach MICs (e.g.,
 SHA-256 or CRC), MACs (e.g., HMAC), and Signatures (e.g., RSA or
 ECDSA) to all packet types. Because Interest packets can be sent at
 will, an application should carefully select when to use a given
 ValidationAlgorithm in an Interest to avoid DoS attacks. MICs, for
 example, are inexpensive and could be used as desired, whereas MACs
 and Signatures are more expensive and their inappropriate use could
 open a computational DoS attack surface. Applications should use an
 explicit protocol to guide their use of packet signatures. As a
 general guideline, an application might use a MIC on an Interest to
 detect unintentionally corrupted packets. If one wishes to secure an
 Interest, one should consider using an encrypted wrapper and a
 protocol that prevents replay attacks, especially if the Interest is
 being used as an actuator. Simply using an authentication code or
 signature does not make an Interest secure. There are several
 examples in the literature on how to secure ICN-style messaging
 [mobile] [ace].

Mosko, et al. Experimental [Page 41]

RFC 8609 CCNx TLV July 2019

 As a Layer 3 protocol, this document does not describe how one
 arrives at keys or how one trusts keys. The CCNx content object may
 include a public key embedded in the object or may use the
 PublicKeyLocator field to point to a public key (or public-key
 certificate) that authenticates the message. One key exchange
 specification is CCNxKE [ccnxke] [mobile], which is similar to the
 TLS 1.3 key exchange except it is over the CCNx Layer 3 messages.
 Trust is beyond the scope of a Layer 3 protocol and is left to
 applications or application frameworks.

 The combination of an ephemeral key exchange (e.g., CCNxKE [ccnxke])
 and an encapsulating encryption (e.g., [esic]) provides the
 equivalent of a TLS tunnel. Intermediate nodes may forward the
 Interests and Content Objects but have no visibility inside. It also
 completely hides the internal names in those used by the encryption
 layer. This type of tunneling encryption is useful for content that
 has little or no cacheability, as it can only be used by someone with
 the ephemeral key. Short-term caching may help with lossy links or
 mobility, but long-term caching is usually not of interest.

 Broadcast encryption or proxy re-encryption may be useful for content
 with multiple uses over time or many consumers. There is currently
 no recommendation for this form of encryption.

 The specific encoding of messages will have security implications.
 This document uses a Type-Length-Value (TLV) encoding. We chose to
 compromise between extensibility and unambiguous encodings of types
 and lengths. Some TLV encodings use variable-length T and variable-
 length L fields to accommodate a wide gamut of values while trying to
 be byte efficient. Our TLV encoding uses a fixed length 2-byte T and
 2-byte L. Using fixed-length T and L fields solves two problems.
 The first is aliases. If one is able to encode the same value, such
 as 0x02 and 0x0002, in different byte lengths, then one must decide
 if they mean the same thing, if they are different, or if one is
 illegal. If they are different, then one must always compare on the
 buffers not the integer equivalents. If one is illegal, then one
 must validate the TLV encoding -- every field of every packet at
 every hop. If they are the same, then one has the second problem:
 how to specify packet filters. For example, if a name has 6 name
 components, then there are 7 T fields and 7 L fields, each of which
 might have up to 4 representations of the same value. That would be
 14 fields with 4 encodings each, or 1001 combinations. It also means
 that one cannot compare, for example, a name via a memory function,
 as one needs to consider that any embedded T or L might have a
 different format.

Mosko, et al. Experimental [Page 42]

RFC 8609 CCNx TLV July 2019

 The Interest Return message has no authenticator from the previous
 hop. Therefore, the payload of the Interest Return should only be
 used locally to match an Interest. A node should never forward that
 Interest payload as an Interest. It should also verify that it sent
 the Interest in the Interest Return to that node and not allow anyone
 to negate Interest messages.

 Caching nodes must take caution when processing content objects. It
 is essential that the Content Store obey the rules outlined in
 [RFC8569] to avoid certain types of attacks. CCNx 1.0 has no
 mechanism to work around an undesired result from the network (there
 are no "excludes"), so if a cache becomes poisoned with bad content
 it might cause problems retrieving content. There are three types of
 access to content from a Content Store: unrestricted, signature
 restricted, and hash restricted. If an Interest has no restrictions,
 then the requester is not particular about what they get back, so any
 matching cached object is OK. In the hash restricted case, the
 requester is very specific about what they want, and the Content
 Store (and every forward hop) can easily verify that the content
 matches the request. In the signature restricted case (which is
 often used for initial manifest discovery), the requester only knows
 the KeyId that signed the content. This case requires the closest
 attention in the Content Store to avoid amplifying bad data. The
 Content Store must only respond with a content object if it can
 verify the signature -- this means either the content object carries
 the public key inside it or the Interest carries the public key in
 addition to the KeyId. If that is not the case, then the Content
 Store should treat the Interest as a cache miss and let an endpoint
 respond.

 A user-level cache could perform full signature verification by
 fetching a public key according to the PublicKeyLocator. However,
 that is not a burden we wish to impose on the forwarder. A user-
 level cache could also rely on out-of-band attestation, such as the
 cache operator only inserting content that it knows has the correct
 signature.

 The CCNx grammar allows for hash algorithm agility via the HashType.
 It specifies a short list of acceptable hash algorithms that should
 be implemented at each forwarder. Some hash values only apply to end
 systems, so updating the hash algorithm does not affect forwarders --
 they would simply match the buffer that includes the type-length-hash
 buffer. Some fields, such as the ConObjHash, must be verified at
 each hop, so a forwarder (or related system) must know the hash
 algorithm, and it could cause backward compatibility problems if the
 hash type is updated.

Mosko, et al. Experimental [Page 43]

RFC 8609 CCNx TLV July 2019

 A CCNx name uses binary matching, whereas a URI uses a case-
 insensitive hostname. Some systems may also use case-insensitive
 matching of the URI path to a resource. An implication of this is
 that human-entered CCNx names will likely have case or non-ASCII
 symbol mismatches unless one uses a consistent URI normalization for
 the CCNx name. It also means that an entity that registers a CCNx-
 routable prefix -- say, "ccnx:/example.com" -- would need separate
 registrations for simple variations like "ccnx:/Example.com". Unless
 this is addressed in URI normalization and routing protocol
 conventions, there could be phishing attacks.

 For a more general introduction to ICN-related security concerns and
 approaches, see [RFC7927] and [RFC7945].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [ace] Shang, W., Yu, Y., Liang, T., Zhang, B., and L. Zhang,
 "NDN-ACE: Access control for constrained environments over
 named data networking", NDN Technical Report NDN-0036,
 2015, <http://new.named-data.net/wp-content/uploads/2015/
 12/ndn-0036-1-ndn-ace.pdf>.

 [ccnxke] Mosko, M., Uzun, E., and C. Wood, "CCNx Key Exchange
 Protocol Version 1.0", Work in Progress, draft-wood-icnrg-
 ccnxkeyexchange-02, March 2017.

 [CCNxURI] Mosko, M. and C. Wood, "The CCNx URI Scheme", Work in
 Progress, draft-mosko-icnrg-ccnxurischeme-01, April 2016.

 [CCNxz] Mosko, M., "CCNxz TLV Header Compression Experimental
 Code", commit f1093a2, March 2018,
 <https://github.com/PARC/CCNxz>.

Mosko, et al. Experimental [Page 44]

RFC 8609 CCNx TLV July 2019

 [compress] Mosko, M., "Header Compression for TLV-based Packets",
 ICNRG Interim Meeting, 2016,
 <https://datatracker.ietf.org/meeting/interim-2016-icnrg-
 02/materials/slides-interim-2016-icnrg-2-7>.

 [ECC] Certicom Research, "SEC 2: Recommended Elliptic Curve
 Domain Parameters", 2010,
 <http://www.secg.org/sec2-v2.pdf>.

 [esic] Mosko, M. and C. Wood, "Encrypted Sessions In CCNx
 (ESIC)", Work in Progress, draft-wood-icnrg-esic-01,
 September 2017.

 [IANA-PEN] IANA, "Private Enterprise Numbers",
 <http://www.iana.org/assignments/enterprise-numbers>.

 [mobile] Mosko, M., Uzun, E., and C. Wood, "Mobile Sessions in
 Content-Centric Networks", IFIP Networking, 2017,
 <http://dl.ifip.org/db/conf/networking/
 networking2017/1570334964.pdf>.

 [nnc] Jacobson, V., Smetters, D., Thornton, J., Plass, M.,
 Briggs, N., and R. Braynard, "Networking Named Content",
 Proceedings of the 5th international conference on
 Emerging networking experiments and technologies (CoNEXT
 ’09), 2009, <http://dx.doi.org/10.1145/1658939.1658941>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7927] Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
 Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
 "Information-Centric Networking (ICN) Research
 Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,
 <https://www.rfc-editor.org/info/rfc7927>.

 [RFC7945] Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S.,
 and G. Boggia, "Information-Centric Networking: Evaluation
 and Security Considerations", RFC 7945,
 DOI 10.17487/RFC7945, September 2016,
 <https://www.rfc-editor.org/info/rfc7945>.

Mosko, et al. Experimental [Page 45]

RFC 8609 CCNx TLV July 2019

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8569] Mosko, M., Solis, I., and C. Wood, "Content-Centric
 Networking (CCNx) Semantics", RFC 8569,
 DOI 10.17487/RFC8569, July 2019,
 <https://www.rfc-editor.org/info/rfc8569>.

Authors’ Addresses

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 United States of America

 Phone: +01 650-812-4405
 Email: mmosko@parc.com

 Ignacio Solis
 LinkedIn
 Mountain View, California 94043
 United States of America

 Email: nsolis@linkedin.com

 Christopher A. Wood
 University of California, Irvine
 Irvine, California 92697
 United States of America

 Phone: +01 315-806-5939
 Email: woodc1@uci.edu

Mosko, et al. Experimental [Page 46]

