
Internet Engineering Task Force (IETF) H. Birkholz
Request for Comments: 8610 Fraunhofer SIT
Category: Standards Track C. Vigano
ISSN: 2070-1721 Universitaet Bremen
 C. Bormann
 Universitaet Bremen TZI
 June 2019

 Concise Data Definition Language (CDDL): A Notational Convention
 to Express Concise Binary Object Representation (CBOR)
 and JSON Data Structures

Abstract

 This document proposes a notational convention to express Concise
 Binary Object Representation (CBOR) data structures (RFC 7049). Its
 main goal is to provide an easy and unambiguous way to express
 structures for protocol messages and data formats that use CBOR or
 JSON.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8610.

Birkholz, et al. Standards Track [Page 1]

RFC 8610 CDDL June 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..4
 1.1. Requirements Notation5
 1.2. Terminology ..5
 2. The Style of Data Structure Specification5
 2.1. Groups and Composition in CDDL7
 2.1.1. Usage ..10
 2.1.2. Syntax ...10
 2.2. Types ...11
 2.2.1. Values ...11
 2.2.2. Choices ..11
 2.2.3. Representation Types13
 2.2.4. Root Type ..14
 3. Syntax ...15
 3.1. General Conventions15
 3.2. Occurrence ..16
 3.3. Predefined Names for Types17
 3.4. Arrays ..18
 3.5. Maps ..19
 3.5.1. Structs ..19
 3.5.2. Tables ...22
 3.5.3. Non-deterministic Order23
 3.5.4. Cuts in Maps24
 3.6. Tags ..25
 3.7. Unwrapping ..26
 3.8. Controls ..27
 3.8.1. Control Operator .size27
 3.8.2. Control Operator .bits28
 3.8.3. Control Operator .regexp29

Birkholz, et al. Standards Track [Page 2]

RFC 8610 CDDL June 2019

 3.8.4. Control Operators .cbor and .cborseq30
 3.8.5. Control Operators .within and .and30
 3.8.6. Control Operators .lt, .le, .gt, .ge, .eq,
 .ne, and .default31
 3.9. Socket/Plug ...32
 3.10. Generics ...33
 3.11. Operator Precedence34
 4. Making Use of CDDL ...36
 4.1. As a Guide for a Human User36
 4.2. For Automated Checking of CBOR Data Structures36
 4.3. For Data Analysis Tools37
 5. Security Considerations ..37
 6. IANA Considerations ..38
 6.1. CDDL Control Operators Registry38
 7. References ...40
 7.1. Normative References40
 7.2. Informative References41
 Appendix A. Parsing Expression Grammars (PEGs)43
 Appendix B. ABNF Grammar ..45
 Appendix C. Matching Rules ..47
 Appendix D. Standard Prelude52
 Appendix E. Use with JSON ...53
 Appendix F. A CDDL Tool ...56
 Appendix G. Extended Diagnostic Notation56
 G.1. Whitespace in Byte String Notation57
 G.2. Text in Byte String Notation57
 G.3. Embedded CBOR and CBOR Sequences in Byte Strings57
 G.4. Concatenated Strings58
 G.5. Hexadecimal, Octal, and Binary Numbers59
 G.6. Comments ...59
 Appendix H. Examples ..60
 Acknowledgements ..63
 Contributors ..63
 Authors’ Addresses ..64

Birkholz, et al. Standards Track [Page 3]

RFC 8610 CDDL June 2019

1. Introduction

 In this document, a notational convention to express Concise Binary
 Object Representation (CBOR) data structures [RFC7049] is defined.

 The main goal for the convention is to provide a unified notation
 that can be used when defining protocols that use CBOR. We term the
 convention "Concise Data Definition Language", or CDDL.

 The CBOR notational convention has the following goals:

 (G1) Provide an unambiguous description of the overall structure of
 a CBOR data item.

 (G2) Be flexible in expressing the multiple ways in which data can
 be represented in the CBOR data format.

 (G3) Be able to express common CBOR datatypes and structures.

 (G4) Provide a single format that is both readable and editable for
 humans and processable by a machine.

 (G5) Enable automatic checking of CBOR data items for data format
 compliance.

 (G6) Enable extraction of specific elements from CBOR data for
 further processing.

 Not an original goal per se, but a convenient side effect of the JSON
 generic data model being a subset of the CBOR generic data model, is
 the fact that CDDL can also be used for describing JSON data
 structures (see Appendix E).

 This document has the following structure:

 The syntax of CDDL is defined in Section 3. Examples of CDDL and a
 related CBOR data item ("instance"), some of which use the JSON form,
 are described in Appendix H. Section 4 discusses usage of CDDL.
 Examples are provided throughout the text to better illustrate
 concept definitions. A formal definition of CDDL using ABNF grammar
 [RFC5234] is provided in Appendix B. Finally, a _prelude_ of
 standard CDDL definitions that is automatically prepended to, and
 thus available in, every CDDL specification is listed in Appendix D.

Birkholz, et al. Standards Track [Page 4]

RFC 8610 CDDL June 2019

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 New terms are introduced in _cursive_, which is rendered in plain
 text as the new term surrounded by underscores. CDDL text in the
 running text is in "typewriter", which is rendered in plain text as
 the CDDL text in double quotes (double quotes are also used in the
 usual English sense; the reader is expected to disambiguate this by
 context).

 In this specification, the term "byte" is used in its now-customary
 sense as a synonym for "octet".

2. The Style of Data Structure Specification

 CDDL focuses on styles of specification that are in use in the
 community employing the data model as pioneered by JSON and now
 refined in CBOR.

 There are a number of more or less atomic elements of a CBOR data
 model, such as numbers, simple values (false, true, nil), text
 strings, and byte strings; CDDL does not focus on specifying their
 structure. CDDL of course also allows adding a CBOR tag to a
 data item.

 Beyond those atomic elements, further components of a data structure
 definition language are the datatypes used for composition: arrays
 and maps in CBOR (called "arrays" and "objects" in JSON). While
 these are only two representation formats, they are used to specify
 four loosely distinguishable styles of composition:

 o A _vector_: an array of elements that are mostly of the same
 semantics. The set of signatures associated with a signed data
 item is a typical application of a vector.

 o A _record_: an array the elements of which have different,
 positionally defined semantics, as detailed in the data structure
 definition. A 2D point, specified as an array of an x coordinate
 (which comes first) and a y coordinate (coming second), is an
 example of a record, as is the pair of exponent (first) and
 mantissa (second) in a CBOR decimal fraction.

Birkholz, et al. Standards Track [Page 5]

RFC 8610 CDDL June 2019

 o A _table_: a map from a domain of map keys to a domain of map
 values, that are mostly of the same semantics. A set of language
 tags, each mapped to a text string translated to that specific
 language, is an example of a table. The key domain is usually not
 limited to a specific set by the specification but is open for the
 application, e.g., in a table mapping IP addresses to Media Access
 Control (MAC) addresses, the specification does not attempt to
 foresee all possible IP addresses. In a language such as
 JavaScript, a "Map" (as opposed to a plain "Object") would often
 be employed to achieve the generality of the key domain.

 o A _struct_: a map from a domain of map keys as defined by the
 specification to a domain of map values the semantics of each of
 which is bound to a specific map key. This is what many people
 have in mind when they think about JSON objects; CBOR adds the
 ability to use map keys that are not just text strings. Structs
 can be used to solve problems similar to those records are used
 for; the use of explicit map keys facilitates optionality and
 extensibility.

 Two important concepts provide the foundation for CDDL:

 1. Instead of defining all four types of composition in CDDL
 separately, or even defining one kind for arrays (vectors and
 records) and one kind for maps (tables and structs), there is
 only one kind of composition in CDDL: the _group_ (Section 2.1).

 2. The other important concept is that of a _type_. The entire CDDL
 specification defines a type (the one defined by its first
 rule), which formally is the set of CBOR data items that are
 acceptable as "instances" for this specification. CDDL
 predefines a number of basic types such as "uint" (unsigned
 integer) or "tstr" (text string), often making use of a simple
 formal notation for CBOR data items. Each value that can be
 expressed as a CBOR data item is also a type in its own right,
 e.g., "1". A type can be built as a _choice_ of other types,
 e.g., an "int" is either a "uint" or a "nint" (negative integer).
 Finally, a type can be built as an array or a map from a group.

 The rest of this section introduces a number of basic concepts of
 CDDL, and Section 3 defines additional syntax. Appendix C gives a
 concise summary of the semantics of CDDL.

Birkholz, et al. Standards Track [Page 6]

RFC 8610 CDDL June 2019

2.1. Groups and Composition in CDDL

 CDDL groups are lists of group _entries_, each of which can be a
 name/value pair or a more complex group expression (which then in
 turn stands for a sequence of name/value pairs). A CDDL group is a
 production in a grammar that matches certain sequences of name/value
 pairs but not others. The grammar is based on the concepts of
 Parsing Expression Grammars (PEGs) (see Appendix A).

 In an array context, only the value of the name/value pair is
 represented; the name is annotation only (and can be left off from
 the group specification if not needed). In a map context, the names
 become the map keys ("member keys").

 In an array context, the actual sequence of elements in the group is
 important, as that sequence is the information that allows
 associating actual array elements with entries in the group. In a
 map context, the sequence of entries in a group is not relevant (but
 there is still a need to write down group entries in a sequence).

 An array matches a specification given as a group when the group
 matches a sequence of name/value pairs the value parts of which
 exactly match the elements of the array in order.

 A map matches a specification given as a group when the group matches
 a sequence of name/value pairs such that all of these name/value
 pairs are present in the map and the map has no name/value pair that
 is not covered by the group.

 A simple example of using a group directly in a map definition is:

 person = {
 age: int,
 name: tstr,
 employer: tstr,
 }

 Figure 1: Using a Group Directly in a Map

 The three entries of the group are written between the curly braces
 that create the map: here, "age", "name", and "employer" are the
 names that turn into the map key text strings, and "int" and "tstr"
 (text string) are the types of the map values under these keys.

Birkholz, et al. Standards Track [Page 7]

RFC 8610 CDDL June 2019

 A group by itself (without creating a map around it) can be placed in
 (round) parentheses and given a name by using it in a rule:

 pii = (
 age: int,
 name: tstr,
 employer: tstr,
)

 Figure 2: A Basic Group

 This separate, named group definition allows us to rephrase
 Figure 1 as:

 person = {
 pii
 }

 Figure 3: Using a Group by Name

 Note that the (curly) braces signify the creation of a map; the
 groups themselves are neutral as to whether they will be used in a
 map or an array.

 As shown in Figure 1, the parentheses for groups are optional when
 there is some other set of brackets present. Note that they can
 still be used, leading to this not-so-realistic, but perfectly valid,
 example:

 person = {(
 age: int,
 name: tstr,
 employer: tstr,
)}

 Figure 4: Using a Parenthesized Group in a Map

Birkholz, et al. Standards Track [Page 8]

RFC 8610 CDDL June 2019

 Groups can be used to factor out common parts of structs, e.g.,
 instead of writing specifications in copy/paste style, such as in
 Figure 5, one can factor out the common subgroup, choose a name for
 it, and write only the specific parts into the individual maps
 (Figure 6).

 person = {
 age: int,
 name: tstr,
 employer: tstr,
 }

 dog = {
 age: int,
 name: tstr,
 leash-length: float,
 }

 Figure 5: Maps with Copy/Paste

 person = {
 identity,
 employer: tstr,
 }

 dog = {
 identity,
 leash-length: float,
 }

 identity = (
 age: int,
 name: tstr,
)

 Figure 6: Using a Group for Factorization

 Note that the lists inside the braces in the above definitions
 constitute (anonymous) groups, while "identity" is a named group,
 which can then be included as part of other groups (anonymous as in
 the example, or themselves named).

Birkholz, et al. Standards Track [Page 9]

RFC 8610 CDDL June 2019

2.1.1. Usage

 Groups are the instrument used in composing data structures with
 CDDL. It is a matter of style in defining those structures whether
 to define groups (anonymously) right in their contexts or whether to
 define them in a separate rule and to reference them with their
 respective name (possibly more than once).

 With this, one is allowed to define all small parts of their data
 structures and compose bigger protocol data units with those or to
 have only one big protocol data unit that has all definitions ad hoc
 where needed.

2.1.2. Syntax

 The composition syntax is intended to be concise and easy to read:

 o The start and end of a group can be marked by "(" and ")".

 o Definitions of entries inside of a group are noted as follows:
 keytype => valuetype, (read "keytype maps to valuetype"). The
 comma is actually optional (not just in the final entry), but it
 is considered good style to set it. The double arrow can be
 replaced by a colon in the common case of directly using a text
 string or integer literal as a key; see Section 3.5.1. This is
 also the common way of naming elements of an array just for
 documentation; see Section 3.4.

 A basic entry consists of a _keytype_ and a _valuetype_, both of
 which are types (Section 2.2); this entry matches any name/value pair
 the name of which is in the keytype and the value of which is in the
 valuetype.

 A group defined as a sequence of group entries matches any sequence
 of name/value pairs that is composed by concatenation in order of
 what the entries match.

 A group definition can also contain choices between groups; see
 Section 2.2.2.

Birkholz, et al. Standards Track [Page 10]

RFC 8610 CDDL June 2019

2.2. Types

2.2.1. Values

 Values such as numbers and strings can be used in place of a type.
 (For instance, this is a very common thing to do for a key type,
 common enough that CDDL provides additional convenience syntax
 for this.)

 The value notation is based on the C language, but does not offer all
 the syntactic variations (see Appendix B for details). The value
 notation for numbers inherits from C the distinction between integer
 values (no fractional part or exponent given -- NR1 [ISO6093];
 "NR" stands for "numerical representation") and floating-point values
 (where a fractional part, an exponent, or both are present -- NR2 or
 NR3), so the type "1" does not include any floating-point numbers
 while the types "1e3" and "1.5" are both floating-point numbers and
 do not include any integer numbers.

2.2.2. Choices

 Many places that allow a type also allow a choice between types,
 delimited by a "/" (slash). The entire choice construct can be put
 into parentheses if this is required to make the construction
 unambiguous (please see Appendix B for details of the CDDL grammar).

 Choices of values can be used to express enumerations:

 attire = "bow tie" / "necktie" / "Internet attire"
 protocol = 6 / 17

 Analogous to types, CDDL also allows choices between groups,
 delimited by a "//" (double slash). Note that the "//" operator
 binds much more weakly than the other CDDL operators, so each line
 within "delivery" in the following example is its own alternative in
 the group choice:

 address = { delivery }

 delivery = (
 street: tstr, ? number: uint, city //
 po-box: uint, city //
 per-pickup: true)

 city = (
 name: tstr, zip-code: uint
)

Birkholz, et al. Standards Track [Page 11]

RFC 8610 CDDL June 2019

 A group choice matches the union of the sets of name/value pair
 sequences that the alternatives in the choice can.

 For both type choices and group choices, additional alternatives can
 be added to a rule later in separate rules by using "/=" and "//=",
 respectively, instead of "=":

 attire /= "swimwear"

 delivery //= (
 lat: float, long: float, drone-type: tstr
)

 It is not an error if a name is first used with a "/=" or "//="
 (there is no need to "create it" with "=").

2.2.2.1. Ranges

 Instead of naming all the values that make up a choice, CDDL allows
 building a _range_ out of two values that are in an ordering
 relationship: a lower bound (first value) and an upper bound (second
 value). A range can be inclusive of both bounds given (denoted by
 joining two values by ".."), or it can include the lower bound and
 exclude the upper bound (denoted by instead using "..."). If the
 lower bound exceeds the upper bound, the resulting type is the empty
 set (this behavior can be desirable when generics (Section 3.10) are
 being used).

 device-address = byte
 max-byte = 255
 byte = 0..max-byte ; inclusive range
 first-non-byte = 256
 byte1 = 0...first-non-byte ; byte1 is equivalent to byte

 CDDL currently only allows ranges between integers (matching integer
 values) or between floating-point values (matching floating-point
 values). If both are needed in a type, a type choice between the two
 kinds of ranges can be (clumsily) used:

 int-range = 0..10 ; only integers match
 float-range = 0.0..10.0 ; only floats match
 BAD-range1 = 0..10.0 ; NOT DEFINED
 BAD-range2 = 0.0..10 ; NOT DEFINED
 numeric-range = int-range / float-range

 (See also the control operators .lt/.ge and .le/.gt in
 Section 3.8.6.)

Birkholz, et al. Standards Track [Page 12]

RFC 8610 CDDL June 2019

 Note that the dot is a valid name continuation character in CDDL, so

 min..max

 is not a range expression but a single name. When using a name as
 the left-hand side of a range operator, use spacing as in

 min .. max

 to separate off the range operator.

2.2.2.2. Turning a Group into a Choice

 Some choices are built out of large numbers of values, often
 integers, each of which is best given a semantic name in the
 specification. Instead of naming each of these integers and then
 accumulating them into a choice, CDDL allows building a choice from a
 group by prefixing it with an "&" character:

 terminal-color = &basecolors
 basecolors = (
 black: 0, red: 1, green: 2, yellow: 3,
 blue: 4, magenta: 5, cyan: 6, white: 7,
)
 extended-color = &(
 basecolors,
 orange: 8, pink: 9, purple: 10, brown: 11,
)

 As with the use of groups in arrays (Section 3.4), the member names
 have only documentary value (in particular, they might be used by a
 tool when displaying integers that are taken from that choice).

2.2.3. Representation Types

 CDDL allows the specification of a data item type by referring to the
 CBOR representation (specifically, to major types and additional
 information; see Section 2 of [RFC7049]). How this is used should be
 evident from the prelude (Appendix D): a hash mark ("#") optionally
 followed by a number from 0 to 7 identifying the major type, which
 then can be followed by a dot and a number specifying the additional
 information. This construction specifies the set of values that can
 be serialized in CBOR (i.e., "any"), by the given major type if one
 is given, or by the given major type with the additional information
 if both are given. Where a major type of 6 (Tag) is used, the type
 of the tagged item can be specified by appending it in parentheses.

Birkholz, et al. Standards Track [Page 13]

RFC 8610 CDDL June 2019

 Note that although this notation is based on the CBOR serialization,
 it is about a set of values at the data model level, e.g., "#7.25"
 specifies the set of values that can be represented as half-precision
 floats; it does not mandate that these values also do have to be
 serialized as half-precision floats: CDDL does not provide any
 language means to restrict the choice of serialization variants.
 This also enables the use of CDDL with JSON, which uses a
 fundamentally different way of serializing (some of) the same values.

 It may be necessary to make use of representation types outside the
 prelude, e.g., a specification could start by making use of an
 existing tag in a more specific way or could define a new tag not
 defined in the prelude:

 my_breakfast = #6.55799(breakfast) ; cbor-any is too general!
 breakfast = cereal / porridge
 cereal = #6.998(tstr)
 porridge = #6.999([liquid, solid])
 liquid = milk / water
 milk = 0
 water = 1
 solid = tstr

2.2.4. Root Type

 There is no special syntax to identify the root of a CDDL data
 structure definition: that role is simply taken by the first rule
 defined in the file.

 This is motivated by the usual top-down approach for defining data
 structures, decomposing a big data structure unit into smaller parts;
 however, except for the root type, there is no need to strictly
 follow this sequence.

 (Note that there is no way to use a group as a root -- it must be
 a type.)

Birkholz, et al. Standards Track [Page 14]

RFC 8610 CDDL June 2019

3. Syntax

 In this section, the overall syntax of CDDL is shown, alongside some
 examples just illustrating syntax. (The definition does not attempt
 to be overly formal; refer to Appendix B for details.)

3.1. General Conventions

 The basic syntax is inspired by ABNF [RFC5234], with the following:

 o Rules, whether they define groups or types, are defined with a
 name, followed by an equals sign "=" and the actual definition
 according to the respective syntactic rules of that definition.

 o A name can consist of any of the characters from the set {"A" to
 "Z", "a" to "z", "0" to "9", "_", "-", "@", ".", "$"}, starting
 with an alphabetic character (including "@", "_", "$") and ending
 in such a character or a digit.

 * Names are case sensitive.

 * It is preferred style to start a name with a lowercase letter.

 * The hyphen is preferred over the underscore (except in a
 "bareword" (Section 3.5.1), where the semantics may actually
 require an underscore).

 * The period may be useful for larger specifications, to express
 some module structure (as in "tcp.throughput" vs.
 "udp.throughput").

 * A number of names are predefined in the CDDL prelude, as listed
 in Appendix D.

 * Rule names (types or groups) do not appear in the actual CBOR
 encoding, but names used as "barewords" in member keys do.

 o Comments are started by a ";" (semicolon) character and finish at
 the end of a line (LF or CRLF).

 o Except within strings, whitespace (spaces, newlines, and comments)
 is used to separate syntactic elements for readability (and to
 separate identifiers, range operators, or numbers that follow each
 other); it is otherwise completely optional.

 o Hexadecimal numbers are preceded by "0x" (without quotes) and are
 case insensitive. Similarly, binary numbers are preceded by "0b".

Birkholz, et al. Standards Track [Page 15]

RFC 8610 CDDL June 2019

 o Text strings are enclosed by double quotation ’"’ characters.
 They follow the conventions for strings as defined in Section 7 of
 [RFC8259]. (ABNF users may want to note that there is no support
 in CDDL for the concept of case insensitivity in text strings; if
 necessary, regular expressions can be used (Section 3.8.3).)

 o Byte strings are enclosed by single quotation "’" characters and
 may be prefixed by "h" or "b64". If unprefixed, the string is
 interpreted as with a text string, except that single quotes must
 be escaped and that the resulting UTF-8 bytes are marked as a byte
 string (major type 2). If prefixed as "h" or "b64", the string is
 interpreted as a sequence of pairs of hex digits (base16; see
 Section 8 of [RFC4648]) or a base64(url) string (Section 4 or
 Section 5 of [RFC4648]), respectively (as with the diagnostic
 notation in Section 6 of [RFC7049]; cf. Appendix G.2); any
 whitespace present within the string (including comments) is
 ignored in the prefixed case.

 o CDDL uses UTF-8 [RFC3629] for its encoding. Processing of CDDL
 does not involve Unicode normalization processes.

 Example:

 ; This is a comment
 person = { g }

 g = (
 "name": tstr,
 age: int, ; "age" is a bareword
)

3.2. Occurrence

 An optional _occurrence_ indicator can be given in front of a group
 entry. It is either (1) one of the characters "?" (optional), "*"
 (zero or more), or "+" (one or more) or (2) of the form n*m, where n
 and m are optional unsigned integers and n is the lower limit
 (default 0) and m is the upper limit (default no limit) of
 occurrences.

 If no occurrence indicator is specified, the group entry is to occur
 exactly once (as if 1*1 were specified). A group entry with an
 occurrence indicator matches sequences of name/value pairs that are
 composed by concatenating a number of sequences that the basic group
 entry matches, where the number needs to be allowed by the occurrence
 indicator.

Birkholz, et al. Standards Track [Page 16]

RFC 8610 CDDL June 2019

 Note that CDDL, outside any directives/annotations that could
 possibly be defined, does not make any prescription as to whether
 arrays or maps use definite-length or indefinite-length encoding.
 That is, there is no correlation between leaving the size of an array
 "open" in the spec and the fact that it is then interchanged with
 definite or indefinite length.

 Please also note that CDDL can describe flexibility that the data
 model of the target representation does not have. This is rather
 obvious for JSON but is also relevant for CBOR:

 apartment = {
 kitchen: size,
 * bedroom: size,
 }
 size = float ; in m2

 The previous specification does not mean that CBOR is changed to
 allow using the key "bedroom" more than once. In other words, due to
 the restrictions imposed by the data model, the third line pretty
 much turns into:

 ? bedroom: size,

 (Occurrence indicators beyond one are still useful in maps for groups
 that allow a variety of keys.)

3.3. Predefined Names for Types

 CDDL predefines a number of names. This subsection summarizes these
 names, but please see Appendix D for the exact definitions.

 The following keywords for primitive datatypes are defined:

 "bool" Boolean value (major type 7, additional information 20
 or 21).

 "uint" An unsigned integer (major type 0).

 "nint" A negative integer (major type 1).

 "int" An unsigned integer or a negative integer.

 "float16" A number representable as a half-precision float [IEEE754]
 (major type 7, additional information 25).

 "float32" A number representable as a single-precision float
 [IEEE754] (major type 7, additional information 26).

Birkholz, et al. Standards Track [Page 17]

RFC 8610 CDDL June 2019

 "float64" A number representable as a double-precision float
 [IEEE754] (major type 7, additional information 27).

 "float" One of float16, float32, or float64.

 "bstr" or "bytes" A byte string (major type 2).

 "tstr" or "text" Text string (major type 3).

 (Note that there are no predefined names for arrays or maps; these
 are defined with the syntax given below.)

 In addition, a number of types are defined in the prelude that are
 associated with CBOR tags, such as "tdate", "bigint", "regexp", etc.

3.4. Arrays

 Array definitions surround a group with square brackets.

 For each entry, an occurrence indicator as specified in Section 3.2
 is permitted.

 For example:

 unlimited-people = [* person]
 one-or-two-people = [1*2 person]
 at-least-two-people = [2* person]
 person = (
 name: tstr,
 age: uint,
)

 The group "person" is defined in such a way that repeating it in the
 array each time generates alternating names and ages, so these are
 four valid values for a data item of type "unlimited-people":

 ["roundlet", 1047, "psychurgy", 2204, "extrarhythmical", 2231]
 []
 ["aluminize", 212, "climograph", 4124]
 ["penintime", 1513, "endocarditis", 4084, "impermeator", 1669,
 "coextension", 865]

Birkholz, et al. Standards Track [Page 18]

RFC 8610 CDDL June 2019

3.5. Maps

 The syntax for specifying maps merits special attention, as well as a
 number of optimizations and conveniences, as it is likely to be the
 focal point of many specifications employing CDDL. While the syntax
 does not strictly distinguish struct and table usage of maps, it
 caters specifically to each of them.

 But first, let’s reiterate a feature of CBOR that it has inherited
 from JSON: the key/value pairs in CBOR maps have no fixed ordering.
 (One could imagine situations where fixing the ordering may be of
 use. For example, a decoder could look for values related with
 integer keys 1, 3, and 7. If the order were fixed and the decoder
 encounters the key 4 without having encountered key 3, it could
 conclude that key 3 is not available without doing more complicated
 bookkeeping. Unfortunately, neither JSON nor CBOR supports this, so
 no attempt was made to support this in CDDL either.)

3.5.1. Structs

 The "struct" usage of maps is similar to the way JSON objects are
 used in many JSON applications.

 A map is defined in the same way as that for defining an array (see
 Section 3.4), except for using curly braces "{}" instead of square
 brackets "[]".

 An occurrence indicator as specified in Section 3.2 is permitted for
 each group entry.

 The following is an example of a record with a structure embedded:

 Geography = [
 city : tstr,
 gpsCoordinates : GpsCoordinates,
]

 GpsCoordinates = {
 longitude : uint, ; degrees, scaled by 10^7
 latitude : uint, ; degrees, scaled by 10^7
 }

 When encoding, the Geography record is encoded using a CBOR array
 with two members (the keys for the group entries are ignored),
 whereas the GpsCoordinates structure is encoded as a CBOR map with
 two key/value pairs.

Birkholz, et al. Standards Track [Page 19]

RFC 8610 CDDL June 2019

 Types used in a structure can be defined in separate rules or just in
 place (potentially placed inside parentheses, such as for choices).
 For example:

 located-samples = {
 sample-point: int,
 samples: [+ float],
 }

 where "located-samples" is the datatype to be used when referring to
 the struct, and "sample-point" and "samples" are the keys to be used.
 This is actually a complete example: an identifier that is followed
 by a colon can be directly used as the text string for a member key
 (we speak of a "bareword" member key), as can a double-quoted string
 or a number. (When other types -- in particular, types that contain
 more than one value -- are used as the types of keys, they are
 followed by a double arrow; see below.)

 If a text string key does not match the syntax for an identifier (or
 if the specifier just happens to prefer using double quotes), the
 text string syntax can also be used in the member key position,
 followed by a colon. The above example could therefore have been
 written with quoted strings in the member key positions.

 More generally, types specified in ways other than those listed for
 the cases described above can be used in a key-type position by
 following them with a double arrow -- in particular, the double arrow
 is necessary if a type is named by an identifier (which, when
 followed by a colon, would be interpreted as a "bareword" and turned
 into a text string). A literal text string also gives rise to a type
 (which contains a single value only -- the given string), so another
 form for this example is:

 located-samples = {
 "sample-point" => int,
 "samples" => [+ float],
 }

Birkholz, et al. Standards Track [Page 20]

RFC 8610 CDDL June 2019

 See Section 3.5.4 below for how the colon (":") shortcut described
 here also adds some implied semantics.

 A better way to demonstrate the use of the double arrow may be:

 located-samples = {
 sample-point: int,
 samples: [+ float],
 * equipment-type => equipment-tolerances,
 }
 equipment-type = [name: tstr, manufacturer: tstr]
 equipment-tolerances = [+ [float, float]]

 The example below defines a struct with optional entries: display
 name (as a text string), the name components first name and family
 name (as text strings), and age information (as an unsigned integer).

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 Note that the group definition for NameComponents does not generate
 another map; instead, all four keys are directly in the struct built
 by PersonalData.

 In this example, all key/value pairs are optional from the
 perspective of CDDL. With no occurrence indicator, an entry is
 mandatory.

Birkholz, et al. Standards Track [Page 21]

RFC 8610 CDDL June 2019

 If the addition of more entries not specified by the current
 specification is desired, one can add this possibility explicitly:

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 * tstr => any
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 Figure 7: Personal Data: Example for Extensibility

 The CDDL tool described in Appendix F generated the following as one
 acceptable instance for this specification:

 {"familyName": "agust", "antiforeignism": "pretzel",
 "springbuck": "illuminatingly", "exuviae": "ephemeris",
 "kilometrage": "frogfish"}

 (See Section 3.9 for one way to explicitly identify an extension
 point.)

3.5.2. Tables

 A table can be specified by defining a map with entries where the
 key type allows more than just a single value; for example:

 square-roots = {* x => y}
 x = int
 y = float

 Here, the key in each key/value pair has datatype x (defined as int),
 and the value has datatype y (defined as float).

 If the specification does not need to restrict one of x or y (i.e.,
 the application is free to choose per entry), it can be replaced by
 the predefined name "any".

Birkholz, et al. Standards Track [Page 22]

RFC 8610 CDDL June 2019

 As another example, the following could be used as a conversion table
 converting from an integer or float to a string:

 tostring = {* mynumber => tstr}
 mynumber = int / float

3.5.3. Non-deterministic Order

 While the way arrays are matched is fully determined by the PEG
 formalism (see Appendix A), matching is more complicated for maps, as
 maps do not have an inherent order. For each candidate name/value
 pair that the PEG algorithm would try, a matching member is picked
 out of the entire map. For certain group expressions, more than one
 member in the map may match. Most often, this is inconsequential, as
 the group expression tends to consume all matches:

 labeled-values = {
 ? fritz: number,
 * label => value
 }
 label = text
 value = number

 Here, if any member with the key "fritz" is present, this will be
 picked by the first entry of the group; all remaining text/number
 members will be picked by the second entry (and if anything remains
 unpicked, the map does not match).

 However, it is possible to construct group expressions where what is
 actually picked is indeterminate, but does matter:

 do-not-do-this = {
 int => int,
 int => 6,
 }

 When this expression is matched against "{3: 5, 4: 6}", the first
 group entry might pick off the "3: 5", leaving "4: 6" for matching
 the second one. Or it might pick off "4: 6", leaving nothing for the
 second entry. This pathological non-determinism is caused by
 specifying "more general" before "more specific" and by having a
 general rule that only consumes a subset of the map key/value pairs
 that it is able to match -- both tend not to occur in real-world
 specifications of maps. At the time of writing, CDDL tools cannot
 detect such cases automatically, and for the present version of the
 CDDL specification, the specification writer is simply urged to not
 write pathologically non-deterministic specifications.

Birkholz, et al. Standards Track [Page 23]

RFC 8610 CDDL June 2019

 (The astute reader will be reminded of what was called "ambiguous
 content models" in the Standard Generalized Markup Language (SGML)
 and "non-deterministic content models" in XML. That problem is
 related to the one described here, but the problem here is
 specifically caused by the lack of order in maps, something that the
 XML schema languages do not have to contend with. Note that
 RELAX NG’s "interleave" pattern handles lack of order explicitly on
 the specification side, while the instances in XML always have
 determinate order.)

3.5.4. Cuts in Maps

 The extensibility idiom discussed above for structs has one problem:

 extensible-map-example = {
 ? "optional-key" => int,
 * tstr => any
 }

 In this example, there is one optional key "optional-key", which,
 when present, maps to an integer. There is also a wildcard for any
 future additions.

 Unfortunately, the data item

 { "optional-key": "nonsense" }

 does match this specification: while the first entry of the group
 does not match, the second one (the wildcard) does. This may very
 well be desirable (e.g., if a future extension is to be allowed to
 extend the type of "optional-key"), but in many cases it isn’t.

 In anticipation of a more general potential feature called "cuts",
 CDDL allows inserting a cut "^" into the definition of the map entry:

 extensible-map-example = {
 ? "optional-key" ^ => int,
 * tstr => any
 }

 A cut in this position means that once the member key matches the
 name part of an entry that carries a cut, other potential matches for
 the key of the member that occur in later entries in the group of the
 map are no longer allowed. In other words, when a group entry would
 pick a key/value pair based on just a matching key, it "locks in" the
 pick -- this rule applies, independently of whether the value matches

Birkholz, et al. Standards Track [Page 24]

RFC 8610 CDDL June 2019

 as well, so when it does not, the entire map fails to match. In
 summary, the example above no longer matches the specification as
 modified with the cut.

 Since the desire for this kind of exclusive matching is so frequent,
 the ":" shortcut is actually defined to include the cut semantics.
 So, the preceding example (including the cut) can be written more
 simply as:

 extensible-map-example = {
 ? "optional-key": int,
 * tstr => any
 }

 or even shorter, using a bareword for the key:

 extensible-map-example = {
 ? optional-key: int,
 * tstr => any
 }

3.6. Tags

 A type can make use of a CBOR tag (major type 6) by using the
 representation type notation, giving #6.nnn(type) where nnn is an
 unsigned integer giving the tag number and "type" is the type of the
 data item being tagged.

 For example, the following line from the CDDL prelude (Appendix D)
 defines "biguint" as a type name for an unsigned bignum N:

 biguint = #6.2(bstr)

 The tags defined by [RFC7049] are included in the prelude.
 Additional tags registered since [RFC7049] was written need to be
 added to a CDDL specification as needed; e.g., a binary Universally
 Unique Identifier (UUID) tag could be referenced as "buuid" in a
 specification after defining

 buuid = #6.37(bstr)

 In the following example, usage of tag 32 for URIs is optional:

 my_uri = #6.32(tstr) / tstr

Birkholz, et al. Standards Track [Page 25]

RFC 8610 CDDL June 2019

3.7. Unwrapping

 The group that is used to define a map or an array can often be
 reused in the definition of another map or array. Similarly, a type
 defined as a tag carries an internal data item that one would like to
 refer to. In these cases, it is expedient to simply use the name of
 the map, array, or tag type as a handle for the group or type defined
 inside it.

 The "unwrap" operator (written by preceding a name by a tilde
 character "˜") can be used to strip the type defined for a name by
 one layer, exposing the underlying group (for maps and arrays) or
 type (for tags).

 For example, an application might want to define a basic header and
 an advanced header. Without unwrapping, this might be done as
 follows:

 basic-header-group = (
 field1: int,
 field2: text,
)

 basic-header = [basic-header-group]

 advanced-header = [
 basic-header-group,
 field3: bytes,
 field4: number, ; as in the tagged type "time"
]

 Unwrapping simplifies this to:

 basic-header = [
 field1: int,
 field2: text,
]

 advanced-header = [
 ˜basic-header,
 field3: bytes,
 field4: ˜time,
]

 (Note that leaving out the first unwrap operator in the latter
 example would lead to nesting the basic-header in its own array
 inside the advanced-header, while, with the unwrapped basic-header,
 the definition of the group inside basic-header is essentially

Birkholz, et al. Standards Track [Page 26]

RFC 8610 CDDL June 2019

 repeated inside advanced-header, leading to a single array. This can
 be used for various applications often solved by inheritance in
 programming languages. The effect of unwrapping can also be
 described as "threading in" the group or type inside the referenced
 type, which suggested the thread-like "˜" character.)

3.8. Controls

 A _control_ allows relating a _target_ type with a _controller_ type
 via a _control operator_.

 The syntax for a control type is "target .control-operator
 controller", where control operators are special identifiers prefixed
 by a dot. (Note that _target_ or _controller_ might need to be
 parenthesized.)

 A number of control operators are defined at this point. Further
 control operators may be defined by new versions of this
 specification or by registering them according to the procedures in
 Section 6.1.

3.8.1. Control Operator .size

 A ".size" control controls the size of the target in bytes by the
 control type. The control is defined for text and byte strings,
 where it directly controls the number of bytes in the string. It is
 also defined for unsigned integers (see below). Figure 8 shows
 example usage for byte strings.

 full-address = [[+ label], ip4, ip6]
 ip4 = bstr .size 4
 ip6 = bstr .size 16
 label = bstr .size (1..63)

 Figure 8: Control for Size in Bytes

 When applied to an unsigned integer, the ".size" control restricts
 the range of that integer by giving a maximum number of bytes that
 should be needed in a computer representation of that unsigned
 integer. In other words, "uint .size N" is equivalent to
 "0...BYTES_N", where BYTES_N == 256**N.

 audio_sample = uint .size 3 ; 24-bit, equivalent to 0...16777216

 Figure 9: Control for Integer Size in Bytes

Birkholz, et al. Standards Track [Page 27]

RFC 8610 CDDL June 2019

 Note that, as with value restrictions in CDDL, this control is not a
 representation constraint; a number that fits into fewer bytes can
 still be represented in that form, and an inefficient implementation
 could use a longer form (unless that is restricted by some format
 constraints outside of CDDL, such as the rules in Section 3.9 of
 [RFC7049]).

3.8.2. Control Operator .bits

 A ".bits" control on a byte string indicates that, in the target,
 only the bits numbered by a number in the control type are allowed to
 be set. (Bits are counted the usual way, bit number "n" being set in
 "str" meaning that "(str[n >> 3] & (1 << (n & 7))) != 0".)
 Similarly, a ".bits" control on an unsigned integer "i" indicates
 that for all unsigned integers "n" where "(i & (1 << n)) != 0", "n"
 must be in the control type.

 tcpflagbytes = bstr .bits flags
 flags = &(
 fin: 8,
 syn: 9,
 rst: 10,
 psh: 11,
 ack: 12,
 urg: 13,
 ece: 14,
 cwr: 15,
 ns: 0,
) / (4..7) ; data offset bits

 rwxbits = uint .bits rwx
 rwx = &(r: 2, w: 1, x: 0)

 Figure 10: Control for What Bits Can Be Set

 The CDDL tool described in Appendix F generates the following ten
 example instances for "tcpflagbytes":

 h’906d’ h’01fc’ h’8145’ h’01b7’ h’013d’ h’409f’ h’018e’ h’c05f’
 h’01fa’ h’01fe’

 These examples do not illustrate that the above CDDL specification
 does not explicitly specify a size of two bytes: a valid all-clear
 instance of flag bytes could be "h’’" or "h’00’" or even "h’000000’"
 as well.

Birkholz, et al. Standards Track [Page 28]

RFC 8610 CDDL June 2019

3.8.3. Control Operator .regexp

 A ".regexp" control indicates that the text string given as a target
 needs to match the XML Schema Definition (XSD) regular expression
 given as a value in the control type. XSD regular expressions are
 defined in Appendix F of [W3C.REC-xmlschema-2-20041028].

 nai = tstr .regexp "[A-Za-z0-9]+@[A-Za-z0-9]+(\\.[A-Za-z0-9]+)+"

 Figure 11: Control with an XSD regexp

 An example matching this regular expression:

 "N1@CH57HF.4Znqe0.dYJRN.igjf"

3.8.3.1. Usage Considerations

 Note that XSD regular expressions do not support the usual \x or \u
 escapes for hexadecimal expression of bytes or Unicode code points.
 However, in CDDL the XSD regular expressions are contained in text
 strings, the literal notation for which provides \u escapes; this
 should suffice for most applications that use regular expressions for
 text strings. (Note that this also means that there is one level of
 string escaping before the XSD escaping rules are applied.)

 XSD regular expressions support character class subtraction, a
 feature often not found in regular expression libraries;
 specification writers may want to use this feature sparingly.
 Similar considerations apply to Unicode character classes; where
 these are used, the specification that employs CDDL SHOULD identify
 which Unicode versions are addressed.

 Other surprises for infrequent users of XSD regular expressions may
 include the following:

 o No direct support for case insensitivity. While case
 insensitivity has gone mostly out of fashion in protocol design,
 it is sometimes needed and then needs to be expressed manually as
 in "[Cc][Aa][Ss][Ee]".

 o The support for popular character classes such as \w and \d is
 based on Unicode character properties; this is often not what is
 desired in an ASCII-based protocol and thus might lead to
 surprises. (\s and \S do have their more conventional meanings,
 and "." matches any character but the line-ending characters \r
 or \n.)

Birkholz, et al. Standards Track [Page 29]

RFC 8610 CDDL June 2019

3.8.3.2. Discussion

 There are many flavors of regular expression in use in the
 programming community. For instance, Perl-Compatible Regular
 Expressions (PCREs) are widely used and probably are more useful than
 XSD regular expressions. However, there is no normative reference
 for PCREs that could be used in the present document. Instead, we
 opt for XSD regular expressions for now. There is precedent for that
 choice in the IETF, e.g., in YANG [RFC7950].

 Note that CDDL uses controls as its main extension point. This
 creates the opportunity to add further regular expression formats in
 addition to the one referenced here, if desired. As an example, a
 proposal for a ".pcre" control is defined in [CDDL-Freezer].

3.8.4. Control Operators .cbor and .cborseq

 A ".cbor" control on a byte string indicates that the byte string
 carries a CBOR-encoded data item. Decoded, the data item matches the
 type given as the right-hand-side argument (type1 in the following
 example).

 "bytes .cbor type1"

 Similarly, a ".cborseq" control on a byte string indicates that the
 byte string carries a sequence of CBOR-encoded data items. When the
 data items are taken as an array, the array matches the type given as
 the right-hand-side argument (type2 in the following example).

 "bytes .cborseq type2"

 (The conversion of the encoded sequence to an array can be effected,
 for instance, by wrapping the byte string between the two bytes 0x9f
 and 0xff and decoding the wrapped byte string as a CBOR-encoded
 data item.)

3.8.5. Control Operators .within and .and

 A ".and" control on a type indicates that the data item matches both
 the left-hand-side type and the type given as the right-hand side.
 (Formally, the resulting type is the intersection of the two types
 given.)

 "type1 .and type2"

Birkholz, et al. Standards Track [Page 30]

RFC 8610 CDDL June 2019

 A variant of the ".and" control is the ".within" control, which
 expresses an additional intent: the left-hand-side type is meant to
 be a subset of the right-hand-side type.

 "type1 .within type2"

 While both forms have the identical formal semantics (intersection),
 the intention of the ".within" form is that the right-hand side gives
 guidance to the types allowed on the left-hand side, which typically
 is a socket (Section 3.9):

 message = $message .within message-structure
 message-structure = [message_type, *message_option]
 message_type = 0..255
 message_option = any

 $message /= [3, dough: text, topping: [* text]]
 $message /= [4, noodles: text, sauce: text, parmesan: bool]

 For ".within", a tool might flag an error if type1 allows data items
 that are not allowed by type2. In contrast, for ".and", there is no
 expectation that type1 is already a subset of type2.

3.8.6. Control Operators .lt, .le, .gt, .ge, .eq, .ne, and .default

 The controls .lt, .le, .gt, .ge, .eq, and .ne specify a constraint
 on the left-hand-side type to be a value less than, less than or
 equal to, greater than, greater than or equal to, equal to, or not
 equal to a value given as a right-hand-side type (containing just
 that single value). In the present specification, the first four
 controls (.lt, .le, .gt, and .ge) are defined only for numeric types,
 as these have a natural ordering relationship.

 speed = number .ge 0 ; unit: m/s

 .ne and .eq are defined for both numeric values and values of other
 types. If one of the values is not of a numeric type, equality is
 determined as follows: text strings are equal (satisfy .eq / do not
 satisfy .ne) if they are bytewise identical; the same applies for
 byte strings. Arrays are equal if they have the same number of
 elements, all of which are equal pairwise in order between the
 arrays. Maps are equal if they have the same number of key/value
 pairs, and there is pairwise equality between the key/value pairs
 between the two maps. Tagged values are equal if they both have the
 same tag and the values are equal. Values of simple types match if
 they are the same values. Numeric types that occur within arrays,

Birkholz, et al. Standards Track [Page 31]

RFC 8610 CDDL June 2019

 maps, or tagged values are equal if their numeric value is equal and
 they are both integers or both floating-point values. All other
 cases are not equal (e.g., comparing a text string with a byte
 string).

 A variant of the ".ne" control is the ".default" control, which
 expresses an additional intent: the value specified by the
 right-hand-side type is intended as a default value for the
 left-hand-side type given, and the implied .ne control is there to
 prevent this value from being sent over the wire. This control is
 only meaningful when the control type is used in an optional context;
 otherwise, there would be no way to make use of the default value.

 timer = {
 time: uint,
 ? displayed-step: (number .gt 0) .default 1
 }

3.9. Socket/Plug

 For both type choices and group choices, a mechanism is defined that
 facilitates starting out with empty choices and assembling them
 later, potentially in separate files that are concatenated to build
 the full specification.

 Per convention, CDDL extension points are marked with a leading
 dollar sign (types) or two leading dollar signs (groups). Tools
 honor that convention by not raising an error if such a type or group
 is not defined at all; the symbol is then taken to be an empty type
 choice (group choice), i.e., no choice is available.

 tcp-header = {seq: uint, ack: uint, * $$tcp-option}

 ; later, in a different file

 $$tcp-option //= (
 sack: [+(left: uint, right: uint)]
)

 ; and, maybe in another file

 $$tcp-option //= (
 sack-permitted: true
)

 Names that start with a single "$" are "type sockets", starting out
 as an empty type, and intended to be extended via "/=". Names that
 start with a double "$$" are "group sockets", starting out as an

Birkholz, et al. Standards Track [Page 32]

RFC 8610 CDDL June 2019

 empty group choice, and intended to be extended via "//=". In either
 case, it is not an error if there is no definition for a socket at
 all; this then means there is no way to satisfy the rule (i.e., the
 choice is empty).

 As a convention, all definitions (plugs) for socket names must be
 augmentations, i.e., they must be using "/=" and "//=", respectively.

 To pick up the example illustrated in Figure 7, the socket/plug
 mechanism could be used as shown in Figure 12:

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 * $$personaldata-extensions
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 ; The above already works as is.
 ; But then, we can add later:

 $$personaldata-extensions //= (
 favorite-salsa: tstr,
)

 ; and again, somewhere else:

 $$personaldata-extensions //= (
 shoesize: uint,
)

 Figure 12: Personal Data Example: Using Socket/Plug Extensibility

3.10. Generics

 Using angle brackets, the left-hand side of a rule can add formal
 parameters after the name being defined, as in:

 messages = message<"reboot", "now"> / message<"sleep", 1..100>
 message<t, v> = {type: t, value: v}

Birkholz, et al. Standards Track [Page 33]

RFC 8610 CDDL June 2019

 When using a generic rule, the formal parameters are bound to the
 actual arguments supplied (also using angle brackets), within the
 scope of the generic rule (as if there were a rule of the form
 parameter = argument).

 Generic rules can be used for establishing names for both types and
 groups.

 (At this time, there are some limitations to the nesting of generics
 in the CDDL tool described in Appendix F.)

3.11. Operator Precedence

 As with any language that has multiple syntactic features such as
 prefix and infix operators, CDDL has operators that bind more tightly
 than others. This is becoming more complicated than, say, in ABNF,
 as CDDL has both types and groups, with operators that are specific
 to these concepts. Type operators (such as "/" for type choice)
 operate on types, while group operators (such as "//" for group
 choice) operate on groups. Types can simply be used in groups, but
 groups need to be bracketed (as arrays or maps) to become types. So,
 type operators naturally bind closer than group operators.

 For instance, in

 t = [group1]
 group1 = (a / b // c / d)
 a = 1 b = 2 c = 3 d = 4

 group1 is a group choice between the type choice of a and b and the
 type choice of c and d. This becomes more relevant once member keys
 and/or occurrences are added in:

 t = {group2}
 group2 = (? ab: a / b // cd: c / d)
 a = 1 b = 2 c = 3 d = 4

 is a group choice between the optional member "ab" of type a or b and
 the member "cd" of type c or d. Note that the optionality is
 attached to the first choice ("ab"), not to the second choice.

Birkholz, et al. Standards Track [Page 34]

RFC 8610 CDDL June 2019

 Similarly, in

 t = [group3]
 group3 = (+ a / b / c)
 a = 1 b = 2 c = 3

 group3 is a repetition of a type choice between a, b, and c; if just
 a is to be repeatable, a group choice is needed to focus the
 occurrence:

 t = [group4]
 group4 = (+ a // b / c)
 a = 1 b = 2 c = 3

 group4 is a group choice between a repeatable a and a single b or c.

 A comment has been that the semantics of group3 could be
 counterintuitive. In general, as with many other languages with
 operator precedence rules, the specification writer is encouraged not
 to rely on them, but to insert parentheses liberally to guide readers
 that are not familiar with CDDL precedence rules:

 t = [group4a]
 group4a = ((+ a) // (b / c))
 a = 1 b = 2 c = 3

 The operator precedences, in sequence of loose to tight binding, are
 defined in Appendix B and summarized in Table 1. (Arities given are
 1 for unary prefix operators and 2 for binary infix operators.)

Birkholz, et al. Standards Track [Page 35]

RFC 8610 CDDL June 2019

 +----------+-------+---------------------------+------------+
 | Operator | Arity | Operates on | Precedence |
 +----------+-------+---------------------------+------------+
 | = | 2 | name = type, name = group | 1 |
 | /= | 2 | name /= type | 1 |
 | //= | 2 | name //= group | 1 |
 | // | 2 | group // group | 2 |
 | , | 2 | group, group | 3 |
 | * | 1 | * group | 4 |
 | n*m | 1 | n*m group | 4 |
 | + | 1 | + group | 4 |
 | ? | 1 | ? group | 4 |
 | => | 2 | type => type | 5 |
 | : | 2 | name: type | 5 |
 | / | 2 | type / type | 6 |
 | .. | 2 | type..type | 7 |
 | ... | 2 | type...type | 7 |
 | .ctrl | 2 | type .ctrl type | 7 |
 | & | 1 | &group | 8 |
 | ˜ | 1 | ˜type | 8 |
 +----------+-------+---------------------------+------------+

 Table 1: Summary of Operator Precedences

4. Making Use of CDDL

 In this section, we discuss several potential ways to employ CDDL.

4.1. As a Guide for a Human User

 CDDL can be used to efficiently define the layout of CBOR data, such
 that a human implementer can easily see how data is supposed to be
 encoded.

 Since CDDL maps parts of the CBOR data to human-readable names, tools
 could be built that use CDDL to provide a human-friendly
 representation of the CBOR data and allow them to edit such data
 while remaining compliant with its CDDL definition.

4.2. For Automated Checking of CBOR Data Structures

 CDDL has been specified such that a machine can handle the CDDL
 definition and related CBOR data (and, thus, also JSON data). For
 example, a machine could use CDDL to check whether or not CBOR data
 is compliant with its definition.

Birkholz, et al. Standards Track [Page 36]

RFC 8610 CDDL June 2019

 The need for thoroughness of such compliance checking depends on the
 application. For example, an application may decide not to check the
 data structure at all and use the CDDL definition solely as a means
 to indicate the structure of the data to the programmer.

 On the other hand, the application may also implement a checking
 mechanism that goes as far as checking that all mandatory map members
 are available.

 The matter of how far the data description must be enforced by an
 application is left to the designers and implementers of that
 application, keeping in mind related security considerations.

 In no case is it intended that a CDDL tool would be "writing code"
 for an implementation.

4.3. For Data Analysis Tools

 In the long run, it can be expected that more and more data will be
 stored using the CBOR data format.

 Where there is data, there is data analysis and the need to process
 such data automatically. CDDL can be used for such automated data
 processing, allowing tools to verify data, clean it, and extract
 particular parts of interest from it.

 Since CBOR is designed with constrained devices in mind, a likely use
 of it would be small sensors. An interesting use would thus be
 automated analysis of sensor data.

5. Security Considerations

 This document presents a content rules language for expressing CBOR
 data structures. As such, it does not bring any security issues on
 itself, although specifications of protocols that use CBOR naturally
 need security analyses when defined. General guidelines for writing
 security considerations are defined in [RFC3552] (BCP 72).
 Specifications using CDDL to define CBOR structures in protocols need
 to follow those guidelines. Additional topics that could be
 considered in a security considerations section for a specification
 that uses CDDL to define CBOR structures include the following:

 o Where could the language maybe cause confusion in a way that will
 enable security issues?

Birkholz, et al. Standards Track [Page 37]

RFC 8610 CDDL June 2019

 o Where a CDDL matcher is part of the implementation of a system,
 the security of the system ought not depend on the correctness of
 the CDDL specification or CDDL implementation without any further
 defenses in place.

 o Where the CDDL specification includes extension points, the impact
 of extensions on the security of the system needs to be carefully
 considered.

 Writers of CDDL specifications are strongly encouraged to value
 clarity and transparency of the specification over its elegance.
 Keep it as simple as possible while still expressing the needed data
 model.

 A related observation about formal description techniques in general
 that is strongly recommended to be kept in mind by writers of CDDL
 specifications: just because CDDL makes it easier to handle
 complexity in a specification, that does not make that complexity
 somehow less bad (except maybe on the level of the humans having to
 grasp the complex structure while reading the spec).

6. IANA Considerations

6.1. CDDL Control Operators Registry

 IANA has created a registry for control operators (Section 3.8). The
 "CDDL Control Operators" registry has been created within the
 "Concise Data Definition Language (CDDL)" registry.

 Each entry in the subregistry must include the name of the control
 operator (by convention given with the leading dot) and a reference
 to its documentation. Names must be composed of the leading dot
 followed by a text string conforming to the production "id" in
 Appendix B.

Birkholz, et al. Standards Track [Page 38]

RFC 8610 CDDL June 2019

 Initial entries in this registry are as follows:

 +----------+---------------+
 | Name | Documentation |
 +----------+---------------+
 | .size | RFC 8610 |
 | .bits | RFC 8610 |
 | .regexp | RFC 8610 |
 | .cbor | RFC 8610 |
 | .cborseq | RFC 8610 |
 | .within | RFC 8610 |
 | .and | RFC 8610 |
 | .lt | RFC 8610 |
 | .le | RFC 8610 |
 | .gt | RFC 8610 |
 | .ge | RFC 8610 |
 | .eq | RFC 8610 |
 | .ne | RFC 8610 |
 | .default | RFC 8610 |
 +----------+---------------+

 All other control operator names are Unassigned.

 The IANA policy for additions to this registry is "Specification
 Required" as defined in [RFC8126] (which involves an Expert Review)
 for names that do not include an internal dot and "IETF Review" for
 names that do include an internal dot. The expert reviewer is
 specifically instructed that other Standards Development
 Organizations (SDOs) may want to define control operators that are
 specific to their fields (e.g., based on a binary syntax already in
 use at the SDO); the review process should strive to facilitate such
 an undertaking.

Birkholz, et al. Standards Track [Page 39]

RFC 8610 CDDL June 2019

7. References

7.1. Normative References

 [ISO6093] ISO, "Information processing -- Representation of
 numerical values in character strings for information
 interchange", ISO 6093, 1985.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, et al. Standards Track [Page 40]

RFC 8610 CDDL June 2019

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [W3C.REC-xmlschema-2-20041028]
 Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium Recommendation
 REC-xmlschema-2-20041028, October 2004,
 <https://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

7.2. Informative References

 [CDDL-Freezer]
 Bormann, C., "A feature freezer for the Concise Data
 Definition Language (CDDL)", Work in Progress,
 draft-bormann-cbor-cddl-freezer-01, August 2018.

 [GRASP] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "A
 Generic Autonomic Signaling Protocol (GRASP)", Work in
 Progress, draft-ietf-anima-grasp-15, July 2017.

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
 Std 754-2008.

 [JCR] Newton, A. and P. Cordell, "A Language for Rules
 Describing JSON Content", Work in Progress,
 draft-newton-json-content-rules-09, September 2017.

 [PEG] Ford, B., "Parsing expression grammars: a recognition-
 based syntactic foundation", Proceedings of the 31st ACM
 SIGPLAN-SIGACT symposium on Principles of programming
 languages - POPL ’04, DOI 10.1145/964001.964011,
 January 2004.

 [RELAXNG] ISO/IEC, "Information technology -- Document Schema
 Definition Language (DSDL) -- Part 2: Regular-grammar-
 based validation -- RELAX NG", ISO/IEC 19757-2,
 December 2008.

 [RFC7071] Borenstein, N. and M. Kucherawy, "A Media Type for
 Reputation Interchange", RFC 7071, DOI 10.17487/RFC7071,
 November 2013, <https://www.rfc-editor.org/info/rfc7071>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Birkholz, et al. Standards Track [Page 41]

RFC 8610 CDDL June 2019

 [RFC8007] Murray, R. and B. Niven-Jenkins, "Content Delivery Network
 Interconnection (CDNI) Control Interface / Triggers",
 RFC 8007, DOI 10.17487/RFC8007, December 2016,
 <https://www.rfc-editor.org/info/rfc8007>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8428] Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.
 Bormann, "Sensor Measurement Lists (SenML)", RFC 8428,
 DOI 10.17487/RFC8428, August 2018,
 <https://www.rfc-editor.org/info/rfc8428>.

 [YAML] Ben-Kiki, O., Evans, C., and I. Net, "YAML Ain’t Markup
 Language (YAML[TM]) Version 1.2", 3rd Edition,
 October 2009, <https://yaml.org/spec/1.2/spec.html>.

Birkholz, et al. Standards Track [Page 42]

RFC 8610 CDDL June 2019

Appendix A. Parsing Expression Grammars (PEGs)

 This appendix is normative.

 Since the 1950s, many grammar notations are based on Backus-Naur Form
 (BNF), a notation for context-free grammars (CFGs) within Chomsky’s
 generative system of grammars. The Augmented Backus-Naur Form (ABNF)
 [RFC5234], widely used in IETF specifications and also inspiring the
 syntax of CDDL, is an example of this.

 Generative grammars can express ambiguity well, but this very
 property may make them hard to use in recognition systems, spawning a
 number of subdialects that pose constraints on generative grammars to
 be used with parser generators; this scenario may be hard for the
 specification writer to manage.

 PEGs [PEG] provide an alternative formal foundation for describing
 grammars that emphasizes recognition over generation and resolves
 what would have been ambiguity in generative systems by introducing
 the concept of "prioritized choice".

 The notation for PEGs is quite close to BNF, with the usual "Extended
 BNF" features, such as repetition, added. However, where BNF uses
 the unordered (symmetrical) choice operator "|" (incidentally notated
 as "/" in ABNF), PEG provides a prioritized choice operator "/". The
 two alternatives listed are to be tested in left-to-right order,
 locking in the first successful match and disregarding any further
 potential matches within the choice (but not disabling alternatives
 in choices containing this choice, as a cut (Section 3.5.4) would).

 For example, the ABNF expressions

 A = "a" "b" / "a" (1)

 and

 A = "a" / "a" "b" (2)

 are equivalent in ABNF’s original generative framework but are very
 different in PEG: in (2), the second alternative will never match, as
 any input string starting with an "a" will already succeed in the
 first alternative, locking in the match.

 Similarly, the occurrence indicators ("?", "*", "+") are "greedy" in
 PEG, i.e., they consume as much input as they match (and, as a
 consequence, "a* a" in PEG notation or "*a a" in CDDL syntax never
 can match anything, as all input matching "a" is already consumed by
 the initial "a*", leaving nothing to match the second "a").

Birkholz, et al. Standards Track [Page 43]

RFC 8610 CDDL June 2019

 Incidentally, the grammar of CDDL itself, as written in ABNF in
 Appendix B, can be interpreted both (1) in the generative framework
 on which RFC 5234 is based and (2) as a PEG. This was made possible
 by ordering the choices in the grammar such that a successful match
 made on the left-hand side of a "/" operator is always the intended
 match, instead of relying on the power of symmetrical choices (for
 example, note the sequence of alternatives in the rule for "uint",
 where the lone zero is behind the longer match alternatives that
 start with a zero).

 The syntax used for expressing the PEG component of CDDL is based on
 ABNF, interpreted in the obvious way with PEG semantics. The ABNF
 convention of notating occurrence indicators before the controlled
 primary, and of allowing numeric values for minimum and maximum
 occurrence around a "*" sign, is copied. While PEG is only about
 characters, CDDL has a richer set of elements, such as types and
 groups. Specifically, the following constructs map:

 +-------+-------+---+
 | CDDL | PEG | Remark |
 +-------+-------+---+
 | "=" | "<-" | /= and //= are abbreviations |
 | "//" | "/" | prioritized choice |
 | "/" | "/" | prioritized choice, limited to types only |
 | "?" P | P "?" | zero or one |
 | "*" P | P "*" | zero or more |
 | "+" P | P "+" | one or more |
 | A B | A B | sequence |
 | A, B | A B | sequence, comma is decoration only |
 +-------+-------+---+

 The literal notation and the use of square brackets, curly braces,
 tildes, ampersands, and hash marks are specific to CDDL and unrelated
 to the conventional PEG notation. The DOT (".") from PEG is replaced
 by the unadorned "#" or its alias "any". Also, CDDL does not provide
 the syntactic predicate operators NOT ("!") or AND ("&") from PEG,
 reducing expressiveness as well as complexity.

 For more details about PEG’s theoretical foundation and interesting
 properties of the operators such as associativity and distributivity,
 the reader is referred to [PEG].

Birkholz, et al. Standards Track [Page 44]

RFC 8610 CDDL June 2019

Appendix B. ABNF Grammar

 This appendix is normative.

 The following is a formal definition of the CDDL syntax in ABNF
 [RFC5234]. Note that, as is defined in ABNF, the quote-delimited
 strings below are case insensitive (while string values and names are
 case sensitive in CDDL).

 cddl = S 1*(rule S)
 rule = typename [genericparm] S assignt S type
 / groupname [genericparm] S assigng S grpent

 typename = id
 groupname = id

 assignt = "=" / "/="
 assigng = "=" / "//="

 genericparm = "<" S id S *("," S id S) ">"
 genericarg = "<" S type1 S *("," S type1 S) ">"

 type = type1 *(S "/" S type1)

 type1 = type2 [S (rangeop / ctlop) S type2]
 ; space may be needed before the operator if type2 ends in a name

 type2 = value
 / typename [genericarg]
 / "(" S type S ")"
 / "{" S group S "}"
 / "[" S group S "]"
 / "˜" S typename [genericarg]
 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]
 / "#" "6" ["." uint] "(" S type S ")"
 / "#" DIGIT ["." uint] ; major/ai
 / "#" ; any

 rangeop = "..." / ".."

 ctlop = "." id

 group = grpchoice *(S "//" S grpchoice)

 grpchoice = *(grpent optcom)

Birkholz, et al. Standards Track [Page 45]

RFC 8610 CDDL June 2019

 grpent = [occur S] [memberkey S] type
 / [occur S] groupname [genericarg] ; preempted by above
 / [occur S] "(" S group S ")"

 memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

 bareword = id

 optcom = S ["," S]

 occur = [uint] "*" [uint]
 / "+"
 / "?"

 uint = DIGIT1 *DIGIT
 / "0x" 1*HEXDIG
 / "0b" 1*BINDIG
 / "0"

 value = number
 / text
 / bytes

 int = ["-"] uint

 ; This is a float if it has fraction or exponent; int otherwise
 number = hexfloat / (int ["." fraction] ["e" exponent])
 hexfloat = ["-"] "0x" 1*HEXDIG ["." 1*HEXDIG] "p" exponent
 fraction = 1*DIGIT
 exponent = ["+"/"-"] 1*DIGIT

 text = %x22 *SCHAR %x22
 SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC
 SESC = "\" (%x20-7E / %x80-10FFFD)

 bytes = [bsqual] %x27 *BCHAR %x27
 BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
 bsqual = "h" / "b64"

Birkholz, et al. Standards Track [Page 46]

RFC 8610 CDDL June 2019

 id = EALPHA *(*("-" / ".") (EALPHA / DIGIT))
 ALPHA = %x41-5A / %x61-7A
 EALPHA = ALPHA / "@" / "_" / "$"
 DIGIT = %x30-39
 DIGIT1 = %x31-39
 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 BINDIG = %x30-31

 S = *WS
 WS = SP / NL
 SP = %x20
 NL = COMMENT / CRLF
 COMMENT = ";" *PCHAR CRLF
 PCHAR = %x20-7E / %x80-10FFFD
 CRLF = %x0A / %x0D.0A

 Figure 13: CDDL ABNF

 Note that this ABNF does not attempt to reflect the detailed rules of
 what can be in a prefixed byte string.

Appendix C. Matching Rules

 This appendix is normative.

 In this appendix, we go through the ABNF syntax rules defined in
 Appendix B and briefly describe the matching semantics of each
 syntactic feature. In this context, an instance (data item)
 "matches" a CDDL specification if it is allowed by the CDDL
 specification; this is then broken down into parts of specifications
 (type and group expressions) and parts of instances (data items).

 cddl = S 1*(rule S)

 A CDDL specification is a sequence of one or more rules. Each rule
 gives a name to a right-hand-side expression, either a CDDL type or a
 CDDL group. Rule names can be used in the rule itself and/or other
 rules (and tools can output warnings if that is not the case). The
 order of the rules is significant only in two cases:

 1. The first rule defines the semantics of the entire specification;
 hence, there is no need to give that root rule a special name or
 special syntax in the language (as, for example, with "start" in
 RELAX NG); its name can therefore be chosen to be descriptive.
 (As with all other rule names, the name of the initial rule may
 be used in itself or in other rules.)

Birkholz, et al. Standards Track [Page 47]

RFC 8610 CDDL June 2019

 2. Where a rule contributes to a type or group choice (using "/=" or
 "//="), that choice is populated in the order the rules are
 given; see below.

 rule = typename [genericparm] S assignt S type
 / groupname [genericparm] S assigng S grpent

 typename = id
 groupname = id

 A rule defines a name for a type expression (production "type") or
 for a group expression (production "grpent"), with the intention that
 the semantics does not change when the name is replaced by its
 (parenthesized if needed) definition. Note that whether the name
 defined by a rule stands for a type or a group isn’t always
 determined by syntax alone: e.g., "a = b" can make "a" a type if "b"
 is a type, or a group if "b" is a group. More subtly, in "a = (b)",
 "a" may be used as a type if "b" is a type, or as a group both when
 "b" is a group and when "b" is a type (a good convention to make the
 latter case stand out to the human reader is to write "a = (b,)").
 (Note that the same dual meaning of parentheses applies within an
 expression but often can be resolved by the context of the
 parenthesized expression. On the more general point, it may not be
 clear immediately either whether "b" stands for a group or a type --
 this semantic processing may need to span several levels of rule
 definitions before a determination can be made.)

 assignt = "=" / "/="
 assigng = "=" / "//="

 A plain equals sign defines the rule name as the equivalent of the
 expression to the right; it is an error if the name was already
 defined with a different expression. A "/=" or "//=" extends a named
 type or a group by additional choices; a number of these could be
 replaced by collecting all the right-hand sides and creating a single
 rule with a type choice or a group choice built from the right-hand
 sides in the order of the rules given. (It is not an error to extend
 a rule name that has not yet been defined; this makes the right-hand
 side the first entry in the choice being created.)

 genericparm = "<" S id S *("," S id S) ">"
 genericarg = "<" S type1 S *("," S type1 S) ">"

 Rule names can have generic parameters, which cause temporary
 assignments within the right-hand sides to the parameter names from
 the arguments given when citing the rule name.

 type = type1 *(S "/" S type1)

Birkholz, et al. Standards Track [Page 48]

RFC 8610 CDDL June 2019

 A type can be given as a choice between one or more types. The
 choice matches a data item if the data item matches any one of the
 types given in the choice. The choice uses PEG semantics as
 discussed in Appendix A: the first choice that matches wins. (As a
 result, the order of rules that contribute to a single rule name can
 very well matter.)

 type1 = type2 [S (rangeop / ctlop) S type2]

 Two types can be combined with a range operator (see below) or a
 control operator (see Section 3.8).

 type2 = value

 A type can be just a single value (such as 1 or "icecream" or
 h’0815’), which matches only a data item with that specific value (no
 conversions defined),

 / typename [genericarg]

 or be defined by a rule giving a meaning to a name (possibly after
 supplying generic arguments as required by the generic parameters),

 / "(" S type S ")"

 or be defined in a parenthesized type expression (parentheses may be
 necessary to override some operator precedence), or

 / "{" S group S "}"

 a map expression, which matches a valid CBOR map the key/value pairs
 of which can be ordered in such a way that the resulting sequence
 matches the group expression, or

 / "[" S group S "]"

 an array expression, which matches a CBOR array the elements of which
 -- when taken as values and complemented by a wildcard (matches
 anything) key each -- match the group, or

 / "˜" S typename [genericarg]

 an "unwrapped" group (see Section 3.7), which matches the group
 inside a type defined as a map or an array by wrapping the group, or

 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]

Birkholz, et al. Standards Track [Page 49]

RFC 8610 CDDL June 2019

 an enumeration expression, which matches any value that is within the
 set of values that the values of the group given can take, or

 / "#" "6" ["." uint] "(" S type S ")"

 a tagged data item, tagged with the "uint" given and containing the
 type given as the tagged value, or

 / "#" DIGIT ["." uint] ; major/ai

 a data item of a major type (given by the DIGIT), optionally
 constrained to the additional information given by the uint, or

 / "#" ; any

 any data item.

 rangeop = "..." / ".."

 A range operator can be used to join two type expressions that stand
 for either two integer values or two floating-point values; it
 matches any value that is between the two values, where the first
 value is always included in the matching set and the second value is
 included for ".." and excluded for "...".

 ctlop = "." id

 A control operator ties a _target_ type to a _controller_ type as
 defined in Section 3.8. Note that control operators are an extension
 point for CDDL; additional documents may want to define additional
 control operators.

 group = grpchoice *(S "//" S grpchoice)

 A group matches any sequence of key/value pairs that matches any of
 the choices given (again using PEG semantics).

 grpchoice = *(grpent optcom)

 Each of the component groups is given as a sequence of group entries.
 For a match, the sequence of key/value pairs given needs to match the
 sequence of group entries in the sequence given.

 grpent = [occur S] [memberkey S] type

 A group entry can be given by a value type, which needs to be matched
 by the value part of a single element; and, optionally, a memberkey
 type, which needs to be matched by the key part of the element, if

Birkholz, et al. Standards Track [Page 50]

RFC 8610 CDDL June 2019

 the memberkey is given. If the memberkey is not given, the entry can
 only be used for matching arrays, not for maps. (See below for how
 that is modified by the occurrence indicator.)

 / [occur S] groupname [genericarg] ; preempted by above

 A group entry can be built from a named group, or

 / [occur S] "(" S group S ")"

 from a parenthesized group, again with a possible occurrence
 indicator.

 memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

 Key types can be given by a type expression, a bareword (which stands
 for a type that just contains a string value created from this
 bareword), or a value (which stands for a type that just contains
 this value). A key value matches its key type if the key value is a
 member of the key type, unless a cut preceding it in the group
 applies (see Section 3.5.4 for how map matching is influenced by the
 presence of the cuts denoted by "^" or ":" in previous entries).

 bareword = id

 A bareword is an alternative way to write a type with a single text
 string value; it can only be used in the syntactic context given
 above.

 optcom = S ["," S]

 (Optional commas do not influence the matching.)

 occur = [uint] "*" [uint]
 / "+"
 / "?"

 An occurrence indicator modifies the group given to its right by
 requiring the group to match the sequence to be matched exactly for a
 certain number of times (see Section 3.2) in sequence, i.e., it acts
 as a (possibly infinite) group choice that contains choices with the
 group repeated each of the occurrences times.

Birkholz, et al. Standards Track [Page 51]

RFC 8610 CDDL June 2019

 The rest of the ABNF describes syntax for value notation that should
 be familiar to readers from programming languages, with the possible
 exception of h’..’ and b64’..’ for byte strings, as well as syntactic
 elements such as comments and line ends.

Appendix D. Standard Prelude

 This appendix is normative.

 The following prelude is automatically added to each CDDL file.
 (Note that technically, it is a postlude, as it does not disturb the
 selection of the first rule as the root of the definition.)

 any = #

 uint = #0
 nint = #1
 int = uint / nint

 bstr = #2
 bytes = bstr
 tstr = #3
 text = tstr

 tdate = #6.0(tstr)
 time = #6.1(number)
 number = int / float
 biguint = #6.2(bstr)
 bignint = #6.3(bstr)
 bigint = biguint / bignint
 integer = int / bigint
 unsigned = uint / biguint
 decfrac = #6.4([e10: int, m: integer])
 bigfloat = #6.5([e2: int, m: integer])
 eb64url = #6.21(any)
 eb64legacy = #6.22(any)
 eb16 = #6.23(any)
 encoded-cbor = #6.24(bstr)
 uri = #6.32(tstr)
 b64url = #6.33(tstr)
 b64legacy = #6.34(tstr)
 regexp = #6.35(tstr)
 mime-message = #6.36(tstr)
 cbor-any = #6.55799(any)

Birkholz, et al. Standards Track [Page 52]

RFC 8610 CDDL June 2019

 float16 = #7.25
 float32 = #7.26
 float64 = #7.27
 float16-32 = float16 / float32
 float32-64 = float32 / float64
 float = float16-32 / float64

 false = #7.20
 true = #7.21
 bool = false / true
 nil = #7.22
 null = nil
 undefined = #7.23

 Figure 14: CDDL Prelude

 Note that the prelude is deemed to be fixed. This means, for
 instance, that additional tags beyond those defined in [RFC7049], as
 registered, need to be defined in each CDDL file that is using them.

 A common stumbling point is that the prelude does not define a type
 "string". CBOR has byte strings ("bytes" in the prelude) and text
 strings ("text"), so a type that is simply called "string" would be
 ambiguous.

Appendix E. Use with JSON

 This appendix is normative.

 The JSON generic data model (implicit in [RFC8259]) is a subset of
 the generic data model of CBOR. So, one can use CDDL with JSON by
 limiting oneself to what can be represented in JSON. Roughly
 speaking, this means leaving out byte strings, tags, and simple
 values other than "false", "true", and "null", leading to the
 following limited prelude:

Birkholz, et al. Standards Track [Page 53]

RFC 8610 CDDL June 2019

 any = #

 uint = #0
 nint = #1
 int = uint / nint

 tstr = #3
 text = tstr

 number = int / float

 float16 = #7.25
 float32 = #7.26
 float64 = #7.27
 float16-32 = float16 / float32
 float32-64 = float32 / float64
 float = float16-32 / float64

 false = #7.20
 true = #7.21
 bool = false / true
 nil = #7.22
 null = nil

 Figure 15: JSON-Compatible Subset of CDDL Prelude

 (The major types given here do not have a direct meaning in JSON, but
 they can be interpreted as CBOR major types translated through
 Section 4 of [RFC7049].)

 There are a few fine points in using CDDL with JSON. First, JSON
 does not distinguish between integers and floating-point numbers;
 there is only one kind of number (which may happen to be integral).
 In this context, specifying a type as "uint", "nint", or "int" then
 becomes a predicate that the number be integral. As an example, this
 means that the following JSON numbers are all matching "uint":

 10 10.0 1e1 1.0e1 100e-1

 (The fact that these are all integers may be surprising to users
 accustomed to the long tradition in programming languages of using
 decimal points or exponents in a number to indicate a floating-point
 literal.)

 CDDL distinguishes the various CBOR number types, but there is only
 one number type in JSON. The effect of specifying a floating-point
 precision (float16/float32/float64) is only to restrict the set of

Birkholz, et al. Standards Track [Page 54]

RFC 8610 CDDL June 2019

 permissible values to those expressible with binary16/binary32/
 binary64; this is unlikely to be very useful when using CDDL for
 specifying JSON data structures.

 Fundamentally, the number system of JSON itself is based on decimal
 numbers and decimal fractions and does not have limits to its
 precision or range. In practice, JSON numbers are often parsed into
 a number type that is called "float64" here, creating a number of
 limitations to the generic data model [RFC7493]. In particular, this
 means that integers can only be expressed with interoperable
 exactness when they lie in the range [-(2**53)+1, (2**53)-1] -- a
 smaller range than that covered by CDDL "int".

 JSON applications that want to stay compatible with I-JSON ("Internet
 JSON"; see [RFC7493]) may therefore want to define integer types with
 more limited ranges, such as in Figure 16. Note that the types given
 here are not part of the prelude; they need to be copied into the
 CDDL specification if needed.

 ij-uint = 0..9007199254740991
 ij-nint = -9007199254740991..-1
 ij-int = -9007199254740991..9007199254740991

 Figure 16: I-JSON Types for CDDL (Not Part of Prelude)

 JSON applications that do not need to stay compatible with I-JSON and
 that actually may need to go beyond the 64-bit unsigned and negative
 integers supported by "int" (= "uint"/"nint") may want to use the
 following additional types from the standard prelude, which are
 expressed in terms of tags but can straightforwardly be mapped into
 JSON (but not I-JSON) numbers:

 biguint = #6.2(bstr)
 bignint = #6.3(bstr)
 bigint = biguint / bignint
 integer = int / bigint
 unsigned = uint / biguint

 CDDL at this point does not have a way to express the unlimited
 floating-point precision that is theoretically possible with JSON; at
 the time of writing, this is rarely used in protocols in practice.

 Note that a data model described in CDDL is always restricted by what
 can be expressed in the serialization; e.g., floating-point values
 such as NaN (not a number) and the infinities cannot be represented
 in JSON even if they are allowed in the CDDL generic data model.

Birkholz, et al. Standards Track [Page 55]

RFC 8610 CDDL June 2019

Appendix F. A CDDL Tool

 This appendix is for information only.

 A rough CDDL tool is available. For CDDL specifications, it can
 check the syntax, generate one or more instances (expressed in CBOR
 diagnostic notation or in pretty-printed JSON), and validate an
 existing instance against the specification:

 Usage:
 cddl spec.cddl generate [n]
 cddl spec.cddl json-generate [n]
 cddl spec.cddl validate instance.cbor
 cddl spec.cddl validate instance.json

 Figure 17: CDDL Tool Usage

 Install on a system with a modern Ruby via:

 gem install cddl

 Figure 18: CDDL Tool Installation

 The accompanying CBOR diagnostic tools (which are automatically
 installed by the above) are described in <https://github.com/cabo/
 cbor-diag>; they can be used to convert between binary CBOR, a
 pretty-printed hexadecimal form of binary CBOR, CBOR diagnostic
 notation, JSON, and YAML [YAML].

Appendix G. Extended Diagnostic Notation

 This appendix is normative.

 Section 6 of [RFC7049] defines a "diagnostic notation" in order to be
 able to converse about CBOR data items without having to resort to
 binary data. Diagnostic notation is based on JSON, with extensions
 for representing CBOR constructs such as binary data and tags.

 (Standardizing this together with the actual interchange format does
 not serve to create another interchange format but enables the use of
 a shared diagnostic notation in tools for and documents about CBOR.)

 This appendix discusses a few extensions to the diagnostic notation
 that have turned out to be useful since RFC 7049 was written. We
 refer to the result as Extended Diagnostic Notation (EDN).

Birkholz, et al. Standards Track [Page 56]

RFC 8610 CDDL June 2019

G.1. Whitespace in Byte String Notation

 Examples often benefit from some whitespace (spaces, line breaks) in
 byte strings. In EDN, whitespace is ignored in prefixed byte
 strings; for instance, the following are equivalent:

 h’48656c6c6f20776f726c64’
 h’48 65 6c 6c 6f 20 77 6f 72 6c 64’
 h’4 86 56c 6c6f
 20776 f726c64’

G.2. Text in Byte String Notation

 Diagnostic notation notates byte strings in one of the base encodings
 per [RFC4648], enclosed in single quotes, prefixed by >h< for base16,
 >b32< for base32, >h32< for base32hex, or >b64< for base64 or
 base64url. Quite often, byte strings carry bytes that are
 meaningfully interpreted as UTF-8 text. EDN allows the use of single
 quotes without a prefix to express byte strings with UTF-8 text; for
 instance, the following are equivalent:

 ’hello world’
 h’68656c6c6f20776f726c64’

 The escaping rules of JSON strings are applied equivalently for
 text-based byte strings, e.g., "\" stands for a single backslash and
 "’" stands for a single quote. Whitespace is included literally,
 i.e., the previous section does not apply to text-based byte strings.

G.3. Embedded CBOR and CBOR Sequences in Byte Strings

 Where a byte string is to carry an embedded CBOR-encoded item, or
 more generally a sequence of zero or more such items, the diagnostic
 notation for these zero or more CBOR data items, separated by commas,
 can be enclosed in << and >> to notate the byte string resulting from
 encoding the data items and concatenating the result. For instance,
 each pair of columns in the following are equivalent:

 <<1>> h’01’
 <<1, 2>> h’0102’
 <<"foo", null>> h’63666F6FF6’
 <<>> h’’

Birkholz, et al. Standards Track [Page 57]

RFC 8610 CDDL June 2019

G.4. Concatenated Strings

 While the ability to include whitespace enables line-breaking of
 encoded byte strings, a mechanism is needed to be able to include
 text strings as well as byte strings in direct UTF-8 representation
 into line-based documents (such as RFCs and source code).

 We extend the diagnostic notation by allowing multiple text strings
 or multiple byte strings to be notated separated by whitespace; these
 are then concatenated into a single text or byte string,
 respectively. Text strings and byte strings do not mix within such a
 concatenation, except that byte string notation can be used inside a
 sequence of concatenated text string notation to encode characters
 that may be better represented in an encoded way. The following four
 values are equivalent:

 "Hello world"
 "Hello " "world"
 "Hello" h’20’ "world"
 "" h’48656c6c6f20776f726c64’ ""

 Similarly, the following byte string values are equivalent:

 ’Hello world’
 ’Hello ’ ’world’
 ’Hello ’ h’776f726c64’
 ’Hello’ h’20’ ’world’
 ’’ h’48656c6c6f20776f726c64’ ’’ b64’’
 h’4 86 56c 6c6f’ h’ 20776 f726c64’

 (Note that the approach of separating by whitespace, while familiar
 from the C language, requires some attention -- a single comma makes
 a big difference here.)

Birkholz, et al. Standards Track [Page 58]

RFC 8610 CDDL June 2019

G.5. Hexadecimal, Octal, and Binary Numbers

 In addition to JSON’s decimal numbers, EDN provides hexadecimal,
 octal, and binary numbers in the usual C-language notation (octal
 with 0o prefix present only).

 The following are equivalent:

 4711
 0x1267
 0o11147
 0b1001001100111

 As are:

 1.5
 0x1.8p0
 0x18p-4

G.6. Comments

 Longer pieces of diagnostic notation may benefit from comments. JSON
 famously does not provide for comments, and basic diagnostic notation
 per RFC 7049 inherits this property.

 In EDN, comments can be included, delimited by slashes ("/"). Any
 text within and including a pair of slashes is considered a comment.

 Comments are considered whitespace. Hence, they are allowed in
 prefixed byte strings; for instance, the following are equivalent:

 h’68656c6c6f20776f726c64’
 h’68 65 6c /doubled l!/ 6c 6f /hello/
 20 /space/
 77 6f 72 6c 64’ /world/

 This can be used to annotate a CBOR structure as in:

 /grasp-message/ [/M_DISCOVERY/ 1, /session-id/ 10584416,
 /objective/ [/objective-name/ "opsonize",
 /D, N, S/ 7, /loop-count/ 105]]

 (There are currently no end-of-line comments. If we want to add
 them, "//" sounds like a reasonable delimiter given that we already
 use slashes for comments, but we could also go, for example,
 for "#".)

Birkholz, et al. Standards Track [Page 59]

RFC 8610 CDDL June 2019

Appendix H. Examples

 This appendix is for information only.

 This appendix contains a few examples of structures defined
 using CDDL. The theme for the examples is taken from [RFC7071],
 which defines certain JSON structures in English. For a similar
 example, it may also be of interest to examine Appendix A of
 [RFC8007], which contains a CDDL definition for a JSON structure
 defined in the main body of that RFC.

 These examples all happen to describe data that is interchanged in
 JSON. Examples for CDDL definitions of data that is interchanged in
 CBOR can be found in [RFC8152], [GRASP], and [RFC8428].

 [RFC7071] defines the "reputon" structure for JSON using somewhat
 formalized English text. Here is a (somewhat verbose) equivalent
 definition using the same terms, but notated in CDDL:

 reputation-object = {
 reputation-context,
 reputon-list
 }

 reputation-context = (
 application: text
)

 reputon-list = (
 reputons: reputon-array
)

 reputon-array = [* reputon]

 reputon = {
 rater-value,
 assertion-value,
 rated-value,
 rating-value,
 ? conf-value,
 ? normal-value,
 ? sample-value,
 ? gen-value,
 ? expire-value,
 * ext-value,
 }

Birkholz, et al. Standards Track [Page 60]

RFC 8610 CDDL June 2019

 rater-value = (rater: text)
 assertion-value = (assertion: text)
 rated-value = (rated: text)
 rating-value = (rating: float16)
 conf-value = (confidence: float16)
 normal-value = (normal-rating: float16)
 sample-value = (sample-size: uint)
 gen-value = (generated: uint)
 expire-value = (expires: uint)
 ext-value = (text => any)

 An equivalent, more compact form of this example would be:

 reputation-object = {
 application: text
 reputons: [* reputon]
 }

 reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
 }

 Note how this rather clearly delineates the structure somewhat
 shrouded by so many words in Section 6.2.2 of [RFC7071]. Also, this
 definition makes it clear that several ext-values are allowed (by
 definition with different member names); RFC 7071 could be read to
 forbid the repetition of ext-value ("A specific reputon-element
 MUST NOT appear more than once" is ambiguous).

Birkholz, et al. Standards Track [Page 61]

RFC 8610 CDDL June 2019

 The CDDL tool described in Appendix F generates as one example:

 {
 "application": "conchometry",
 "reputons": [
 {
 "rater": "Ephthianura",
 "assertion": "codding",
 "rated": "sphaerolitic",
 "rating": 0.34133473256800795,
 "confidence": 0.9481983064298332,
 "expires": 1568,
 "unplaster": "grassy"
 },
 {
 "rater": "nonchargeable",
 "assertion": "raglan",
 "rated": "alienage",
 "rating": 0.5724646875815566,
 "sample-size": 3514,
 "Aldebaran": "unchurched",
 "puruloid": "impersonable",
 "uninfracted": "pericarpoidal",
 "schorl": "Caro"
 },
 {
 "rater": "precollectable",
 "assertion": "Merat",
 "rated": "thermonatrite",
 "rating": 0.19164006323936977,
 "confidence": 0.6065252103391268,
 "normal-rating": 0.5187773690879303,
 "generated": 899,
 "speedy": "solidungular",
 "noviceship": "medicine",
 "checkrow": "epidictic"
 }
]
 }

Birkholz, et al. Standards Track [Page 62]

RFC 8610 CDDL June 2019

Acknowledgements

 Inspiration was taken from the C and Pascal languages, MPEG’s
 conventions for describing structures in the ISO base media file
 format, RELAX NG and its compact syntax [RELAXNG], and, in
 particular, Andrew Lee Newton’s early proposals on JSON Content Rules
 (JCR) as found in draft version four (-04) of [JCR].

 Lots of highly useful feedback came from members of the IETF CBOR WG
 -- in particular, Ari Keranen, Brian Carpenter, Burt Harris, Jeffrey
 Yasskin, Jim Hague, Jim Schaad, Joe Hildebrand, Max Pritikin, Michael
 Richardson, Pete Cordell, Sean Leonard, and Yaron Sheffer. Also,
 Francesca Palombini and Joe volunteered to chair the WG when it was
 created, providing the framework for generating and processing this
 feedback, with Barry Leiba having taken over from Joe since then.
 Chris Lonvick and Ines Robles provided additional reviews during IESG
 processing, and Alexey Melnikov steered the process as the
 responsible Area Director.

 The CDDL tool described in Appendix F was written by Carsten Bormann,
 building on previous work by Troy Heninger and Tom Lord.

Contributors

 CDDL was originally conceived by Bert Greevenbosch, who also wrote
 the original five draft versions of this document.

Birkholz, et al. Standards Track [Page 63]

RFC 8610 CDDL June 2019

Authors’ Addresses

 Henk Birkholz
 Fraunhofer SIT
 Rheinstrasse 75
 Darmstadt 64295
 Germany

 Email: henk.birkholz@sit.fraunhofer.de

 Christoph Vigano
 Universitaet Bremen

 Email: christoph.vigano@uni-bremen.de

 Carsten Bormann
 Universitaet Bremen TZI
 Bibliothekstr. 1
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Birkholz, et al. Standards Track [Page 64]

