
Internet Engineering Task Force (IETF) N. Jenkins
Request for Comments: 8620 Fastmail
Category: Standards Track C. Newman
ISSN: 2070-1721 Oracle
 July 2019

 The JSON Meta Application Protocol (JMAP)

Abstract

 This document specifies a protocol for clients to efficiently query,
 fetch, and modify JSON-based data objects, with support for push
 notification of changes and fast resynchronisation and for out-of-
 band binary data upload/download.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8620.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins & Newman Standards Track [Page 1]

RFC 8620 JMAP July 2019

Table of Contents

 1. Introduction . 4
 1.1. Notational Conventions 4
 1.2. The Id Data Type . 6
 1.3. The Int and UnsignedInt Data Types 6
 1.4. The Date and UTCDate Data Types 7
 1.5. JSON as the Data Encoding Format 7
 1.6. Terminology . 7
 1.6.1. User . 7
 1.6.2. Accounts . 7
 1.6.3. Data Types and Records 8
 1.7. The JMAP API Model 8
 1.8. Vendor-Specific Extensions 9
 2. The JMAP Session Resource 9
 2.1. Example . 14
 2.2. Service Autodiscovery 15
 3. Structured Data Exchange 16
 3.1. Making an API Request 16
 3.2. The Invocation Data Type 16
 3.3. The Request Object 16
 3.3.1. Example Request 18
 3.4. The Response Object 18
 3.4.1. Example Response 19
 3.5. Omitting Arguments 19
 3.6. Errors . 19
 3.6.1. Request-Level Errors 20
 3.6.2. Method-Level Errors 21
 3.7. References to Previous Method Results 22
 3.8. Localisation of User-Visible Strings 27
 3.9. Security . 28
 3.10. Concurrency . 28
 4. The Core/echo Method . 28
 4.1. Example . 28
 5. Standard Methods and Naming Convention 29
 5.1. /get . 29
 5.2. /changes . 30
 5.3. /set . 34
 5.4. /copy . 40
 5.5. /query . 42
 5.6. /queryChanges . 48
 5.7. Examples . 51
 5.8. Proxy Considerations 58
 6. Binary Data . 58
 6.1. Uploading Binary Data 59
 6.2. Downloading Binary Data 60
 6.3. Blob/copy . 61

Jenkins & Newman Standards Track [Page 2]

RFC 8620 JMAP July 2019

 7. Push . 62
 7.1. The StateChange Object 63
 7.1.1. Example . 64
 7.2. PushSubscription . 64
 7.2.1. PushSubscription/get 67
 7.2.2. PushSubscription/set 68
 7.2.3. Example . 69
 7.3. Event Source . 71
 8. Security Considerations 73
 8.1. Transport Confidentiality 73
 8.2. Authentication Scheme 73
 8.3. Service Autodiscovery 73
 8.4. JSON Parsing . 74
 8.5. Denial of Service . 74
 8.6. Connection to Unknown Push Server 74
 8.7. Push Encryption . 75
 8.8. Traffic Analysis . 76
 9. IANA Considerations . 76
 9.1. Assignment of jmap Service Name 76
 9.2. Registration of Well-Known URI Suffix for JMAP 76
 9.3. Registration of the jmap URN Sub-namespace 77
 9.4. Creation of "JMAP Capabilities" Registry 77
 9.4.1. Preliminary Community Review 77
 9.4.2. Submit Request to IANA 78
 9.4.3. Designated Expert Review 78
 9.4.4. Change Procedures 78
 9.4.5. JMAP Capabilities Registry Template 79
 9.4.6. Initial Registration for JMAP Core 79
 9.4.7. Registration for JMAP Error Placeholder in JMAP
 Capabilities Registry 80
 9.5. Creation of "JMAP Error Codes" Registry 80
 9.5.1. Expert Review . 80
 9.5.2. JMAP Error Codes Registry Template 81
 9.5.3. Initial Contents for the JMAP Error Codes Registry . 81
 10. References . 86
 10.1. Normative References 86
 10.2. Informative References 89
 Authors’ Addresses . 90

Jenkins & Newman Standards Track [Page 3]

RFC 8620 JMAP July 2019

1. Introduction

 The JSON Meta Application Protocol (JMAP) is used for synchronising
 data, such as mail, calendars, or contacts, between a client and a
 server. It is optimised for mobile and web environments and aims to
 provide a consistent interface to different data types.

 This specification is for the generic mechanism of data
 synchronisation. Further specifications define the data models for
 different data types that may be synchronised via JMAP.

 JMAP is designed to make efficient use of limited network resources.
 Multiple API calls may be batched in a single request to the server,
 reducing round trips and improving battery life on mobile devices.
 Push connections remove the need for polling, and an efficient delta
 update mechanism ensures a minimum amount of data is transferred.

 JMAP is designed to be horizontally scalable to a very large number
 of users. This is facilitated by separate endpoints for users after
 login, the separation of binary and structured data, and a data model
 for sharing that does not allow data dependencies between accounts.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC8259]. Unless otherwise
 noted, all the property names and values are case sensitive.

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."
 are used to indicate a portion of the document that has been removed
 for compactness.

 For compatibility with publishing requirements, line breaks have been
 inserted inside long JSON strings, with the following continuation
 lines indented. To form the valid JSON example, any line breaks
 inside a string must be replaced with a space and any other white
 space after the line break removed.

Jenkins & Newman Standards Track [Page 4]

RFC 8620 JMAP July 2019

 Unless otherwise specified, examples of API exchanges only show the
 methodCalls array of the Request object or the methodResponses array
 of the Response object. For compactness, the rest of the Request/
 Response object is omitted.

 Type signatures are given for all JSON values in this document. The
 following conventions are used:

 o "*" - The type is undefined (the value could be any type, although
 permitted values may be constrained by the context of this value).

 o "String" - The JSON string type.

 o "Number" - The JSON number type.

 o "Boolean" - The JSON boolean type.

 o "A[B]" - A JSON object where the keys are all of type "A", and the
 values are all of type "B".

 o "A[]" - An array of values of type "A".

 o "A|B" - The value is either of type "A" or of type "B".

 Other types may also be given, with their representation defined
 elsewhere in this document.

 Object properties may also have a set of attributes defined along
 with the type signature. These have the following meanings:

 o "server-set" -- Only the server can set the value for this
 property. The client MUST NOT send this property when creating a
 new object of this type.

 o "immutable" -- The value MUST NOT change after the object is
 created.

 o "default" -- (This is followed by a JSON value). The value that
 will be used for this property if it is omitted in an argument or
 when creating a new object of this type.

Jenkins & Newman Standards Track [Page 5]

RFC 8620 JMAP July 2019

1.2. The Id Data Type

 All record ids are assigned by the server and are immutable.

 Where "Id" is given as a data type, it means a "String" of at least 1
 and a maximum of 255 octets in size, and it MUST only contain
 characters from the "URL and Filename Safe" base64 alphabet, as
 defined in Section 5 of [RFC4648], excluding the pad character ("=").
 This means the allowed characters are the ASCII alphanumeric
 characters ("A-Za-z0-9"), hyphen ("-"), and underscore ("_").

 These characters are safe to use in almost any context (e.g.,
 filesystems, URIs, and IMAP atoms). For maximum safety, servers
 SHOULD also follow defensive allocation strategies to avoid creating
 risks where glob completion or data type detection may be present
 (e.g., on filesystems or in spreadsheets). In particular, it is wise
 to avoid:

 o Ids starting with a dash

 o Ids starting with digits

 o Ids that contain only digits

 o Ids that differ only by ASCII case (for example, A vs. a)

 o the specific sequence of three characters "NIL" (because this
 sequence can be confused with the IMAP protocol expression of the
 null value)

 A good solution to these issues is to prefix every id with a single
 alphabetical character.

1.3. The Int and UnsignedInt Data Types

 Where "Int" is given as a data type, it means an integer in the range
 -2^53+1 <= value <= 2^53-1, the safe range for integers stored in a
 floating-point double, represented as a JSON "Number".

 Where "UnsignedInt" is given as a data type, it means an "Int" where
 the value MUST be in the range 0 <= value <= 2^53-1.

Jenkins & Newman Standards Track [Page 6]

RFC 8620 JMAP July 2019

1.4. The Date and UTCDate Data Types

 Where "Date" is given as a type, it means a string in "date-time"
 format [RFC3339]. To ensure a normalised form, the "time-secfrac"
 MUST always be omitted if zero, and any letters in the string (e.g.,
 "T" and "Z") MUST be uppercase. For example,
 "2014-10-30T14:12:00+08:00".

 Where "UTCDate" is given as a type, it means a "Date" where the
 "time-offset" component MUST be "Z" (i.e., it must be in UTC time).
 For example, "2014-10-30T06:12:00Z".

1.5. JSON as the Data Encoding Format

 JSON is a text-based data interchange format as specified in
 [RFC8259]. The Internet JSON (I-JSON) format defined in [RFC7493] is
 a strict subset of this, adding restrictions to avoid potentially
 confusing scenarios (for example, it mandates that an object MUST NOT
 have two members with the same name).

 All data sent from the client to the server or from the server to the
 client (except binary file upload/download) MUST be valid I-JSON
 according to the RFC and is therefore case sensitive and encoded in
 UTF-8 [RFC3629].

1.6. Terminology

1.6.1. User

 A user is a person accessing data via JMAP. A user has a set of
 permissions determining the data that they can see.

1.6.2. Accounts

 An account is a collection of data. A single account may contain an
 arbitrary set of data types, for example, a collection of mail,
 contacts, and calendars. Most JMAP methods take a mandatory
 "accountId" argument that specifies on which account the operations
 are to take place.

 An account is not the same as a user, although it is common for a
 primary account to directly belong to the user. For example, you may
 have an account that contains data for a group or business, to which
 multiple users have access.

Jenkins & Newman Standards Track [Page 7]

RFC 8620 JMAP July 2019

 A single set of credentials may provide access to multiple accounts,
 for example, if another user is sharing their work calendar with the
 authenticated user or if there is a group mailbox for a support-desk
 inbox.

 In the event of a severe internal error, a server may have to
 reallocate ids or do something else that violates standard JMAP data
 constraints for an account. In this situation, the data on the
 server is no longer compatible with cached data the client may have
 from before. The server MUST treat this as though the account has
 been deleted and then recreated with a new account id. Clients will
 then be forced to throw away any data with the old account id and
 refetch all data from scratch.

1.6.3. Data Types and Records

 JMAP provides a uniform interface for creating, retrieving, updating,
 and deleting various types of objects. A "data type" is a collection
 of named, typed properties, just like the schema for a database
 table. Each instance of a data type is called a "record".

 The id of a record is immutable and assigned by the server. The id
 MUST be unique among all records of the *same type* within the *same
 account*. Ids may clash across accounts or for two records of
 different types within the same account.

1.7. The JMAP API Model

 JMAP uses HTTP [RFC7230] to expose API, push, upload, and download
 resources. All HTTP requests MUST use the "https://" scheme (HTTP
 over TLS [RFC2818]). All HTTP requests MUST be authenticated.

 An authenticated client can fetch the user’s Session object with
 details about the data and capabilities the server can provide as
 shown in Section 2. The client may then exchange data with the
 server in the following ways:

 1. The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then
 returns an ordered series of responses. This is described in
 Sections 3, 4, and 5.

 2. The client may download or upload binary files from/to the
 server. This is detailed in Section 6.

 3. The client may connect to a push channel on the server, to be
 notified when data has changed. This is explained in Section 7.

Jenkins & Newman Standards Track [Page 8]

RFC 8620 JMAP July 2019

1.8. Vendor-Specific Extensions

 Individual services will have custom features they wish to expose
 over JMAP. This may take the form of extra data types and/or methods
 not in the spec, extra arguments to JMAP methods, or extra properties
 on existing data types (which may also appear in arguments to methods
 that take property names).

 The server can advertise custom extensions it supports by including
 the identifiers in the capabilities object. Identifiers for vendor
 extensions MUST be a URL belonging to a domain owned by the vendor,
 to avoid conflict. The URL SHOULD resolve to documentation for the
 changes the extension makes.

 The client MUST opt in to use an extension by passing the appropriate
 capability identifier in the "using" array of the Request object, as
 described in Section 3.3. The server MUST only follow the
 specifications that are opted into and behave as though it does not
 implement anything else when processing a request. This is to ensure
 compatibility with clients that don’t know about a specific custom
 extension and for compatibility with future versions of JMAP.

2. The JMAP Session Resource

 You need two things to connect to a JMAP server:

 1. The URL for the JMAP Session resource. This may be requested
 directly from the user or discovered automatically based on a
 username domain (see Section 2.2 below).

 2. Credentials to authenticate with. How to obtain credentials is
 out of scope for this document.

 A successful authenticated GET request to the JMAP Session resource
 MUST return a JSON-encoded *Session* object, giving details about the
 data and capabilities the server can provide to the client given
 those credentials. It has the following properties:

 o capabilities: "String[Object]"

 An object specifying the capabilities of this server. Each key is
 a URI for a capability supported by the server. The value for
 each of these keys is an object with further information about the
 server’s capabilities in relation to that capability.

 The client MUST ignore any properties it does not understand.

Jenkins & Newman Standards Track [Page 9]

RFC 8620 JMAP July 2019

 The capabilities object MUST include a property called
 "urn:ietf:params:jmap:core". The value of this property is an
 object that MUST contain the following information on server
 capabilities (suggested minimum values for limits are supplied
 that allow clients to make efficient use of the network):

 * maxSizeUpload: "UnsignedInt"

 The maximum file size, in octets, that the server will accept
 for a single file upload (for any purpose). Suggested minimum:
 50,000,000.

 * maxConcurrentUpload: "UnsignedInt"

 The maximum number of concurrent requests the server will
 accept to the upload endpoint. Suggested minimum: 4.

 * maxSizeRequest: "UnsignedInt"

 The maximum size, in octets, that the server will accept for a
 single request to the API endpoint. Suggested minimum:
 10,000,000.

 * maxConcurrentRequests: "UnsignedInt"

 The maximum number of concurrent requests the server will
 accept to the API endpoint. Suggested minimum: 4.

 * maxCallsInRequest: "UnsignedInt"

 The maximum number of method calls the server will accept in a
 single request to the API endpoint. Suggested minimum: 16.

 * maxObjectsInGet: "UnsignedInt"

 The maximum number of objects that the client may request in a
 single /get type method call. Suggested minimum: 500.

 * maxObjectsInSet: "UnsignedInt"

 The maximum number of objects the client may send to create,
 update, or destroy in a single /set type method call. This is
 the combined total, e.g., if the maximum is 10, you could not
 create 7 objects and destroy 6, as this would be 13 actions,
 which exceeds the limit. Suggested minimum: 500.

Jenkins & Newman Standards Track [Page 10]

RFC 8620 JMAP July 2019

 * collationAlgorithms: "String[]"

 A list of identifiers for algorithms registered in the
 collation registry, as defined in [RFC4790], that the server
 supports for sorting when querying records.

 Specifications for future capabilities will define their own
 properties on the capabilities object.

 Servers MAY advertise vendor-specific JMAP extensions, as
 described in Section 1.8. To avoid conflict, an identifier for a
 vendor-specific extension MUST be a URL with a domain owned by the
 vendor. Clients MUST opt in to any capability it wishes to use
 (see Section 3.3).

 o accounts: "Id[Account]"

 A map of an account id to an Account object for each account (see
 Section 1.6.2) the user has access to. An *Account* object has
 the following properties:

 * name: "String"

 A user-friendly string to show when presenting content from
 this account, e.g., the email address representing the owner of
 the account.

 * isPersonal: "Boolean"

 This is true if the account belongs to the authenticated user
 rather than a group account or a personal account of another
 user that has been shared with them.

 * isReadOnly: "Boolean"

 This is true if the entire account is read-only.

 * accountCapabilities: "String[Object]"

 The set of capability URIs for the methods supported in this
 account. Each key is a URI for a capability that has methods
 you can use with this account. The value for each of these
 keys is an object with further information about the account’s
 permissions and restrictions with respect to this capability,
 as defined in the capability’s specification.

 The client MUST ignore any properties it does not understand.

Jenkins & Newman Standards Track [Page 11]

RFC 8620 JMAP July 2019

 The server advertises the full list of capabilities it supports
 in the capabilities object, as defined above. If the
 capability defines new methods, the server MUST include it in
 the accountCapabilities object if the user may use those
 methods with this account. It MUST NOT include it in the
 accountCapabilities object if the user cannot use those methods
 with this account.

 For example, you may have access to your own account with mail,
 calendars, and contacts data and also a shared account that
 only has contacts data (a business address book, for example).
 In this case, the accountCapabilities property on the first
 account would include something like
 "urn:ietf:params:jmap:mail", "urn:ietf:params:jmap:calendars",
 and "urn:ietf:params:jmap:contacts", while the second account
 would just have the last of these.

 Attempts to use the methods defined in a capability with one of
 the accounts that does not support that capability are rejected
 with an "accountNotSupportedByMethod" error (see "Method-Level
 Errors", Section 3.6.2).

 o primaryAccounts: "String[Id]"

 A map of capability URIs (as found in accountCapabilities) to the
 account id that is considered to be the user’s main or default
 account for data pertaining to that capability. If no account
 being returned belongs to the user, or in any other way there is
 no appropriate way to determine a default account, there MAY be no
 entry for a particular URI, even though that capability is
 supported by the server (and in the capabilities object).
 "urn:ietf:params:jmap:core" SHOULD NOT be present.

 o username: "String"

 The username associated with the given credentials, or the empty
 string if none.

 o apiUrl: "String"

 The URL to use for JMAP API requests.

Jenkins & Newman Standards Track [Page 12]

RFC 8620 JMAP July 2019

 o downloadUrl: "String"

 The URL endpoint to use when downloading files, in URI Template
 (level 1) format [RFC6570]. The URL MUST contain variables called
 "accountId", "blobId", "type", and "name". The use of these
 variables is described in Section 6.2. Due to potential encoding
 issues with slashes in content types, it is RECOMMENDED to put the
 "type" variable in the query section of the URL.

 o uploadUrl: "String"

 The URL endpoint to use when uploading files, in URI Template
 (level 1) format [RFC6570]. The URL MUST contain a variable
 called "accountId". The use of this variable is described in
 Section 6.1.

 o eventSourceUrl: "String"

 The URL to connect to for push events, as described in
 Section 7.3, in URI Template (level 1) format [RFC6570]. The URL
 MUST contain variables called "types", "closeafter", and "ping".
 The use of these variables is described in Section 7.3.

 o state: "String"

 A (preferably short) string representing the state of this object
 on the server. If the value of any other property on the Session
 object changes, this string will change. The current value is
 also returned on the API Response object (see Section 3.4),
 allowing clients to quickly determine if the session information
 has changed (e.g., an account has been added or removed), so they
 need to refetch the object.

 To ensure future compatibility, other properties MAY be included on
 the Session object. Clients MUST ignore any properties they are not
 expecting.

 Implementors must take care to avoid inappropriate caching of the
 Session object at the HTTP layer. Since the client should only
 refetch when it detects there is a change (via the sessionState
 property of an API response), it is RECOMMENDED to disable HTTP
 caching altogether, for example, by setting "Cache-Control: no-cache,
 no-store, must-revalidate" on the response.

Jenkins & Newman Standards Track [Page 13]

RFC 8620 JMAP July 2019

2.1. Example

 In the following example Session object, the user has access to their
 own mail and contacts via JMAP, as well as read-only access to shared
 mail from another user. The server is advertising a custom
 "https://example.com/apis/foobar" capability.

 {
 "capabilities": {
 "urn:ietf:params:jmap:core": {
 "maxSizeUpload": 50000000,
 "maxConcurrentUpload": 8,
 "maxSizeRequest": 10000000,
 "maxConcurrentRequest": 8,
 "maxCallsInRequest": 32,
 "maxObjectsInGet": 256,
 "maxObjectsInSet": 128,
 "collationAlgorithms": [
 "i;ascii-numeric",
 "i;ascii-casemap",
 "i;unicode-casemap"
]
 },
 "urn:ietf:params:jmap:mail": {}
 "urn:ietf:params:jmap:contacts": {},
 "https://example.com/apis/foobar": {
 "maxFoosFinangled": 42
 }
 },
 "accounts": {
 "A13824": {
 "name": "john@example.com",
 "isPersonal": true,
 "isReadOnly": false,
 "accountCapabilities": {
 "urn:ietf:params:jmap:mail": {
 "maxMailboxesPerEmail": null,
 "maxMailboxDepth": 10,
 ...
 },
 "urn:ietf:params:jmap:contacts": {
 ...
 }
 }
 },

Jenkins & Newman Standards Track [Page 14]

RFC 8620 JMAP July 2019

 "A97813": {
 "name": "jane@example.com",
 "isPersonal": false,
 "isReadOnly": true,
 "accountCapabilities": {
 "urn:ietf:params:jmap:mail": {
 "maxMailboxesPerEmail": 1,
 "maxMailboxDepth": 10,
 ...
 }
 }
 }
 },
 "primaryAccounts": {
 "urn:ietf:params:jmap:mail": "A13824",
 "urn:ietf:params:jmap:contacts": "A13824"
 },
 "username": "john@example.com",
 "apiUrl": "https://jmap.example.com/api/",
 "downloadUrl": "https://jmap.example.com
 /download/{accountId}/{blobId}/{name}?accept={type}",
 "uploadUrl": "https://jmap.example.com/upload/{accountId}/",
 "eventSourceUrl": "https://jmap.example.com
 /eventsource/?types={types}&closeafter={closeafter}&ping={ping}",
 "state": "75128aab4b1b"
 }

2.2. Service Autodiscovery

 There are two standardised autodiscovery methods in use for Internet
 protocols:

 o DNS SRV (see [RFC2782], [RFC6186], and [RFC6764])

 o .well-known/servicename (see [RFC8615])

 A JMAP-supporting host for the domain "example.com" SHOULD publish a
 SRV record "_jmap._tcp.example.com" that gives a hostname and port
 (usually port "443"). The JMAP Session resource is then
 "https://${hostname}[:${port}]/.well-known/jmap" (following any
 redirects).

 If the client has a username in the form of an email address, it MAY
 use the domain portion of this to attempt autodiscovery of the JMAP
 server.

Jenkins & Newman Standards Track [Page 15]

RFC 8620 JMAP July 2019

3. Structured Data Exchange

 The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then returns
 an ordered series of responses.

3.1. Making an API Request

 To make an API request, the client makes an authenticated POST
 request to the API resource, which is defined by the "apiUrl"
 property in the Session object (see Section 2).

 The request MUST be of type "application/json" and consist of a
 single JSON-encoded "Request" object, as defined in Section 3.3. If
 successful, the response MUST also be of type "application/json" and
 consist of a single "Response" object, as defined in Section 3.4.

3.2. The Invocation Data Type

 Method calls and responses are represented by the *Invocation* data
 type. This is a tuple, represented as a JSON array containing three
 elements:

 1. A "String" *name* of the method to call or of the response.

 2. A "String[*]" object containing named *arguments* for that method
 or response.

 3. A "String" *method call id*: an arbitrary string from the client
 to be echoed back with the responses emitted by that method call
 (a method may return 1 or more responses, as it may make implicit
 calls to other methods; all responses initiated by this method
 call get the same method call id in the response).

3.3. The Request Object

 A *Request* object has the following properties:

 o using: "String[]"

 The set of capabilities the client wishes to use. The client MAY
 include capability identifiers even if the method calls it makes
 do not utilise those capabilities. The server advertises the set
 of specifications it supports in the Session object (see
 Section 2), as keys on the "capabilities" property.

Jenkins & Newman Standards Track [Page 16]

RFC 8620 JMAP July 2019

 o methodCalls: "Invocation[]"

 An array of method calls to process on the server. The method
 calls MUST be processed sequentially, in order.

 o createdIds: "Id[Id]" (optional)

 A map of a (client-specified) creation id to the id the server
 assigned when a record was successfully created.

 As described later in this specification, some records may have a
 property that contains the id of another record. To allow more
 efficient network usage, you can set this property to reference a
 record created earlier in the same API request. Since the real id
 is unknown when the request is created, the client can instead
 specify the creation id it assigned, prefixed with a "#" (see
 Section 5.3 for more details).

 As the server processes API requests, any time it successfully
 creates a new record, it adds the creation id to this map (see the
 "create" argument to /set in Section 5.3), with the server-
 assigned real id as the value. If it comes across a reference to
 a creation id in a create/update, it looks it up in the map and
 replaces the reference with the real id, if found.

 The client can pass an initial value for this map as the
 "createdIds" property of the Request object. This may be an empty
 object. If given in the request, the response will also include a
 createdIds property. This allows proxy servers to easily split a
 JMAP request into multiple JMAP requests to send to different
 servers. For example, it could send the first two method calls to
 server A, then the third to server B, before sending the fourth to
 server A again. By passing the createdIds of the previous
 response to the next request, it can ensure all of these still
 resolve. See Section 5.8 for further discussion of proxy
 considerations.

 Future specifications MAY add further properties to the Request
 object to extend the semantics. To ensure forwards compatibility, a
 server MUST ignore any other properties it does not understand on the
 JMAP Request object.

Jenkins & Newman Standards Track [Page 17]

RFC 8620 JMAP July 2019

3.3.1. Example Request

{
 "using": ["urn:ietf:params:jmap:core", "urn:ietf:params:jmap:mail"],
 "methodCalls": [
 ["method1", {
 "arg1": "arg1data",
 "arg2": "arg2data"
 }, "c1"],
 ["method2", {
 "arg1": "arg1data"
 }, "c2"],
 ["method3", {}, "c3"]
]
}

3.4. The Response Object

 A *Response* object has the following properties:

 o methodResponses: "Invocation[]"

 An array of responses, in the same format as the "methodCalls" on
 the Request object. The output of the methods MUST be added to
 the "methodResponses" array in the same order that the methods are
 processed.

 o createdIds: "Id[Id]" (optional; only returned if given in the
 request)

 A map of a (client-specified) creation id to the id the server
 assigned when a record was successfully created. This MUST
 include all creation ids passed in the original createdIds
 parameter of the Request object, as well as any additional ones
 added for newly created records.

 o sessionState: "String"

 The current value of the "state" string on the Session object, as
 described in Section 2. Clients may use this to detect if this
 object has changed and needs to be refetched.

 Unless otherwise specified, if the method call completed
 successfully, its response name is the same as the method name in the
 request.

Jenkins & Newman Standards Track [Page 18]

RFC 8620 JMAP July 2019

3.4.1. Example Response

 {
 "methodResponses": [
 ["method1", {
 "arg1": 3,
 "arg2": "foo"
 }, "c1"],
 ["method2", {
 "isBlah": true
 }, "c2"],
 ["anotherResponseFromMethod2", {
 "data": 10,
 "yetmoredata": "Hello"
 }, "c2"],
 ["error", {
 "type":"unknownMethod"
 }, "c3"]
],
 "sessionState": "75128aab4b1b"
 }

3.5. Omitting Arguments

 An argument to a method may be specified to have a default value. If
 omitted by the client, the server MUST treat the method call the same
 as if the default value had been specified. Similarly, the server
 MAY omit any argument in a response that has the default value.

 Unless otherwise specified in a method description, null is the
 default value for any argument in a request or response where this is
 allowed by the type signature. Other arguments may only be omitted
 if an explicit default value is defined in the method description.

3.6. Errors

 There are three different levels of granularity at which an error may
 be returned in JMAP.

 When an API request is made, the request as a whole may be rejected
 due to rate limiting, malformed JSON, request for an unknown
 capability, etc. In this case, the entire request is rejected with
 an appropriate HTTP error response code and an additional JSON body
 with more detail for the client.

 Provided the request itself is syntactically valid (the JSON is valid
 and when decoded, it matches the type signature of a Request object),
 the methods within it are executed sequentially by the server. Each

Jenkins & Newman Standards Track [Page 19]

RFC 8620 JMAP July 2019

 method may individually fail, for example, if invalid arguments are
 given or an unknown method name is called.

 Finally, methods that make changes to the server state often act upon
 a number of different records within a single call. Each record
 change may be separately rejected with a SetError, as described in
 Section 5.3.

3.6.1. Request-Level Errors

 When an HTTP error response is returned to the client, the server
 SHOULD return a JSON "problem details" object as the response body,
 as per [RFC7807].

 The following problem types are defined:

 o "urn:ietf:params:jmap:error:unknownCapability"
 The client included a capability in the "using" property of the
 request that the server does not support.

 o "urn:ietf:params:jmap:error:notJSON"
 The content type of the request was not "application/json" or the
 request did not parse as I-JSON.

 o "urn:ietf:params:jmap:error:notRequest"
 The request parsed as JSON but did not match the type signature of
 the Request object.

 o "urn:ietf:params:jmap:error:limit"
 The request was not processed as it would have exceeded one of the
 request limits defined on the capability object, such as
 maxSizeRequest, maxCallsInRequest, or maxConcurrentRequests. A
 "limit" property MUST also be present on the "problem details"
 object, containing the name of the limit being applied.

3.6.1.1. Example

 {
 "type": "urn:ietf:params:jmap:error:unknownCapability",
 "status": 400,
 "detail": "The Request object used capability
 ’https://example.com/apis/foobar’, which is not supported
 by this server."
 }

Jenkins & Newman Standards Track [Page 20]

RFC 8620 JMAP July 2019

 Another example:

 {
 "type": "urn:ietf:params:jmap:error:limit",
 "limit": "maxSizeRequest",
 "status": 400,
 "detail": "The request is larger than the server is willing to
 process."
 }

3.6.2. Method-Level Errors

 If a method encounters an error, the appropriate "error" response
 MUST be inserted at the current point in the "methodResponses" array
 and, unless otherwise specified, further processing MUST NOT happen
 within that method call.

 Any further method calls in the request MUST then be processed as
 normal. Errors at the method level MUST NOT generate an HTTP-level
 error.

 An "error" response looks like this:

 ["error", {
 "type": "unknownMethod"
 }, "call-id"]

 The response name is "error", and it MUST have a type property.
 Other properties may be present with further information; these are
 detailed in the error type descriptions where appropriate.

 With the exception of when the "serverPartialFail" error is returned,
 the externally visible state of the server MUST NOT have changed if
 an error is returned at the method level.

 The following error types are defined, which may be returned for any
 method call where appropriate:

 "serverUnavailable": Some internal server resource was temporarily
 unavailable. Attempting the same operation later (perhaps after a
 backoff with a random factor) may succeed.

 "serverFail": An unexpected or unknown error occurred during the
 processing of the call. A "description" property should provide more
 details about the error. The method call made no changes to the
 server’s state. Attempting the same operation again is expected to
 fail again. Contacting the service administrator is likely necessary
 to resolve this problem if it is persistent.

Jenkins & Newman Standards Track [Page 21]

RFC 8620 JMAP July 2019

 "serverPartialFail": Some, but not all, expected changes described by
 the method occurred. The client MUST resynchronise impacted data to
 determine server state. Use of this error is strongly discouraged.

 "unknownMethod": The server does not recognise this method name.

 "invalidArguments": One of the arguments is of the wrong type or is
 otherwise invalid, or a required argument is missing. A
 "description" property MAY be present to help debug with an
 explanation of what the problem was. This is a non-localised string,
 and it is not intended to be shown directly to end users.

 "invalidResultReference": The method used a result reference for one
 of its arguments (see Section 3.7), but this failed to resolve.

 "forbidden": The method and arguments are valid, but executing the
 method would violate an Access Control List (ACL) or other
 permissions policy.

 "accountNotFound": The accountId does not correspond to a valid
 account.

 "accountNotSupportedByMethod": The accountId given corresponds to a
 valid account, but the account does not support this method or data
 type.

 "accountReadOnly": This method modifies state, but the account is
 read-only (as returned on the corresponding Account object in the
 JMAP Session resource).

 Further possible errors for a particular method are specified in the
 method descriptions.

 Further general errors MAY be defined in future RFCs. Should a
 client receive an error type it does not understand, it MUST treat it
 the same as the "serverFail" type.

3.7. References to Previous Method Results

 To allow clients to make more efficient use of the network and avoid
 round trips, an argument to one method can be taken from the result
 of a previous method call in the same request.

 To do this, the client prefixes the argument name with "#" (an
 octothorpe). The value is a ResultReference object as described
 below. When processing a method call, the server MUST first check
 the arguments object for any names beginning with "#". If found, the
 result reference should be resolved and the value used as the "real"

Jenkins & Newman Standards Track [Page 22]

RFC 8620 JMAP July 2019

 argument. The method is then processed as normal. If any result
 reference fails to resolve, the whole method MUST be rejected with an
 "invalidResultReference" error. If an arguments object contains the
 same argument name in normal and referenced form (e.g., "foo" and
 "#foo"), the method MUST return an "invalidArguments" error.

 A *ResultReference* object has the following properties:

 o resultOf: "String"

 The method call id (see Section 3.2) of a previous method call in
 the current request.

 o name: "String"

 The required name of a response to that method call.

 o path: "String"

 A pointer into the arguments of the response selected via the name
 and resultOf properties. This is a JSON Pointer [RFC6901], except
 it also allows the use of "*" to map through an array (see the
 description below).

 To resolve:

 1. Find the first response with a method call id identical to the
 "resultOf" property of the ResultReference in the
 "methodResponses" array from previously processed method calls in
 the same request. If none, evaluation fails.

 2. If the response name is not identical to the "name" property of
 the ResultReference, evaluation fails.

 3. Apply the "path" to the arguments object of the response (the
 second item in the response array) following the JSON Pointer
 algorithm [RFC6901], except with the following addition in
 "Evaluation" (see Section 4):

 If the currently referenced value is a JSON array, the reference
 token may be exactly the single character "*", making the new
 referenced value the result of applying the rest of the JSON
 Pointer tokens to every item in the array and returning the
 results in the same order in a new array. If the result of
 applying the rest of the pointer tokens to each item was itself
 an array, the contents of this array are added to the output
 rather than the array itself (i.e., the result is flattened from
 an array of arrays to a single array). If the result of applying

Jenkins & Newman Standards Track [Page 23]

RFC 8620 JMAP July 2019

 the rest of the pointer tokens to a value was itself an array,
 its items should be included individually in the output rather
 than including the array itself (i.e., the result is flattened
 from an array of arrays to a single array).

 As a simple example, suppose we have the following API request
 "methodCalls":

 [["Foo/changes", {
 "accountId": "A1",
 "sinceState": "abcdef"
 }, "t0"],
 ["Foo/get", {
 "accountId": "A1",
 "#ids": {
 "resultOf": "t0",
 "name": "Foo/changes",
 "path": "/created"
 }
 }, "t1"]]

 After executing the first method call, the "methodResponses" array
 is:

 [["Foo/changes", {
 "accountId": "A1",
 "oldState": "abcdef",
 "newState": "123456",
 "hasMoreChanges": false,
 "created": ["f1", "f4"],
 "updated": [],
 "destroyed": []
 }, "t0"]]

 To execute the "Foo/get" call, we look through the arguments and find
 there is one with a "#" prefix. To resolve this, we apply the
 algorithm above:

 1. Find the first response with method call id "t0". The "Foo/
 changes" response fulfils this criterion.

 2. Check that the response name is the same as in the result
 reference. It is, so this is fine.

 3. Apply the "path" as a JSON Pointer to the arguments object. This
 simply selects the "created" property, so the result of
 evaluating is: ["f1", "f4"].

Jenkins & Newman Standards Track [Page 24]

RFC 8620 JMAP July 2019

 The JMAP server now continues to process the "Foo/get" call as though
 the arguments were:

 {
 "accountId": "A1",
 "ids": ["f1", "f4"]
 }

 Now, a more complicated example using the JMAP Mail data model: fetch
 the "from"/"date"/"subject" for every Email in the first 10 Threads
 in the inbox (sorted newest first):

 [["Email/query", {
 "accountId": "A1",
 "filter": { "inMailbox": "id_of_inbox" },
 "sort": [{ "property": "receivedAt", "isAscending": false }],
 "collapseThreads": true,
 "position": 0,
 "limit": 10,
 "calculateTotal": true
 }, "t0"],
 ["Email/get", {
 "accountId": "A1",
 "#ids": {
 "resultOf": "t0",
 "name": "Email/query",
 "path": "/ids"
 },
 "properties": ["threadId"]
 }, "t1"],
 ["Thread/get", {
 "accountId": "A1",
 "#ids": {
 "resultOf": "t1",
 "name": "Email/get",
 "path": "/list/*/threadId"
 }
 }, "t2"],
 ["Email/get", {
 "accountId": "A1",
 "#ids": {
 "resultOf": "t2",
 "name": "Thread/get",
 "path": "/list/*/emailIds"
 },
 "properties": ["from", "receivedAt", "subject"]
 }, "t3"]]

Jenkins & Newman Standards Track [Page 25]

RFC 8620 JMAP July 2019

 After executing the first 3 method calls, the "methodResponses" array
 might be:

 [["Email/query", {
 "accountId": "A1",
 "queryState": "abcdefg",
 "canCalculateChanges": true,
 "position": 0,
 "total": 101,
 "ids": ["msg1023", "msg223", "msg110", "msg93", "msg91",
 "msg38", "msg36", "msg33", "msg11", "msg1"]
 }, "t0"],
 ["Email/get", {
 "accountId": "A1",
 "state": "123456",
 "list": [{
 "id": "msg1023",
 "threadId": "trd194"
 }, {
 "id": "msg223",
 "threadId": "trd114"
 },
 ...
],
 "notFound": []
 }, "t1"],
 ["Thread/get", {
 "accountId": "A1",
 "state": "123456",
 "list": [{
 "id": "trd194",
 "emailIds": ["msg1020", "msg1021", "msg1023"]
 }, {
 "id": "trd114",
 "emailIds": ["msg201", "msg223"]
 },
 ...
],
 "notFound": []
 }, "t2"]]

 To execute the final "Email/get" call, we look through the arguments
 and find there is one with a "#" prefix. To resolve this, we apply
 the algorithm:

 1. Find the first response with method call id "t2". The "Thread/
 get" response fulfils this criterion.

Jenkins & Newman Standards Track [Page 26]

RFC 8620 JMAP July 2019

 2. "Thread/get" is the name specified in the result reference, so
 this is fine.

 3. Apply the "path" as a JSON Pointer to the arguments object.
 Token by token:

 1. "list": get the array of thread objects

 2. "*": for each of the items in the array:

 a. "emailIds": get the array of Email ids

 b. Concatenate these into a single array of all the ids in
 the result.

 The JMAP server now continues to process the "Email/get" call as
 though the arguments were:

{
 "accountId": "A1",
 "ids": ["msg1020", "msg1021", "msg1023", "msg201", "msg223", ...],
 "properties": ["from", "receivedAt", "subject"]
}

 The ResultReference performs a similar role to that of the creation
 id, in that it allows a chained method call to refer to information
 not available when the request is generated. However, they are
 different things and not interchangeable; the only commonality is the
 octothorpe used to indicate them.

3.8. Localisation of User-Visible Strings

 If returning a custom string to be displayed to the user, for
 example, an error message, the server SHOULD use information from the
 Accept-Language header of the request (as defined in Section 5.3.5 of
 [RFC7231]) to choose the best available localisation. The Content-
 Language header of the response (see Section 3.1.3.2 of [RFC7231])
 SHOULD indicate the language being used for user-visible strings.

 For example, suppose a request was made with the following header:

 Accept-Language: fr-CH, fr;q=0.9, de;q=0.8, en;q=0.7, *;q=0.5

 and a method generated an error to display to the user. The server
 has translations of the error message in English and German. Looking
 at the Accept-Language header, the user’s preferred language is
 French. Since we don’t have a translation for this, we look at the

Jenkins & Newman Standards Track [Page 27]

RFC 8620 JMAP July 2019

 next most preferred, which is German. We have a German translation,
 so the server returns this and indicates the language chosen in a
 Content-Language header like so:

 Content-Language: de

3.9. Security

 As always, the server must be strict about data received from the
 client. Arguments need to be checked for validity; a malicious user
 could attempt to find an exploit through the API. In case of invalid
 arguments (unknown/insufficient/wrong type for data, etc.), the
 method MUST return an "invalidArguments" error and terminate.

3.10. Concurrency

 Method calls within a single request MUST be executed in order.
 However, method calls from different concurrent API requests may be
 interleaved. This means that the data on the server may change
 between two method calls within a single API request.

4. The Core/echo Method

 The "Core/echo" method returns exactly the same arguments as it is
 given. It is useful for testing if you have a valid authenticated
 connection to a JMAP API endpoint.

4.1. Example

 Request:

 [["Core/echo", {
 "hello": true,
 "high": 5
 }, "b3ff"]]

 Response:

 [["Core/echo", {
 "hello": true,
 "high": 5
 }, "b3ff"]]

Jenkins & Newman Standards Track [Page 28]

RFC 8620 JMAP July 2019

5. Standard Methods and Naming Convention

 JMAP provides a uniform interface for creating, retrieving, updating,
 and deleting objects of a particular type. For a "Foo" data type,
 records of that type would be fetched via a "Foo/get" call and
 modified via a "Foo/set" call. Delta updates may be fetched via a
 "Foo/changes" call. These methods all follow a standard format as
 described below.

 Some types may not have all these methods. Specifications defining
 types MUST specify which methods are available for the type.

5.1. /get

 Objects of type Foo are fetched via a call to "Foo/get".

 It takes the following arguments:

 o accountId: "Id"

 The id of the account to use.

 o ids: "Id[]|null"

 The ids of the Foo objects to return. If null, then *all* records
 of the data type are returned, if this is supported for that data
 type and the number of records does not exceed the
 "maxObjectsInGet" limit.

 o properties: "String[]|null"

 If supplied, only the properties listed in the array are returned
 for each Foo object. If null, all properties of the object are
 returned. The id property of the object is *always* returned,
 even if not explicitly requested. If an invalid property is
 requested, the call MUST be rejected with an "invalidArguments"
 error.

 The response has the following arguments:

 o accountId: "Id"

 The id of the account used for the call.

Jenkins & Newman Standards Track [Page 29]

RFC 8620 JMAP July 2019

 o state: "String"

 A (preferably short) string representing the state on the server
 for *all* the data of this type in the account (not just the
 objects returned in this call). If the data changes, this string
 MUST change. If the Foo data is unchanged, servers SHOULD return
 the same state string on subsequent requests for this data type.
 When a client receives a response with a different state string to
 a previous call, it MUST either throw away all currently cached
 objects for the type or call "Foo/changes" to get the exact
 changes.

 o list: "Foo[]"

 An array of the Foo objects requested. This is the *empty array*
 if no objects were found or if the "ids" argument passed in was
 also an empty array. The results MAY be in a different order to
 the "ids" in the request arguments. If an identical id is
 included more than once in the request, the server MUST only
 include it once in either the "list" or the "notFound" argument of
 the response.

 o notFound: "Id[]"

 This array contains the ids passed to the method for records that
 do not exist. The array is empty if all requested ids were found
 or if the "ids" argument passed in was either null or an empty
 array.

 The following additional error may be returned instead of the "Foo/
 get" response:

 "requestTooLarge": The number of ids requested by the client exceeds
 the maximum number the server is willing to process in a single
 method call.

5.2. /changes

 When the state of the set of Foo records in an account changes on the
 server (whether due to creation, updates, or deletion), the "state"
 property of the "Foo/get" response will change. The "Foo/changes"
 method allows a client to efficiently update the state of its Foo
 cache to match the new state on the server. It takes the following
 arguments:

 o accountId: "Id"

 The id of the account to use.

Jenkins & Newman Standards Track [Page 30]

RFC 8620 JMAP July 2019

 o sinceState: "String"

 The current state of the client. This is the string that was
 returned as the "state" argument in the "Foo/get" response. The
 server will return the changes that have occurred since this
 state.

 o maxChanges: "UnsignedInt|null"

 The maximum number of ids to return in the response. The server
 MAY choose to return fewer than this value but MUST NOT return
 more. If not given by the client, the server may choose how many
 to return. If supplied by the client, the value MUST be a
 positive integer greater than 0. If a value outside of this range
 is given, the server MUST reject the call with an
 "invalidArguments" error.

 The response has the following arguments:

 o accountId: "Id"

 The id of the account used for the call.

 o oldState: "String"

 This is the "sinceState" argument echoed back; it’s the state from
 which the server is returning changes.

 o newState: "String"

 This is the state the client will be in after applying the set of
 changes to the old state.

 o hasMoreChanges: "Boolean"

 If true, the client may call "Foo/changes" again with the
 "newState" returned to get further updates. If false, "newState"
 is the current server state.

 o created: "Id[]"

 An array of ids for records that have been created since the old
 state.

 o updated: "Id[]"

 An array of ids for records that have been updated since the old
 state.

Jenkins & Newman Standards Track [Page 31]

RFC 8620 JMAP July 2019

 o destroyed: "Id[]"

 An array of ids for records that have been destroyed since the old
 state.

 If a record has been created AND updated since the old state, the
 server SHOULD just return the id in the "created" list but MAY return
 it in the "updated" list as well.

 If a record has been updated AND destroyed since the old state, the
 server SHOULD just return the id in the "destroyed" list but MAY
 return it in the "updated" list as well.

 If a record has been created AND destroyed since the old state, the
 server SHOULD remove the id from the response entirely. However, it
 MAY include it in just the "destroyed" list or in both the
 "destroyed" and "created" lists.

 If a "maxChanges" is supplied, or set automatically by the server,
 the server MUST ensure the number of ids returned across "created",
 "updated", and "destroyed" does not exceed this limit. If there are
 more changes than this between the client’s state and the current
 server state, the server SHOULD generate an update to take the client
 to an intermediate state, from which the client can continue to call
 "Foo/changes" until it is fully up to date. If it is unable to
 calculate an intermediate state, it MUST return a
 "cannotCalculateChanges" error response instead.

 When generating intermediate states, the server may choose how to
 divide up the changes. For many types, it will provide a better user
 experience to return the more recent changes first, as this is more
 likely to be what the user is most interested in. The client can
 then continue to page in the older changes while the user is viewing
 the newer data. For example, suppose a server went through the
 following states:

 A -> B -> C -> D -> E

 And a client asks for changes from state "B". The server might first
 get the ids of records created, updated, or destroyed between states
 D and E, returning them with:

 state: "B-D-E"
 hasMoreChanges: true

Jenkins & Newman Standards Track [Page 32]

RFC 8620 JMAP July 2019

 The client will then ask for the change from state "B-D-E", and the
 server can return the changes between states C and D, returning:

 state: "B-C-E"
 hasMoreChanges: true

 Finally, the client will request the changes from "B-C-E", and the
 server can return the changes between states B and C, returning:

 state: "E"
 hasMoreChanges: false

 Should the state on the server be modified in the middle of all this
 (to "F"), the server still does the same, but now when the update to
 state "E" is returned, it would indicate that it still has more
 changes for the client to fetch.

 Where multiple changes to a record are split across different
 intermediate states, the server MUST NOT return a record as created
 after a response that deems it as updated or destroyed, and it MUST
 NOT return a record as destroyed before a response that deems it as
 created or updated. The server may have to coalesce multiple changes
 to a record to satisfy this requirement.

 The following additional errors may be returned instead of the "Foo/
 changes" response:

 "cannotCalculateChanges": The server cannot calculate the changes
 from the state string given by the client. Usually, this is due to
 the client’s state being too old or the server being unable to
 produce an update to an intermediate state when there are too many
 updates. The client MUST invalidate its Foo cache.

 Maintaining state to allow calculation of "Foo/changes" can be
 expensive for the server, but always returning
 "cannotCalculateChanges" severely increases network traffic and
 resource usage for the client. To allow efficient sync, servers
 SHOULD be able to calculate changes from any state string that was
 given to a client within the last 30 days (but of course may support
 calculating updates from states older than this).

Jenkins & Newman Standards Track [Page 33]

RFC 8620 JMAP July 2019

5.3. /set

 Modifying the state of Foo objects on the server is done via the
 "Foo/set" method. This encompasses creating, updating, and
 destroying Foo records. This allows the server to sort out ordering
 and dependencies that may exist if doing multiple operations at once
 (for example, to ensure there is always a minimum number of a certain
 record type).

 The "Foo/set" method takes the following arguments:

 o accountId: "Id"

 The id of the account to use.

 o ifInState: "String|null"

 This is a state string as returned by the "Foo/get" method
 (representing the state of all objects of this type in the
 account). If supplied, the string must match the current state;
 otherwise, the method will be aborted and a "stateMismatch" error
 returned. If null, any changes will be applied to the current
 state.

 o create: "Id[Foo]|null"

 A map of a *creation id* (a temporary id set by the client) to Foo
 objects, or null if no objects are to be created.

 The Foo object type definition may define default values for
 properties. Any such property may be omitted by the client.

 The client MUST omit any properties that may only be set by the
 server (for example, the "id" property on most object types).

 o update: "Id[PatchObject]|null"

 A map of an id to a Patch object to apply to the current Foo
 object with that id, or null if no objects are to be updated.

 A *PatchObject* is of type "String[*]" and represents an unordered
 set of patches. The keys are a path in JSON Pointer format
 [RFC6901], with an implicit leading "/" (i.e., prefix each key
 with "/" before applying the JSON Pointer evaluation algorithm).

 All paths MUST also conform to the following restrictions; if
 there is any violation, the update MUST be rejected with an
 "invalidPatch" error:

Jenkins & Newman Standards Track [Page 34]

RFC 8620 JMAP July 2019

 * The pointer MUST NOT reference inside an array (i.e., you MUST
 NOT insert/delete from an array; the array MUST be replaced in
 its entirety instead).

 * All parts prior to the last (i.e., the value after the final
 slash) MUST already exist on the object being patched.

 * There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.,
 "alerts/1/offset" and "alerts".

 The value associated with each pointer determines how to apply
 that patch:

 * If null, set to the default value if specified for this
 property; otherwise, remove the property from the patched
 object. If the key is not present in the parent, this a no-op.

 * Anything else: The value to set for this property (this may be
 a replacement or addition to the object being patched).

 Any server-set properties MAY be included in the patch if their
 value is identical to the current server value (before applying
 the patches to the object). Otherwise, the update MUST be
 rejected with an "invalidProperties" SetError.

 This patch definition is designed such that an entire Foo object
 is also a valid PatchObject. The client may choose to optimise
 network usage by just sending the diff or may send the whole
 object; the server processes it the same either way.

 o destroy: "Id[]|null"

 A list of ids for Foo objects to permanently delete, or null if no
 objects are to be destroyed.

 Each creation, modification, or destruction of an object is
 considered an atomic unit. It is permissible for the server to
 commit changes to some objects but not others; however, it MUST NOT
 only commit part of an update to a single record (e.g., update a
 "name" property but not a "count" property, if both are supplied in
 the update object).

 The final state MUST be valid after the "Foo/set" is finished;
 however, the server may have to transition through invalid
 intermediate states (not exposed to the client) while processing the
 individual create/update/destroy requests. For example, suppose
 there is a "name" property that must be unique. A single method call

Jenkins & Newman Standards Track [Page 35]

RFC 8620 JMAP July 2019

 could rename an object A => B and simultaneously rename another
 object B => A. If the final state is valid, this is allowed.
 Otherwise, each creation, modification, or destruction of an object
 should be processed sequentially and accepted/rejected based on the
 current server state.

 If a create, update, or destroy is rejected, the appropriate error
 MUST be added to the notCreated/notUpdated/notDestroyed property of
 the response, and the server MUST continue to the next create/update/
 destroy. It does not terminate the method.

 If an id given cannot be found, the update or destroy MUST be
 rejected with a "notFound" set error.

 The server MAY skip an update (rejecting it with a "willDestroy"
 SetError) if that object is destroyed in the same /set request.

 Some records may hold references to other records (foreign keys).
 That reference may be set (via create or update) in the same request
 as the referenced record is created. To do this, the client refers
 to the new record using its creation id prefixed with a "#". The
 order of the method calls in the request by the client MUST be such
 that the record being referenced is created in the same or an earlier
 call. Thus, the server never has to look ahead. Instead, while
 processing a request, the server MUST keep a simple map for the
 duration of the request of creation id to record id for each newly
 created record, so it can substitute in the correct value if
 necessary in later method calls. In the case of records with
 references to the same type, the server MUST order the creates and
 updates within a single method call so that creates happen before
 their creation ids are referenced by another create/update/destroy in
 the same call.

 Creation ids are not scoped by type but are a single map for all
 types. A client SHOULD NOT reuse a creation id anywhere in the same
 API request. If a creation id is reused, the server MUST map the
 creation id to the most recently created item with that id. To allow
 easy proxying of API requests, an initial set of creation id to real
 id values may be passed with a request (see "The Request Object",
 Section 3.3) and the final state of the map passed out with the
 response (see "The Response Object", Section 3.4).

 The response has the following arguments:

 o accountId: "Id"

 The id of the account used for the call.

Jenkins & Newman Standards Track [Page 36]

RFC 8620 JMAP July 2019

 o oldState: "String|null"

 The state string that would have been returned by "Foo/get" before
 making the requested changes, or null if the server doesn’t know
 what the previous state string was.

 o newState: "String"

 The state string that will now be returned by "Foo/get".

 o created: "Id[Foo]|null"

 A map of the creation id to an object containing any properties of
 the created Foo object that were not sent by the client. This
 includes all server-set properties (such as the "id" in most
 object types) and any properties that were omitted by the client
 and thus set to a default by the server.

 This argument is null if no Foo objects were successfully created.

 o updated: "Id[Foo|null]|null"

 The keys in this map are the ids of all Foos that were
 successfully updated.

 The value for each id is a Foo object containing any property that
 changed in a way *not* explicitly requested by the PatchObject
 sent to the server, or null if none. This lets the client know of
 any changes to server-set or computed properties.

 This argument is null if no Foo objects were successfully updated.

 o destroyed: "Id[]|null"

 A list of Foo ids for records that were successfully destroyed, or
 null if none.

 o notCreated: "Id[SetError]|null"

 A map of the creation id to a SetError object for each record that
 failed to be created, or null if all successful.

 o notUpdated: "Id[SetError]|null"

 A map of the Foo id to a SetError object for each record that
 failed to be updated, or null if all successful.

Jenkins & Newman Standards Track [Page 37]

RFC 8620 JMAP July 2019

 o notDestroyed: "Id[SetError]|null"

 A map of the Foo id to a SetError object for each record that
 failed to be destroyed, or null if all successful.

 A *SetError* object has the following properties:

 o type: "String"

 The type of error.

 o description: "String|null"

 A description of the error to help with debugging that includes an
 explanation of what the problem was. This is a non-localised
 string and is not intended to be shown directly to end users.

 The following SetError types are defined and may be returned for set
 operations on any record type where appropriate:

 o "forbidden": (create; update; destroy). The create/update/destroy
 would violate an ACL or other permissions policy.

 o "overQuota": (create; update). The create would exceed a server-
 defined limit on the number or total size of objects of this type.

 o "tooLarge": (create; update). The create/update would result in
 an object that exceeds a server-defined limit for the maximum size
 of a single object of this type.

 o "rateLimit": (create). Too many objects of this type have been
 created recently, and a server-defined rate limit has been
 reached. It may work if tried again later.

 o "notFound": (update; destroy). The id given to update/destroy
 cannot be found.

 o "invalidPatch": (update). The PatchObject given to update the
 record was not a valid patch (see the patch description).

 o "willDestroy": (update). The client requested that an object be
 both updated and destroyed in the same /set request, and the
 server has decided to therefore ignore the update.

Jenkins & Newman Standards Track [Page 38]

RFC 8620 JMAP July 2019

 o "invalidProperties": (create; update). The record given is
 invalid in some way. For example:

 * It contains properties that are invalid according to the type
 specification of this record type.

 * It contains a property that may only be set by the server
 (e.g., "id") and is different to the current value. Note, to
 allow clients to pass whole objects back, it is not an error to
 include a server-set property in an update as long as the value
 is identical to the current value on the server.

 * There is a reference to another record (foreign key), and the
 given id does not correspond to a valid record.

 The SetError object SHOULD also have a property called
 "properties" of type "String[]" that lists *all* the properties
 that were invalid.

 Individual methods MAY specify more specific errors for certain
 conditions that would otherwise result in an invalidProperties
 error. If the condition of one of these is met, it MUST be
 returned instead of the invalidProperties error.

 o "singleton": (create; destroy). This is a singleton type, so you
 cannot create another one or destroy the existing one.

 Other possible SetError types MAY be given in specific method
 descriptions. Other properties MAY also be present on the SetError
 object, as described in the relevant methods.

 The following additional errors may be returned instead of the "Foo/
 set" response:

 "requestTooLarge": The total number of objects to create, update, or
 destroy exceeds the maximum number the server is willing to process
 in a single method call.

 "stateMismatch": An "ifInState" argument was supplied, and it does
 not match the current state.

Jenkins & Newman Standards Track [Page 39]

RFC 8620 JMAP July 2019

5.4. /copy

 The only way to move Foo records *between* two different accounts is
 to copy them using the "Foo/copy" method; once the copy has
 succeeded, delete the original. The "onSuccessDestroyOriginal"
 argument allows you to try to do this in one method call; however,
 note that the two different actions are not atomic, so it is possible
 for the copy to succeed but the original not to be destroyed for some
 reason.

 The copy is conceptually in three phases:

 1. Reading the current values from the "from" account.

 2. Writing the new copies to the other account.

 3. Destroying the originals in the "from" account, if requested.

 Data may change in between phases due to concurrent requests.

 The "Foo/copy" method takes the following arguments:

 o fromAccountId: "Id"

 The id of the account to copy records from.

 o ifFromInState: "String|null"

 This is a state string as returned by the "Foo/get" method. If
 supplied, the string must match the current state of the account
 referenced by the fromAccountId when reading the data to be
 copied; otherwise, the method will be aborted and a
 "stateMismatch" error returned. If null, the data will be read
 from the current state.

 o accountId: "Id"

 The id of the account to copy records to. This MUST be different
 to the "fromAccountId".

 o ifInState: "String|null"

 This is a state string as returned by the "Foo/get" method. If
 supplied, the string must match the current state of the account
 referenced by the accountId; otherwise, the method will be aborted
 and a "stateMismatch" error returned. If null, any changes will
 be applied to the current state.

Jenkins & Newman Standards Track [Page 40]

RFC 8620 JMAP July 2019

 o create: "Id[Foo]"

 A map of the *creation id* to a Foo object. The Foo object MUST
 contain an "id" property, which is the id (in the fromAccount) of
 the record to be copied. When creating the copy, any other
 properties included are used instead of the current value for that
 property on the original.

 o onSuccessDestroyOriginal: "Boolean" (default: false)

 If true, an attempt will be made to destroy the original records
 that were successfully copied: after emitting the "Foo/copy"
 response, but before processing the next method, the server MUST
 make a single call to "Foo/set" to destroy the original of each
 successfully copied record; the output of this is added to the
 responses as normal, to be returned to the client.

 o destroyFromIfInState: "String|null"

 This argument is passed on as the "ifInState" argument to the
 implicit "Foo/set" call, if made at the end of this request to
 destroy the originals that were successfully copied.

 Each record copy is considered an atomic unit that may succeed or
 fail individually.

 The response has the following arguments:

 o fromAccountId: "Id"

 The id of the account records were copied from.

 o accountId: "Id"

 The id of the account records were copied to.

 o oldState: "String|null"

 The state string that would have been returned by "Foo/get" on the
 account records that were copied to before making the requested
 changes, or null if the server doesn’t know what the previous
 state string was.

 o newState: "String"

 The state string that will now be returned by "Foo/get" on the
 account records were copied to.

Jenkins & Newman Standards Track [Page 41]

RFC 8620 JMAP July 2019

 o created: "Id[Foo]|null"

 A map of the creation id to an object containing any properties of
 the copied Foo object that are set by the server (such as the "id"
 in most object types; note, the id is likely to be different to
 the id of the object in the account it was copied from).

 This argument is null if no Foo objects were successfully copied.

 o notCreated: "Id[SetError]|null"

 A map of the creation id to a SetError object for each record that
 failed to be copied, or null if none.

 The SetError may be any of the standard set errors returned for a
 create or update. In addition, the following SetError is defined:

 "alreadyExists": The server forbids duplicates, and the record
 already exists in the target account. An "existingId" property of
 type "Id" MUST be included on the SetError object with the id of the
 existing record.

 The following additional errors may be returned instead of the "Foo/
 copy" response:

 "fromAccountNotFound": The "fromAccountId" does not correspond to a
 valid account.

 "fromAccountNotSupportedByMethod": The "fromAccountId" given
 corresponds to a valid account, but the account does not support this
 data type.

 "stateMismatch": An "ifInState" argument was supplied and it does not
 match the current state, or an "ifFromInState" argument was supplied
 and it does not match the current state in the from account.

5.5. /query

 For data sets where the total amount of data is expected to be very
 small, clients can just fetch the complete set of data and then do
 any sorting/filtering locally. However, for large data sets (e.g.,
 multi-gigabyte mailboxes), the client needs to be able to
 search/sort/window the data type on the server.

 A query on the set of Foos in an account is made by calling "Foo/
 query". This takes a number of arguments to determine which records
 to include, how they should be sorted, and which part of the result

Jenkins & Newman Standards Track [Page 42]

RFC 8620 JMAP July 2019

 should be returned (the full list may be *very* long). The result is
 returned as a list of Foo ids.

 A call to "Foo/query" takes the following arguments:

 o accountId: "Id"

 The id of the account to use.

 o filter: "FilterOperator|FilterCondition|null"

 Determines the set of Foos returned in the results. If null, all
 objects in the account of this type are included in the results.
 A *FilterOperator* object has the following properties:

 * operator: "String"

 This MUST be one of the following strings:

 + "AND": All of the conditions must match for the filter to
 match.

 + "OR": At least one of the conditions must match for the
 filter to match.

 + "NOT": None of the conditions must match for the filter to
 match.

 * conditions: "(FilterOperator|FilterCondition)[]"

 The conditions to evaluate against each record.

 A *FilterCondition* is an "object" whose allowed properties and
 semantics depend on the data type and is defined in the /query
 method specification for that type. It MUST NOT have an
 "operator" property.

 o sort: "Comparator[]|null"

 Lists the names of properties to compare between two Foo records,
 and how to compare them, to determine which comes first in the
 sort. If two Foo records have an identical value for the first
 comparator, the next comparator will be considered, and so on. If
 all comparators are the same (this includes the case where an
 empty array or null is given as the "sort" argument), the sort
 order is server dependent, but it MUST be stable between calls to
 "Foo/query". A *Comparator* has the following properties:

Jenkins & Newman Standards Track [Page 43]

RFC 8620 JMAP July 2019

 * property: "String"

 The name of the property on the Foo objects to compare.

 * isAscending: "Boolean" (optional; default: true)

 If true, sort in ascending order. If false, reverse the
 comparator’s results to sort in descending order.

 * collation: "String" (optional; default is server-dependent)

 The identifier, as registered in the collation registry defined
 in [RFC4790], for the algorithm to use when comparing the order
 of strings. The algorithms the server supports are advertised
 in the capabilities object returned with the Session object
 (see Section 2).

 If omitted, the default algorithm is server dependent, but:

 1. It MUST be unicode-aware.

 2. It MAY be selected based on an Accept-Language header in
 the request (as defined in [RFC7231], Section 5.3.5) or
 out-of-band information about the user’s language/locale.

 3. It SHOULD be case insensitive where such a concept makes
 sense for a language/locale. Where the user’s language is
 unknown, it is RECOMMENDED to follow the advice in
 Section 5.2.3 of [RFC8264].

 The "i;unicode-casemap" collation [RFC5051] and the Unicode
 Collation Algorithm (<http://www.unicode.org/reports/tr10/>)
 are two examples that fulfil these criterion and provide
 reasonable behaviour for a large number of languages.

 When the property being compared is not a string, the
 "collation" property is ignored, and the following comparison
 rules apply based on the type. In ascending order:

 + "Boolean": false comes before true.

 + "Number": A lower number comes before a higher number.

 + "Date"/"UTCDate": The earlier date comes first.

 The Comparator object may also have additional properties as
 required for specific sort operations defined in a type’s /query
 method.

Jenkins & Newman Standards Track [Page 44]

RFC 8620 JMAP July 2019

 o position: "Int" (default: 0)

 The zero-based index of the first id in the full list of results
 to return.

 If a negative value is given, it is an offset from the end of the
 list. Specifically, the negative value MUST be added to the total
 number of results given the filter, and if still negative, it’s
 clamped to "0". This is now the zero-based index of the first id
 to return.

 If the index is greater than or equal to the total number of
 objects in the results list, then the "ids" array in the response
 will be empty, but this is not an error.

 o anchor: "Id|null"

 A Foo id. If supplied, the "position" argument is ignored. The
 index of this id in the results will be used in combination with
 the "anchorOffset" argument to determine the index of the first
 result to return (see below for more details).

 o anchorOffset: "Int" (default: 0)

 The index of the first result to return relative to the index of
 the anchor, if an anchor is given. This MAY be negative. For
 example, "-1" means the Foo immediately preceding the anchor is
 the first result in the list returned (see below for more
 details).

 o limit: "UnsignedInt|null"

 The maximum number of results to return. If null, no limit
 presumed. The server MAY choose to enforce a maximum "limit"
 argument. In this case, if a greater value is given (or if it is
 null), the limit is clamped to the maximum; the new limit is
 returned with the response so the client is aware. If a negative
 value is given, the call MUST be rejected with an
 "invalidArguments" error.

 o calculateTotal: "Boolean" (default: false)

 Does the client wish to know the total number of results in the
 query? This may be slow and expensive for servers to calculate,
 particularly with complex filters, so clients should take care to
 only request the total when needed.

Jenkins & Newman Standards Track [Page 45]

RFC 8620 JMAP July 2019

 If an "anchor" argument is given, the anchor is looked for in the
 results after filtering and sorting. If found, the "anchorOffset" is
 then added to its index. If the resulting index is now negative, it
 is clamped to 0. This index is now used exactly as though it were
 supplied as the "position" argument. If the anchor is not found, the
 call is rejected with an "anchorNotFound" error.

 If an "anchor" is specified, any position argument supplied by the
 client MUST be ignored. If no "anchor" is supplied, any
 "anchorOffset" argument MUST be ignored.

 A client can use "anchor" instead of "position" to find the index of
 an id within a large set of results.

 The response has the following arguments:

 o accountId: "Id"

 The id of the account used for the call.

 o queryState: "String"

 A string encoding the current state of the query on the server.
 This string MUST change if the results of the query (i.e., the
 matching ids and their sort order) have changed. The queryState
 string MAY change if something has changed on the server, which
 means the results may have changed but the server doesn’t know for
 sure.

 The queryState string only represents the ordered list of ids that
 match the particular query (including its sort/filter). There is
 no requirement for it to change if a property on an object
 matching the query changes but the query results are unaffected
 (indeed, it is more efficient if the queryState string does not
 change in this case). The queryState string only has meaning when
 compared to future responses to a query with the same type/sort/
 filter or when used with /queryChanges to fetch changes.

 Should a client receive back a response with a different
 queryState string to a previous call, it MUST either throw away
 the currently cached query and fetch it again (note, this does not
 require fetching the records again, just the list of ids) or call
 "Foo/queryChanges" to get the difference.

Jenkins & Newman Standards Track [Page 46]

RFC 8620 JMAP July 2019

 o canCalculateChanges: "Boolean"

 This is true if the server supports calling "Foo/queryChanges"
 with these "filter"/"sort" parameters. Note, this does not
 guarantee that the "Foo/queryChanges" call will succeed, as it may
 only be possible for a limited time afterwards due to server
 internal implementation details.

 o position: "UnsignedInt"

 The zero-based index of the first result in the "ids" array within
 the complete list of query results.

 o ids: "Id[]"

 The list of ids for each Foo in the query results, starting at the
 index given by the "position" argument of this response and
 continuing until it hits the end of the results or reaches the
 "limit" number of ids. If "position" is >= "total", this MUST be
 the empty list.

 o total: "UnsignedInt" (only if requested)

 The total number of Foos in the results (given the "filter").
 This argument MUST be omitted if the "calculateTotal" request
 argument is not true.

 o limit: "UnsignedInt" (if set by the server)

 The limit enforced by the server on the maximum number of results
 to return. This is only returned if the server set a limit or
 used a different limit than that given in the request.

 The following additional errors may be returned instead of the "Foo/
 query" response:

 "anchorNotFound": An anchor argument was supplied, but it cannot be
 found in the results of the query.

 "unsupportedSort": The "sort" is syntactically valid, but it includes
 a property the server does not support sorting on or a collation
 method it does not recognise.

 "unsupportedFilter": The "filter" is syntactically valid, but the
 server cannot process it. If the filter was the result of a user’s
 search input, the client SHOULD suggest that the user simplify their
 search.

Jenkins & Newman Standards Track [Page 47]

RFC 8620 JMAP July 2019

5.6. /queryChanges

 The "Foo/queryChanges" method allows a client to efficiently update
 the state of a cached query to match the new state on the server. It
 takes the following arguments:

 o accountId: "Id"

 The id of the account to use.

 o filter: "FilterOperator|FilterCondition|null"

 The filter argument that was used with "Foo/query".

 o sort: "Comparator[]|null"

 The sort argument that was used with "Foo/query".

 o sinceQueryState: "String"

 The current state of the query in the client. This is the string
 that was returned as the "queryState" argument in the "Foo/query"
 response with the same sort/filter. The server will return the
 changes made to the query since this state.

 o maxChanges: "UnsignedInt|null"

 The maximum number of changes to return in the response. See
 error descriptions below for more details.

 o upToId: "Id|null"

 The last (highest-index) id the client currently has cached from
 the query results. When there are a large number of results, in a
 common case, the client may have only downloaded and cached a
 small subset from the beginning of the results. If the sort and
 filter are both only on immutable properties, this allows the
 server to omit changes after this point in the results, which can
 significantly increase efficiency. If they are not immutable,
 this argument is ignored.

 o calculateTotal: "Boolean" (default: false)

 Does the client wish to know the total number of results now in
 the query? This may be slow and expensive for servers to
 calculate, particularly with complex filters, so clients should
 take care to only request the total when needed.

Jenkins & Newman Standards Track [Page 48]

RFC 8620 JMAP July 2019

 The response has the following arguments:

 o accountId: "Id"

 The id of the account used for the call.

 o oldQueryState: "String"

 This is the "sinceQueryState" argument echoed back; that is, the
 state from which the server is returning changes.

 o newQueryState: "String"

 This is the state the query will be in after applying the set of
 changes to the old state.

 o total: "UnsignedInt" (only if requested)

 The total number of Foos in the results (given the "filter").
 This argument MUST be omitted if the "calculateTotal" request
 argument is not true.

 o removed: "Id[]"

 The "id" for every Foo that was in the query results in the old
 state and that is not in the results in the new state.

 If the server cannot calculate this exactly, the server MAY return
 the ids of extra Foos in addition that may have been in the old
 results but are not in the new results.

 If the sort and filter are both only on immutable properties and
 an "upToId" is supplied and exists in the results, any ids that
 were removed but have a higher index than "upToId" SHOULD be
 omitted.

 If the "filter" or "sort" includes a mutable property, the server
 MUST include all Foos in the current results for which this
 property may have changed. The position of these may have moved
 in the results, so they must be reinserted by the client to ensure
 its query cache is correct.

Jenkins & Newman Standards Track [Page 49]

RFC 8620 JMAP July 2019

 o added: "AddedItem[]"

 The id and index in the query results (in the new state) for every
 Foo that has been added to the results since the old state AND
 every Foo in the current results that was included in the
 "removed" array (due to a filter or sort based upon a mutable
 property).

 If the sort and filter are both only on immutable properties and
 an "upToId" is supplied and exists in the results, any ids that
 were added but have a higher index than "upToId" SHOULD be
 omitted.

 The array MUST be sorted in order of index, with the lowest index
 first.

 An *AddedItem* object has the following properties:

 * id: "Id"

 * index: "UnsignedInt"

 The result of this is that if the client has a cached sparse array of
 Foo ids corresponding to the results in the old state, then:

 fooIds = ["id1", "id2", null, null, "id3", "id4", null, null, null]

 If it *splices out* all ids in the removed array that it has in its
 cached results, then:

 removed = ["id2", "id31", ...];
 fooIds => ["id1", null, null, "id3", "id4", null, null, null]

 and *splices in* (one by one in order, starting with the lowest
 index) all of the ids in the added array:

 added = [{ id: "id5", index: 0, ... }];
 fooIds => ["id5", "id1", null, null, "id3", "id4", null, null, null]

 and *truncates* or *extends* to the new total length, then the
 results will now be in the new state.

 Note: splicing in adds the item at the given index, incrementing the
 index of all items previously at that or a higher index. Splicing
 out is the inverse, removing the item and decrementing the index of
 every item after it in the array.

Jenkins & Newman Standards Track [Page 50]

RFC 8620 JMAP July 2019

 The following additional errors may be returned instead of the "Foo/
 queryChanges" response:

 "tooManyChanges": There are more changes than the client’s
 "maxChanges" argument. Each item in the removed or added array is
 considered to be one change. The client may retry with higher max
 changes or invalidate its cache of the query results.

 "cannotCalculateChanges": The server cannot calculate the changes
 from the queryState string given by the client, usually due to the
 client’s state being too old. The client MUST invalidate its cache
 of the query results.

5.7. Examples

 Suppose we have a type *Todo* with the following properties:

 o id: "Id" (immutable; server-set)

 The id of the object.

 o title: "String"

 A brief summary of what is to be done.

 o keywords: "String[Boolean]" (default: {})

 A set of keywords that apply to the Todo. The set is represented
 as an object, with the keys being the "keywords". The value for
 each key in the object MUST be true. (This format allows you to
 update an individual key using patch syntax rather than having to
 update the whole set of keywords as one, which a "String[]"
 representation would require.)

 o neuralNetworkTimeEstimation: "Number" (server-set)

 The title and keywords are fed into the server’s state-of-the-art
 neural network to get an estimation of how long this Todo will
 take, in seconds.

 o subTodoIds: "Id[]|null"

 The ids of a list of other Todos to complete as part of this Todo.

 Suppose also that all the standard methods are defined for this type
 and the FilterCondition object supports a "hasKeyword" property to
 match Todos with the given keyword.

Jenkins & Newman Standards Track [Page 51]

RFC 8620 JMAP July 2019

 A client might want to display the list of Todos with either a
 "music" keyword or a "video" keyword, so it makes the following
 method call:

 [["Todo/query", {
 "accountId": "x",
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "position": 0,
 "limit": 10
 }, "0"],
 ["Todo/get", {
 "accountId": "x",
 "#ids": {
 "resultOf": "0",
 "name": "Todo/query",
 "path": "/ids"
 }
 }, "1"]]

Jenkins & Newman Standards Track [Page 52]

RFC 8620 JMAP July 2019

 This would query the server for the set of Todos with a keyword of
 either "music" or "video", sorted by title, and limited to the first
 10 results. It fetches the full object for each of these Todos using
 back-references to reference the result of the query. The response
 might look something like:

 [["Todo/query", {
 "accountId": "x",
 "queryState": "y13213",
 "canCalculateChanges": true,
 "position": 0,
 "ids": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
 }, "0"],
 ["Todo/get", {
 "accountId": "x",
 "state": "10324",
 "list": [{
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "mozart": true,
 "liszt": true,
 "rachmaninov": true
 },
 "neuralNetworkTimeEstimation": 3600
 }, {
 "id": "b",
 "title": "Watch Daft Punk music video",
 "keywords": {
 "music": true,
 "video": true,
 "trance": true
 },
 "neuralNetworkTimeEstimation": 18000
 },
 ...
]
 }, "1"]]

Jenkins & Newman Standards Track [Page 53]

RFC 8620 JMAP July 2019

 Now, suppose the user adds a keyword "chopin" and removes the keyword
 "mozart" from the "Practise Piano" task. The client may send the
 whole object to the server, as this is a valid PatchObject:

 [["Todo/set", {
 "accountId": "x",
 "ifInState": "10324",
 "update": {
 "a": {
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "chopin": true,
 "liszt": true,
 "rachmaninov": true
 },
 "neuralNetworkTimeEstimation": 360
 }
 }
 }, "0"]]

 or it may send a minimal patch:

 [["Todo/set", {
 "accountId": "x",
 "ifInState": "10324",
 "update": {
 "a": {
 "keywords/chopin": true,
 "keywords/mozart": null
 }
 }
 }, "0"]]

Jenkins & Newman Standards Track [Page 54]

RFC 8620 JMAP July 2019

 The effect is exactly the same on the server in either case, and
 presuming the server is still in state "10324", it will probably
 return success:

 [["Todo/set", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "10329",
 "updated": {
 "a": {
 "neuralNetworkTimeEstimation": 5400
 }
 }
 }, "0"]]

 The server changed the "neuralNetworkTimeEstimation" property on the
 object as part of this change; as this changed in a way *not*
 explicitly requested by the PatchObject sent to the server, it is
 returned with the "updated" confirmation.

 Let us now add a sub-Todo to our new "Practise Piano" Todo. In this
 example, we can see the use of a reference to a creation id to allow
 us to set a foreign key reference to a record created in the same
 request:

 [["Todo/set", {
 "accountId": "x",
 "create": {
 "k15": {
 "title": "Warm up with scales"
 }
 },
 "update": {
 "a": {
 "subTodoIds": ["#k15"]
 }
 }
 }, "0"]]

Jenkins & Newman Standards Track [Page 55]

RFC 8620 JMAP July 2019

 Now, suppose another user deleted the "Listen to Daft Punk" Todo.
 The first user will receive a push notification (see Section 7) with
 the changed state string for the "Todo" type. Since the new string
 does not match its current state, it knows it needs to check for
 updates. It may make a request like:

 [["Todo/changes", {
 "accountId": "x",
 "sinceState": "10324",
 "maxChanges": 50
 }, "0"],
 ["Todo/queryChanges", {
 "accountId": "x",
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "sinceQueryState": "y13213",
 "maxChanges": 50
 }, "1"]]

 and receive in response:

 [["Todo/changes", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "871903",
 "hasMoreChanges": false,
 "created": [],
 "updated": [],
 "destroyed": ["b"]
 }, "0"],
 ["Todo/queryChanges", {
 "accountId": "x",
 "oldQueryState": "y13213",
 "newQueryState": "y13218",
 "removed": ["b"],
 "added": null
 }, "1"]]

Jenkins & Newman Standards Track [Page 56]

RFC 8620 JMAP July 2019

 Suppose the user has access to another account "y", for example, a
 team account shared between multiple users. To move an existing Todo
 from account "x", the client would call:

 [["Todo/copy", {
 "fromAccountId": "x",
 "accountId": "y",
 "create": {
 "k5122": {
 "id": "a"
 }
 },
 "onSuccessDestroyOriginal": true
 }, "0"]]

 The server successfully copies the Todo to a new account (where it
 receives a new id) and deletes the original. Due to the implicit
 call to "Todo/set", there are two responses to the single method
 call, both with the same method call id:

 [["Todo/copy", {
 "fromAccountId": "x",
 "accountId": "y",
 "created": {
 "k5122": {
 "id": "DAf97"
 }
 },
 "oldState": "c1d64ecb038c",
 "newState": "33844835152b"
 }, "0"],
 ["Todo/set", {
 "accountId": "x",
 "oldState": "871903",
 "newState": "871909",
 "destroyed": ["a"],
 ...
 }, "0"]]

Jenkins & Newman Standards Track [Page 57]

RFC 8620 JMAP July 2019

5.8. Proxy Considerations

 JMAP has been designed to allow an API endpoint to easily proxy
 through to one or more JMAP servers. This may be useful for load
 balancing, augmenting capabilities, or presenting a single endpoint
 to accounts hosted on different JMAP servers (splitting the request
 based on each method’s "accountId" argument). The proxy need only
 understand the general structure of a JMAP Request object; it does
 not need to know anything specifically about the methods and
 arguments it will pass through to other servers.

 If splitting up the methods in a request to call them on different
 backend servers, the proxy must do two things to ensure back-
 references and creation-id references resolve the same as if the
 entire request were processed on a single server:

 1. It must pass a "createdIds" property with each subrequest. If
 this is not given by the client, an empty object should be used
 for the first subrequest. The "createdIds" property of each
 subresponse should be passed on in the next subrequest.

 2. It must resolve back-references to previous method results that
 were processed on a different server. This is a relatively
 simple syntactic substitution, described in Section 3.7.

 When splitting a request based on accountId, proxy implementors do
 need to be aware of "/copy" methods that copy between accounts. If
 the accounts are on different servers, the proxy will have to
 implement this functionality directly.

6. Binary Data

 Binary data is referenced by a *blobId* in JMAP and uploaded/
 downloaded separately to the core API. The blobId solely represents
 the raw bytes of data, not any associated metadata such as a file
 name or content type. Such metadata is stored alongside the blobId
 in the object referencing it. The data represented by a blobId is
 immutable.

 Any blobId that exists within an account may be used when creating/
 updating another object in that account. For example, an Email type
 may have a blobId that represents the object in Internet Message
 Format [RFC5322]. A client could create a new Email object with an
 attachment and use this blobId, in effect attaching the old message
 to the new one. Similarly, it could attach any existing attachment
 of an old message without having to download and upload it again.

Jenkins & Newman Standards Track [Page 58]

RFC 8620 JMAP July 2019

 When the client uses a blobId in a create/update, the server MAY
 assign a new blobId to refer to the same binary data within the new/
 updated object. If it does so, it MUST return any properties that
 contain a changed blobId in the created/updated response, so the
 client gets the new ids.

 A blob that is not referenced by a JMAP object (e.g., as a message
 attachment) MAY be deleted by the server to free up resources.
 Uploads (see below) are initially unreferenced blobs. To ensure
 interoperability:

 o The server SHOULD use a separate quota for unreferenced blobs to
 the account’s usual quota. In the case of shared accounts, this
 quota SHOULD be separate per user.

 o This quota SHOULD be at least the maximum total size that a single
 object can reference on this server. For example, if supporting
 JMAP Mail, this should be at least the maximum total attachments
 size for a message.

 o When an upload would take the user over quota, the server MUST
 delete unreferenced blobs in date order, oldest first, until there
 is room for the new blob.

 o Except where quota restrictions force early deletion, an
 unreferenced blob MUST NOT be deleted for at least 1 hour from the
 time of upload; if reuploaded, the same blobId MAY be returned,
 but this SHOULD reset the expiry time.

 o A blob MUST NOT be deleted during the method call that removed the
 last reference, so that a client can issue a create and a destroy
 that both reference the blob within the same method call.

6.1. Uploading Binary Data

 There is a single endpoint that handles all file uploads for an
 account, regardless of what they are to be used for. The Session
 object (see Section 2) has an "uploadUrl" property in URI Template
 (level 1) format [RFC6570], which MUST contain a variable called
 "accountId". The client may use this template in combination with an
 "accountId" to get the URL of the file upload resource.

 To upload a file, the client submits an authenticated POST request to
 the file upload resource.

Jenkins & Newman Standards Track [Page 59]

RFC 8620 JMAP July 2019

 A successful request MUST return a single JSON object with the
 following properties as the response:

 o accountId: "Id"

 The id of the account used for the call.

 o blobId: "Id"

 The id representing the binary data uploaded. The data for this
 id is immutable. The id *only* refers to the binary data, not any
 metadata.

 o type: "String"

 The media type of the file (as specified in [RFC6838],
 Section 4.2) as set in the Content-Type header of the upload HTTP
 request.

 o size: "UnsignedInt"

 The size of the file in octets.

 If identical binary content to an existing blob in the account is
 uploaded, the existing blobId MAY be returned.

 Clients should use the blobId returned in a timely manner. Under
 rare circumstances, the server may have deleted the blob before the
 client uses it; the client should keep a reference to the local file
 so it can upload it again in such a situation.

 When an HTTP error response is returned to the client, the server
 SHOULD return a JSON "problem details" object as the response body,
 as per [RFC7807].

 As access controls are often determined by the object holding the
 reference to a blob, unreferenced blobs MUST only be accessible to
 the uploader, even in shared accounts.

6.2. Downloading Binary Data

 The Session object (see Section 2) has a "downloadUrl" property,
 which is in URI Template (level 1) format [RFC6570]. The URL MUST
 contain variables called "accountId", "blobId", "type", and "name".

Jenkins & Newman Standards Track [Page 60]

RFC 8620 JMAP July 2019

 To download a file, the client makes an authenticated GET request to
 the download URL with the appropriate variables substituted in:

 o "accountId": The id of the account to which the record with the
 blobId belongs.

 o "blobId": The blobId representing the data of the file to
 download.

 o "type": The type for the server to set in the "Content-Type"
 header of the response; the blobId only represents the binary data
 and does not have a content-type innately associated with it.

 o "name": The name for the file; the server MUST return this as the
 filename if it sets a "Content-Disposition" header.

 As the data for a particular blobId is immutable, and thus the
 response in the generated download URL is too, implementors are
 recommended to set long cache times and use the "immutable" Cache-
 Control extension [RFC8246] for successful responses, for example,
 "Cache-Control: private, immutable, max-age=31536000".

 When an HTTP error response is returned to the client, the server
 SHOULD return a JSON "problem details" object as the response body,
 as per [RFC7807].

6.3. Blob/copy

 Binary data may be copied *between* two different accounts using the
 "Blob/copy" method rather than having to download and then reupload
 on the client.

 The "Blob/copy" method takes the following arguments:

 o fromAccountId: "Id"

 The id of the account to copy blobs from.

 o accountId: "Id"

 The id of the account to copy blobs to.

 o blobIds: "Id[]"

 A list of ids of blobs to copy to the other account.

Jenkins & Newman Standards Track [Page 61]

RFC 8620 JMAP July 2019

 The response has the following arguments:

 o fromAccountId: "Id"

 The id of the account blobs were copied from.

 o accountId: "Id"

 The id of the account blobs were copied to.

 o copied: "Id[Id]|null"

 A map of the blobId in the fromAccount to the id for the blob in
 the account it was copied to, or null if none were successfully
 copied.

 o notCopied: "Id[SetError]|null"

 A map of blobId to a SetError object for each blob that failed to
 be copied, or null if none.

 The SetError may be any of the standard set errors that may be
 returned for a create, as defined in Section 5.3. In addition, the
 "notFound" SetError error may be returned if the blobId to be copied
 cannot be found.

 The following additional method-level error may be returned instead
 of the "Blob/copy" response:

 "fromAccountNotFound": The "fromAccountId" included with the request
 does not correspond to a valid account.

7. Push

 Push notifications allow clients to efficiently update (almost)
 instantly to stay in sync with data changes on the server. The
 general model for push is simple and sends minimal data over the push
 channel: just enough for the client to know whether it needs to
 resync. The format allows multiple changes to be coalesced into a
 single push update and the frequency of pushes to be rate limited by
 the server. It doesn’t matter if some push events are dropped before
 they reach the client; the next time it gets/sets any records of a
 changed type, it will discover the data has changed and still sync
 all changes.

Jenkins & Newman Standards Track [Page 62]

RFC 8620 JMAP July 2019

 There are two different mechanisms by which a client can receive push
 notifications, to allow for the different environments in which a
 client may exist. An event source resource (see Section 7.3) allows
 clients that can hold transport connections open to receive push
 notifications directly from the JMAP server. This is simple and
 avoids third parties, but it is often not feasible on constrained
 platforms such as mobile devices. Alternatively, clients can make
 use of any push service supported by their environment. A URL for
 the push service is registered with the JMAP server (see
 Section 7.2); the server then POSTs each notification to that URL.
 The push service is then responsible for routing these to the client.

7.1. The StateChange Object

 When something changes on the server, the server pushes a StateChange
 object to the client. A *StateChange* object has the following
 properties:

 o @type: "String"

 This MUST be the string "StateChange".

 o changed: "Id[TypeState]"

 A map of an "account id" to an object encoding the state of data
 types that have changed for that account since the last
 StateChange object was pushed, for each of the accounts to which
 the user has access and for which something has changed.

 A *TypeState* object is a map. The keys are the type name "Foo"
 (e.g., "Mailbox" or "Email"), and the value is the "state"
 property that would currently be returned by a call to "Foo/get".

 The client can compare the new state strings with its current
 values to see whether it has the current data for these types. If
 not, the changes can then be efficiently fetched in a single
 standard API request (using the /changes type methods).

Jenkins & Newman Standards Track [Page 63]

RFC 8620 JMAP July 2019

7.1.1. Example

 In this example, the server has amalgamated a few changes together
 across two different accounts the user has access to, before pushing
 the following StateChange object to the client:

 {
 "@type": "StateChange",
 "changed": {
 "a3123": {
 "Email": "d35ecb040aab",
 "EmailDelivery": "428d565f2440",
 "CalendarEvent": "87accfac587a"
 },
 "a43461d": {
 "Mailbox": "0af7a512ce70",
 "CalendarEvent": "7a4297cecd76"
 }
 }
 }

 The client can compare the state strings with its current state for
 the Email, CalendarEvent, etc., object types in the appropriate
 accounts to see if it needs to fetch changes.

 If the client is itself making changes, it may receive a StateChange
 object while the /set API call is in flight. It can wait until the
 call completes and then compare if the new state string after the
 /set is the same as was pushed in the StateChange object; if so, and
 the old state of the /set response matches the client’s previous
 state, it does not need to waste a request asking for changes it
 already knows.

7.2. PushSubscription

 Clients may create a PushSubscription to register a URL with the JMAP
 server. The JMAP server will then make an HTTP POST request to this
 URL for each push notification it wishes to send to the client.

 As a push subscription causes the JMAP server to make a number of
 requests to a previously unknown endpoint, it can be used as a vector
 for launching a denial-of-service attack. To prevent this, when a
 subscription is created, the JMAP server immediately sends a
 PushVerification object to that URL (see Section 7.2.2). The JMAP
 server MUST NOT make any further requests to the URL until the client
 receives the push and updates the subscription with the correct
 verification code.

Jenkins & Newman Standards Track [Page 64]

RFC 8620 JMAP July 2019

 A *PushSubscription* object has the following properties:

 o id: "Id" (immutable; server-set)

 The id of the push subscription.

 o deviceClientId: "String" (immutable)

 An id that uniquely identifies the client + device it is running
 on. The purpose of this is to allow clients to identify which
 PushSubscription objects they created even if they lose their
 local state, so they can revoke or update them. This string MUST
 be different on different devices and be different from apps from
 other vendors. It SHOULD be easy to regenerate and not depend on
 persisted state. It is RECOMMENDED to use a secure hash of a
 string that contains:

 1. A unique identifier associated with the device where the JMAP
 client is running, normally supplied by the device’s operating
 system.

 2. A custom vendor/app id, including a domain controlled by the
 vendor of the JMAP client.

 To protect the privacy of the user, the deviceClientId id MUST NOT
 contain an unobfuscated device id.

 o url: "String" (immutable)

 An absolute URL where the JMAP server will POST the data for the
 push message. This MUST begin with "https://".

 o keys: "Object|null" (immutable)

 Client-generated encryption keys. If supplied, the server MUST
 use them as specified in [RFC8291] to encrypt all data sent to the
 push subscription. The object MUST have the following properties:

 * p256dh: "String"

 The P-256 Elliptic Curve Diffie-Hellman (ECDH) public key as
 described in [RFC8291], encoded in URL-safe base64
 representation as defined in [RFC4648].

 * auth: "String"

 The authentication secret as described in [RFC8291], encoded in
 URL-safe base64 representation as defined in [RFC4648].

Jenkins & Newman Standards Track [Page 65]

RFC 8620 JMAP July 2019

 o verificationCode: "String|null"

 This MUST be null (or omitted) when the subscription is created.
 The JMAP server then generates a verification code and sends it in
 a push message, and the client updates the PushSubscription object
 with the code; see Section 7.2.2 for details.

 o expires: "UTCDate|null"

 The time this push subscription expires. If specified, the JMAP
 server MUST NOT make further requests to this resource after this
 time. It MAY automatically destroy the push subscription at or
 after this time.

 The server MAY choose to set an expiry if none is given by the
 client or modify the expiry time given by the client to a shorter
 duration.

 o types: "String[]|null"

 A list of types the client is interested in (using the same names
 as the keys in the TypeState object defined in the previous
 section). A StateChange notification will only be sent if the
 data for one of these types changes. Other types are omitted from
 the TypeState object. If null, changes will be pushed for all
 types.

 The POST request MUST have a content type of "application/json" and
 contain the UTF-8 JSON-encoded object as the body. The request MUST
 have a "TTL" header and MAY have "Urgency" and/or "Topic" headers, as
 specified in Section 5 of [RFC8030]. The JMAP server is expected to
 understand and handle HTTP status responses in a reasonable manner.
 A "429" (Too Many Requests) response MUST cause the JMAP server to
 reduce the frequency of pushes; the JMAP push structure allows
 multiple changes to be coalesced into a single minimal StateChange
 object. See the security considerations in Section 8.6 for a
 discussion of the risks in connecting to unknown servers.

 The JMAP server acts as an application server as defined in
 [RFC8030]. A client MAY use the rest of [RFC8030] in combination
 with its own push service to form a complete end-to-end solution, or
 it MAY rely on alternative mechanisms to ensure the delivery of the
 pushed data after it leaves the JMAP server.

 The push subscription is tied to the credentials used to authenticate
 the API request that created it. Should these credentials expire or
 be revoked, the push subscription MUST be destroyed by the JMAP

Jenkins & Newman Standards Track [Page 66]

RFC 8620 JMAP July 2019

 server. Only subscriptions created by these credentials are returned
 when the client fetches existing subscriptions.

 When these credentials have their own expiry (i.e., it is a session
 with a timeout), the server SHOULD NOT set or bound the expiry time
 for the push subscription given by the client but MUST expire it when
 the session expires.

 When these credentials are not time bounded (e.g., Basic
 authentication [RFC7617]), the server SHOULD set an expiry time for
 the push subscription if none is given and limit the expiry time if
 set too far in the future. This maximum expiry time MUST be at least
 48 hours in the future and SHOULD be at least 7 days in the future.
 An app running on a mobile device may only be able to refresh the
 push subscription lifetime when it is in the foreground, so this
 gives a reasonable time frame to allow this to happen.

 In the case of separate access and refresh credentials, as in Oauth
 2.0 [RFC6749], the server SHOULD tie the push subscription to the
 validity of the refresh token rather than the access token and behave
 according to whether this is time-limited or not.

 When a push subscription is destroyed, the server MUST securely erase
 the URL and encryption keys from memory and storage as soon as
 possible.

7.2.1. PushSubscription/get

 Standard /get method as described in Section 5.1, except it does
 not take or return an "accountId" argument, as push subscriptions
 are not tied to specific accounts. It also does *not* return a
 "state" argument. The "ids" argument may be null to fetch all at
 once.

 The server MUST only return push subscriptions that were created
 using the same authentication credentials as for this
 "PushSubscription/get" request.

 As the "url" and "keys" properties may contain data that is private
 to a particular device, the values for these properties MUST NOT be
 returned. If the "properties" argument is null or omitted, the
 server MUST default to all properties excluding these two. If one of
 them is explicitly requested, the method call MUST be rejected with a
 "forbidden" error.

Jenkins & Newman Standards Track [Page 67]

RFC 8620 JMAP July 2019

7.2.2. PushSubscription/set

 Standard /set method as described in Section 5.3, except it does
 not take or return an "accountId" argument, as push subscriptions
 are not tied to specific accounts. It also does *not* take an
 "ifInState" argument or return "oldState" or "newState" arguments.

 The "url" and "keys" properties are immutable; if the client wishes
 to change these, it must destroy the current push subscription and
 create a new one.

 When a PushSubscription is created, the server MUST immediately push
 a *PushVerification* object to the URL. It has the following
 properties:

 o @type: "String"

 This MUST be the string "PushVerification".

 o pushSubscriptionId: "String"

 The id of the push subscription that was created.

 o verificationCode: "String"

 The verification code to add to the push subscription. This MUST
 contain sufficient entropy to avoid the client being able to guess
 the code via brute force.

 The client MUST update the push subscription with the correct
 verification code before the server makes any further requests to the
 subscription’s URL. Attempts to update the subscription with an
 invalid verification code MUST be rejected by the server with an
 "invalidProperties" SetError.

 The client may update the "expires" property to extend (or, less
 commonly, shorten) the lifetime of a push subscription. The server
 MAY modify the proposed new expiry time to enforce server-defined
 limits. Extending the lifetime does not require the subscription to
 be verified again.

 Clients SHOULD NOT update or destroy a push subscription that they
 did not create (i.e., has a "deviceClientId" that they do not
 recognise).

Jenkins & Newman Standards Track [Page 68]

RFC 8620 JMAP July 2019

7.2.3. Example

 At "2018-07-06T02:14:29Z", a client with deviceClientId "a889-ffea-
 910" fetches the set of push subscriptions currently on the server,
 making an API request with:

 [["PushSubscription/get", {
 "ids": null
 }, "0"]]

 Which returns:

 [["PushSubscription/get", {
 "list": [{
 "id": "e50b2c1d-9553-41a3-b0a7-a7d26b599ee1",
 "deviceClientId": "b37ff8001ca0",
 "verificationCode": "b210ef734fe5f439c1ca386421359f7b",
 "expires": "2018-07-31T00:13:21Z",
 "types": ["Todo"]
 }, {
 "id": "f2d0aab5-e976-4e8b-ad4b-b380a5b987e4",
 "deviceClientId": "X8980fc",
 "verificationCode": "f3d4618a9ae15c8b7f5582533786d531",
 "expires": "2018-07-12T05:55:00Z",
 "types": ["Mailbox", "Email", "EmailDelivery"]
 }],
 "notFound": []
 }, "0"]]

 Since neither of the returned push subscription objects have the
 client’s deviceClientId, it knows it does not have a current push
 subscription active on the server. So it creates one, sending this
 request:

[["PushSubscription/set", {
 "create": {
 "4f29": {
 "deviceClientId": "a889-ffea-910",
 "url": "https://example.com/push/?device=X8980fc&client=12c6d086",
 "types": null
 }
 }
}, "0"]]

Jenkins & Newman Standards Track [Page 69]

RFC 8620 JMAP July 2019

 The server creates the push subscription but limits the expiry time
 to 7 days in the future, returning this response:

 [["PushSubscription/set", {
 "created": {
 "4f29": {
 "id": "P43dcfa4-1dd4-41ef-9156-2c89b3b19c60",
 "keys": null,
 "expires": "2018-07-13T02:14:29Z"
 }
 }
 }, "0"]]

 The server also immediately makes a POST request to
 "https://example.com/push/?device=X8980fc&client=12c6d086" with the
 data:

 {
 "@type": "PushVerification",
 "pushSubscriptionId": "P43dcfa4-1dd4-41ef-9156-2c89b3b19c60",
 "verificationCode": "da1f097b11ca17f06424e30bf02bfa67"
 }

 The client receives this and updates the subscription with the
 verification code (note there is a potential race condition here; the
 client MUST be able to handle receiving the push while the request
 creating the subscription is still in progress):

 [["PushSubscription/set", {
 "update": {
 "P43dcfa4-1dd4-41ef-9156-2c89b3b19c60": {
 "verificationCode": "da1f097b11ca17f06424e30bf02bfa67"
 }
 }
 }, "0"]]

 The server confirms the update was successful and will now make
 requests to the registered URL when the state changes.

Jenkins & Newman Standards Track [Page 70]

RFC 8620 JMAP July 2019

 Two days later, the client updates the subscription to extend its
 lifetime, sending this request:

 [["PushSubscription/set", {
 "update": {
 "P43dcfa4-1dd4-41ef-9156-2c89b3b19c60": {
 "expires": "2018-08-13T00:00:00Z"
 }
 }
 }, "0"]]

 The server extends the expiry time, but only again to its maximum
 limit of 7 days in the future, returning this response:

 [["PushSubscription/set", {
 "updated": {
 "P43dcfa4-1dd4-41ef-9156-2c89b3b19c60": {
 "expires": "2018-07-15T02:22:50Z"
 }
 }
 }, "0"]]

7.3. Event Source

 Clients that can hold transport connections open can connect directly
 to the JMAP server to receive push notifications via a "text/event-
 stream" resource, as described in [EventSource]. This is a long
 running HTTP request, where the server can push data to the client by
 appending data without ending the response.

 When a change occurs in the data on the server, it pushes an event
 called "state" to any connected clients, with the StateChange object
 as the data.

 The server SHOULD also send a new event id that encodes the entire
 server state visible to the user immediately after sending a "state"
 event. When a new connection is made to the event-source endpoint, a
 client following the server-sent events specification will send a
 Last-Event-ID HTTP header field with the last id it saw, which the
 server can use to work out whether the client has missed some
 changes. If so, it SHOULD send these changes immediately on
 connection.

 The Session object (see Section 2) has an "eventSourceUrl" property,
 which is in URI Template (level 1) format [RFC6570]. The URL MUST
 contain variables called "types", "closeafter", and "ping".

Jenkins & Newman Standards Track [Page 71]

RFC 8620 JMAP July 2019

 To connect to the resource, the client makes an authenticated GET
 request to the event-source URL with the appropriate variables
 substituted in:

 o "types": This MUST be either:

 * A comma-separated list of type names, e.g.,
 "Email,CalendarEvent". The server MUST only push changes for
 the types in this list.

 * The single character: "*". Changes to all types are pushed.

 o "closeafter": This MUST be one of the following values:

 * "state": The server MUST end the HTTP response after pushing a
 state event. This can be used by clients in environments where
 buffering proxies prevent the pushed data from arriving
 immediately, or indeed at all, when operating in the usual
 mode.

 * "no": The connection is persisted by the server as a standard
 event-source resource.

 o "ping": A positive integer value representing a length of time in
 seconds, e.g., "300". If non-zero, the server MUST send an event
 called "ping" whenever this time elapses since the previous event
 was sent. This MUST NOT set a new event id. If the value is "0",
 the server MUST NOT send ping events.

 The server MAY modify a requested ping interval to be subject to a
 minimum and/or maximum value. For interoperability, servers MUST
 NOT have a minimum allowed value higher than 30 or a maximum
 allowed value less than 300.

 The data for the ping event MUST be a JSON object containing an
 "interval" property, the value (type "UnsignedInt") being the
 interval in seconds the server is using to send pings (this may be
 different to the requested value if the server clamped it to be
 within a min/max value).

 Clients can monitor for the ping event to help determine when the
 closeafter mode may be required.

 A client MAY hold open multiple connections to the event-source
 resource, although it SHOULD try to use a single connection for
 efficiency.

Jenkins & Newman Standards Track [Page 72]

RFC 8620 JMAP July 2019

8. Security Considerations

8.1. Transport Confidentiality

 To ensure the confidentiality and integrity of data sent and received
 via JMAP, all requests MUST use TLS 1.2 [RFC5246] [RFC8446] or later,
 following the recommendations in [RFC7525]. Servers SHOULD support
 TLS 1.3 [RFC8446] or later.

 Clients MUST validate TLS certificate chains to protect against
 man-in-the-middle attacks [RFC5280].

8.2. Authentication Scheme

 A number of HTTP authentication schemes have been standardised (see
 <https://www.iana.org/assignments/http-authschemes/>). Servers
 should take care to assess the security characteristics of different
 schemes in relation to their needs when deciding what to implement.

 Use of the Basic authentication scheme is NOT RECOMMENDED. Services
 that choose to use it are strongly recommended to require generation
 of a unique "app password" via some external mechanism for each
 client they wish to connect. This allows connections from different
 devices to be differentiated by the server and access to be
 individually revoked.

8.3. Service Autodiscovery

 Unless secured by something like DNSSEC, autodiscovery of server
 details using SRV DNS records is vulnerable to a DNS poisoning
 attack, which can lead to the client talking to an attacker’s server
 instead of the real JMAP server. The attacker may then intercept
 requests to execute man-in-the-middle attacks and, depending on the
 authentication scheme, steal credentials to generate its own
 requests.

 Clients that do not support SRV lookups are likely to try just using
 the "/.well-known/jmap" path directly against the domain of the
 username over HTTPS. Servers SHOULD ensure this path resolves or
 redirects to the correct JMAP Session resource to allow this to work.
 If this is not feasible, servers MUST ensure this path cannot be
 controlled by an attacker, as again it may be used to steal
 credentials.

Jenkins & Newman Standards Track [Page 73]

RFC 8620 JMAP July 2019

8.4. JSON Parsing

 The Security Considerations of [RFC8259] apply to the use of JSON as
 the data interchange format.

 As for any serialization format, parsers need to thoroughly check the
 syntax of the supplied data. JSON uses opening and closing tags for
 several types and structures, and it is possible that the end of the
 supplied data will be reached when scanning for a matching closing
 tag; this is an error condition, and implementations need to stop
 scanning at the end of the supplied data.

 JSON also uses a string encoding with some escape sequences to encode
 special characters within a string. Care is needed when processing
 these escape sequences to ensure that they are fully formed before
 the special processing is triggered, with special care taken when the
 escape sequences appear adjacent to other (non-escaped) special
 characters or adjacent to the end of data (as in the previous
 paragraph).

 If parsing JSON into a non-textual structured data format,
 implementations may need to allocate storage to hold JSON string
 elements. Since JSON does not use explicit string lengths, the risk
 of denial of service due to resource exhaustion is small, but
 implementations may still wish to place limits on the size of
 allocations they are willing to make in any given context, to avoid
 untrusted data causing excessive memory allocation.

8.5. Denial of Service

 A small request may result in a very large response and require
 considerable work on the server if resource limits are not enforced.
 JMAP provides mechanisms for advertising and enforcing a wide variety
 of limits for mitigating this threat, including limits on the number
 of objects fetched in a single method call, number of methods in a
 single request, number of concurrent requests, etc.

 JMAP servers MUST implement sensible limits to mitigate against
 resource exhaustion attacks.

8.6. Connection to Unknown Push Server

 When a push subscription is registered, the application server will
 make POST requests to the given URL. There are a number of security
 considerations that MUST be considered when implementing this.

Jenkins & Newman Standards Track [Page 74]

RFC 8620 JMAP July 2019

 The server MUST ensure the URL is externally resolvable to avoid
 server-side request forgery, where the server makes a request to a
 resource on its internal network.

 A malicious client may use the push subscription to attempt to flood
 a third party server with requests, creating a denial-of-service
 attack and masking the attacker’s true identity. There is no
 guarantee that the URL given to the JMAP server is actually a valid
 push server. Upon creation of a push subscription, the JMAP server
 sends a PushVerification object to the URL and MUST NOT send any
 further requests until the client verifies it has received the
 initial push. The verification code MUST contain sufficient entropy
 to prevent the client from being able to verify the subscription via
 brute force.

 The verification code does not guarantee the URL is a valid push
 server, only that the client is able to access the data submitted to
 it. While the verification step significantly reduces the set of
 potential targets, there is still a risk that the server is unrelated
 to the client and being targeted for a denial-of-service attack.

 The server MUST limit the number of push subscriptions any one user
 may have to ensure the user cannot cause the server to send a large
 number of push notifications at once, which could again be used as
 part of a denial-of-service attack. The rate of creation MUST also
 be limited to minimise the ability to abuse the verification request
 as an attack vector.

8.7. Push Encryption

 When data changes, a small object is pushed with the new state
 strings for the types that have changed. While the data here is
 minimal, a passive man-in-the-middle attacker may be able to gain
 useful information. To ensure confidentiality and integrity, if the
 push is sent via a third party outside of the control of the client
 and JMAP server, the client MUST specify encryption keys when
 establishing the PushSubscription and ignore any push notification
 received that is not encrypted with those keys.

 The privacy and security considerations of [RFC8030] and [RFC8291]
 also apply to the use of the PushSubscription mechanism.

 As there is no crypto algorithm agility in Web Push Encryption
 [RFC8291], a new specification will be needed to provide this if new
 algorithms are required in the future.

Jenkins & Newman Standards Track [Page 75]

RFC 8620 JMAP July 2019

8.8. Traffic Analysis

 While the data is encrypted, a passive observer with the ability to
 monitor network traffic may be able to glean information from the
 timing of API requests and push notifications. For example, suppose
 an email or calendar invitation is sent from User A (hosted on Server
 X) to User B (hosted on Server Y). If Server X hosts data for many
 users, a passive observer can see that the two servers connected but
 does not know who the data was for. However, if a push notification
 is immediately sent to User B and the attacker can observe this as
 well, they may reasonably conclude that someone on Server X is
 connecting to User B.

9. IANA Considerations

9.1. Assignment of jmap Service Name

 IANA has assigned the ’jmap’ service name in the "Service Name and
 Transport Protocol Port Number Registry" [RFC6335].

 Service Name: jmap

 Transport Protocol(s): tcp

 Assignee: IESG

 Contact: IETF Chair

 Description: JSON Meta Application Protocol

 Reference: RFC 8620

 Assignment Notes: This service name was previously assigned under the
 name "JSON Mail Access Protocol". This has been de-assigned and
 re-assigned with the approval of the previous assignee.

9.2. Registration of Well-Known URI Suffix for JMAP

 IANA has registered the following suffix in the "Well-Known URIs"
 registry for JMAP, as described in [RFC8615]:

 URI Suffix: jmap

 Change Controller: IETF

 Specification Document: RFC 8620, Section 2.2.

Jenkins & Newman Standards Track [Page 76]

RFC 8620 JMAP July 2019

9.3. Registration of the jmap URN Sub-namespace

 IANA has registered the following URN sub-namespace in the "IETF URN
 Sub-namespace for Registered Protocol Parameter Identifiers" registry
 within the "Uniform Resource Name (URN) Namespace for IETF Use"
 registry as described in [RFC3553].

 Registered Parameter Identifier: jmap

 Reference: RFC 8620, Section 9.4

 IANA Registry Reference: http://www.iana.org/assignments/jmap

9.4. Creation of "JMAP Capabilities" Registry

 IANA has created the "JMAP Capabilities" registry as described in
 Section 2. JMAP capabilities are advertised in the "capabilities"
 property of the JMAP Session resource. They are used to extend the
 functionality of a JMAP server. A capability is referenced by a URI.
 The JMAP capability URI can be a URN starting with
 "urn:ietf:params:jmap:" plus a unique suffix that is the index value
 in the jmap URN sub-namespace. Registration of a JMAP capability
 with another form of URI has no impact on the jmap URN sub-namespace.

 This registry follows the expert review process unless the "intended
 use" field is "common" or "placeholder", in which case registration
 follows the specification required process.

 A JMAP capability registration can have an intended use of "common",
 "placeholder", "limited", or "obsolete". IANA will list common-use
 registrations prominently and separately from those with other
 intended use values.

 The JMAP capability registration procedure is not a formal standards
 process but rather an administrative procedure intended to allow
 community comment and sanity checking without excessive time delay.

 A "placeholder" registration reserves part of the jmap URN namespace
 for another purpose but is typically not included in the
 "capabilities" property of the JMAP Session resource.

9.4.1. Preliminary Community Review

 Notice of a potential JMAP common-use registration SHOULD be sent to
 the JMAP mailing list <jmap@ietf.org> for review. This mailing list
 is appropriate to solicit community feedback on a proposed JMAP

Jenkins & Newman Standards Track [Page 77]

RFC 8620 JMAP July 2019

 capability. Registrations that are not intended for common use MAY
 be sent to the list for review as well; doing so is entirely
 OPTIONAL, but is encouraged.

 The intent of the public posting to this list is to solicit comments
 and feedback on the choice of the capability name, the unambiguity of
 the specification document, and a review of any interoperability or
 security considerations. The submitter may submit a revised
 registration proposal or abandon the registration completely at any
 time.

9.4.2. Submit Request to IANA

 Registration requests can be sent to <iana@iana.org>.

9.4.3. Designated Expert Review

 For a limited-use registration, the primary concern of the designated
 expert (DE) is preventing name collisions and encouraging the
 submitter to document security and privacy considerations; a
 published specification is not required. For a common-use
 registration, the DE is expected to confirm that suitable
 documentation, as described in Section 4.6 of [RFC8126], is
 available. The DE should also verify that the capability does not
 conflict with work that is active or already published within the
 IETF.

 Before a period of 30 days has passed, the DE will either approve or
 deny the registration request and publish a notice of the decision to
 the JMAP WG mailing list or its successor, as well as inform IANA. A
 denial notice must be justified by an explanation, and, in the cases
 where it is possible, concrete suggestions on how the request can be
 modified so as to become acceptable should be provided.

 If the DE does not respond within 30 days, the registrant may request
 the IESG take action to process the request in a timely manner.

9.4.4. Change Procedures

 Once a JMAP capability has been published by the IANA, the change
 controller may request a change to its definition. The same
 procedure that would be appropriate for the original registration
 request is used to process a change request.

 JMAP capability registrations may not be deleted; capabilities that
 are no longer believed appropriate for use can be declared obsolete
 by a change to their "intended use" field; such capabilities will be
 clearly marked in the lists published by the IANA.

Jenkins & Newman Standards Track [Page 78]

RFC 8620 JMAP July 2019

 Significant changes to a capability’s definition should be requested
 only when there are serious omissions or errors in the published
 specification. When review is required, a change request may be
 denied if it renders entities that were valid under the previous
 definition invalid under the new definition.

 The owner of a JMAP capability may pass responsibility to another
 person or agency by informing the IANA; this can be done without
 discussion or review.

 The IESG may reassign responsibility for a JMAP capability. The most
 common case of this will be to enable changes to be made to
 capabilities where the author of the registration has died, moved out
 of contact, or is otherwise unable to make changes that are important
 to the community.

9.4.5. JMAP Capabilities Registry Template

 Capability name: (see capability property in Section 2)

 Specification document:

 Intended use: (one of common, limited, placeholder, or obsolete)

 Change controller: ("IETF" for Standards Track / BCP RFCs)

 Security and privacy considerations:

9.4.6. Initial Registration for JMAP Core

 Capability Name: "urn:ietf:params:jmap:core"

 Specification document: RFC 8620, Section 2

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: RFC 8620, Section 8.

Jenkins & Newman Standards Track [Page 79]

RFC 8620 JMAP July 2019

9.4.7. Registration for JMAP Error Placeholder in JMAP Capabilities
 Registry

 Capability Name: "urn:ietf:params:jmap:error:"

 Specification document: RFC 8620, Section 9.5

 Intended use: placeholder

 Change Controller: IETF

 Security and privacy considerations: RFC 8620, Section 8.

9.5. Creation of "JMAP Error Codes" Registry

 IANA has created the "JMAP Error Codes" registry. JMAP error codes
 appear in the "type" member of a JSON problem details object (as
 described in Section 3.6.1), the "type" member in a JMAP error object
 (as described in Section 3.6.2), or the "type" member of a JMAP
 method-specific error object (such as SetError in Section 5.3). When
 used in a problem details object, the prefix
 "urn:ietf:params:jmap:error:" is always included; when used in JMAP
 objects, the prefix is always omitted.

 This registry follows the expert review process. Preliminary
 community review for this registry follows the same procedures as the
 "JMAP Capabilities" registry, but it is optional. The change
 procedures for this registry are the same as the change procedures
 for the "JMAP Capabilities" registry.

9.5.1. Expert Review

 The designated expert should review the following aspects of the
 registration:

 1. Verify the error code does not conflict with existing names.

 2. Verify the error code follows the syntax limitations (does not
 require URI encoding).

 3. Encourage the submitter to follow the naming convention of
 previously registered errors.

 4. Encourage the submitter to describe client behaviours that are
 recommended in response to the error code. These may distinguish
 the error code from other error codes.

Jenkins & Newman Standards Track [Page 80]

RFC 8620 JMAP July 2019

 5. Encourage the submitter to describe when the server should issue
 the error as opposed to some other error code.

 6. Encourage the submitter to note any security considerations
 associated with the error, if any (e.g., an error code that might
 disclose existence of data the authenticated user does not have
 permission to know about).

 Steps 3-6 are meant to promote a higher-quality registry. However,
 the expert is encouraged to approve any registration that would not
 actively harm JMAP interoperability to make this a relatively
 lightweight process.

9.5.2. JMAP Error Codes Registry Template

 JMAP Error Code:

 Intended use: (one of "common", "limited", "obsolete")

 Change Controller: ("IETF" for Standards Track / BCP RFCs)

 Reference: (Optional. Only required if defined in an RFC.)

 Description:

9.5.3. Initial Contents for the JMAP Error Codes Registry

 o JMAP Error Code: accountNotFound
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: The accountId does not correspond to a valid account.

 o JMAP Error Code: accountNotSupportedByMethod
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: The accountId given corresponds to a valid account,
 but the account does not support this method or data type.

 o JMAP Error Code: accountReadOnly
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: This method modifies state, but the account is read-
 only (as returned on the corresponding Account object in the JMAP
 Session resource).

Jenkins & Newman Standards Track [Page 81]

RFC 8620 JMAP July 2019

 o JMAP Error Code: anchorNotFound
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.5
 Description: An anchor argument was supplied, but it cannot be
 found in the results of the query.

 o JMAP Error Code: alreadyExists
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.4
 Description: The server forbids duplicates, and the record already
 exists in the target account. An existingId property of type Id
 MUST be included on the SetError object with the id of the
 existing record.

 o JMAP Error Code: cannotCalculateChanges
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Sections 5.2 and 5.6
 Description: The server cannot calculate the changes from the
 state string given by the client.

 o JMAP Error Code: forbidden
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Sections 3.6.2, 5.3, and 7.2.1
 Description: The action would violate an ACL or other permissions
 policy.

 o JMAP Error Code: fromAccountNotFound
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Sections 5.4 and 6.3
 Description: The fromAccountId does not correspond to a valid
 account.

 o JMAP Error Code: fromAccountNotSupportedByMethod
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.4
 Description: The fromAccountId given corresponds to a valid
 account, but the account does not support this data type.

Jenkins & Newman Standards Track [Page 82]

RFC 8620 JMAP July 2019

 o JMAP Error Code: invalidArguments
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: One of the arguments is of the wrong type or
 otherwise invalid, or a required argument is missing.

 o JMAP Error Code: invalidPatch
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The PatchObject given to update the record was not a
 valid patch.

 o JMAP Error Code: invalidProperties
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The record given is invalid.

 o JMAP Error Code: notFound
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The id given cannot be found.

 o JMAP Error Code: notJSON
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.1
 Description: The content type of the request was not application/
 json, or the request did not parse as I-JSON.

 o JMAP Error Code: notRequest
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.1
 Description: The request parsed as JSON but did not match the type
 signature of the Request object.

 o JMAP Error Code: overQuota
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The create would exceed a server-defined limit on the
 number or total size of objects of this type.

Jenkins & Newman Standards Track [Page 83]

RFC 8620 JMAP July 2019

 o JMAP Error Code: rateLimit
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: Too many objects of this type have been created
 recently, and a server-defined rate limit has been reached. It
 may work if tried again later.

 o JMAP Error Code: requestTooLarge
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Sections 5.1 and 5.3
 Description: The total number of actions exceeds the maximum
 number the server is willing to process in a single method call.

 o JMAP Error Code: invalidResultReference
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: The method used a result reference for one of its
 arguments, but this failed to resolve.

 o JMAP Error Code: serverFail
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: An unexpected or unknown error occurred during the
 processing of the call. The method call made no changes to the
 server’s state.

 o JMAP Error Code: serverPartialFail
 Intended Use: Limited
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: Some, but not all, expected changes described by the
 method occurred. The client MUST resynchronise impacted data to
 determine the server state. Use of this error is strongly
 discouraged.

 o JMAP Error Code: serverUnavailable
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: Some internal server resource was temporarily
 unavailable. Attempting the same operation later (perhaps after a
 backoff with a random factor) may succeed.

Jenkins & Newman Standards Track [Page 84]

RFC 8620 JMAP July 2019

 o JMAP Error Code: singleton
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: This is a singleton type, so you cannot create
 another one or destroy the existing one.

 o JMAP Error Code: stateMismatch
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: An ifInState argument was supplied, and it does not
 match the current state.

 o JMAP Error Code: tooLarge
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The action would result in an object that exceeds a
 server-defined limit for the maximum size of a single object of
 this type.

 o JMAP Error Code: tooManyChanges
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.6
 Description: There are more changes than the client’s maxChanges
 argument.

 o JMAP Error Code: unknownCapability
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.1
 Description: The client included a capability in the "using"
 property of the request that the server does not support.

 o JMAP Error Code: unknownMethod
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 3.6.2
 Description: The server does not recognise this method name.

 o JMAP Error Code: unsupportedFilter
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.5
 Description: The filter is syntactically valid, but the server
 cannot process it.

Jenkins & Newman Standards Track [Page 85]

RFC 8620 JMAP July 2019

 o JMAP Error Code: unsupportedSort
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.5
 Description: The sort is syntactically valid but includes a
 property the server does not support sorting on or a collation
 method it does not recognise.

 o JMAP Error Code: willDestroy
 Intended Use: Common
 Change Controller: IETF
 Reference: RFC 8620, Section 5.3
 Description: The client requested an object be both updated and
 destroyed in the same /set request, and the server has decided to
 therefore ignore the update.

10. References

10.1. Normative References

 [EventSource]
 Hickson, I., "Server-Sent Events", World Wide Web
 Consortium Recommendation REC-eventsource-20150203,
 February 2015, <https://www.w3.org/TR/eventsource/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <https://www.rfc-editor.org/info/rfc3553>.

Jenkins & Newman Standards Track [Page 86]

RFC 8620 JMAP July 2019

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 DOI 10.17487/RFC4790, March 2007,
 <https://www.rfc-editor.org/info/rfc4790>.

 [RFC5051] Crispin, M., "i;unicode-casemap - Simple Unicode Collation
 Algorithm", RFC 5051, DOI 10.17487/RFC5051, October 2007,
 <https://www.rfc-editor.org/info/rfc5051>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6186] Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <https://www.rfc-editor.org/info/rfc6186>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

Jenkins & Newman Standards Track [Page 87]

RFC 8620 JMAP July 2019

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6764] Daboo, C., "Locating Services for Calendaring Extensions
 to WebDAV (CalDAV) and vCard Extensions to WebDAV
 (CardDAV)", RFC 6764, DOI 10.17487/RFC6764, February 2013,
 <https://www.rfc-editor.org/info/rfc6764>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7617] Reschke, J., "The ’Basic’ HTTP Authentication Scheme",
 RFC 7617, DOI 10.17487/RFC7617, September 2015,
 <https://www.rfc-editor.org/info/rfc7617>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

Jenkins & Newman Standards Track [Page 88]

RFC 8620 JMAP July 2019

 [RFC8030] Thomson, M., Damaggio, E., and B. Raymor, Ed., "Generic
 Event Delivery Using HTTP Push", RFC 8030,
 DOI 10.17487/RFC8030, December 2016,
 <https://www.rfc-editor.org/info/rfc8030>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8264] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 8264, DOI 10.17487/RFC8264, October 2017,
 <https://www.rfc-editor.org/info/rfc8264>.

 [RFC8291] Thomson, M., "Message Encryption for Web Push", RFC 8291,
 DOI 10.17487/RFC8291, November 2017,
 <https://www.rfc-editor.org/info/rfc8291>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

10.2. Informative References

 [RFC8246] McManus, P., "HTTP Immutable Responses", RFC 8246,
 DOI 10.17487/RFC8246, September 2017,
 <https://www.rfc-editor.org/info/rfc8246>.

Jenkins & Newman Standards Track [Page 89]

RFC 8620 JMAP July 2019

Authors’ Addresses

 Neil Jenkins
 Fastmail
 PO Box 234, Collins St. West
 Melbourne, VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Chris Newman
 Oracle
 440 E. Huntington Dr., Suite 400
 Arcadia, CA 91006
 United States of America

 Email: chris.newman@oracle.com

Jenkins & Newman Standards Track [Page 90]

