
Internet Engineering Task Force (IETF) W. Denniss
Request for Comments: 8628 Google
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity
 M. Jones
 Microsoft
 H. Tschofenig
 ARM Limited
 August 2019

 OAuth 2.0 Device Authorization Grant

Abstract

 The OAuth 2.0 device authorization grant is designed for Internet-
 connected devices that either lack a browser to perform a user-agent-
 based authorization or are input constrained to the extent that
 requiring the user to input text in order to authenticate during the
 authorization flow is impractical. It enables OAuth clients on such
 devices (like smart TVs, media consoles, digital picture frames, and
 printers) to obtain user authorization to access protected resources
 by using a user agent on a separate device.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8628.

Denniss, et al. Standards Track [Page 1]

RFC 8628 OAuth 2.0 Device Grant August 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Protocol . 5
 3.1. Device Authorization Request 5
 3.2. Device Authorization Response 7
 3.3. User Interaction . 8
 3.3.1. Non-Textual Verification URI Optimization 9
 3.4. Device Access Token Request 10
 3.5. Device Access Token Response 11
 4. Discovery Metadata . 12
 5. Security Considerations 12
 5.1. User Code Brute Forcing 12
 5.2. Device Code Brute Forcing 13
 5.3. Device Trustworthiness 13
 5.4. Remote Phishing . 14
 5.5. Session Spying . 15
 5.6. Non-Confidential Clients 15
 5.7. Non-Visual Code Transmission 15
 6. Usability Considerations 16
 6.1. User Code Recommendations 16
 6.2. Non-Browser User Interaction 17
 7. IANA Considerations . 17
 7.1. OAuth Parameter Registration 17
 7.2. OAuth URI Registration 17
 7.3. OAuth Extensions Error Registration 18
 7.4. OAuth Authorization Server Metadata 18
 8. Normative References . 19
 Acknowledgements . 20
 Authors’ Addresses . 21

Denniss, et al. Standards Track [Page 2]

RFC 8628 OAuth 2.0 Device Grant August 2019

1. Introduction

 This OAuth 2.0 [RFC6749] protocol extension enables OAuth clients to
 request user authorization from applications on devices that have
 limited input capabilities or lack a suitable browser. Such devices
 include smart TVs, media consoles, picture frames, and printers,
 which lack an easy input method or a suitable browser required for
 traditional OAuth interactions. The authorization flow defined by
 this specification, sometimes referred to as the "device flow",
 instructs the user to review the authorization request on a secondary
 device, such as a smartphone, which does have the requisite input and
 browser capabilities to complete the user interaction.

 The device authorization grant is not intended to replace browser-
 based OAuth in native apps on capable devices like smartphones.
 Those apps should follow the practices specified in "OAuth 2.0 for
 Native Apps" [RFC8252].

 The operating requirements for using this authorization grant type
 are:

 (1) The device is already connected to the Internet.

 (2) The device is able to make outbound HTTPS requests.

 (3) The device is able to display or otherwise communicate a URI and
 code sequence to the user.

 (4) The user has a secondary device (e.g., personal computer or
 smartphone) from which they can process the request.

 As the device authorization grant does not require two-way
 communication between the OAuth client on the device and the user
 agent (unlike other OAuth 2 grant types, such as the authorization
 code and implicit grant types), it supports several use cases that
 cannot be served by those other approaches.

 Instead of interacting directly with the end user’s user agent (i.e.,
 browser), the device client instructs the end user to use another
 computer or device and connect to the authorization server to approve
 the access request. Since the protocol supports clients that can’t
 receive incoming requests, clients poll the authorization server
 repeatedly until the end user completes the approval process.

Denniss, et al. Standards Track [Page 3]

RFC 8628 OAuth 2.0 Device Grant August 2019

 The device client typically chooses the set of authorization servers
 to support (i.e., its own authorization server or those of providers
 with which it has relationships). It is common for the device client
 to support only one authorization server, such as in the case of a TV
 application for a specific media provider that supports only that
 media provider’s authorization server. The user may not yet have an
 established relationship with that authorization provider, though one
 can potentially be set up during the authorization flow.

 +----------+ +----------------+
 | |>---(A)-- Client Identifier --->| |
 | | | |
 | |<---(B)-- Device Code, ---<| |
 | | User Code, | |
 | Device | & Verification URI | |
 | Client | | |
 | | [polling] | |
 | |>---(E)-- Device Code --->| |
 | | & Client Identifier | |
 | | | Authorization |
 | |<---(F)-- Access Token ---<| Server |
 +----------+ (& Optional Refresh Token) | |
 v | |
 : | |
 (C) User Code & Verification URI | |
 : | |
 v | |
 +----------+ | |
 | End User | | |
 | at |<---(D)-- End user reviews --->| |
 | Browser | authorization request | |
 +----------+ +----------------+

 Figure 1: Device Authorization Flow

 The device authorization flow illustrated in Figure 1 includes the
 following steps:

 (A) The client requests access from the authorization server and
 includes its client identifier in the request.

 (B) The authorization server issues a device code and an end-user
 code and provides the end-user verification URI.

 (C) The client instructs the end user to use a user agent on another
 device and visit the provided end-user verification URI. The
 client provides the user with the end-user code to enter in
 order to review the authorization request.

Denniss, et al. Standards Track [Page 4]

RFC 8628 OAuth 2.0 Device Grant August 2019

 (D) The authorization server authenticates the end user (via the
 user agent), and prompts the user to input the user code
 provided by the device client. The authorization server
 validates the user code provided by the user, and prompts the
 user to accept or decline the request.

 (E) While the end user reviews the client’s request (step D), the
 client repeatedly polls the authorization server to find out if
 the user completed the user authorization step. The client
 includes the device code and its client identifier.

 (F) The authorization server validates the device code provided by
 the client and responds with the access token if the client is
 granted access, an error if they are denied access, or an
 indication that the client should continue to poll.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol

3.1. Device Authorization Request

 This specification defines a new OAuth endpoint: the device
 authorization endpoint. This is separate from the OAuth
 authorization endpoint defined in [RFC6749] with which the user
 interacts via a user agent (i.e., a browser). By comparison, when
 using the device authorization endpoint, the OAuth client on the
 device interacts with the authorization server directly without
 presenting the request in a user agent, and the end user authorizes
 the request on a separate device. This interaction is defined as
 follows.

 The client initiates the authorization flow by requesting a set of
 verification codes from the authorization server by making an HTTP
 "POST" request to the device authorization endpoint.

Denniss, et al. Standards Track [Page 5]

RFC 8628 OAuth 2.0 Device Grant August 2019

 The client makes a device authorization request to the device
 authorization endpoint by including the following parameters using
 the "application/x-www-form-urlencoded" format, per Appendix B of
 [RFC6749], with a character encoding of UTF-8 in the HTTP request
 entity-body:

 client_id
 REQUIRED if the client is not authenticating with the
 authorization server as described in Section 3.2.1. of [RFC6749].
 The client identifier as described in Section 2.2 of [RFC6749].

 scope
 OPTIONAL. The scope of the access request as defined by
 Section 3.3 of [RFC6749].

 For example, the client makes the following HTTPS request:

 POST /device_authorization HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 client_id=1406020730&scope=example_scope

 All requests from the device MUST use the Transport Layer Security
 (TLS) protocol [RFC8446] and implement the best practices of BCP 195
 [RFC7525].

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

 The client authentication requirements of Section 3.2.1 of [RFC6749]
 apply to requests on this endpoint, which means that confidential
 clients (those that have established client credentials) authenticate
 in the same manner as when making requests to the token endpoint, and
 public clients provide the "client_id" parameter to identify
 themselves.

 Due to the polling nature of this protocol (as specified in
 Section 3.4), care is needed to avoid overloading the capacity of the
 token endpoint. To avoid unneeded requests on the token endpoint,
 the client SHOULD only commence a device authorization request when
 prompted by the user and not automatically, such as when the app
 starts or when the previous authorization session expires or fails.

Denniss, et al. Standards Track [Page 6]

RFC 8628 OAuth 2.0 Device Grant August 2019

3.2. Device Authorization Response

 In response, the authorization server generates a unique device
 verification code and an end-user code that are valid for a limited
 time and includes them in the HTTP response body using the
 "application/json" format [RFC8259] with a 200 (OK) status code. The
 response contains the following parameters:

 device_code
 REQUIRED. The device verification code.

 user_code
 REQUIRED. The end-user verification code.

 verification_uri
 REQUIRED. The end-user verification URI on the authorization
 server. The URI should be short and easy to remember as end users
 will be asked to manually type it into their user agent.

 verification_uri_complete
 OPTIONAL. A verification URI that includes the "user_code" (or
 other information with the same function as the "user_code"),
 which is designed for non-textual transmission.

 expires_in
 REQUIRED. The lifetime in seconds of the "device_code" and
 "user_code".

 interval
 OPTIONAL. The minimum amount of time in seconds that the client
 SHOULD wait between polling requests to the token endpoint. If no
 value is provided, clients MUST use 5 as the default.

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "device_code": "GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS",
 "user_code": "WDJB-MJHT",
 "verification_uri": "https://example.com/device",
 "verification_uri_complete":
 "https://example.com/device?user_code=WDJB-MJHT",
 "expires_in": 1800,
 "interval": 5
 }

Denniss, et al. Standards Track [Page 7]

RFC 8628 OAuth 2.0 Device Grant August 2019

 In the event of an error (such as an invalidly configured client),
 the authorization server responds in the same way as the token
 endpoint specified in Section 5.2 of [RFC6749].

3.3. User Interaction

 After receiving a successful authorization response, the client
 displays or otherwise communicates the "user_code" and the
 "verification_uri" to the end user and instructs them to visit the
 URI in a user agent on a secondary device (for example, in a browser
 on their mobile phone) and enter the user code.

 +---+
 | |
 | Using a browser on another device, visit: |
 | https://example.com/device |
 | |
 | And enter the code: |
 | WDJB-MJHT |
 | |
 +---+

 Figure 2: Example User Instruction

 The authorizing user navigates to the "verification_uri" and
 authenticates with the authorization server in a secure TLS-protected
 [RFC8446] session. The authorization server prompts the end user to
 identify the device authorization session by entering the "user_code"
 provided by the client. The authorization server should then inform
 the user about the action they are undertaking and ask them to
 approve or deny the request. Once the user interaction is complete,
 the server instructs the user to return to their device.

 During the user interaction, the device continuously polls the token
 endpoint with the "device_code", as detailed in Section 3.4, until
 the user completes the interaction, the code expires, or another
 error occurs. The "device_code" is not intended for the end user
 directly; thus, it should not be displayed during the interaction to
 avoid confusing the end user.

 Authorization servers supporting this specification MUST implement a
 user-interaction sequence that starts with the user navigating to
 "verification_uri" and continues with them supplying the "user_code"
 at some stage during the interaction. Other than that, the exact
 sequence and implementation of the user interaction is up to the
 authorization server; for example, the authorization server may
 enable new users to sign up for an account during the authorization
 flow or add additional security verification steps.

Denniss, et al. Standards Track [Page 8]

RFC 8628 OAuth 2.0 Device Grant August 2019

 It is NOT RECOMMENDED for authorization servers to include the user
 code ("user_code") in the verification URI ("verification_uri"), as
 this increases the length and complexity of the URI that the user
 must type. While the user must still type a similar number of
 characters with the "user_code" separated, once they successfully
 navigate to the "verification_uri", any errors in entering the code
 can be highlighted by the authorization server to improve the user
 experience. The next section documents the user interaction with
 "verification_uri_complete", which is designed to carry both pieces
 of information.

3.3.1. Non-Textual Verification URI Optimization

 When "verification_uri_complete" is included in the authorization
 response (Section 3.2), clients MAY present this URI in a non-textual
 manner using any method that results in the browser being opened with
 the URI, such as with QR (Quick Response) codes or NFC (Near Field
 Communication), to save the user from typing the URI.

 For usability reasons, it is RECOMMENDED for clients to still display
 the textual verification URI ("verification_uri") for users who are
 not able to use such a shortcut. Clients MUST still display the
 "user_code", as the authorization server will require the user to
 confirm it to disambiguate devices or as remote phishing mitigation
 (see Section 5.4).

 If the user starts the user interaction by navigating to
 "verification_uri_complete", then the user interaction described in
 Section 3.3 is still followed, with the optimization that the user
 does not need to type in the "user_code". The server SHOULD display
 the "user_code" to the user and ask them to verify that it matches
 the "user_code" being displayed on the device to confirm they are
 authorizing the correct device. As before, in addition to taking
 steps to confirm the identity of the device, the user should also be
 afforded the choice to approve or deny the authorization request.

Denniss, et al. Standards Track [Page 9]

RFC 8628 OAuth 2.0 Device Grant August 2019

 +---+
 | |
 | Scan the QR code or, using +------------+ |
 | a browser on another device, |[_].. . [_]| |
 | visit: || |
 | https://example.com/device || |
 | |. . . . | |
 | And enter the code: |[_]. | |
 | WDJB-MJHT +------------+ |
 | |
 +---+

 Figure 3: Example User Instruction with QR Code Representation
 of the Complete Verification URI

3.4. Device Access Token Request

 After displaying instructions to the user, the client creates an
 access token request and sends it to the token endpoint (as defined
 by Section 3.2 of [RFC6749]) with a "grant_type" of
 "urn:ietf:params:oauth:grant-type:device_code". This is an extension
 grant type (as defined by Section 4.5 of [RFC6749]) created by this
 specification, with the following parameters:

 grant_type
 REQUIRED. Value MUST be set to
 "urn:ietf:params:oauth:grant-type:device_code".

 device_code
 REQUIRED. The device verification code, "device_code" from the
 device authorization response, defined in Section 3.2.

 client_id
 REQUIRED if the client is not authenticating with the
 authorization server as described in Section 3.2.1. of [RFC6749].
 The client identifier as described in Section 2.2 of [RFC6749].

 For example, the client makes the following HTTPS request (line
 breaks are for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code
 &device_code=GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS
 &client_id=1406020730

Denniss, et al. Standards Track [Page 10]

RFC 8628 OAuth 2.0 Device Grant August 2019

 If the client was issued client credentials (or assigned other
 authentication requirements), the client MUST authenticate with the
 authorization server as described in Section 3.2.1 of [RFC6749].
 Note that there are security implications of statically distributed
 client credentials; see Section 5.6.

 The response to this request is defined in Section 3.5. Unlike other
 OAuth grant types, it is expected for the client to try the access
 token request repeatedly in a polling fashion based on the error code
 in the response.

3.5. Device Access Token Response

 If the user has approved the grant, the token endpoint responds with
 a success response defined in Section 5.1 of [RFC6749]; otherwise, it
 responds with an error, as defined in Section 5.2 of [RFC6749].

 In addition to the error codes defined in Section 5.2 of [RFC6749],
 the following error codes are specified for use with the device
 authorization grant in token endpoint responses:

 authorization_pending
 The authorization request is still pending as the end user hasn’t
 yet completed the user-interaction steps (Section 3.3). The
 client SHOULD repeat the access token request to the token
 endpoint (a process known as polling). Before each new request,
 the client MUST wait at least the number of seconds specified by
 the "interval" parameter of the device authorization response (see
 Section 3.2), or 5 seconds if none was provided, and respect any
 increase in the polling interval required by the "slow_down"
 error.

 slow_down
 A variant of "authorization_pending", the authorization request is
 still pending and polling should continue, but the interval MUST
 be increased by 5 seconds for this and all subsequent requests.

 access_denied
 The authorization request was denied.

 expired_token
 The "device_code" has expired, and the device authorization
 session has concluded. The client MAY commence a new device
 authorization request but SHOULD wait for user interaction before
 restarting to avoid unnecessary polling.

Denniss, et al. Standards Track [Page 11]

RFC 8628 OAuth 2.0 Device Grant August 2019

 The "authorization_pending" and "slow_down" error codes define
 particularly unique behavior, as they indicate that the OAuth client
 should continue to poll the token endpoint by repeating the token
 request (implementing the precise behavior defined above). If the
 client receives an error response with any other error code, it MUST
 stop polling and SHOULD react accordingly, for example, by displaying
 an error to the user.

 On encountering a connection timeout, clients MUST unilaterally
 reduce their polling frequency before retrying. The use of an
 exponential backoff algorithm to achieve this, such as doubling the
 polling interval on each such connection timeout, is RECOMMENDED.

 The assumption of this specification is that the separate device on
 which the user is authorizing the request does not have a way to
 communicate back to the device with the OAuth client. This protocol
 only requires a one-way channel in order to maximize the viability of
 the protocol in restricted environments, like an application running
 on a TV that is only capable of outbound requests. If a return
 channel were to exist for the chosen user-interaction interface, then
 the device MAY wait until notified on that channel that the user has
 completed the action before initiating the token request (as an
 alternative to polling). Such behavior is, however, outside the
 scope of this specification.

4. Discovery Metadata

 Support for this protocol is declared in OAuth 2.0 Authorization
 Server Metadata [RFC8414] as follows. The value
 "urn:ietf:params:oauth:grant-type:device_code" is included in values
 of the "grant_types_supported" key, and the following new key value
 pair is added:

 device_authorization_endpoint
 OPTIONAL. URL of the authorization server’s device authorization
 endpoint, as defined in Section 3.1.

5. Security Considerations

5.1. User Code Brute Forcing

 Since the user code is typed by the user, shorter codes are more
 desirable for usability reasons. This means the entropy is typically
 less than would be used for the device code or other OAuth bearer
 token types where the code length does not impact usability.
 Therefore, it is recommended that the server rate-limit user code
 attempts.

Denniss, et al. Standards Track [Page 12]

RFC 8628 OAuth 2.0 Device Grant August 2019

 The user code SHOULD have enough entropy that, when combined with
 rate-limiting and other mitigations, a brute-force attack becomes
 infeasible. For example, it’s generally held that 128-bit symmetric
 keys for encryption are seen as good enough today because an attacker
 has to put in 2^96 work to have a 2^-32 chance of guessing correctly
 via brute force. The rate-limiting and finite lifetime on the user
 code place an artificial limit on the amount of work an attacker can
 "do". If, for instance, one uses an 8-character base 20 user code
 (with roughly 34.5 bits of entropy), the rate-limiting interval and
 validity period would need to only allow 5 attempts in order to get
 the same 2^-32 probability of success by random guessing.

 A successful brute forcing of the user code would enable the attacker
 to approve the authorization grant with their own credentials, after
 which the device would receive a device authorization grant linked to
 the attacker’s account. This is the opposite scenario to an OAuth
 bearer token being brute forced, whereby the attacker gains control
 of the victim’s authorization grant. Such attacks may not always
 make economic sense. For example, for a video app, the device owner
 may then be able to purchase movies using the attacker’s account
 (though even in this case a privacy risk would still remain and thus
 is important to protect against). Furthermore, some uses of the
 device flow give the granting account the ability to perform actions
 that need to be protected, such as controlling the device.

 The precise length of the user code and the entropy contained within
 is at the discretion of the authorization server, which needs to
 consider the sensitivity of their specific protected resources, the
 practicality of the code length from a usability standpoint, and any
 mitigations that are in place, such as rate-limiting, when
 determining the user code format.

5.2. Device Code Brute Forcing

 An attacker who guesses the device code would be able to potentially
 obtain the authorization code once the user completes the flow. As
 the device code is not displayed to the user and thus there are no
 usability considerations on the length, a very high entropy code
 SHOULD be used.

5.3. Device Trustworthiness

 Unlike other native application OAuth 2.0 flows, the device
 requesting the authorization is not the same as the device from which
 the user grants access. Thus, signals from the approving user’s
 session and device are not always relevant to the trustworthiness of
 the client device.

Denniss, et al. Standards Track [Page 13]

RFC 8628 OAuth 2.0 Device Grant August 2019

 Note that if an authorization server used with this flow is
 malicious, then it could perform a man-in-the-middle attack on the
 backchannel flow to another authorization server. In this scenario,
 the man-in-the-middle is not completely hidden from sight, as the end
 user would end up on the authorization page of the wrong service,
 giving them an opportunity to notice that the URL in the browser’s
 address bar is wrong. For this to be possible, the device
 manufacturer must either be the attacker and shipping a device
 intended to perform the man-in-the-middle attack, or be using an
 authorization server that is controlled by an attacker, possibly
 because the attacker compromised the authorization server used by the
 device. In part, the person purchasing the device is counting on the
 manufacturer and its business partners to be trustworthy.

5.4. Remote Phishing

 It is possible for the device flow to be initiated on a device in an
 attacker’s possession. For example, an attacker might send an email
 instructing the target user to visit the verification URL and enter
 the user code. To mitigate such an attack, it is RECOMMENDED to
 inform the user that they are authorizing a device during the user-
 interaction step (see Section 3.3) and to confirm that the device is
 in their possession. The authorization server SHOULD display
 information about the device so that the user could notice if a
 software client was attempting to impersonate a hardware device.

 For authorization servers that support the
 "verification_uri_complete" optimization discussed in Section 3.3.1,
 it is particularly important to confirm that the device is in the
 user’s possession, as the user no longer has to type in the code
 being displayed on the device manually. One suggestion is to display
 the code during the authorization flow and ask the user to verify
 that the same code is currently being displayed on the device they
 are setting up.

 The user code needs to have a long enough lifetime to be useable
 (allowing the user to retrieve their secondary device, navigate to
 the verification URI, log in, etc.) but should be sufficiently short
 to limit the usability of a code obtained for phishing. This doesn’t
 prevent a phisher from presenting a fresh token, particularly if they
 are interacting with the user in real time, but it does limit the
 viability of codes sent over email or text message.

Denniss, et al. Standards Track [Page 14]

RFC 8628 OAuth 2.0 Device Grant August 2019

5.5. Session Spying

 While the device is pending authorization, it may be possible for a
 malicious user to physically spy on the device user interface (by
 viewing the screen on which it’s displayed, for example) and hijack
 the session by completing the authorization faster than the user that
 initiated it. Devices SHOULD take into account the operating
 environment when considering how to communicate the code to the user
 to reduce the chances it will be observed by a malicious user.

5.6. Non-Confidential Clients

 Device clients are generally incapable of maintaining the
 confidentiality of their credentials, as users in possession of the
 device can reverse-engineer it and extract the credentials.
 Therefore, unless additional measures are taken, they should be
 treated as public clients (as defined by Section 2.1 of [RFC6749]),
 which are susceptible to impersonation. The security considerations
 of Section 5.3.1 of [RFC6819] and Sections 8.5 and 8.6 of [RFC8252]
 apply to such clients.

 The user may also be able to obtain the "device_code" and/or other
 OAuth bearer tokens issued to their client, which would allow them to
 use their own authorization grant directly by impersonating the
 client. Given that the user in possession of the client credentials
 can already impersonate the client and create a new authorization
 grant (with a new "device_code"), this doesn’t represent a separate
 impersonation vector.

5.7. Non-Visual Code Transmission

 There is no requirement that the user code be displayed by the device
 visually. Other methods of one-way communication can potentially be
 used, such as text-to-speech audio or Bluetooth Low Energy. To
 mitigate an attack in which a malicious user can bootstrap their
 credentials on a device not in their control, it is RECOMMENDED that
 any chosen communication channel only be accessible by people in
 close proximity, for example, users who can see or hear the device.

Denniss, et al. Standards Track [Page 15]

RFC 8628 OAuth 2.0 Device Grant August 2019

6. Usability Considerations

 This section is a non-normative discussion of usability
 considerations.

6.1. User Code Recommendations

 For many users, their nearest Internet-connected device will be their
 mobile phone; typically, these devices offer input methods that are
 more time-consuming than a computer keyboard to change the case or
 input numbers. To improve usability (improving entry speed and
 reducing retries), the limitations of such devices should be taken
 into account when selecting the user code character set.

 One way to improve input speed is to restrict the character set to
 case-insensitive A-Z characters, with no digits. These characters
 can typically be entered on a mobile keyboard without using modifier
 keys. Further removing vowels to avoid randomly creating words
 results in the base 20 character set "BCDFGHJKLMNPQRSTVWXZ". Dashes
 or other punctuation may be included for readability.

 An example user code following this guideline, "WDJB-MJHT", contains
 8 significant characters and has dashes added for end-user
 readability. The resulting entropy is 20^8.

 Pure numeric codes are also a good choice for usability, especially
 for clients targeting locales where A-Z character keyboards are not
 used, though the length of such a code needs to be longer to maintain
 high entropy.

 An example numeric user code that contains 9 significant digits and
 dashes added for end-user readability with an entropy of 10^9 is
 "019-450-730".

 When processing the inputted user code, the server should strip
 dashes and other punctuation that it added for readability (making
 the inclusion of such punctuation by the user optional). For codes
 using only characters in the A-Z range, as with the base 20 charset
 defined above, the user’s input should be uppercased before a
 comparison to account for the fact that the user may input the
 equivalent lowercase characters. Further stripping of all characters
 outside the chosen character set is recommended to reduce instances
 where an errantly typed character (like a space character)
 invalidates otherwise valid input.

Denniss, et al. Standards Track [Page 16]

RFC 8628 OAuth 2.0 Device Grant August 2019

 It is RECOMMENDED to avoid character sets that contain two or more
 characters that can easily be confused with each other, like "0" and
 "O" or "1", "l" and "I". Furthermore, to the extent practical, when
 a character set contains a character that may be confused with
 characters outside the character set, a character outside the set MAY
 be substituted with the one in the character set with which it is
 commonly confused; for example, "O" may be substituted for "0" when
 using the numerical 0-9 character set.

6.2. Non-Browser User Interaction

 Devices and authorization servers MAY negotiate an alternative code
 transmission and user-interaction method in addition to the one
 described in Section 3.3. Such an alternative user-interaction flow
 could obviate the need for a browser and manual input of the code,
 for example, by using Bluetooth to transmit the code to the
 authorization server’s companion app. Such interaction methods can
 utilize this protocol as, ultimately, the user just needs to identify
 the authorization session to the authorization server; however, user
 interaction other than through the verification URI is outside the
 scope of this specification.

7. IANA Considerations

7.1. OAuth Parameter Registration

 This specification registers the following values in the IANA "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

 Name: device_code
 Parameter Usage Location: token request
 Change Controller: IESG
 Reference: Section 3.4 of RFC 8628

7.2. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth
 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

 URN: urn:ietf:params:oauth:grant-type:device_code
 Common Name: Device Authorization Grant Type for OAuth 2.0
 Change Controller: IESG
 Specification Document: Section 3.4 of RFC 8628

Denniss, et al. Standards Track [Page 17]

RFC 8628 OAuth 2.0 Device Grant August 2019

7.3. OAuth Extensions Error Registration

 This specification registers the following values in the IANA "OAuth
 Extensions Error Registry" registry [IANA.OAuth.Parameters]
 established by [RFC6749].

 Name: authorization_pending
 Usage Location: Token endpoint response
 Protocol Extension: RFC 8628
 Change Controller: IETF
 Reference: Section 3.5 of RFC 8628

 Name: access_denied
 Usage Location: Token endpoint response
 Protocol Extension: RFC 8628
 Change Controller: IETF
 Reference: Section 3.5 of RFC 8628

 Name: slow_down
 Usage Location: Token endpoint response
 Protocol Extension: RFC 8628
 Change Controller: IETF
 Reference: Section 3.5 of RFC 8628

 Name: expired_token
 Usage Location: Token endpoint response
 Protocol Extension: RFC 8628
 Change Controller: IETF
 Reference: Section 3.5 of RFC 8628

7.4. OAuth Authorization Server Metadata

 This specification registers the following values in the IANA "OAuth
 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
 established by [RFC8414].

 Metadata name: device_authorization_endpoint
 Metadata Description: URL of the authorization server’s device
 authorization endpoint
 Change Controller: IESG
 Reference: Section 4 of RFC 8628

Denniss, et al. Standards Track [Page 18]

RFC 8628 OAuth 2.0 Device Grant August 2019

8. Normative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

Denniss, et al. Standards Track [Page 19]

RFC 8628 OAuth 2.0 Device Grant August 2019

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Acknowledgements

 The starting point for this document was the Internet-Draft
 draft-recordon-oauth-v2-device, authored by David Recordon and Brent
 Goldman, which itself was based on content in draft versions of the
 OAuth 2.0 protocol specification removed prior to publication due to
 a then-lack of sufficient deployment expertise. Thank you to the
 OAuth Working Group members who contributed to those earlier drafts.

 This document was produced in the OAuth Working Group under the
 chairpersonship of Rifaat Shekh-Yusef and Hannes Tschofenig, with
 Benjamin Kaduk, Kathleen Moriarty, and Eric Rescorla serving as
 Security Area Directors.

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Ben Campbell, Brian Campbell, Roshni Chandrashekhar, Alissa Cooper,
 Eric Fazendin, Benjamin Kaduk, Jamshid Khosravian, Mirja Kuehlewind,
 Torsten Lodderstedt, James Manger, Dan McNulty, Breno de Medeiros,
 Alexey Melnikov, Simon Moffatt, Stein Myrseth, Emond Papegaaij,
 Justin Richer, Adam Roach, Nat Sakimura, Andrew Sciberras, Marius
 Scurtescu, Filip Skokan, Robert Sparks, Ken Wang, Christopher Wood,
 Steven E. Wright, and Qin Wu.

Denniss, et al. Standards Track [Page 20]

RFC 8628 OAuth 2.0 Device Grant August 2019

Authors’ Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 United States of America

 Email: wdenniss@google.com
 URI: https://wdenniss.com/deviceflow

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Denniss, et al. Standards Track [Page 21]

