
Internet Engineering Task Force (IETF) E. Voit
Request for Comments: 8639 Cisco Systems
Category: Standards Track A. Clemm
ISSN: 2070-1721 Futurewei
 A. Gonzalez Prieto
 Microsoft
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 September 2019

 Subscription to YANG Notifications

Abstract

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher’s event
 streams. Applying these elements allows a subscriber to request and
 receive a continuous, customized feed of publisher-generated
 information.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8639.

Voit, et al. Standards Track [Page 1]

RFC 8639 Subscribed Notifications September 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Voit, et al. Standards Track [Page 2]

RFC 8639 Subscribed Notifications September 2019

Table of Contents

 1. Introduction ..3
 1.1. Motivation ...4
 1.2. Terminology ..4
 1.3. Solution Overview ..6
 1.4. Relationship to RFC 52777
 2. Solution ..8
 2.1. Event Streams ..8
 2.2. Event Stream Filters9
 2.3. QoS ..9
 2.4. Dynamic Subscriptions10
 2.5. Configured Subscriptions19
 2.6. Event Record Delivery27
 2.7. Subscription State Change Notifications28
 2.8. Subscription Monitoring33
 2.9. Support for the "ietf-subscribed-notifications"
 YANG Module ...34
 3. YANG Data Model Tree Diagrams34
 3.1. The "streams" Container34
 3.2. The "filters" Container35
 3.3. The "subscriptions" Container35
 4. Event Notification Subscription YANG Module37
 5. IANA Considerations ..66
 6. Implementation Considerations66
 7. Transport Requirements ...67
 8. Security Considerations ..68
 9. References ...72
 9.1. Normative References72
 9.2. Informative References74
 Appendix A. Example Configured Transport Augmentation75
 Acknowledgments ...77
 Authors’ Addresses ..77

1. Introduction

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher’s event
 streams. This effectively enables a "subscribe, then publish"
 capability where the customized information needs and access
 permissions of each target receiver are understood by the publisher
 before subscribed event records are marshaled and pushed. The
 receiver then gets a continuous, customized feed of
 publisher-generated information.

Voit, et al. Standards Track [Page 3]

RFC 8639 Subscribed Notifications September 2019

 While the functionality defined in this document is transport
 agnostic, transports like the Network Configuration Protocol
 (NETCONF) [RFC6241] or RESTCONF [RFC8040] can be used to configure or
 dynamically signal subscriptions. Bindings for subscribed event
 record delivery for NETCONF and RESTCONF are defined in [RFC8640] and
 [RESTCONF-Notif], respectively.

 The YANG data model defined in this document conforms to the Network
 Management Datastore Architecture defined in [RFC8342].

1.1. Motivation

 Various limitations to subscriptions as described in [RFC5277] were
 alleviated to some extent by the requirements provided in [RFC7923].
 Resolving any remaining issues is the primary motivation for this
 work. Key capabilities supported by this document include:

 o multiple subscriptions on a single transport session

 o support for dynamic and configured subscriptions

 o modification of an existing subscription in progress

 o per-subscription operational counters

 o negotiation of subscription parameters (through the use of hints
 returned as part of declined subscription requests)

 o subscription state change notifications (e.g., publisher-driven
 suspension, parameter modification)

 o independence from transport

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 o Client: Defined in [RFC8342].

 o Configuration: Defined in [RFC8342].

 o Configuration datastore: Defined in [RFC8342].

Voit, et al. Standards Track [Page 4]

RFC 8639 Subscribed Notifications September 2019

 o Configured subscription: A subscription installed via
 configuration into a configuration datastore.

 o Dynamic subscription: A subscription created dynamically by a
 subscriber via a Remote Procedure Call (RPC).

 o Event: An occurrence of something that may be of interest.
 Examples include a configuration change, a fault, a change in
 status, crossing a threshold, or an external input to the system.

 o Event occurrence time: A timestamp matching the time an
 originating process identified as when an event happened.

 o Event record: A set of information detailing an event.

 o Event stream: A continuous, chronologically ordered set of events
 aggregated under some context.

 o Event stream filter: Evaluation criteria that may be applied
 against event records in an event stream. Event records pass the
 filter when specified criteria are met.

 o Notification message: Information intended for a receiver
 indicating that one or more events have occurred.

 o Publisher: An entity responsible for streaming notification
 messages per the terms of a subscription.

 o Receiver: A target to which a publisher pushes subscribed event
 records. For dynamic subscriptions, the receiver and subscriber
 are the same entity.

 o Subscriber: A client able to request and negotiate a contract for
 the generation and push of event records from a publisher. For
 dynamic subscriptions, the receiver and subscriber are the same
 entity.

 o Subscription: A contract with a publisher, stipulating the
 information that one or more receivers wish to have pushed from
 the publisher without the need for further solicitation.

 All YANG tree diagrams used in this document follow the notation
 defined in [RFC8340].

Voit, et al. Standards Track [Page 5]

RFC 8639 Subscribed Notifications September 2019

1.3. Solution Overview

 This document describes a transport-agnostic mechanism for
 subscribing to and receiving content from an event stream in a
 publisher. This mechanism operates through the use of a
 subscription.

 Two types of subscriptions are supported:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via an RPC. If the
 publisher is able to serve this request, it accepts it and then
 starts pushing notification messages back to the subscriber. If
 the publisher is not able to serve it as requested, then an error
 response is returned. This response MAY include hints for
 subscription parameters that, had they been present, may have
 enabled the dynamic subscription request to be accepted.

 2. Configured subscriptions, which allow the management of
 subscriptions via a configuration so that a publisher can send
 notification messages to a receiver. Support for configured
 subscriptions is optional, with its availability advertised via a
 YANG feature.

 Additional characteristics differentiating configured from dynamic
 subscriptions include the following:

 o The lifetime of a dynamic subscription is bound by the transport
 session used to establish it. For connection-oriented stateful
 transports like NETCONF, the loss of the transport session will
 result in the immediate termination of any associated dynamic
 subscriptions. For connectionless or stateless transports like
 HTTP, a lack of receipt acknowledgment of a sequential set of
 notification messages and/or keep-alives can be used to trigger a
 termination of a dynamic subscription. Contrast this to the
 lifetime of a configured subscription. This lifetime is driven by
 relevant configuration being present in the publisher’s applied
 configuration. Being tied to configuration operations implies
 that (1) configured subscriptions can be configured to persist
 across reboots and (2) a configured subscription can persist even
 when its publisher is fully disconnected from any network.

 o Configured subscriptions can be modified by any configuration
 client with write permission on the configuration of the
 subscription. Dynamic subscriptions can only be modified via an
 RPC request made by the original subscriber or by a change to
 configuration data referenced by the subscription.

Voit, et al. Standards Track [Page 6]

RFC 8639 Subscribed Notifications September 2019

 Note that there is no mixing and matching of dynamic and configured
 operations on a single subscription. Specifically, a configured
 subscription cannot be modified or deleted using RPCs defined in this
 document. Similarly, a dynamic subscription cannot be directly
 modified or deleted by configuration operations. It is, however,
 possible to perform a configuration operation that indirectly impacts
 a dynamic subscription. By changing the value of a preconfigured
 filter referenced by an existing dynamic subscription, the selected
 event records passed to a receiver might change.

 Also note that transport-specific specifications based on this
 specification MUST detail the lifecycle of dynamic subscriptions as
 well as the lifecycle of configured subscriptions (if supported).

 A publisher MAY terminate a dynamic subscription at any time.
 Similarly, it MAY decide to temporarily suspend the sending of
 notification messages for any dynamic subscription, or for one or
 more receivers of a configured subscription. Such termination or
 suspension is driven by internal considerations of the publisher.

1.4. Relationship to RFC 5277

 This document is intended to provide a superset of the subscription
 capabilities initially defined in [RFC5277]. It is important to
 understand what has been reused and what has been replaced,
 especially when extending an existing implementation that is based on
 [RFC5277]. Key relationships between these two documents include the
 following:

 o This document defines a transport-independent capability;
 [RFC5277] is specific to NETCONF.

 o For the new operations, the data model defined in this document is
 used instead of the data model defined in Section 3.4 of
 [RFC5277].

 o The RPC operations in this document replace the operation
 <create-subscription> as defined in [RFC5277], Section 4.

 o The <notification> message of [RFC5277], Section 4 is used.

 o The included contents of the "NETCONF" event stream are identical
 between this document and [RFC5277].

 o A publisher MAY implement both the Notification Management Schema
 and RPCs defined in [RFC5277] and this document concurrently.

Voit, et al. Standards Track [Page 7]

RFC 8639 Subscribed Notifications September 2019

 o Unlike [RFC5277], this document enables a single transport session
 to intermix notification messages and RPCs for different
 subscriptions.

 o A subscription "stop-time" can be specified as part of a
 notification replay. This supports a capability analogous to the
 <stopTime> parameter of [RFC5277]. However, in this
 specification, a "stop-time" parameter can also be applied without
 replay.

2. Solution

 Per the overview provided in Section 1.3, this section details the
 overall context, state machines, and subsystems that may be assembled
 to allow the subscription of events from a publisher.

2.1. Event Streams

 An event stream is a named entity on a publisher; this entity exposes
 a continuously updating set of YANG-defined event records. An event
 record is an instantiation of a "notification" YANG statement. If
 the "notification" is defined as a child to a data node, the
 instantiation includes the hierarchy of nodes that identifies the
 data node in the datastore (see Section 7.16.2 of [RFC7950]). Each
 event stream is available for subscription. Identifying a) how event
 streams are defined (other than the NETCONF stream), b) how event
 records are defined/generated, and c) how event records are assigned
 to event streams is out of scope for this document.

 There is only one reserved event stream name in this document:
 "NETCONF". The "NETCONF" event stream contains all NETCONF event
 record information supported by the publisher, except where an event
 record has explicitly been excluded from the stream. Beyond the
 "NETCONF" stream, implementations MAY define additional event
 streams.

 As YANG-defined event records are created by a system, they may be
 assigned to one or more streams. The event record is distributed to
 a subscription’s receiver(s) where (1) a subscription includes the
 identified stream and (2) subscription filtering does not exclude the
 event record from that receiver.

 Access control permissions may be used to silently exclude event
 records from an event stream for which the receiver has no read
 access. See [RFC8341], Section 3.4.6 for an example of how this
 might be accomplished. Note that per Section 2.7 of this document,
 subscription state change notifications are never filtered out.

Voit, et al. Standards Track [Page 8]

RFC 8639 Subscribed Notifications September 2019

 If no access control permissions are in place for event records on an
 event stream, then a receiver MUST be allowed access to all the event
 records. If subscriber permissions change during the lifecycle of a
 subscription and event stream access is no longer permitted, then the
 subscription MUST be terminated.

 Event records MUST NOT be delivered to a receiver in a different
 order than the order in which they were placed on an event stream.

2.2. Event Stream Filters

 This document defines an extensible filtering mechanism. The filter
 itself is a boolean test that is placed on the content of an event
 record. A "false" filtering result causes the event record to be
 excluded from delivery to a receiver. A filter never results in
 information being stripped from an event record prior to that event
 record being encapsulated in a notification message. The two
 optional event stream filtering syntaxes supported are [XPATH] and
 subtree [RFC6241].

 If no event stream filter is provided in a subscription, all event
 records on an event stream are to be sent.

2.3. QoS

 This document provides for several Quality of Service (QoS)
 parameters. These parameters indicate the treatment of a
 subscription relative to other traffic between publisher and
 receiver. Included are:

 o A "dscp" marking to differentiate prioritization of notification
 messages during network transit.

 o A "weighting" so that bandwidth proportional to this weighting can
 be allocated to this subscription relative to other subscriptions.

 o A "dependency" upon another subscription.

 If the publisher supports the "dscp" feature, then a subscription
 with a "dscp" leaf MUST result in a corresponding Differentiated
 Services Code Point (DSCP) marking [RFC2474] being placed in the IP
 header of any resulting notification messages and subscription state
 change notifications. A publisher MUST respect the DSCP markings for
 subscription traffic egressing that publisher.

Voit, et al. Standards Track [Page 9]

RFC 8639 Subscribed Notifications September 2019

 Different DSCP code points require different transport connections.
 As a result, where TCP is used, a publisher that supports the "dscp"
 feature must ensure that a subscription’s notification messages are
 returned in a single TCP transport session where all traffic shares
 the subscription’s "dscp" leaf value. If this cannot be guaranteed,
 any "establish-subscription" RPC request SHOULD be rejected with a
 "dscp-unavailable" error.

 For the "weighting" parameter, when concurrently dequeuing
 notification messages from multiple subscriptions to a receiver, the
 publisher MUST allocate bandwidth to each subscription proportional
 to the weights assigned to those subscriptions. "Weighting" is an
 optional capability of the publisher; support for it is identified
 via the "qos" feature.

 If a subscription has the "dependency" parameter set, then any
 buffered notification messages containing event records selected by
 the parent subscription MUST be dequeued prior to the notification
 messages of the dependent subscription. If notification messages
 have dependencies on each other, the notification message queued the
 longest MUST go first. If a "dependency" included in an RPC
 references a subscription that does not exist or is no longer
 accessible to that subscriber, that "dependency" MUST be silently
 removed. "Dependency" is an optional capability of the publisher;
 support for it is identified via the "qos" feature.

 "Dependency" and "weighting" parameters will only be respected and
 enforced between subscriptions that share the same "dscp" leaf value.

 There are additional types of publisher capacity overload that this
 specification does not address, as they are out of scope. For
 example, the prioritization of which subscriptions have precedence
 when the publisher CPU is overloaded is not discussed. As a result,
 implementation choices will need to be made to address such
 considerations.

2.4. Dynamic Subscriptions

 Dynamic subscriptions are managed via protocol operations (in the
 form of RPCs, per [RFC7950], Section 7.14) made against targets
 located in the publisher. These RPCs have been designed extensibly
 so that they may be augmented for subscription targets beyond event
 streams. For examples of such augmentations, see the RPC
 augmentations in the YANG data model provided in [RFC8641].

Voit, et al. Standards Track [Page 10]

RFC 8639 Subscribed Notifications September 2019

2.4.1. Dynamic Subscription State Machine

 Below is the publisher’s state machine for a dynamic subscription.
 Each state is shown in its own box. It is important to note that
 such a subscription doesn’t exist at the publisher until an
 "establish-subscription" RPC is accepted. The mere request by a
 subscriber to establish a subscription is not sufficient for that
 subscription to be externally visible. Start and end states are
 depicted to reflect subscription creation and deletion events.

 : start :
 :.......:
 |
 establish-subscription
 |
 | .-------modify-subscription--------.
 v v |
 .-----------. .-----------.
 .--------. | receiver |--insufficient CPU, b/w-->| receiver |
 modify- ’| active | | suspended |
 subscription | |<----CPU, b/w sufficient--| |
 ---------->’-----------’ ’-----------’
 | |
 delete/kill-subscription delete/kill-
 | subscription
 v |
 |
 : end :<---------------------------------’
 :.......:

 Figure 1: Publisher’s State Machine for a Dynamic Subscription

 Of interest in this state machine are the following:

 o Successful "establish-subscription" or "modify-subscription" RPCs
 move the subscription to the "active" state.

 o Failed "modify-subscription" RPCs will leave the subscription in
 its previous state, with no visible change to any streaming
 updates.

 o A "delete-subscription" or "kill-subscription" RPC will end the
 subscription, as will reaching a "stop-time".

Voit, et al. Standards Track [Page 11]

RFC 8639 Subscribed Notifications September 2019

 o A publisher may choose to suspend a subscription when there is not
 sufficient CPU or bandwidth available to service the subscription.
 This is announced to the subscriber via the "subscription-
 suspended" subscription state change notification.

 o A suspended subscription may be modified by the subscriber (for
 example, in an attempt to use fewer resources). Successful
 modification returns the subscription to the "active" state.

 o Even without a "modify-subscription" request, a publisher may
 return a subscription to the "active" state when sufficient
 resources are again available. This is announced to the
 subscriber via the "subscription-resumed" subscription state
 change notification.

2.4.2. Establishing a Dynamic Subscription

 The "establish-subscription" RPC allows a subscriber to request the
 creation of a subscription.

 The input parameters of the operation are:

 o A "stream" name, which identifies the targeted event stream
 against which the subscription is applied.

 o An event stream filter, which may reduce the set of event records
 pushed.

 o If the transport used by the RPC supports multiple encodings, an
 optional "encoding" for the event records pushed. If no
 "encoding" is included, the encoding of the RPC MUST be used.

 o An optional "stop-time" for the subscription. If no "stop-time"
 is present, notification messages will continue to be sent until
 the subscription is terminated.

 o An optional "replay-start-time" for the subscription. The
 "replay-start-time" MUST be in the past and indicates that the
 subscription is requesting a replay of previously generated
 information from the event stream. For more on replay, see
 Section 2.4.2.1. If there is no "replay-start-time", the
 subscription starts immediately.

 If the publisher can satisfy the "establish-subscription" request, it
 replies with an identifier for the subscription and then immediately
 starts streaming notification messages.

Voit, et al. Standards Track [Page 12]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "establish-subscription". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---x establish-subscription
 +---w input
 | +---w (target)
 | | +--:(stream)
 | | +---w (stream-filter)?
 | | | +--:(by-reference)
 | | | | +---w stream-filter-name
 | | | | stream-filter-ref
 | | | +--:(within-subscription)
 | | | +---w (filter-spec)?
 | | | +--:(stream-subtree-filter)
 | | | | +---w stream-subtree-filter? <anydata>
 | | | | {subtree}?
 | | | +--:(stream-xpath-filter)
 | | | +---w stream-xpath-filter?
 | | | yang:xpath1.0 {xpath}?
 | | +---w stream stream-ref
 | | +---w replay-start-time?
 | | yang:date-and-time {replay}?
 | +---w stop-time?
 | | yang:date-and-time
 | +---w dscp? inet:dscp
 | | {dscp}?
 | +---w weighting? uint8
 | | {qos}?
 | +---w dependency?
 | | subscription-id {qos}?
 | +---w encoding? encoding
 +--ro output
 +--ro id subscription-id
 +--ro replay-start-time-revision? yang:date-and-time
 {replay}?

 Figure 2: "establish-subscription" RPC Tree Diagram

 A publisher MAY reject the "establish-subscription" RPC for many
 reasons, as described in Section 2.4.6. The contents of the
 resulting RPC error response MAY include details on input parameters
 that, if considered in a subsequent "establish-subscription" RPC, may
 result in successful subscription establishment. Any such hints MUST
 be transported in a yang-data "establish-subscription-stream-error-
 info" container included in the RPC error response.

Voit, et al. Standards Track [Page 13]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "establish-subscription-stream-error-
 info" RPC yang-data. All objects contained in this tree are
 described in the YANG module in Section 4.

 yang-data establish-subscription-stream-error-info
 +--ro establish-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 3: "establish-subscription-stream-error-info"
 RPC yang-data Tree Diagram

2.4.2.1. Requesting a Replay of Event Records

 Replay provides the ability to establish a subscription that is also
 capable of passing event records generated in the recent past. In
 other words, as the subscription initializes itself, it sends any
 event records in the target event stream that meet the filter
 criteria that have an event time that is after the "replay-start-
 time" and also have an event time before the "stop-time" should this
 "stop-time" exist. The end of these historical event records is
 identified via a "replay-completed" subscription state change
 notification. Any event records generated since the subscription
 establishment may then follow. For a particular subscription, all
 event records will be delivered in the order in which they are placed
 in the event stream.

 Replay is an optional feature that is dependent on an event stream
 supporting some form of logging. This document puts no restrictions
 on the size or form of the log, where it resides in the publisher, or
 when event record entries in the log are purged.

 The inclusion of a "replay-start-time" in an "establish-subscription"
 RPC indicates a replay request. If the "replay-start-time" contains
 a value that is earlier than what a publisher’s retained history
 supports, then if the subscription is accepted, the actual
 publisher’s revised start time MUST be set in the returned
 "replay-start-time-revision" object.

 A "stop-time" parameter may be included in a replay subscription.
 For a replay subscription, the "stop-time" MAY be earlier than the
 current time but MUST be later than the "replay-start-time".

Voit, et al. Standards Track [Page 14]

RFC 8639 Subscribed Notifications September 2019

 If the given "replay-start-time" is later than the time marked in any
 event records retained in the replay buffer, then the publisher MUST
 send a "replay-completed" notification immediately after a successful
 "establish-subscription" RPC response.

 If an event stream supports replay, the "replay-support" leaf is
 present in the "/streams/stream" list entry for the event stream. An
 event stream that does support replay is not expected to have an
 unlimited supply of saved notifications available to accommodate any
 given replay request. To assess the timeframe available for replay,
 subscribers can read the leafs "replay-log-creation-time" and
 "replay-log-aged-time". See Figure 18 for the YANG tree and
 Section 4 for the YANG module describing these elements. The actual
 size of the replay log at any given time is a publisher-specific
 matter. Control parameters for the replay log are outside the scope
 of this document.

2.4.3. Modifying a Dynamic Subscription

 The "modify-subscription" operation permits changing the terms of an
 existing dynamic subscription. Dynamic subscriptions can be modified
 any number of times. Dynamic subscriptions can only be modified via
 this RPC using a transport session connecting to the subscriber. If
 the publisher accepts the requested modifications, it acknowledges
 success to the subscriber, then immediately starts sending event
 records based on the new terms.

 Subscriptions created by configuration cannot be modified via this
 RPC. However, configuration may be used to modify objects referenced
 by the subscription (such as a referenced filter).

Voit, et al. Standards Track [Page 15]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "modify-subscription". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---x modify-subscription
 +---w input
 +---w id
 | subscription-id
 +---w (target)
 | +--:(stream)
 | +---w (stream-filter)?
 | +--:(by-reference)
 | | +---w stream-filter-name
 | | stream-filter-ref
 | +--:(within-subscription)
 | +---w (filter-spec)?
 | +--:(stream-subtree-filter)
 | | +---w stream-subtree-filter? <anydata>
 | | {subtree}?
 | +--:(stream-xpath-filter)
 | +---w stream-xpath-filter?
 | yang:xpath1.0 {xpath}?
 +---w stop-time?
 yang:date-and-time

 Figure 4: "modify-subscription" RPC Tree Diagram

 If the publisher accepts the requested modifications on a currently
 suspended subscription, the subscription will immediately be resumed
 (i.e., the modified subscription is returned to the "active" state).
 The publisher MAY immediately suspend this newly modified
 subscription through the "subscription-suspended" notification before
 any event records are sent.

 If the publisher rejects the RPC request, the subscription remains as
 it was prior to the request. That is, the request has no impact
 whatsoever. Rejection of the RPC for any reason is indicated via an
 RPC error as described in Section 2.4.6. The contents of such a
 rejected RPC MAY include hints on inputs that (if considered) may
 result in a successfully modified subscription. These hints MUST be
 transported in a yang-data "modify-subscription-stream-error-info"
 container inserted into the RPC error response.

Voit, et al. Standards Track [Page 16]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "modify-subscription-stream-error-info"
 RPC yang-data. All objects contained in this tree are described in
 the YANG module in Section 4.

 yang-data modify-subscription-stream-error-info
 +--ro modify-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 5: "modify-subscription-stream-error-info"
 RPC yang-data Tree Diagram

2.4.4. Deleting a Dynamic Subscription

 The "delete-subscription" operation permits canceling an existing
 subscription. If the publisher accepts the request and the publisher
 has indicated success, the publisher MUST NOT send any more
 notification messages for this subscription.

 Below is a tree diagram for "delete-subscription". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---x delete-subscription
 +---w input
 +---w id subscription-id

 Figure 6: "delete-subscription" RPC Tree Diagram

 Dynamic subscriptions can only be deleted via this RPC using a
 transport session connecting to the subscriber. Configured
 subscriptions cannot be deleted using RPCs.

2.4.5. Killing a Dynamic Subscription

 The "kill-subscription" operation permits an operator to end a
 dynamic subscription that is not associated with the transport
 session used for the RPC. A publisher MUST terminate any dynamic
 subscription identified by the "id" parameter in the RPC request, if
 such a subscription exists.

 Configured subscriptions cannot be killed using this RPC. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to kill a
 configured subscription.

Voit, et al. Standards Track [Page 17]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "kill-subscription". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---x kill-subscription
 +---w input
 +---w id subscription-id

 Figure 7: "kill-subscription" RPC Tree Diagram

2.4.6. RPC Failures

 Whenever an RPC is unsuccessful, the publisher returns relevant
 information as part of the RPC error response. Transport-level error
 processing MUST be done before the RPC error processing described in
 this section. In all cases, RPC error information returned by the
 publisher will use existing transport-layer RPC structures, such as
 those seen with NETCONF (Appendix A of [RFC6241]) or RESTCONF
 (Section 7.1 of [RFC8040]). These structures MUST be able to encode
 subscription-specific errors identified below and defined in this
 document’s YANG data model.

 As a result of this variety, how subscription errors are encoded in
 an RPC error response is transport dependent. Valid errors that can
 occur for each RPC are as follows:

 establish-subscription modify-subscription
 ---------------------- ----------------------
 dscp-unavailable filter-unsupported
 encoding-unsupported insufficient-resources
 filter-unsupported no-such-subscription
 insufficient-resources
 replay-unsupported

 delete-subscription kill-subscription
 ---------------------- ----------------------
 no-such-subscription no-such-subscription

 To see a NETCONF-based example of an error response from the list
 above, see the "no-such-subscription" error response illustrated in
 [RFC8640], Figure 10.

Voit, et al. Standards Track [Page 18]

RFC 8639 Subscribed Notifications September 2019

 There is one final set of transport-independent RPC error elements
 included in the YANG data model defined in this document: three
 yang-data structures that enable the publisher to provide to the
 receiver any error information that does not fit into existing
 transport-layer RPC structures. These structures are:

 1. "establish-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere in the transport portion of a failed
 "establish-subscription" RPC response. This MUST be sent if
 hints on how to overcome the RPC error are included.

 2. "modify-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere in the transport portion of a failed
 "modify-subscription" RPC response. This MUST be sent if hints
 on how to overcome the RPC error are included.

 3. "delete-subscription-error-info": This MUST be returned with the
 leaf "reason" populated if an RPC error reason has not been
 placed elsewhere in the transport portion of a failed
 "delete-subscription" or "kill-subscription" RPC response.

2.5. Configured Subscriptions

 A configured subscription is a subscription installed via
 configuration. Configured subscriptions may be modified by any
 configuration client with the proper permissions. Subscriptions can
 be modified or terminated via configuration at any point during their
 lifetime. Multiple configured subscriptions MUST be supportable over
 a single transport session.

 Configured subscriptions have several characteristics distinguishing
 them from dynamic subscriptions:

 o persistence across publisher reboots,

 o persistence even when transport is unavailable, and

 o an ability to send notification messages to more than one
 receiver. (Note that receivers are unaware of the existence of
 any other receivers.)

 On the publisher, support for configured subscriptions is optional
 and advertised using the "configured" feature. On a receiver of a
 configured subscription, support for dynamic subscriptions is
 optional. However, if replaying missed event records is required for

Voit, et al. Standards Track [Page 19]

RFC 8639 Subscribed Notifications September 2019

 a configured subscription, support for dynamic subscription is highly
 recommended. In this case, a separate dynamic subscription can be
 established to retransmit the missing event records.

 In addition to the subscription parameters available to dynamic
 subscriptions as described in Section 2.4.2, the following additional
 parameters are also available to configured subscriptions:

 o A "transport", which identifies the transport protocol to use to
 connect with all subscription receivers.

 o One or more receivers, each intended as the destination for event
 records. Note that each individual receiver is identifiable by
 its "name".

 o Optional parameters to identify where traffic should egress a
 publisher:

 * A "source-interface", which identifies the egress interface to
 use from the publisher. Publisher support for this parameter
 is optional and advertised using the "interface-designation"
 feature.

 * A "source-address" address, which identifies the IP address to
 stamp on notification messages destined for the receiver.

 * A "source-vrf", which identifies the Virtual Routing and
 Forwarding (VRF) instance on which to reach receivers. This
 VRF is a network instance as defined in [RFC8529]. Publisher
 support for VRFs is optional and advertised using the
 "supports-vrf" feature.

 If none of the above parameters are set, notification messages
 MUST egress the publisher’s default interface.

 A tree diagram that includes these parameters is provided in
 Figure 20 in Section 3.3. These parameters are described in the YANG
 module in Section 4.

2.5.1. Configured Subscription State Machine

 Below is the state machine for a configured subscription on the
 publisher. This state machine describes the three states ("valid",
 "invalid", and "concluded") as well as the transitions between these
 states. Start and end states are depicted to reflect configured
 subscription creation and deletion events. The creation or
 modification of a configured subscription initiates an evaluation by
 the publisher to determine if the subscription is in the

Voit, et al. Standards Track [Page 20]

RFC 8639 Subscribed Notifications September 2019

 "valid" state or the "invalid" state. The publisher uses its own
 criteria in making this determination. If in the "valid" state, the
 subscription becomes operational. See (1) in the diagram below.

 : start :-.
 :.......: |
 create .---modify-----.----------------------------------.
 | | | |
 V V .-------. ---------.
 .----[evaluate]--no--->|invalid|-delete->: end :<-delete-|concluded|
 | ’-------’ :.....: ’---------’
 |-[evaluate]--no-(2). ^ ^ ^
 | ^ | | | |
 yes | ’->unsupportable delete stop-time
 | modify (subscription- (subscription- (subscription-
 | | terminated*) terminated*) concluded*)
 | | | | |
 (1) | (3) (4) (5)
 | .---.
 ’-->| valid |
 ’---’

 Legend:
 Dotted boxes: subscription added or removed via configuration
 Dashed boxes: states for a subscription
 [evaluate]: decision point on whether the subscription
 is supportable
 (*): resulting subscription state change notification

 Figure 8: Publisher’s State Machine for a Configured Subscription

 A subscription in the "valid" state may move to the "invalid" state
 in one of two ways. First, it may be modified in a way that fails a
 re-evaluation. See (2) in the diagram. Second, the publisher might
 determine that the subscription is no longer supportable. This could
 be because of an unexpected but sustained increase in an event
 stream’s event records, degraded CPU capacity, a more complex
 referenced filter, or other subscriptions that have usurped
 resources. See (3) in the diagram. No matter the case, a
 "subscription-terminated" notification is sent to any receivers in
 the "active" or "suspended" state. A subscription in the
 "valid" state may also transition to the "concluded" state via (5) if
 a configured stop time has been reached. In this case, a
 "subscription-concluded" notification is sent to any receivers in the
 "active" or "suspended" state. Finally, a subscription may be
 deleted by configuration (4).

Voit, et al. Standards Track [Page 21]

RFC 8639 Subscribed Notifications September 2019

 When a subscription is in the "valid" state, a publisher will attempt
 to connect with all receivers of a configured subscription and
 deliver notification messages. Below is the state machine for each
 receiver of a configured subscription. This receiver state machine
 is fully contained in the state machine of the configured
 subscription and is only relevant when the configured subscription is
 in the "valid" state.

 .---.
 | valid |
 | .----------. .------------. |
 | | receiver |---timeout---------------->| receiver | |
 | |connecting|<----------------reset--(c)|disconnected| |
 | | |<-transport ’------------’ |
 | ’----------’ loss,reset------------------------------. |
 | (a) | | |
 | subscription- (b) (b) |
 | started* .--------. .---------. |
 | ’----->| |(d)-insufficient CPU,------->| | |
 | |receiver| buffer overflow |receiver | |
 | subscription-| active | |suspended| |
 | modified* | |<----CPU, b/w sufficient,-(e)| | |
 | ’---->’--------’ subscription-modified* ’---------’ |
 ’---’

 Legend:
 Dashed boxes that include the word "receiver" show the possible
 states for an individual receiver of a valid configured
 subscription.

 * indicates a subscription state change notification

 Figure 9: Receiver State Machine for a Configured Subscription
 on a Publisher

 When a configured subscription first moves to the "valid" state, the
 "state" leaf of each receiver is initialized to the "connecting"
 state. If transport connectivity is not available to any receivers
 and there are any notification messages to deliver, a transport
 session is established (e.g., per [RFC8071]). Individual receivers
 are moved to the "active" state when a "subscription-started"
 subscription state change notification is successfully passed to that
 receiver (a). Event records are only sent to active receivers.
 Receivers of a configured subscription remain active on the publisher
 if both (1) transport connectivity to the receiver is active and
 (2) event records are not being dropped due to a publisher’s sending
 capacity being reached. In addition, a configured subscription’s
 receiver MUST be moved to the "connecting" state if the receiver is

Voit, et al. Standards Track [Page 22]

RFC 8639 Subscribed Notifications September 2019

 reset via the "reset" action (b), (c). For more on the "reset"
 action, see Section 2.5.5. If transport connectivity cannot be
 achieved while in the "connecting" state, the receiver MAY be moved
 to the "disconnected" state.

 A configured subscription’s receiver MUST be moved to the "suspended"
 state if there is transport connectivity between the publisher and
 receiver but (1) delivery of notification messages is failing due to
 a publisher’s buffer capacity being reached or (2) notification
 messages cannot be generated for that receiver due to insufficient
 CPU (d). This is indicated to the receiver by the "subscription-
 suspended" subscription state change notification.

 A configured subscription’s receiver MUST be returned to the "active"
 state from the "suspended" state when notification messages can be
 generated, bandwidth is sufficient to handle the notification
 messages, and a receiver has successfully been sent a "subscription-
 resumed" or "subscription-modified" subscription state change
 notification (e). The choice as to which of these two subscription
 state change notifications is sent is determined by whether the
 subscription was modified during the period of suspension.

 Modification of a configured subscription is possible at any time. A
 "subscription-modified" subscription state change notification will
 be sent to all active receivers, immediately followed by notification
 messages conforming to the new parameters. Suspended receivers will
 also be informed of the modification. However, this notification
 will await the end of the suspension for that receiver (e).

 The mechanisms described above are mirrored in the RPCs and
 notifications defined in this document. It should be noted that
 these RPCs and notifications have been designed to be extensible and
 allow subscriptions into targets other than event streams. For
 instance, the YANG module defined in Section 5 of [RFC8641] augments
 "/sn:modify-subscription/sn:input/sn:target".

2.5.2. Creating a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level "subscriptions" subtree.

 Because there is no explicit association with an existing transport
 session, configuration operations MUST include additional parameters
 beyond those of dynamic subscriptions. These parameters identify
 each receiver, how to connect with that receiver, and possibly
 whether the notification messages need to come from a specific egress

Voit, et al. Standards Track [Page 23]

RFC 8639 Subscribed Notifications September 2019

 interface on the publisher. Receiver-specific transport connectivity
 parameters MUST be configured via transport-specific augmentations to
 this specification. See Section 2.5.7 for details.

 After a subscription is successfully established, the publisher
 immediately sends a "subscription-started" subscription state change
 notification to each receiver. It is quite possible that upon
 configuration, reboot, or even steady-state operations, a transport
 session may not be currently available to the receiver. In this
 case, when there is something to transport for an active
 subscription, transport-specific "call home" operations [RFC8071]
 will be used to establish the connection. When transport
 connectivity is available, notification messages may then be pushed.

 With active configured subscriptions, it is allowable to buffer event
 records even after a "subscription-started" has been sent. However,
 if events are lost (rather than just delayed) due to replay buffer
 capacity being reached, a new "subscription-started" must be sent.
 This new "subscription-started" indicates an event record
 discontinuity.

 To see an example of subscription creation using configuration
 operations over NETCONF, see Appendix A.

2.5.3. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level "subscriptions" subtree.

 If the modification involves adding receivers, added receivers are
 placed in the "connecting" state. If a receiver is removed, the
 subscription state change notification "subscription-terminated" is
 sent to that receiver if that receiver is active or suspended.

 If the modification involves changing the policies for the
 subscription, the publisher sends to currently active receivers a
 "subscription-modified" notification. For any suspended receivers, a
 "subscription-modified" notification will be delayed until the
 receiver’s subscription has been resumed. (Note: In this case, the
 "subscription-modified" notification informs the receiver that the
 subscription has been resumed, so no additional "subscription-
 resumed" need be sent. Also note that if multiple modifications have
 occurred during the suspension, only the "subscription-modified"
 notification describing the latest one need be sent to the receiver.)

Voit, et al. Standards Track [Page 24]

RFC 8639 Subscribed Notifications September 2019

2.5.4. Deleting a Configured Subscription

 Subscriptions can be deleted through configuration against the
 top-level "subscriptions" subtree.

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers of that subscription a subscription
 state change notification stating that the subscription has ended
 (i.e., "subscription-terminated").

2.5.5. Resetting a Configured Subscription’s Receiver

 It is possible that a configured subscription to a receiver needs to
 be reset. This is accomplished via the "reset" action in the YANG
 module at "/subscriptions/subscription/receivers/receiver/reset".
 This action may be useful in cases where a publisher has timed out
 trying to reach a receiver. When such a reset occurs, a transport
 session will be initiated if necessary, and a new "subscription-
 started" notification will be sent. This action does not have any
 effect on transport connectivity if the needed connectivity already
 exists.

2.5.6. Replay for a Configured Subscription

 It is possible to do replay on a configured subscription. This is
 supported via the configuration of the "configured-replay" object on
 the subscription. The setting of this object enables the streaming
 of the buffered event records for the subscribed event stream. All
 buffered event records that have been retained since the last
 publisher restart will be sent to each configured receiver.

 Replay of event records created since restart is useful. It allows
 event records generated before transport connectivity establishment
 to be passed to a receiver. Setting the restart time as the earliest
 configured replay time precludes the possibility of resending event
 records that were logged prior to publisher restart. It also ensures
 that the same records will be sent to each configured receiver,
 regardless of the speed of transport connectivity establishment to
 each receiver. Finally, by establishing restart as the earliest
 potential time for event records to be included in notification
 messages, a well-understood timeframe for replay is defined.

 As a result, when any configured subscription’s receivers become
 active, buffered event records will be sent immediately after the
 "subscription-started" notification. If the publisher knows the last
 event record sent to a receiver and the publisher has not rebooted,
 the next event record on the event stream that meets filtering
 criteria will be the leading event record sent. Otherwise, the

Voit, et al. Standards Track [Page 25]

RFC 8639 Subscribed Notifications September 2019

 leading event record will be the first event record meeting filtering
 criteria subsequent to the latest of three different times: the
 "replay-log-creation-time", the "replay-log-aged-time", or the most
 recent publisher boot time. The "replay-log-creation-time" and
 "replay-log-aged-time" are discussed in Section 2.4.2.1. The most
 recent publisher boot time ensures that duplicate event records are
 not replayed from a previous time the publisher was booted.

 It is quite possible that a receiver might want to retrieve event
 records from an event stream prior to the latest boot. If such
 records exist where there is a configured replay, the publisher MUST
 send the time of the event record immediately preceding the
 "replay-start-time" in the "replay-previous-event-time" leaf.
 Through the existence of the "replay-previous-event-time", the
 receiver will know that earlier events prior to reboot exist. In
 addition, if the subscriber was previously receiving event records
 with the same subscription "id", the receiver can determine if there
 was a time gap where records generated on the publisher were not
 successfully received. And with this information, the receiver may
 choose to dynamically subscribe to retrieve any event records placed
 in the event stream before the most recent boot time.

 All other replay functionality remains the same as with dynamic
 subscriptions as described in Section 2.4.2.1.

2.5.7. Transport Connectivity for a Configured Subscription

 This specification is transport independent. However, supporting a
 configured subscription will often require the establishment of
 transport connectivity. And the parameters used for this transport
 connectivity establishment are transport specific. As a result, the
 YANG module defined in Section 4 is not able to directly define and
 expose these transport parameters.

 It is necessary for an implementation to support the connection
 establishment process. To support this function, the YANG data model
 defined in this document includes a node where transport-specific
 parameters for a particular receiver may be augmented. This node is
 "/subscriptions/subscription/receivers/receiver". By augmenting
 transport parameters from this node, system developers are able to
 incorporate the YANG objects necessary to support the transport
 connectivity establishment process.

 The result of this is the following requirement. A publisher
 supporting the feature "configured" MUST also support at least one
 YANG data model that augments transport connectivity parameters on
 "/subscriptions/subscription/receivers/receiver". For an example of
 such an augmentation, see Appendix A.

Voit, et al. Standards Track [Page 26]

RFC 8639 Subscribed Notifications September 2019

2.6. Event Record Delivery

 Whether dynamic or configured, once a subscription has been set up,
 the publisher streams event records via notification messages per the
 terms of the subscription. For dynamic subscriptions, notification
 messages are sent over the session used to establish the
 subscription. For configured subscriptions, notification messages
 are sent over the connections specified by the transport and each
 receiver of a configured subscription.

 A notification message is sent to a receiver when an event record is
 not blocked by either the specified filter criteria or receiver
 permissions. This notification message MUST include an <eventTime>
 object, as shown in [RFC5277], Section 4. This <eventTime> MUST be
 at the top level of a YANG structured event record.

 The following example of XML [W3C.REC-xml-20081126], adapted from
 Section 4.2.10 of [RFC7950], illustrates a compliant message:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="https://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 10: Subscribed Notification Message

 [RFC5277], Section 2.2.1 states that a notification message is to be
 sent to a subscriber that initiated a <create-subscription>. With
 this document, this statement from [RFC5277] should be more broadly
 interpreted to mean that notification messages can also be sent to a
 subscriber that initiated an "establish-subscription" or to a
 configured receiver that has been sent a "subscription-started".

 When a dynamic subscription has been started or modified with
 "establish-subscription" or "modify-subscription", respectively,
 event records matching the newly applied filter criteria MUST NOT be
 sent until after the RPC reply has been sent.

 When a configured subscription has been started or modified, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the "subscription-started" or "subscription-modified"
 notification has been sent, respectively.

Voit, et al. Standards Track [Page 27]

RFC 8639 Subscribed Notifications September 2019

2.7. Subscription State Change Notifications

 In addition to sending event records to receivers, a publisher MUST
 also send subscription state change notifications when events related
 to subscription management have occurred.

 Subscription state change notifications are unlike other
 notifications in that they are never included in any event stream.
 Instead, they are inserted (as defined in this section) into the
 sequence of notification messages sent to a particular receiver.
 Subscription state change notifications cannot be dropped or filtered
 out, they cannot be stored in replay buffers, and they are delivered
 only to impacted receivers of a subscription. The identification of
 subscription state change notifications is easy to separate from
 other notification messages through the use of the YANG extension
 "subscription-state-notif". This extension tags a notification as a
 subscription state change notification.

 The complete set of subscription state change notifications is
 described in the following subsections.

2.7.1. "subscription-started"

 This notification indicates that a configured subscription has
 started, and event records may be sent. Included in this
 subscription state change notification are all the parameters of the
 subscription, except for (1) transport connection information for one
 or more receivers and (2) origin information indicating where
 notification messages will egress the publisher. Note that if a
 referenced filter from the "filters" container has been used in the
 subscription, the notification still provides the contents of that
 referenced filter under the "within-subscription" subtree.

 Note that for dynamic subscriptions, no "subscription-started"
 notifications are ever sent.

Voit, et al. Standards Track [Page 28]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "subscription-started". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-started {configured}?
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--ro replay-previous-event-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 11: "subscription-started" Notification Tree Diagram

2.7.2. "subscription-modified"

 This notification indicates that a subscription has been modified by
 configuration operations. It is delivered directly after the last
 event records processed using the previous subscription parameters,
 and before any event records processed after the modification.

Voit, et al. Standards Track [Page 29]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for "subscription-modified". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-modified
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 12: "subscription-modified" Notification Tree Diagram

 A publisher most often sends this notification directly after the
 modification of any configuration parameters impacting a configured
 subscription. But it may also be sent at two other times:

 1. If a configured subscription has been modified during the
 suspension of a receiver, the notification will be delayed until
 the receiver’s suspension is lifted. In this situation, the
 notification indicates that the subscription has been both
 modified and resumed.

Voit, et al. Standards Track [Page 30]

RFC 8639 Subscribed Notifications September 2019

 2. A "subscription-modified" subscription state change notification
 MUST be sent if the contents of the filter identified by the
 subscription’s "stream-filter-ref" leaf have changed. This state
 change notification is to be sent for a filter change impacting
 any active receivers of a configured or dynamic subscription.

2.7.3. "subscription-terminated"

 This notification indicates that no further event records for this
 subscription should be expected from the publisher. A publisher may
 terminate the sending of event records to a receiver for the
 following reasons:

 1. Configuration that removes a configured subscription, or a
 "kill-subscription" RPC that ends a dynamic subscription. These
 are identified via the reason "no-such-subscription".

 2. A referenced filter is no longer accessible. This reason is
 identified by the "filter-unavailable" identity.

 3. The event stream referenced by a subscription is no longer
 accessible by the receiver. This reason is identified by the
 "stream-unavailable" identity.

 4. A suspended subscription has exceeded some timeout. This reason
 is identified by the "suspension-timeout" identity.

 Each reason listed above derives from the "subscription-terminated-
 reason" base identity specified in the YANG data model in this
 document.

 Below is a tree diagram for "subscription-terminated". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-terminated
 +--ro id subscription-id
 +--ro reason identityref

 Figure 13: "subscription-terminated" Notification Tree Diagram

 Note: This subscription state change notification MUST be sent to a
 dynamic subscription’s receiver when the subscription ends
 unexpectedly. This might happen when a "kill-subscription" RPC is
 successful or when some other event, not including reaching the
 subscription’s "stop-time", results in a publisher choosing to end
 the subscription.

Voit, et al. Standards Track [Page 31]

RFC 8639 Subscribed Notifications September 2019

2.7.4. "subscription-suspended"

 This notification indicates that a publisher has suspended the
 sending of event records to a receiver and also indicates the
 possible loss of events. Suspension happens when capacity
 constraints stop a publisher from serving a valid subscription. The
 two conditions where this is possible are:

 1. "insufficient-resources", when a publisher is unable to produce
 the requested event stream of notification messages, and

 2. "unsupportable-volume", when the bandwidth needed to get
 generated notification messages to a receiver exceeds a
 threshold.

 These conditions are encoded in the "reason" object. No further
 notifications will be sent until the subscription resumes or is
 terminated.

 Below is a tree diagram for "subscription-suspended". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-suspended
 +--ro id subscription-id
 +--ro reason identityref

 Figure 14: "subscription-suspended" Notification Tree Diagram

2.7.5. "subscription-resumed"

 This notification indicates that a previously suspended subscription
 has been resumed under the unmodified terms previously in place.
 Subscribed event records generated after the issuance of this
 subscription state change notification may now be sent.

 Below is a tree diagram for "subscription-resumed". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-resumed
 +--ro id subscription-id

 Figure 15: "subscription-resumed" Notification Tree Diagram

Voit, et al. Standards Track [Page 32]

RFC 8639 Subscribed Notifications September 2019

2.7.6. "subscription-completed"

 This notification indicates that a subscription that includes a
 "stop-time" has successfully finished passing event records upon
 reaching that time.

 Below is a tree diagram for "subscription-completed". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n subscription-completed {configured}?
 +--ro id subscription-id

 Figure 16: "subscription-completed" Notification Tree Diagram

2.7.7. "replay-completed"

 This notification indicates that all of the event records prior to
 the current time have been passed to a receiver. It is sent before
 any notification messages containing an event record with a timestamp
 later than (1) the "stop-time" or (2) the subscription’s start time.

 If a subscription does not contain a "stop-time" or has a "stop-time"
 that has not been reached, then after the "replay-completed"
 notification has been sent, additional event records will be sent in
 sequence as they arise naturally on the publisher.

 Below is a tree diagram for "replay-completed". All objects
 contained in this tree are described in the YANG module in Section 4.

 +---n replay-completed {replay}?
 +--ro id subscription-id

 Figure 17: "replay-completed" Notification Tree Diagram

2.8. Subscription Monitoring

 In the operational state datastore, the "subscriptions" container
 maintains the state of all dynamic subscriptions as well as all
 configured subscriptions. Using datastore retrieval operations
 [RFC8641] or subscribing to the "subscriptions" container
 (Section 3.3) allows the state of subscriptions and their
 connectivity to receivers to be monitored.

 Each subscription in the operational state datastore is represented
 as a list element. Included in this list are event counters for each
 receiver, the state of each receiver, and the subscription parameters
 currently in effect. The appearance of the leaf "configured-
 subscription-state" indicates that a particular subscription came

Voit, et al. Standards Track [Page 33]

RFC 8639 Subscribed Notifications September 2019

 into being via configuration. This leaf also indicates whether the
 current state of that subscription is "valid", "invalid", or
 "concluded".

 To understand the flow of event records in a subscription, there are
 two counters available for each receiver. The first counter is
 "sent-event-records", which shows the number of events identified for
 sending to a receiver. The second counter is "excluded-event-
 records", which shows the number of event records not sent to a
 receiver. "excluded-event-records" shows the combined results of
 both access control and per-subscription filtering. For configured
 subscriptions, counters are reset whenever the subscription’s state
 is evaluated as "valid" (see (1) in Figure 8).

 Dynamic subscriptions are removed from the operational state
 datastore once they expire (reaching "stop-time") or when they are
 terminated. While many subscription objects are shown as
 configurable, dynamic subscriptions are only included in the
 operational state datastore and as a result are not configurable.

2.9. Support for the "ietf-subscribed-notifications" YANG Module

 Publishers supporting this document MUST indicate support of the YANG
 module "ietf-subscribed-notifications" in the YANG library of the
 publisher. In addition, if supported, the optional features
 "encode-xml", "encode-json", "configured", "supports-vrf", "qos",
 "xpath", "subtree", "interface-designation", "dscp", and "replay"
 MUST be indicated.

3. YANG Data Model Tree Diagrams

 This section contains tree diagrams for nodes defined in Section 4.
 For tree diagrams of subscription state change notifications, see
 Section 2.7. For the tree diagrams for the RPCs, see Section 2.4.

3.1. The "streams" Container

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and
 vendor-specific event streams. This enables subscribers to discover
 what streams a publisher supports.

Voit, et al. Standards Track [Page 34]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for the "streams" container. All objects
 contained in this tree are described in the YANG module in Section 4.

 +--ro streams
 +--ro stream* [name]
 +--ro name string
 +--ro description string
 +--ro replay-support? empty {replay}?
 +--ro replay-log-creation-time yang:date-and-time
 | {replay}?
 +--ro replay-log-aged-time? yang:date-and-time
 {replay}?

 Figure 18: "streams" Container Tree Diagram

3.2. The "filters" Container

 The "filters" container maintains a list of all subscription filters
 that persist outside the lifecycle of a single subscription. This
 enables predefined filters that may be referenced by more than one
 subscription.

 Below is a tree diagram for the "filters" container. All objects
 contained in this tree are described in the YANG module in Section 4.

 +--rw filters
 +--rw stream-filter* [name]
 +--rw name string
 +--rw (filter-spec)?
 +--:(stream-subtree-filter)
 | +--rw stream-subtree-filter? <anydata> {subtree}?
 +--:(stream-xpath-filter)
 +--rw stream-xpath-filter? yang:xpath1.0 {xpath}?

 Figure 19: "filters" Container Tree Diagram

3.3. The "subscriptions" Container

 The "subscriptions" container maintains a list of all subscriptions
 on a publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions that a publisher is
 serving.

Voit, et al. Standards Track [Page 35]

RFC 8639 Subscribed Notifications September 2019

 Below is a tree diagram for the "subscriptions" container. All
 objects contained in this tree are described in the YANG module in
 Section 4.

 +--rw subscriptions
 +--rw subscription* [id]
 +--rw id
 | subscription-id
 +--rw (target)
 | +--:(stream)
 | +--rw (stream-filter)?
 | | +--:(by-reference)
 | | | +--rw stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--rw (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--rw stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--rw stream-xpath-filter?
 | | yang:xpath1.0 {xpath}?
 | +--rw stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--rw configured-replay? empty
 | {configured,replay}?
 +--rw stop-time?
 | yang:date-and-time
 +--rw dscp? inet:dscp
 | {dscp}?
 +--rw weighting? uint8 {qos}?
 +--rw dependency?
 | subscription-id {qos}?
 +--rw transport? transport
 | {configured}?
 +--rw encoding? encoding
 +--rw purpose? string
 | {configured}?

Voit, et al. Standards Track [Page 36]

RFC 8639 Subscribed Notifications September 2019

 +--rw (notification-message-origin)? {configured}?
 | +--:(interface-originated)
 | | +--rw source-interface?
 | | if:interface-ref {interface-designation}?
 | +--:(address-originated)
 | +--rw source-vrf?
 | | -> /ni:network-instances/network-instance/name
 | | {supports-vrf}?
 | +--rw source-address?
 | inet:ip-address-no-zone
 +--ro configured-subscription-state? enumeration
 | {configured}?
 +--rw receivers
 +--rw receiver* [name]
 +--rw name string
 +--ro sent-event-records?
 | yang:zero-based-counter64
 +--ro excluded-event-records?
 | yang:zero-based-counter64
 +--ro state enumeration
 +---x reset {configured}?
 +--ro output
 +--ro time yang:date-and-time

 Figure 20: "subscriptions" Container Tree Diagram

4. Event Notification Subscription YANG Module

 This module imports typedefs from [RFC6991], [RFC8343], [RFC8341],
 [RFC8529], and [RFC8040]. It references [RFC6241], [XPATH] ("XML
 Path Language (XPath) Version 1.0"), [RFC7049], [RFC8259], [RFC7950],
 [RFC7951], and [RFC7540].

<CODE BEGINS> file "ietf-subscribed-notifications@2019-09-09.yang"
module ietf-subscribed-notifications {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications";
 prefix sn;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";

Voit, et al. Standards Track [Page 37]

RFC 8639 Subscribed Notifications September 2019

 }
 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-network-instance {
 prefix ni;
 reference
 "RFC 8529: YANG Data Model for Network Instances";
 }
 import ietf-restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <https:/datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Eric Voit
 <mailto:evoit@cisco.com>

 Author: Alberto Gonzalez Prieto
 <mailto:alberto.gonzalez@microsoft.com>

 Author: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Author: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>";
 description
 "This module defines a YANG data model for subscribing to event
 records and receiving matching content in notification messages.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

Voit, et al. Standards Track [Page 38]

RFC 8639 Subscribed Notifications September 2019

 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8639; see the
 RFC itself for full legal notices.";

 revision 2019-09-09 {
 description
 "Initial version.";
 reference
 "RFC 8639: A YANG Data Model for Subscriptions to
 Event Notifications";
 }

 /*
 * FEATURES
 */

 feature configured {
 description
 "This feature indicates that configuration of subscriptions is
 supported.";
 }

 feature dscp {
 description
 "This feature indicates that a publisher supports the ability
 to set the Differentiated Services Code Point (DSCP) value in
 outgoing packets.";
 }

 feature encode-json {
 description
 "This feature indicates that JSON encoding of notification
 messages is supported.";
 }

Voit, et al. Standards Track [Page 39]

RFC 8639 Subscribed Notifications September 2019

 feature encode-xml {
 description
 "This feature indicates that XML encoding of notification
 messages is supported.";
 }

 feature interface-designation {
 description
 "This feature indicates that a publisher supports sourcing all
 receiver interactions for a configured subscription from a
 single designated egress interface.";
 }

 feature qos {
 description
 "This feature indicates that a publisher supports absolute
 dependencies of one subscription’s traffic over another
 as well as weighted bandwidth sharing between subscriptions.
 Both of these are Quality of Service (QoS) features that allow
 differentiated treatment of notification messages between a
 publisher and a specific receiver.";
 }

 feature replay {
 description
 "This feature indicates that historical event record replay is
 supported. With replay, it is possible for past event records
 to be streamed in chronological order.";
 }

 feature subtree {
 description
 "This feature indicates support for YANG subtree filtering.";
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF),
 Section 6";
 }

 feature supports-vrf {
 description
 "This feature indicates that a publisher supports VRF
 configuration for configured subscriptions. VRF support for
 dynamic subscriptions does not require this feature.";
 reference
 "RFC 8529: YANG Data Model for Network Instances,
 Section 6";
 }

Voit, et al. Standards Track [Page 40]

RFC 8639 Subscribed Notifications September 2019

 feature xpath {
 description
 "This feature indicates support for XPath filtering.";
 reference
 "XML Path Language (XPath) Version 1.0
 (https://www.w3.org/TR/1999/REC-xpath-19991116)";
 }

 /*
 * EXTENSIONS
 */

 extension subscription-state-notification {
 description
 "This statement applies only to notifications. It indicates
 that the notification is a subscription state change
 notification. Therefore, it does not participate in a regular
 event stream and does not need to be specifically subscribed
 to in order to be received. This statement can only occur as
 a substatement of the YANG ’notification’ statement. This
 statement is not for use outside of this YANG module.";
 }

 /*
 * IDENTITIES
 */
 /* Identities for RPC and notification errors */

 identity delete-subscription-error {
 description
 "Base identity for the problem found while attempting to
 fulfill either a ’delete-subscription’ RPC request or a
 ’kill-subscription’ RPC request.";
 }

 identity establish-subscription-error {
 description
 "Base identity for the problem found while attempting to
 fulfill an ’establish-subscription’ RPC request.";
 }

 identity modify-subscription-error {
 description
 "Base identity for the problem found while attempting to
 fulfill a ’modify-subscription’ RPC request.";
 }

 identity subscription-suspended-reason {

Voit, et al. Standards Track [Page 41]

RFC 8639 Subscribed Notifications September 2019

 description
 "Base identity for the problem condition communicated to a
 receiver as part of a ’subscription-suspended’
 notification.";
 }

 identity subscription-terminated-reason {
 description
 "Base identity for the problem condition communicated to a
 receiver as part of a ’subscription-terminated’
 notification.";
 }

 identity dscp-unavailable {
 base establish-subscription-error;
 if-feature "dscp";
 description
 "The publisher is unable to mark notification messages with
 prioritization information in a way that will be respected
 during network transit.";
 }

 identity encoding-unsupported {
 base establish-subscription-error;
 description
 "Unable to encode notification messages in the desired
 format.";
 }

 identity filter-unavailable {
 base subscription-terminated-reason;
 description
 "Referenced filter does not exist. This means a receiver is
 referencing a filter that doesn’t exist or to which it
 does not have access permissions.";
 }

 identity filter-unsupported {
 base establish-subscription-error;
 base modify-subscription-error;
 description
 "Cannot parse syntax in the filter. This failure can be from
 a syntax error or a syntax too complex to be processed by the
 publisher.";
 }

 identity insufficient-resources {
 base establish-subscription-error;

Voit, et al. Standards Track [Page 42]

RFC 8639 Subscribed Notifications September 2019

 base modify-subscription-error;
 base subscription-suspended-reason;
 description
 "The publisher does not have sufficient resources to support
 the requested subscription. An example might be that
 allocated CPU is too limited to generate the desired set of
 notification messages.";
 }

 identity no-such-subscription {
 base modify-subscription-error;
 base delete-subscription-error;
 base subscription-terminated-reason;
 description
 "Referenced subscription doesn’t exist. This may be as a
 result of a nonexistent subscription ID, an ID that belongs to
 another subscriber, or an ID for a configured subscription.";
 }

 identity replay-unsupported {
 base establish-subscription-error;
 if-feature "replay";
 description
 "Replay cannot be performed for this subscription. This means
 the publisher will not provide the requested historic
 information from the event stream via replay to this
 receiver.";
 }

 identity stream-unavailable {
 base subscription-terminated-reason;
 description
 "Not a subscribable event stream. This means the referenced
 event stream is not available for subscription by the
 receiver.";
 }

 identity suspension-timeout {
 base subscription-terminated-reason;
 description
 "Termination of a previously suspended subscription. The
 publisher has eliminated the subscription, as it exceeded a
 time limit for suspension.";
 }

 identity unsupportable-volume {
 base subscription-suspended-reason;
 description

Voit, et al. Standards Track [Page 43]

RFC 8639 Subscribed Notifications September 2019

 "The publisher does not have the network bandwidth needed to
 get the volume of generated information intended for a
 receiver.";
 }

 /* Identities for encodings */

 identity configurable-encoding {
 description
 "If a transport identity derives from this identity, it means
 that it supports configurable encodings. An example of a
 configurable encoding might be a new identity such as
 ’encode-cbor’. Such an identity could use
 ’configurable-encoding’ as its base. This would allow a
 dynamic subscription encoded in JSON (RFC 8259) to request
 that notification messages be encoded via the Concise Binary
 Object Representation (CBOR) (RFC 7049). Further details for
 any specific configurable encoding would be explored in a
 transport document based on this specification.";
 reference
 "RFC 8259: The JavaScript Object Notation (JSON) Data
 Interchange Format
 RFC 7049: Concise Binary Object Representation (CBOR)";
 }

 identity encoding {
 description
 "Base identity to represent data encodings.";
 }

 identity encode-xml {
 base encoding;
 if-feature "encode-xml";
 description
 "Encode data using XML as described in RFC 7950.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language";
 }

 identity encode-json {
 base encoding;
 if-feature "encode-json";
 description
 "Encode data using JSON as described in RFC 7951.";
 reference
 "RFC 7951: JSON Encoding of Data Modeled with YANG";
 }

Voit, et al. Standards Track [Page 44]

RFC 8639 Subscribed Notifications September 2019

 /* Identities for transports */

 identity transport {
 description
 "An identity that represents the underlying mechanism for
 passing notification messages.";
 }

 /*
 * TYPEDEFs
 */

 typedef encoding {
 type identityref {
 base encoding;
 }
 description
 "Specifies a data encoding, e.g., for a data subscription.";
 }

 typedef stream-filter-ref {
 type leafref {
 path "/sn:filters/sn:stream-filter/sn:name";
 }
 description
 "This type is used to reference an event stream filter.";
 }

 typedef stream-ref {
 type leafref {
 path "/sn:streams/sn:stream/sn:name";
 }
 description
 "This type is used to reference a system-provided
 event stream.";
 }

 typedef subscription-id {
 type uint32;
 description
 "A type for subscription identifiers.";
 }

 typedef transport {
 type identityref {
 base transport;
 }
 description

Voit, et al. Standards Track [Page 45]

RFC 8639 Subscribed Notifications September 2019

 "Specifies the transport used to send notification messages
 to a receiver.";
 }

 /*
 * GROUPINGS
 */

 grouping stream-filter-elements {
 description
 "This grouping defines the base for filters applied to event
 streams.";
 choice filter-spec {
 description
 "The content filter specification for this request.";
 anydata stream-subtree-filter {
 if-feature "subtree";
 description
 "Event stream evaluation criteria encoded in the syntax of
 a subtree filter as defined in RFC 6241, Section 6.

 The subtree filter is applied to the representation of
 individual, delineated event records as contained in the
 event stream.

 If the subtree filter returns a non-empty node set, the
 filter matches the event record, and the event record is
 included in the notification message sent to the
 receivers.";
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF),
 Section 6";
 }
 leaf stream-xpath-filter {
 if-feature "xpath";
 type yang:xpath1.0;
 description
 "Event stream evaluation criteria encoded in the syntax of
 an XPath 1.0 expression.

 The XPath expression is evaluated on the representation of
 individual, delineated event records as contained in
 the event stream.

 The result of the XPath expression is converted to a
 boolean value using the standard XPath 1.0 rules. If the
 boolean value is ’true’, the filter matches the event
 record, and the event record is included in the

Voit, et al. Standards Track [Page 46]

RFC 8639 Subscribed Notifications September 2019

 notification message sent to the receivers.

 The expression is evaluated in the following XPath
 context:

 o The set of namespace declarations is the set of
 prefix and namespace pairs for all YANG modules
 implemented by the server, where the prefix is the
 YANG module name and the namespace is as defined by
 the ’namespace’ statement in the YANG module.

 If the leaf is encoded in XML, all namespace
 declarations in scope on the ’stream-xpath-filter’
 leaf element are added to the set of namespace
 declarations. If a prefix found in the XML is
 already present in the set of namespace
 declarations, the namespace in the XML is used.

 o The set of variable bindings is empty.

 o The function library is comprised of the core
 function library and the XPath functions defined in
 Section 10 in RFC 7950.

 o The context node is the root node.";
 reference
 "XML Path Language (XPath) Version 1.0
 (https://www.w3.org/TR/1999/REC-xpath-19991116)
 RFC 7950: The YANG 1.1 Data Modeling Language,
 Section 10";
 }
 }
 }

 grouping update-qos {
 description
 "This grouping describes QoS information concerning a
 subscription. This information is passed to lower layers
 for transport prioritization and treatment.";
 leaf dscp {
 if-feature "dscp";
 type inet:dscp;
 default "0";
 description
 "The desired network transport priority level. This is the
 priority set on notification messages encapsulating the
 results of the subscription. This transport priority is
 shared for all receivers of a given subscription.";

Voit, et al. Standards Track [Page 47]

RFC 8639 Subscribed Notifications September 2019

 }
 leaf weighting {
 if-feature "qos";
 type uint8 {
 range "0 .. 255";
 }
 description
 "Relative weighting for a subscription. Larger weights get
 more resources. Allows an underlying transport layer to
 perform informed load-balance allocations between various
 subscriptions.";
 reference
 "RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2),
 Section 5.3.2";
 }
 leaf dependency {
 if-feature "qos";
 type subscription-id;
 description
 "Provides the ’subscription-id’ of a parent subscription.
 The parent subscription has absolute precedence should
 that parent have push updates ready to egress the publisher.
 In other words, there should be no streaming of objects from
 the current subscription if the parent has something ready
 to push.

 If a dependency is asserted via configuration or via an RPC
 but the referenced ’subscription-id’ does not exist, the
 dependency is silently discarded. If a referenced
 subscription is deleted, this dependency is removed.";
 reference
 "RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2),
 Section 5.3.1";
 }
 }

 grouping subscription-policy-modifiable {
 description
 "This grouping describes all objects that may be changed
 in a subscription.";
 choice target {
 mandatory true;
 description
 "Identifies the source of information against which a
 subscription is being applied as well as specifics on the
 subset of information desired from that source.";
 case stream {
 choice stream-filter {

Voit, et al. Standards Track [Page 48]

RFC 8639 Subscribed Notifications September 2019

 description
 "An event stream filter can be applied to a subscription.
 That filter will either come referenced from a global
 list or be provided in the subscription itself.";
 case by-reference {
 description
 "Apply a filter that has been configured separately.";
 leaf stream-filter-name {
 type stream-filter-ref;
 mandatory true;
 description
 "References an existing event stream filter that is
 to be applied to an event stream for the
 subscription.";
 }
 }
 case within-subscription {
 description
 "A local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses stream-filter-elements;
 }
 }
 }
 }
 leaf stop-time {
 type yang:date-and-time;
 description
 "Identifies a time after which notification messages for a
 subscription should not be sent. If ’stop-time’ is not
 present, the notification messages will continue until the
 subscription is terminated. If ’replay-start-time’ exists,
 ’stop-time’ must be for a subsequent time. If
 ’replay-start-time’ doesn’t exist, ’stop-time’, when
 established, must be for a future time.";
 }
 }

 grouping subscription-policy-dynamic {
 description
 "This grouping describes the only information concerning a
 subscription that can be passed over the RPCs defined in this
 data model.";
 uses subscription-policy-modifiable {
 augment "target/stream" {
 description
 "Adds additional objects that can be modified by an RPC.";
 leaf stream {

Voit, et al. Standards Track [Page 49]

RFC 8639 Subscribed Notifications September 2019

 type stream-ref {
 require-instance false;
 }
 mandatory true;
 description
 "Indicates the event stream to be considered for
 this subscription.";
 }
 leaf replay-start-time {
 if-feature "replay";
 type yang:date-and-time;
 config false;
 description
 "Used to trigger the ’replay’ feature for a dynamic
 subscription, where event records that are selected
 need to be at or after the specified starting time. If
 ’replay-start-time’ is not present, this is not a replay
 subscription and event record push should start
 immediately. It is never valid to specify start times
 that are later than or equal to the current time.";
 }
 }
 }
 uses update-qos;
 }

 grouping subscription-policy {
 description
 "This grouping describes the full set of policy information
 concerning both dynamic and configured subscriptions, with the
 exclusion of both receivers and networking information
 specific to the publisher, such as what interface should be
 used to transmit notification messages.";
 uses subscription-policy-dynamic;
 leaf transport {
 if-feature "configured";
 type transport;
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined for all
 receivers of that subscription.";
 }
 leaf encoding {
 when ’not(../transport) or derived-from(../transport,
 "sn:configurable-encoding")’;
 type encoding;
 description
 "The type of encoding for notification messages. For a

Voit, et al. Standards Track [Page 50]

RFC 8639 Subscribed Notifications September 2019

 dynamic subscription, if not included as part of an
 ’establish-subscription’ RPC, the encoding will be populated
 with the encoding used by that RPC. For a configured
 subscription, if not explicitly configured, the encoding
 will be the default encoding for an underlying transport.";
 }
 leaf purpose {
 if-feature "configured";
 type string;
 description
 "Open text allowing a configuring entity to embed the
 originator or other specifics of this subscription.";
 }
 }

 /*
 * RPCs
 */

 rpc establish-subscription {
 description
 "This RPC allows a subscriber to create (and possibly
 negotiate) a subscription on its own behalf. If successful,
 the subscription remains in effect for the duration of the
 subscriber’s association with the publisher or until the
 subscription is terminated. If an error occurs or the
 publisher cannot meet the terms of a subscription, an RPC
 error is returned, and the subscription is not created.
 In that case, the RPC reply’s ’error-info’ MAY include
 suggested parameter settings that would have a higher
 likelihood of succeeding in a subsequent
 ’establish-subscription’ request.";
 input {
 uses subscription-policy-dynamic;
 leaf encoding {
 type encoding;
 description
 "The type of encoding for the subscribed data. If not
 included as part of the RPC, the encoding MUST be set by
 the publisher to be the encoding used by this RPC.";
 }
 }
 output {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier used for this subscription.";

Voit, et al. Standards Track [Page 51]

RFC 8639 Subscribed Notifications September 2019

 }
 leaf replay-start-time-revision {
 if-feature "replay";
 type yang:date-and-time;
 description
 "If a replay has been requested, this object represents
 the earliest time covered by the event buffer for the
 requested event stream. The value of this object is the
 ’replay-log-aged-time’ if it exists. Otherwise, it is
 the ’replay-log-creation-time’. All buffered event
 records after this time will be replayed to a receiver.
 This object will only be sent if the starting time has
 been revised to be later than the time requested by the
 subscriber.";
 }
 }
 }

 rc:yang-data establish-subscription-stream-error-info {
 container establish-subscription-stream-error-info {
 description
 "If any ’establish-subscription’ RPC parameters are
 unsupportable against the event stream, a subscription
 is not created and the RPC error response MUST indicate the
 reason why the subscription failed to be created. This
 yang-data MAY be inserted as structured data in a
 subscription’s RPC error response to indicate the reason for
 the failure. This yang-data MUST be inserted if hints are
 to be provided back to the subscriber.";
 leaf reason {
 type identityref {
 base establish-subscription-error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted event stream.";
 }
 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided
 filter was unsupportable for a subscription. The
 syntax and semantics of this hint are
 implementation specific.";
 }
 }
 }

Voit, et al. Standards Track [Page 52]

RFC 8639 Subscribed Notifications September 2019

 rpc modify-subscription {
 description
 "This RPC allows a subscriber to modify a dynamic
 subscription’s parameters. If successful, the changed
 subscription parameters remain in effect for the duration of
 the subscription, until the subscription is again modified, or
 until the subscription is terminated. In the case of an error
 or an inability to meet the modified parameters, the
 subscription is not modified and the original subscription
 parameters remain in effect. In that case, the RPC error MAY
 include ’error-info’ suggested parameter hints that would have
 a high likelihood of succeeding in a subsequent
 ’modify-subscription’ request. A successful
 ’modify-subscription’ will return a suspended subscription to
 the ’active’ state.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-policy-modifiable;
 }
 }

 rc:yang-data modify-subscription-stream-error-info {
 container modify-subscription-stream-error-info {
 description
 "This yang-data MAY be provided as part of a subscription’s
 RPC error response when there is a failure of a
 ’modify-subscription’ RPC that has been made against an
 event stream. This yang-data MUST be used if hints are to
 be provided back to the subscriber.";
 leaf reason {
 type identityref {
 base modify-subscription-error;
 }
 description
 "Information in a ’modify-subscription’ RPC error response
 that indicates the reason why the subscription to an event
 stream has failed to be modified.";
 }
 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided
 filter was unsupportable for a subscription. The syntax

Voit, et al. Standards Track [Page 53]

RFC 8639 Subscribed Notifications September 2019

 and semantics of this hint are
 implementation specific.";
 }
 }
 }

 rpc delete-subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created by that same subscriber using the
 ’establish-subscription’ RPC.

 If an error occurs, the server replies with an ’rpc-error’
 where the ’error-info’ field MAY contain a
 ’delete-subscription-error-info’ structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 ’establish-subscription’ from the same origin as this RPC
 can be deleted via this RPC.";
 }
 }
 }

 rpc kill-subscription {
 nacm:default-deny-all;
 description
 "This RPC allows an operator to delete a dynamic subscription
 without restrictions on the originating subscriber or
 underlying transport session.

 If an error occurs, the server replies with an ’rpc-error’
 where the ’error-info’ field MAY contain a
 ’delete-subscription-error-info’ structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 ’establish-subscription’ can be deleted via this RPC.";
 }
 }

Voit, et al. Standards Track [Page 54]

RFC 8639 Subscribed Notifications September 2019

 }

 rc:yang-data delete-subscription-error-info {
 container delete-subscription-error-info {
 description
 "If a ’delete-subscription’ RPC or a ’kill-subscription’ RPC
 fails, the subscription is not deleted and the RPC error
 response MUST indicate the reason for this failure. This
 yang-data MAY be inserted as structured data in a
 subscription’s RPC error response to indicate the reason
 for the failure.";
 leaf reason {
 type identityref {
 base delete-subscription-error;
 }
 mandatory true;
 description
 "Indicates the reason why the subscription has failed to be
 deleted.";
 }
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification replay-completed {
 sn:subscription-state-notification;
 if-feature "replay";
 description
 "This notification is sent to indicate that all of the replay
 notifications have been sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-completed {
 sn:subscription-state-notification;
 if-feature "configured";
 description
 "This notification is sent to indicate that a subscription has
 finished passing event records, as the ’stop-time’ has been
 reached.";

Voit, et al. Standards Track [Page 55]

RFC 8639 Subscribed Notifications September 2019

 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the gracefully completed subscription.";
 }
 }

 notification subscription-modified {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been
 modified. Notification messages sent from this point on will
 conform to the modified terms of the subscription. For
 completeness, this subscription state change notification
 includes both modified and unmodified aspects of a
 subscription.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 ’stream-filter-name’ is populated, the filter in the
 subscription came from the ’filters’ container.
 Otherwise, it is populated in-line as part of the
 subscription.";
 }
 }
 }

 notification subscription-resumed {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications will
 once again be sent. In addition, a ’subscription-resumed’
 indicates that no modification of parameters has occurred
 since the last time event records have been sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";

Voit, et al. Standards Track [Page 56]

RFC 8639 Subscribed Notifications September 2019

 }
 }

 notification subscription-started {
 sn:subscription-state-notification;
 if-feature "configured";
 description
 "This notification indicates that a subscription has started
 and notifications will now be sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/replay-start-time" {
 description
 "Indicates the time that a replay is using for the
 streaming of buffered event records. This will be
 populated with the most recent of the following:
 the event time of the previous event record sent to a
 receiver, the ’replay-log-creation-time’, the
 ’replay-log-aged-time’, or the most recent publisher
 boot time.";
 }
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 ’stream-filter-name’ is populated, the filter in the
 subscription came from the ’filters’ container.
 Otherwise, it is populated in-line as part of the
 subscription.";
 }
 augment "target/stream" {
 description
 "This augmentation adds additional parameters specific to a
 ’subscription-started’ notification.";
 leaf replay-previous-event-time {
 when ’../replay-start-time’;
 if-feature "replay";
 type yang:date-and-time;
 description
 "If there is at least one event in the replay buffer
 prior to ’replay-start-time’, this gives the time of
 the event generated immediately prior to the
 ’replay-start-time’.

Voit, et al. Standards Track [Page 57]

RFC 8639 Subscribed Notifications September 2019

 If a receiver previously received event records for
 this configured subscription, it can compare this time
 to the last event record previously received. If the
 two are not the same (perhaps due to a reboot), then a
 dynamic replay can be initiated to acquire any missing
 event records.";
 }
 }
 }
 }

 notification subscription-suspended {
 sn:subscription-state-notification;
 description
 "This notification indicates that a suspension of the
 subscription by the publisher has occurred. No further
 notifications will be sent until the subscription resumes.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription-suspended-reason;
 }
 mandatory true;
 description
 "Identifies the condition that resulted in the suspension.";
 }
 }

 notification subscription-terminated {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {

Voit, et al. Standards Track [Page 58]

RFC 8639 Subscribed Notifications September 2019

 type identityref {
 base subscription-terminated-reason;
 }
 mandatory true;
 description
 "Identifies the condition that resulted in the termination.";
 }
 }

 /*
 * DATA NODES
 */

 container streams {
 config false;
 description
 "Contains information on the built-in event streams provided by
 the publisher.";
 list stream {
 key "name";
 description
 "Identifies the built-in event streams that are supported by
 the publisher.";
 leaf name {
 type string;
 description
 "A handle for a system-provided event stream made up of a
 sequential set of event records, each of which is
 characterized by its own domain and semantics.";
 }
 leaf description {
 type string;
 description
 "A description of the event stream, including such
 information as the type of event records that are
 available in this event stream.";
 }
 leaf replay-support {
 if-feature "replay";
 type empty;
 description
 "Indicates that event record replay is available on this
 event stream.";
 }
 leaf replay-log-creation-time {
 when ’../replay-support’;
 if-feature "replay";
 type yang:date-and-time;

Voit, et al. Standards Track [Page 59]

RFC 8639 Subscribed Notifications September 2019

 mandatory true;
 description
 "The timestamp of the creation of the log used to support
 the replay function on this event stream. This time
 might be earlier than the earliest available information
 contained in the log. This object is updated if the log
 resets for some reason.";
 }
 leaf replay-log-aged-time {
 when ’../replay-support’;
 if-feature "replay";
 type yang:date-and-time;
 description
 "The timestamp associated with the last event record that
 has been aged out of the log. This timestamp identifies
 how far back in history this replay log extends, if it
 doesn’t extend back to the ’replay-log-creation-time’.
 This object MUST be present if replay is supported and any
 event records have been aged out of the log.";
 }
 }
 }
 container filters {
 description
 "Contains a list of configurable filters that can be applied to
 subscriptions. This facilitates the reuse of complex filters
 once defined.";
 list stream-filter {
 key "name";
 description
 "A list of preconfigured filters that can be applied to
 subscriptions.";
 leaf name {
 type string;
 description
 "A name to differentiate between filters.";
 }
 uses stream-filter-elements;
 }
 }
 container subscriptions {
 description
 "Contains the list of currently active subscriptions, i.e.,
 subscriptions that are currently in effect, used for
 subscription management and monitoring purposes. This
 includes subscriptions that have been set up via
 RPC primitives as well as subscriptions that have been
 established via configuration.";

Voit, et al. Standards Track [Page 60]

RFC 8639 Subscribed Notifications September 2019

 list subscription {
 key "id";
 description
 "The identity and specific parameters of a subscription.
 Subscriptions in this list can be created using a control
 channel or RPC or can be established through configuration.

 If the ’kill-subscription’ RPC or configuration operations
 are used to delete a subscription, a
 ’subscription-terminated’ message is sent to any active or
 suspended receivers.";
 leaf id {
 type subscription-id;
 description
 "Identifier of a subscription; unique in a given
 publisher.";
 }
 uses subscription-policy {
 refine "target/stream/stream" {
 description
 "Indicates the event stream to be considered for this
 subscription. If an event stream has been removed
 and can no longer be referenced by an active
 subscription, send a ’subscription-terminated’
 notification with ’stream-unavailable’ as the reason.
 If a configured subscription refers to a nonexistent
 event stream, move that subscription to the
 ’invalid’ state.";
 }
 refine "transport" {
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined for all
 receivers of that subscription. This object is
 mandatory for subscriptions in the configuration
 datastore. This object (1) is not mandatory for dynamic
 subscriptions in the operational state datastore and
 (2) should not be present for other types of dynamic
 subscriptions.";
 }
 augment "target/stream" {
 description
 "Enables objects to be added to a configured stream
 subscription.";
 leaf configured-replay {
 if-feature "configured";
 if-feature "replay";
 type empty;

Voit, et al. Standards Track [Page 61]

RFC 8639 Subscribed Notifications September 2019

 description
 "The presence of this leaf indicates that replay for
 the configured subscription should start at the
 earliest time in the event log or at the publisher
 boot time, whichever is later.";
 }
 }
 }
 choice notification-message-origin {
 if-feature "configured";
 description
 "Identifies the egress interface on the publisher
 from which notification messages are to be sent.";
 case interface-originated {
 description
 "When notification messages are to egress a specific,
 designated interface on the publisher.";
 leaf source-interface {
 if-feature "interface-designation";
 type if:interface-ref;
 description
 "References the interface for notification messages.";
 }
 }
 case address-originated {
 description
 "When notification messages are to depart from a
 publisher using a specific originating address and/or
 routing context information.";
 leaf source-vrf {
 if-feature "supports-vrf";
 type leafref {
 path "/ni:network-instances/ni:network-instance/ni:name";
 }
 description
 "VRF from which notification messages should egress a
 publisher.";
 }
 leaf source-address {
 type inet:ip-address-no-zone;
 description
 "The source address for the notification messages.
 If a source VRF exists but this object doesn’t, a
 publisher’s default address for that VRF must
 be used.";
 }
 }
 }

Voit, et al. Standards Track [Page 62]

RFC 8639 Subscribed Notifications September 2019

 leaf configured-subscription-state {
 if-feature "configured";
 type enumeration {
 enum valid {
 value 1;
 description
 "The subscription is supportable with its current
 parameters.";
 }
 enum invalid {
 value 2;
 description
 "The subscription as a whole is unsupportable with its
 current parameters.";
 }
 enum concluded {
 value 3;
 description
 "A subscription is inactive, as it has hit a
 stop time. It no longer has receivers in the
 ’active’ or ’suspended’ state, but the subscription
 has not yet been removed from configuration.";
 }
 }
 config false;
 description
 "The presence of this leaf indicates that the subscription
 originated from configuration, not through a control
 channel or RPC. The value indicates the state of the
 subscription as established by the publisher.";
 }
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "name";
 min-elements 1;
 description
 "A host intended as a recipient for the notification
 messages of a subscription. For configured
 subscriptions, transport-specific network parameters
 (or a leafref to those parameters) may be augmented to a
 specific receiver in this list.";
 leaf name {
 type string;
 description
 "Identifies a unique receiver for a subscription.";
 }

Voit, et al. Standards Track [Page 63]

RFC 8639 Subscribed Notifications September 2019

 leaf sent-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records sent to the receiver. The
 count is initialized when a dynamic subscription is
 established or when a configured receiver
 transitions to the ’valid’ state.";
 }
 leaf excluded-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records explicitly removed via
 either an event stream filter or an access control
 filter so that they are not passed to a receiver.
 This count is set to zero each time
 ’sent-event-records’ is initialized.";
 }
 leaf state {
 type enumeration {
 enum active {
 value 1;
 description
 "The receiver is currently being sent any
 applicable notification messages for the
 subscription.";
 }
 enum suspended {
 value 2;
 description
 "The receiver state is ’suspended’, so the
 publisher is currently unable to provide
 notification messages for the subscription.";
 }
 enum connecting {
 value 3;
 if-feature "configured";
 description
 "A subscription has been configured, but a
 ’subscription-started’ subscription state change
 notification needs to be successfully received
 before notification messages are sent.

 If the ’reset’ action is invoked for a receiver of
 an active configured subscription, the state
 must be moved to ’connecting’.";
 }

Voit, et al. Standards Track [Page 64]

RFC 8639 Subscribed Notifications September 2019

 enum disconnected {
 value 4;
 if-feature "configured";
 description
 "A subscription has failed to send a
 ’subscription-started’ state change to the
 receiver. Additional connection attempts are not
 currently being made.";
 }
 }
 config false;
 mandatory true;
 description
 "Specifies the state of a subscription from the
 perspective of a particular receiver. With this
 information, it is possible to determine whether a
 publisher is currently generating notification
 messages intended for that receiver.";
 }
 action reset {
 if-feature "configured";
 description
 "Allows the reset of this configured subscription’s
 receiver to the ’connecting’ state. This enables the
 connection process to be reinitiated.";
 output {
 leaf time {
 type yang:date-and-time;
 mandatory true;
 description
 "Time at which a publisher returned the receiver to
 the ’connecting’ state.";
 }
 }
 }
 }
 }
 }
 }
}
<CODE ENDS>

Voit, et al. Standards Track [Page 65]

RFC 8639 Subscribed Notifications September 2019

5. IANA Considerations

 IANA has registered one URI in the "ns" subregistry of the "IETF XML
 Registry" [RFC3688] maintained at <https://www.iana.org/assignments/
 xml-registry>. The following registration has been made per the
 format in [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A; the requested URI is an XML namespace.

 IANA has registered one YANG module in the "YANG Module Names"
 registry [RFC6020] maintained at <https://www.iana.org/assignments/
 yang-parameters>. The following registration has been made per the
 format in [RFC6020]:

 Name: ietf-subscribed-notifications
 Namespace: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Prefix: sn
 Reference: RFC 8639

6. Implementation Considerations

 To support deployments that include both configured and dynamic
 subscriptions, it is recommended that the subscription "id" domain be
 split into static and dynamic halves. This will eliminate the
 possibility of collisions if the configured subscriptions attempt to
 set a "subscription-id" that might have already been dynamically
 allocated. A best practice is to use the lower half of the "id"
 object’s integer space when that "id" is assigned by an external
 entity (such as with a configured subscription). This leaves the
 upper half of the subscription integer space available to be
 dynamically assigned by the publisher.

 If a subscription is unable to marshal a series of filtered event
 records into transmittable notification messages, the receiver should
 be suspended with the reason "unsupportable-volume".

 For configured subscriptions, operations are performed against the
 set of receivers using the subscription "id" as a handle for that
 set. But for streaming updates, subscription state change
 notifications are local to a receiver. In the case of this
 specification, receivers do not get any information from the
 publisher about the existence of other receivers. But if a network
 operator wants to let the receivers correlate results, it is useful
 to use the subscription "id" across the receivers to allow that

Voit, et al. Standards Track [Page 66]

RFC 8639 Subscribed Notifications September 2019

 correlation. Note that due to the possibility of different access
 control permissions per receiver, each receiver may actually get a
 different set of event records.

 For configured replay subscriptions, the receiver is protected from
 duplicated events being pushed after a publisher is rebooted.
 However, it is possible that a receiver might want to acquire event
 records that failed to be delivered just prior to the reboot.
 Delivering these event records can be accomplished by leveraging the
 <eventTime> [RFC5277] from the last event record received prior to
 the receipt of a "subscription-started" subscription state change
 notification. With this <eventTime> and the "replay-start-time" from
 the "subscription-started" notification, an independent dynamic
 subscription can be established that retrieves any event records that
 may have been generated but not sent to the receiver.

7. Transport Requirements

 This section provides requirements for any subscribed notification
 transport supporting the solution presented in this document.

 The transport selected by the subscriber to reach the publisher MUST
 be able to support multiple "establish-subscription" requests made in
 the same transport session.

 For both configured and dynamic subscriptions, the publisher MUST
 authenticate a receiver via some transport-level mechanism before
 sending any event records that the receiver is authorized to see. In
 addition, the receiver MUST authenticate the publisher at the
 transport level. The result is mutual authentication between
 the two.

 A secure transport is highly recommended. Beyond this, the publisher
 MUST ensure that the receiver has sufficient authorization to perform
 the function it is requesting against the specific subset of content
 involved.

 A specification for a transport built upon this document may or may
 not choose to require the use of the same logical channel for the
 RPCs and the event records. However, the event records and the
 subscription state change notifications MUST be sent on the same
 transport session to ensure properly ordered delivery.

 A specification for a transport MUST identify any encodings that are
 supported. If a configured subscription’s transport allows different
 encodings, the specification MUST identify the default encoding.

Voit, et al. Standards Track [Page 67]

RFC 8639 Subscribed Notifications September 2019

 A subscriber that includes a "dscp" leaf in an "establish-
 subscription" request will need to understand and consider what the
 corresponding DSCP value represents in the domain of the publisher.

 Additional transport requirements will be dictated by the choice of
 transport used with a subscription. For an example of such
 requirements, see [RFC8640].

8. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 With configured subscriptions, one or more publishers could be used
 to overwhelm a receiver. To counter this, notification messages
 SHOULD NOT be sent to any receiver that does not support this
 specification. Receivers that do not want notification messages need
 only terminate or refuse any transport sessions from the publisher.

 When a receiver of a configured subscription gets a new
 "subscription-started" message for a known subscription where it is
 already consuming events, it may indicate that an attacker has done
 something that has momentarily disrupted receiver connectivity. To
 acquire events lost during this interval, the receiver SHOULD
 retrieve any event records generated since the last event record was
 received. This can be accomplished by establishing a separate
 dynamic replay subscription with the same filtering criteria with the
 publisher, assuming that the publisher supports the "replay" feature.

 For dynamic subscriptions, implementations need to protect against
 malicious or buggy subscribers that may send a large number of
 "establish-subscription" requests and thereby use up system
 resources. To cover this possibility, operators SHOULD monitor for
 such cases and, if discovered, take remedial action to limit the
 resources used, such as suspending or terminating a subset of the
 subscriptions or, if the underlying transport is session based,
 terminating the underlying transport session.

Voit, et al. Standards Track [Page 68]

RFC 8639 Subscribed Notifications September 2019

 The replay mechanisms described in Sections 2.4.2.1 and 2.5.6 provide
 access to historical event records. By design, the access control
 model that protects these records could enable subscribers to view
 data to which they were not authorized at the time of collection.

 Using DNS names for configured subscription’s receiver "name" lookups
 can cause situations where the name resolves differently than
 expected on the publisher, so the recipient would be different than
 expected.

 An attacker that can cause the publisher to use an incorrect time can
 induce message replay by setting the time in the past and can
 introduce a risk of message loss by setting the time in the future.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 Container: "/filters"

 o "stream-subtree-filter": Updating a filter could increase the
 computational complexity of all referencing subscriptions.

 o "stream-xpath-filter": Updating a filter could increase the
 computational complexity of all referencing subscriptions.

 Container: "/subscriptions"

 The following considerations are only relevant for configuration
 operations made upon configured subscriptions:

 o "configured-replay": Can be used to send a large number of event
 records to a receiver.

 o "dependency": Can be used to force important traffic to be queued
 behind updates that are not as important.

 o "dscp": If unvalidated, can result in the sending of traffic with
 a higher-priority marking than warranted.

 o "id": Can overwrite an existing subscription, perhaps one
 configured by another entity.

Voit, et al. Standards Track [Page 69]

RFC 8639 Subscribed Notifications September 2019

 o "name": Adding a new key entry can be used to attempt to send
 traffic to an unwilling receiver.

 o "replay-start-time": Can be used to push very large logs, wasting
 resources.

 o "source-address": The configured address might not be able to
 reach a desired receiver.

 o "source-interface": The configured interface might not be able to
 reach a desired receiver.

 o "source-vrf": Can place a subscription in a virtual network where
 receivers are not entitled to view the subscribed content.

 o "stop-time": Could be used to terminate content at an inopportune
 time.

 o "stream": Could set a subscription to an event stream that does
 not contain content permitted for the targeted receivers.

 o "stream-filter-name": Could be set to a filter that is not
 relevant to the event stream.

 o "stream-subtree-filter": A complex filter can increase the
 computational resources for this subscription.

 o "stream-xpath-filter": A complex filter can increase the
 computational resources for this subscription.

 o "weighting": Allocating a large weight can overwhelm the dequeuing
 of other subscriptions.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/streams"

 o "name": If access control is not properly configured, can expose
 system internals to those who should not have access to this
 information.

 o "replay-support": If access control is not properly configured,
 can expose logs to those who should not have access.

Voit, et al. Standards Track [Page 70]

RFC 8639 Subscribed Notifications September 2019

 Container: "/subscriptions"

 o "excluded-event-records": This leaf can provide information about
 filtered event records. A network operator should have the proper
 permissions to know about such filtering. However, exposing the
 count of excluded events to a receiver could leak information
 about the presence of access control filters that might be in
 place for that receiver.

 o "subscription": Different operational teams might have a desire to
 set varying subsets of subscriptions. Access control should be
 designed to permit read access to just the allowed set.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 RPC: all

 o If a malicious or buggy subscriber sends an unexpectedly large
 number of RPCs, the result might be an excessive use of system
 resources on the publisher just to determine that these
 subscriptions should be declined. In such a situation,
 subscription interactions MAY be terminated by terminating the
 transport session.

 RPC: "delete-subscription"

 o No special considerations.

 RPC: "establish-subscription"

 o Subscriptions could overload a publisher’s resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request; otherwise, they MUST reject the request.

 RPC: "kill-subscription"

 o The "kill-subscription" RPC MUST be secured so that only
 connections with administrative rights are able to invoke
 this RPC.

 RPC: "modify-subscription"

 o Subscriptions could overload a publisher’s resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request; otherwise, they MUST reject the request.

Voit, et al. Standards Track [Page 71]

RFC 8639 Subscribed Notifications September 2019

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

Voit, et al. Standards Track [Page 72]

RFC 8639 Subscribed Notifications September 2019

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8529] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.
 Liu, "YANG Data Model for Network Instances", RFC 8529,
 DOI 10.17487/RFC8529, March 2019,
 <https://www.rfc-editor.org/info/rfc8529>.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation
 REC-xml-20081126, November 2008,
 <https://www.w3.org/TR/2008/REC-xml-20081126>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <https://www.w3.org/TR/1999/REC-xpath-19991116>.

Voit, et al. Standards Track [Page 73]

RFC 8639 Subscribed Notifications September 2019

9.2. Informative References

 [RESTCONF-Notif]
 Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A.,
 and A. Bierman, "Dynamic subscription to YANG Events
 and Datastores over RESTCONF", Work in Progress,
 draft-ietf-netconf-restconf-notif-15, June 2019.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8640] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Dynamic Subscription to YANG Events
 and Datastores over NETCONF", RFC 8640,
 DOI 10.17487/RFC8640, September 2019,
 <https://www.rfc-editor.org/info/rfc8640>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Voit, et al. Standards Track [Page 74]

RFC 8639 Subscribed Notifications September 2019

Appendix A. Example Configured Transport Augmentation

 This appendix provides a non-normative example of how the YANG module
 defined in Section 4 may be enhanced to incorporate the configuration
 parameters needed to support the transport connectivity process.
 This example is not intended to be a complete transport model. In
 this example, connectivity via an imaginary transport type of "foo"
 is explored. For more on the overall objectives behind configuring
 transport connectivity for a configured subscription, see
 Section 2.5.7.

 The YANG module example defined in this appendix contains two main
 elements. First is a transport identity "foo". This transport
 identity allows a configuration agent to define "foo" as the selected
 type of transport for a subscription. Second is a YANG case
 augmentation "foo", which is made to the
 "/subscriptions/subscription/receivers/receiver" node of Section 4.
 In this augmentation are the transport configuration parameters
 "address" and "port", which are necessary to make the connection to
 the receiver.

 module example-foo-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:example:foo-subscribed-notifications";

 prefix fsn;

 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {
 prefix inet;
 }

 description
 "Defines ’foo’ as a supported type of configured transport for
 subscribed event notifications.";

 identity foo {
 base sn:transport;
 description
 "Transport type ’foo’ is available for use as a configured
 subscription’s transport protocol for subscribed
 notifications.";
 }

Voit, et al. Standards Track [Page 75]

RFC 8639 Subscribed Notifications September 2019

 augment
 "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 when ’derived-from(../../../transport, "fsn:foo")’;
 description
 "This augmentation makes transport parameters specific to ’foo’
 available for a receiver.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "Specifies the address to use for messages destined for a
 receiver.";
 }
 leaf port {
 type inet:port-number;
 mandatory true;
 description
 "Specifies the port number to use for messages destined for a
 receiver.";
 }
 }
 }

 Figure 21: Example Transport Augmentation
 for the Fictitious Protocol "foo"

 This example YANG module for transport "foo" will not be seen in a
 real-world deployment. For a real-world deployment supporting an
 actual transport technology, a similar YANG module must be defined.

Voit, et al. Standards Track [Page 76]

RFC 8639 Subscribed Notifications September 2019

Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Tim Jenkins, Martin Bjorklund, Kent Watsen,
 Balazs Lengyel, Robert Wilton, Sharon Chisholm, Hector Trevino, Susan
 Hares, Michael Scharf, and Guangying Zheng.

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Futurewei

 Email: ludwig@clemm.org

 Alberto Gonzalez Prieto
 Microsoft

 Email: alberto.gonzalez@microsoft.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

Voit, et al. Standards Track [Page 77]

