
 < INC-PROJECT, MAP-PERSPECTIVE.NLS.14, >, 12-Aug-83 11:34 AMW
 ;;;;

 RFC 871 September 1982
 M82-47

 A PERSPECTIVE ON THE ARPANET REFERENCE MODEL

 M.A. PADLIPSKY
 THE MITRE CORPORATION
 Bedford, Massachusetts

 Abstract

 The paper, by one of its developers, describes the
 conceptual framework in which the ARPANET intercomputer
 networking protocol suite, including the DoD standard
 Transmission Control Protocol (TCP) and Internet Protocol (IP),
 were designed. It also compares and contrasts several aspects of
 the ARPANET Reference Model (ARM) with the more widely publicized
 International Standards Organization’s Reference Model for Open
 System Interconnection (ISORM).

 i

 "A PERSPECTIVE ON THE ARPANET REFERENCE MODEL"

 M. A. Padlipsky

 Introduction

 Despite the fact that "the ARPANET" stands as the
 proof-of-concept of intercomputer networking and, as discussed in
 more detail below, introduced such fundamental notions as
 Layering and Virtualizing to the literature, the wide
 availability of material which appeals to the International
 Standards Organization’s Reference Model for Open System
 Interconnection (ISORM) has prompted many new- comers to the
 field to overlook the fact that, even though it was largely
 tacit, the designers of the ARPANET protocol suite have had a
 reference model of their own all the long. That is, since well
 before ISO even took an interest in "networking", workers in the
 ARPA-sponsored research community have been going about their
 business of doing research and development in intercomputer
 networking with a particular frame of reference in mind. They
 have, unfortunately, either been so busy with their work or were
 perhaps somehow unsuited temperamentally to do learned papers on
 abstract topics when there are interesting things to be said on
 specific topics, that it is only in very recent times that there
 has been much awareness in the research community of the impact
 of the ISORM on the lay mind. When the author is asked to review
 solemn memoranda comparing such things as the ARPANET treatment
 of "internetting" with that of CCITT employing the ISORM "as the
 frame of reference," however, the time has clearly come to
 attempt to enunciate the ARPANET Reference Model (ARM)
 publicly--for such comparisons are painfully close to comparing
 an orange with an apple using redness and smoothness as the
 dominant criteria, given the philosophical closeness of the CCITT
 and ISO models and their mutual disparities from the ARPANET
 model.

 This paper, then, is primarily intended as a perspective on
 the ARM. (Secondarily, it is intended to point out some of the
 differences between the ARM and the ISORM. For a perspective on
 this subtheme, please see Note [1]) It can’t be "the official"
 version because the ARPANET Network Working Group (NWG), which
 was the collective source of the ARM, hasn’t had an official
 general meeting since October, 1971, and can scarcely be
 resurrected to haggle over it. It does, at least, represent with
 some degree of fidelity the views of a number of NWG members as
 those views were expressed in NWG general meetings, NWG protocol
 design committee meetings, and private conversations over the
 intervening years. (Members of the current ARPA Internet Working
 Group, which applied

 1

 RFC 871 September 1982

 and adapted the original model to a broader arena than had
 initially been contemplated, were also consulted.) That might
 not sound so impressive as a pronunciamento from an international
 standards organization, but the reader should be somewhat
 consoled by the consideration that not only are the views
 expressed here purported to be those of the primary workers in
 the field, but also at least one Englishman helped out in the
 review process.

 Historical/Philosophical Context

 Although rigorous historians of science might quibble as to
 whether they were "invented" by a particular group, it is an
 historical fact that many now widely-accepted, fundamental
 concepts of intercomputer networking were original to the ARPANET
 Network Working Group. [2] Before attempting to appreciate the
 implications of that assertion, let’s attempt to define its two
 key terms and then cite the concepts it alludes to:

 By "intercomputer networking" we mean the attachment of
 multiple, usually general-purpose computer systems--in the sense
 of Operating Systems of potentially different manufacture (i.e.,
 "Heterogeneous Operating Systems")--to some communications
 network, or communications networks somehow interconnected, for
 the purpose of achieving resource sharing amongst the
 participating operating systems, usually called Hosts. (By
 "resource sharing" we mean the potential ability for programs on
 each of the Hosts to interoperate with programs on the other
 Hosts and for data housed on each of the Hosts to be made
 available to the other Hosts in a more general and flexible
 fashion than merely enabling users on each of the Hosts to be
 able to login to the other Hosts as if they were local; that is,
 we expect to do more than mere "remote access" to intercomputer
 networked Hosts.) By "the ARPANET Network Working Group," we
 mean those system programmers and computer scientists from
 numerous Defense Advanced Research Projects Agency-sponsored
 installations whose home operating systems were intended to
 become early Hosts on the ARPANET. (By "the ARPANET" we mean,
 depending on context, either that communications network
 sponsored by DARPA which served as proof-of-concept for the
 communications technology known as "packet switching," or,
 consistent with common usage, the intercomputer network which was
 evolved by the NWG that uses that communications network--or
 "comm subnet"--as its inter-Host data transmission medium.)

 The concepts of particular interest are as follows: By
 analogy to the use of the term in traditional communications, the
 NWG decided that the key to the mechanization of the
 resource-sharing goal (which in turn had been posited in their
 informal charter)

 2

 RFC 871 September 1982

 would be "protocols" that Hosts would interpret both in
 communicating with the comm subnet and in communicating with each
 other. Because the active entities in Hosts (the programs in
 execution) were widely referred to in Computer Science as
 "processes," it seemed clear that the mechanization of resource
 sharing had to involve interprocess communication; protocols that
 enabled and employed interprocess communication became, almost
 axiomatically, the path to the goal. Perhaps because the
 limitations of mere remote access were perceived early on, or
 perhaps simply by analogy to the similar usage with regard to
 distinguishing between physical tape drives and tape drives
 associated with some conventionally-defined function like the
 System Input stream or the System Output stream in batch
 operating systems, the discernible communications paths (or
 "channels") through the desired interprocess communication
 mechanism became known as "logical connections"--the intent of
 the term being to indicate that the physical path didn’t matter
 but the designator (number) of the logical connection could have
 an assigned meaning, just like logical tape drive numbers.
 Because "modularity" was an important issue in Computer Science
 at the time, and because the separation of Hosts and Interface
 Message Processors (IMP’s) was a given, the NWG realized that the
 protocols it designed should be "layered," in the sense that a
 given set of related functions (e.g., the interprocess
 communication mechanism, or "primitives," as realized in a
 Host-to-Host protocol) should not take special cognizance of the
 detailed internal mechanics of another set of related functions
 (e.g., the comm subnet attachment mechanism, as realized in a
 Host-Comm Subnet Processor protocol), and that, indeed, protocols
 may be viewed as existing in a hierarchy.

 With the notion of achieving resource sharing via layered
 protocols for interprocess communication over logical connections
 fairly firmly in place, the NWG turned to how best to achieve the
 first step of intercomputer networking: allowing a distant user
 to login to a Host as if local--but with the clear understanding
 that the mechanisms employed were to be generalizable to other
 types of resource sharing. Here we come to the final fundamental
 concept contributed by the NWG, for it was observed that if n
 different types of Host (i.e., different operating systems) had
 to be made aware of the physical characteristics of m different
 types of terminal in order to exercise physical control over
 them--or even if n different kinds of Host had to become aware of
 the native terminals supported by m other kinds of Hosts if
 physical control were to remain local--there would be an
 administratively intractable "n x m problem." So the notion of
 creating a "virtual terminal" arose, probably by analogy to
 "virtual memory" in the sense of something that "wasn’t really
 there" but could be used as if it

 3

 RFC 871 September 1982

 were; that is, a common intermediate representation (CIR) of
 terminal characteristics was defined in order to allow the Host
 to which a terminal was physically attached to map the particular
 characteristics of the terminal into a CIR, so that the Host
 being logged into, knowing the CIR as part of the relevant
 protocol, could map out of it into a form already acceptable to
 the native operating system. And when it came time to develop a
 File Transfer Protocol, the same virtualizing or CIR trick was
 clearly just as useful as for a terminal oriented protocol, so
 virtualizing became part of the axiom set too.

 The NWG, then, at least pioneered and probably invented the
 notion of doing intercomputer networking/resource sharing via
 hierarchical, layered protocols for interprocess communication
 over logical connections of common intermediate representations/
 virtualizations. Meanwhile, outside of the ARPA research
 community, "the ARPANET" was perceived to be a major
 technological advance. "Networking" became the "in" thing. And
 along with popular success came the call for standards; in
 particular, standards based on a widely-publicized "Reference
 Model for Open System Interconnection" promulgated by the
 International Standards Organization. Not too surprisingly, Open
 System Interconnection looks a lot like resource sharing, the
 ISORM posits a layered protocol hierarchy, "connections" occur
 frequently, and emerging higher level protocols tend to
 virtualize; after all, one expects standards to reflect the state
 of the art in question. But even if the ISORM, suitably refined,
 does prove to be the wave of the future, this author feels that
 the ARM is by no means a whitecap, and deserves explication--both
 in its role as the ISORM’s "roots" and as the basis of a
 still-viable alternative protocol suite.

 Axiomatization

 Let’s begin with the axioms of the ARPANET Reference Model.
 Indeed, let’s begin by recalling what an axiom is, in common
 usage: a principle the truth of which is deemed self-evident.
 Given that definition, it’s not too surprising that axioms rarely
 get stated or examined in non-mathematical discourse. It turns
 out, however, that the axiomatization of the ARM--as best we can
 recall and reconstruct it--is not only germane to the enunciation
 of the ARM, but is also a source of instructive contrasts with
 our view of the axiomatization of the ISORM. (See [1] again.)

 Resource Sharing

 The fundamental axiom of the ARM is that intercomputer
 networking protocols (as distinct from communications network

 4

 RFC 871 September 1982

 protocols) are to enable heterogeneous computer operating systems
 ("Hosts") to achieve resource sharing. Indeed, the session at
 the 1970 SJCC in which the ARPANET entered the open literature
 was entitled "Resource Sharing Computer Networks".

 Of course, as self-evident truths, axioms rarely receive
 much scrutiny. Just what resource sharing is isn’t easy to pin
 down--nor, for that matter, is just what Open System
 Interconnection is. But it must have something to do with the
 ability of the programs and data of the several Hosts to be used
 by and with programs and data on other of the Hosts in some sort
 of cooperative fashion. It must, that is, confer more
 functionality upon the human user than merely the ability to log
 in/on to a Host miles away ("remote access").

 A striking property of this axiom is that it renders
 protocol suites such as "X.25"/"X.28"/ "X.29" rather
 uninteresting for our purposes, for they appear to have as their
 fundamental axiom the ability to achieve remote access only. (It
 might even be a valid rule of thumb that any "network" which
 physically interfaces to Hosts via devices that resemble milking
 machines--that is, which attach as if they were just a group of
 locally-known types of terminals--isn’t a resource sharing
 network.)

 Reference [3] addresses the resource sharing vs. remote
 access topic in more detail.

 Interprocess Communication

 The second axiom of the ARM is that resource sharing will be
 achieved via an interprocess communication mechanism of some
 sort. Again, the concept isn’t particularly well-defined in the
 "networking" literature. Here, however, there’s some
 justification, for the concept is fairly well known in the
 Operating Systems branch of the Computer Science literature,
 which was the field most of the NWG members came from.
 Unfortunately, because intercomputer networking involves
 communications devices of several sorts, many whose primary field
 is Communications became involved with "networking" but were not
 in a position to appreciate the implications of the axiom.

 A process may be viewed as the active element of a Host, or
 as an address space in execution, or as a "job", or as a "task",
 or as a "control point"--or, actually, as any one (or more) of at
 least 29 definitions from at least 28 reputable computer
 scientists. What’s important for present purposes isn’t the
 precise definition (even if there were one), but the fact that
 the axiom’s presence dictates the absence of at least one other
 axiom at the same level of

 5

 RFC 871 September 1982

 abstraction. That is, we might have chosen to attempt to achieve
 resource sharing through an explicitly interprocedure
 communication oriented mechanism of some sort--wherein the
 entities being enabled to communicate were subroutines, or pieces
 of address spaces--but we didn’t. Whether this was because
 somebody realized that you could do interprocedure communication
 (or achieve a "virtual address space" or "distributed operating
 system" or some such formulation) on top of an interprocess
 communication mechanism (IPC), or whether "it just seemed
 obvious" to do IPC doesn’t matter very much. What matters is
 that the axiom was chosen, assumes a fair degree of familiarity
 with Operating Systems, doesn’t assume extremely close coupling
 of Hosts, and has led to a working protocol suite which does
 achieve resource sharing--and certainly does appear to be an
 axiom the ISORM tacitly accepted, along with resource sharing.

 Logical Connections

 The next axiom has to do with whether and how to demultiplex
 IPC "channels", "routes", "paths", "ports", or "sockets". That
 is, if you’re doing interprocess communication (IPC), you still
 have to decide whether a process can communicate with more than
 one other process, and, if so, how to distinguish between the bit
 streams. (Indeed, even choosing streams rather than blocks is a
 decision.) Although it isn’t treated particularly explicitly in
 the literature, it seems clear that the ARM axiom is to do IPC
 over logical connections, in the following sense: Just as batch
 oriented operating systems found it useful to allow processes
 (usually thought of as jobs--or even "programs") to be insulated
 from the details of which particular physical tape drives were
 working well enough at a particular moment to spin the System
 Input and Output reels, and created the view that a reference to
 a "logical tape number" would always get to the right physical
 drive for the defined purpose, so too the ARM’s IPC mechanism
 creates logical connections between processes. That is, the IPC
 addressing mechanism has semantics as well as syntax.

 "Socket" n on any participating Host will be defined as the
 "Well-Known Socket" (W-KS) where a particular service (as
 mechanized by a program which follows, or "interprets", a
 particular protocol [4]) is found. (Note that the W-KS is
 defined for the "side" of a connection where a given service
 resides; the user side will, in order to be able to demultiplex
 its network-using processes, of course assign different numbers
 to its "sides" of connections to a given W-KS. Also, the serving
 side takes cognizance of the using side’s Host designation as
 well as the proferred socket, so it too can demultiplex.)
 Clearly, you want free sockets as well as Well-Known ones, and we
 have them. Indeed, at each level of the ARM

 6

 RFC 871 September 1982

 hierarchy the addressing entities are divided into assigned and
 unassigned sets, and the distinction has proven to be quite
 useful to networking researchers in that it confers upon them the
 ability to experiment with new functions without interfering with
 running mechanisms.

 On this axiom, the ISORM differs from the ARM. ISORM
 "peer-peer" connections (or "associations") appear to be used
 only for demultiplexing, with the number assigned by the receive
 side rather than the send side. That is, a separate protocol is
 intro- duced to establish that a particular "transport"
 connection will be used in the present "session" for some
 particular service. At the risk of editorializing, logical
 connections seem much cleaner than "virtual" connections (using
 virtual in the sense of something that "isn’t really there" but
 can be used as if it were, by analogy to virtual memory, as noted
 above, and in deference to the X.25 term "virtual circuit", which
 appears to have dictated the receiver-assigned posture the ISORM
 takes at its higher levels.) Although the ISORM view "works", the
 W-KS approach avoids the introduction of an extra protocol.

 Layering

 The next axiom is perhaps the best-known, and almost
 certainly the worst-understood. As best we can reconstruct
 things, the NWG was much taken with the Computer Science buzzword
 of the times, "modularity". "Everybody knew" modularity was a
 Good Thing. In addition, we were given a head start because the
 IMP’s weren’t under our direct control anyway, but could possibly
 change at some future date, and we didn’t want to be "locked in"
 to the then-current IMP-Host protocol. So it was enunciated that
 protocols which were to be members of the ARM suite (ARMS, for
 future reference, although at the time nobody used "ARM", much
 less "ARMS") were to be layered. It was widely agreed that this
 meant a given protocol’s control information (i.e., the control
 information exchanged by counterpart protocol interpreters, or
 "peer entities" in ISORM terms) should be treated strictly as
 data by a protocol "below" it, so that you could invoke a
 protocol interpreter (PI) through a known interface, but if
 either protocol changed there would not be any dependencies in
 the other on the former details of the one, and as long as the
 interface didn’t change you wouldn’t have to change the PI of the
 protocol which hadn’t changed.

 All well and good, if somewhat cryptic. The important point
 for present purposes, however, isn’t a seemingly-rigorous
 definition of Layering, but an appreciation of what the axiom
 meant in the evolution of the ARM. What it meant was that we
 tried to come up

 7

 RFC 871 September 1982

 with protocols that represented reasonable "packagings" of
 functionality. For reasons that are probably unknowable, but
 about which some conjectures will be offered subsequently, the
 ARM and the ISORM agree strongly on the presence of Layering in
 their respective axiomatizations but differ strikingly as to what
 packagings of functionality are considered appropriate. To
 anticipate a bit, the ARM concerns itself with three layers and
 only one of them is mandatorily traversed; whereas the ISORM,
 again as everybody knows, has, because of emerging "sub-layers",
 what must be viewed as at least seven layers, and many who have
 studied it believe that all of the layers must be traversed on
 each transmission/reception of data.

 Perhaps the most significant point of all about Layering is
 that the most frequently-voiced charge at NWG protocol committee
 design meetings was, "That violates Layering!" even though nobody
 had an appreciably-clearer view of what Layering meant than has
 been presented here, yet the ARMS exists. We can only guess what
 goes on in the design meetings for protocols to become members of
 the ISORM suite (ISORMS), but it doesn’t seem likely that having
 more layers could possibly decrease the number of arguments....

 Indeed, it’s probably fair to say that the ARM view of
 Layering is to treat layers as quite broad functional groupings
 (Network Interface, Host-Host, and Process-Level, or
 Applications), the constituents of which are to be modular.
 E.g., in the Host-Host layer of the current ARMS, the Internet
 Protocol, IP, packages internet addressing--among other
 things--for both the Transmission Control Protocol, TCP, which
 packages reliable interprocess communication, and UDP--the less
 well-known User Datagram Protocol--which packages only
 demultiplexable interprocess communication ... and for any other
 IPC packaging which should prove desirable. The ISORM view, on
 the other hand, fundamentally treats layers as rather narrow
 functional groupings, attempting to force modularity by requiring
 additional layers for additional functions (although the
 "classes" view of the proposed ECMA-sponsored ISORM Transport
 protocol tends to mimic the relations between TCP, UDP, and IP).

 It is, by the way, forcing this view of modularity by
 multiplying layers rather than by trusting the designers of a
 given protocol to make it usable by other protocols within its
 own layer that we suspect to be a major cause of the divergence
 between the ISORM and the ARM, but, as indicated, the issue
 almost certainly is not susceptible of proof. (The less
 structured view of modularity will be returned to in the next
 major section.) At any rate, the notion that "N-entities" must
 communicate with one another by means of "N-1 entities" does seem
 to us to take the ISORM out of its

 8

 RFC 871 September 1982

 intended sphere of description into the realm of prescription,
 where we believe it should not be, if for no other reason than
 that for a reference model to serve a prescriptive role levies
 unrealizable requirements of precision, and of familiarity with
 all styles of operating systems, on its expositors. In other
 words, as it is currently presented, the ISORM hierarchy of
 protocols turns out to be a rather strict hierarchy, with
 required, "chain of command" implications akin to the Elizabethan
 World Picture’s Great Chain of Being some readers might recall if
 they’ve studied Shakespeare, whereas in the ARM a cat can even
 invoke a king, much less look at one.

 Common Intermediate Representations

 The next axiom to be considered might well not be an axiom
 in a strict sense of the term, for it is susceptible of "proof"
 in some sense. That is, when it came time to design the first
 Process-Level (roughly equivalent to ISORM Level 5.3 [5] through
 7) ARMS protocol, it did seem self-evident that a "virtual
 terminal" was a sound conceptual model--but it can also be
 demonstrated that it is. The argument, customarily shorthanded
 as "the N X M Problem", was sketched above; it goes as follows:
 If you want to let users at remote terminals log in/on to Hosts
 (and you do--resource sharing doesn’t preclude remote access, it
 subsumes it), you have a problem with Hosts’ native terminal
 control software or "access methods", which only "know about"
 certain kinds/brands/types of terminals, but there are many more
 terminals out there than any Host has internalized (even those
 whose operating systems take a generic view of I/O and don’t
 allow applications programs to "expect" particular terminals).

 You don’t want to make N different types of Host/Operating
 System have to become aware of M different types of terminal.
 You don’t want to limit access to users who are at one particular
 type of terminal even if all your Hosts happen to have one in
 common. Therefore, you define a common intermediate
 representation (CIR) of the properties of terminals--or create a
 Network Virtual Terminal (NVT), where "virtual" is used by
 analogy to "virtual memory" in the sense of something that isn’t
 necessarily really present physically but can be used as if it
 were. Each Host adds one terminal to its set of supported types,
 the NVT--where adding means translating/mapping from the CIR to
 something acceptable to the rest of the programs on your system
 when receiving terminal-oriented traffic "from the net", and
 translating/mapping to the CIR from whatever your acceptable
 native representation was when sending terminal-oriented traffic
 "to the net". (And the system to which the terminal is
 physically attached does the same things.)

 9

 RFC 871 September 1982

 "Virtualizing" worked so well for the protocol in question
 ("Telnet", for TELetypewriter NETwork) that when it came time to
 design a File Transfer Protocol (FTP), it was employed again--in
 two ways, as it happens. (It also worked so well that in some
 circles, "Telnet" is used as a generic term for "Virtual Terminal
 Protocol", just like "Kleenex" for "disposable handkerchief".)
 The second way in which FTP (another generic-specific) used
 Common Intermediate Representations is well-known: you can make
 your FTP protocol interpreters (PI’s) use certain "virtual" file
 types in ARMS FTP’s and in proposed ISORMS FTP’s. The first way
 a CIR was used deserved more publicity, though: We decided to
 have a command-oriented FTP, in the sense of making it possible
 for users to cause files to be deleted from remote directories,
 for example, as well as simply getting a file added to a remote
 directory. (We also wanted to be able to designate some files to
 be treated as input to the receiving Hosts’ native "mail" system,
 if it had one.) Therefore, we needed an agreed-upon
 representation of the commands--not only spelling the names, but
 also defining the character set, indicating the ends of lines,
 and so on. In less time than it takes to write about, we
 realized we already had such a CIR: "Telnet".

 So we "used Telnet", or at any rate the NVT aspects of that
 protocol, as the "Presentation" protocol for the control aspects
 of FTP--but we didn’t conclude from that that Telnet was a lower
 layer than FTP. Rather, we applied the principles of modularity
 to make use of a mechanism for more than one purpose--and we
 didn’t presume to know enough about the internals of everybody
 else’s Host to dictate how the program(s) that conferred the FTP
 functionality interfaced with the program(s) that conferred the
 Telnet functionality. That is, on some operating systems it
 makes sense to let FTP get at the NVT CIR by means of closed
 subroutine calls, on others through native IPC, and on still
 others by open subroutine calls (in the sense of replicating the
 code that does the NVT mapping within the FTP PI). Such
 decisions are best left to the system programmers of the several
 Hosts. Although the ISORM takes a similar view in principle, in
 practice many ISORM advocates take the model prescriptively
 rather than descriptively and construe it to require that PI’s at
 a given level must communicate with each other via an "N-1
 entity" even within the same Host. (Still other ISORMites
 construe the model as dictating "monolithic" layers--i.e., single
 protocols per level--but this view seems to be abating.)

 One other consideration about virtualizing bears mention:
 it’s a good servant but a bad master. That is, when you’re
 dealing with the amount of traffic that traverses a
 terminal-oriented logical (or even virtual) connection, you don’t
 worry much about how many CPU cycles you’re "wasting" on mapping
 into and out of the NVT CIR; but

 10

 RFC 871 September 1982

 when you’re dealing with files that can be millions of bits long,
 you probably should worry--for those CPU cycles are in a fairly
 real sense the resources you’re making sharable. Therefore, when
 it comes to (generic) FTP’s, even though we’ve seen it in one or
 two ISORM L6 proposals, having only a virtual file conceptual
 model is not wise. You’d rather let one side or the other map
 directly between native representations where possible, to
 eliminate the overhead for going into and out of the CIR--for
 long enough files, anyway, and provided one side or the other is
 both willing and able to do the mapping to the intended
 recipient’s native representation.

 Efficiency

 The last point leads nicely into an axiom that is rarely
 acknowledged explicitly, but does belong in the ARM list of
 axioms: Efficiency is a concern, in several ways. In the first
 place, protocol mechanisms are meant to follow the design
 principle of Parsimony, or Least Mechanism; witness the argument
 immediately above about making FTP’s be able to avoid the double
 mapping of a Virtual File approach when they can. In the second
 place, witness the argument further above about leaving
 implementation decisions to implementers. In the author’s
 opinion, the worst mistake in the ISORM isn’t defining seven (or
 more) layers, but decreeing that "N-entities" must communicate
 via "N-1 entities" in a fashion which supports the interpretation
 that it applies intra-Host as well as inter-Host. If you picture
 the ISORM as a highrise apartment building, you are constrained
 to climb down the stairs and then back up to visit a neighbor
 whose apartment is on your own floor. This might be good
 exercise, but CPU’s don’t need aerobics as far as we know.

 Recalling that this paper is only secondarily about ARM
 "vs." ISORM, let’s duly note that in the ARM there is a concern
 for efficiency from the perspective of participating Hosts’
 resources (e.g., CPU cycles and, it shouldn’t be overlooked,
 "core") expended on interpreting protocols, and pass on to the
 final axiom without digressing to one or two proposed specific
 ISORM mechanisms which seem to be extremely inefficient.

 Equity

 The least known of the ARM axioms has to do with a concern
 over whether particular protocol mechanisms would entail undue
 perturbation of native mechanisms if implemented in particular
 Hosts. That is, however reluctantly, the ARMS designers were
 willing to listen to claims that "you can’t implement that in my
 system" when particular tactics were proposed and, however

 11

 RFC 871 September 1982

 grudgingly, retreat from a mechanism that seemed perfectly
 natural on their home systems to one which didn’t seriously
 discommode a colleague’s home system. A tacit design principle
 based on equity was employed. The classic example had to do with
 "electronic mail", where a desire to avoid charging for incoming
 mail led some FTP designers to think that the optionally
 mandatory "login" commands of the protocol shouldn’t be mandatory
 after all. But the commands were needed by some operating
 systems to actuate not only accounting mechanisms but
 authentication mechanisms as well, and the process which
 "fielded" FTP connections was too privileged (and too busy) to
 contain the FTP PI as well. So (to make a complex story
 cryptic), a common name and password were advertised for a "free"
 account for incoming mail, and the login commands remained
 mandatory (in the sense that any Host could require their
 issuance before it participated in FTP).

 Rather than attempt to clarify the example, let’s get to its
 moral: The point is that how well protocol mechanisms integrate
 with particular operating systems can be extremely subtle, so in
 order to be equitable to participating systems, you must either
 have your designers be sophisticated implementers or subject your
 designs to review by sophisticated implementers (and grant veto
 power to them in some sense).

 It is important to note that, in the author’s view, the
 ISORM not only does not reflect application of the Principle of
 Equity, but it also fails to take any explicit cognizance of the
 necessity of properly integrating its protocol interpreters into
 continuing operating systems. Probably motivated by Equity
 considerations, ARMS protocols, on the other hand, represent the
 result of intense implementation discussion and testing.

 Articulation

 Given the foregoing discussion of its axioms, and a reminder
 that we find it impossible in light of the existence of dozens of
 definitions of so fundamental a notion as "process" to believe in
 rigorous definitions, the ARPANET Reference Model is not going to
 require much space to articulate. Indeed, given further the
 observation that we believe reference models are supposed to be
 descriptive rather than prescriptive, the articulation of the ARM
 can be almost terse.

 In order to achieve efficient, equitable resource sharing
 among dissimilar operating systems, a layered set of interprocess
 communication oriented protocols is posited which typically
 employ common intermediate representations over logical
 connections. Three

 12

 RFC 871 September 1982

 layers are distinguished, each of which may contain a number of
 protocols.

 The Network Interface layer contains those protocols which
 are presented as interfaces by communications subnetwork
 processors ("CSNP"; e.g., packet switches, bus interface units,
 etc.) The CSNP’s are assumed to have their own protocol or
 protocols among themselves, which are not directly germane to the
 model. In particular, no assumption is made that CSNP’s of
 different types can be directly interfaced to one another; that
 is, "internetting" will be accomplished by Gateways, which are
 special purpose systems that attach to CSNP’s as if they were
 Hosts (see also "Gateways" below). The most significant property
 of the Network Interface layer is that bits presented to it by an
 attached Host will probably be transported by the underlying
 CSNP’s to an addressed Host (or Hosts) (i.e., "reliable" comm
 subnets are not posited--although they are, of course, allowed).
 A Network layer protocol interpreter ("module") is normally
 invoked by a Host-Host protocol PI, but may be invoked by a
 Process Level/Applications protocol PI, or even by a Host process
 interpreting no formal protocol whatsoever.

 The Host-Host layer contains those protocols which confer
 interprocess communication functionality. In the current
 "internet" version of the ARM, the most significant property of
 such protocols is the ability to direct such IPC to processes on
 Hosts attached to "proximate networks" (i.e., to CSNP’s of
 various autonomous communications subnetworks) other than that of
 the Host at hand, in addition to those on a given proximate net.
 (You can, by the way, get into some marvelous technicoaesthetic
 arguments over whether there should be a separate Internet layer;
 for present purposes, we assume that the Principle of Parsimony
 dominates.) Another significant property of Host-Host protocols,
 although not a required one, is the ability to do such IPC over
 logical connections. Reliability, flow control, and the ability
 to deal with "out-of-band signals" are other properties of
 Host-Host protocols which may be present. (See also "TCP/IP
 Design Goals and Constraints", below.) A Host-Host PI is normally
 invoked by a Process Level/Applications PI, but may also be
 invoked by a Host process interpreting no formal protocol
 whatsoever. Also, a Host need not support more than a single,
 possibly notional, process (that is, the code running in an
 "intelligent terminal" might not be viewed by its user--or even
 its creator--as a formal "process", but it stands as a de facto
 one).

 The Process Level/Applications layer contains those
 protocols which perform specific resource sharing and remote
 access functions such as allowing users to log in/on to foreign
 Hosts, transferring files, exchanging messages, and the like.
 Protocols in this layer

 13

 RFC 871 September 1982

 will often employ common intermediate representations, or
 "virtual- izations", to perform their functions, but this is not
 a necessary condition. They are also at liberty to use the
 functions performed by other protocols within the same layer,
 invoked in whatever fashion is appropriate within a given
 operating system context.

 Orthogonal to the layering, but consistent with it, is the
 notion that a "Host-Front End" protocol (H-FP), or "Host-Outboard
 Processing Environment" protocol, may be employed to offload
 Network and Host-Host layer PI’s from Hosts, to Outboard
 Processing Environments (e.g., to "Network Front Ends", or to
 BIU’s, where the actual PI’s reside, to be invoked by the H-FP as
 a distributed processing mechanism), as well as portions of
 Process Level/Applications protocols’ functionality. The most
 significant property of an H-FP attached Host is that it be
 functionally identical to a Host with inboard PI’s in operation,
 when viewed from another Host. (That is, Hosts which outboard
 PI’s will be attached to in a flexible fashion via an explicit
 protocol, rather than in a rigid fashion via the emulation of
 devices already known to the operating system in question.)

 Whether inboard or outboard of the Host, it is explicitly
 assumed that PI’s will be appropriately integrated into the
 containing operating systems. The Network and Host-Host layers
 are, that is, effectively system programs (although this
 observation should not be construed as implying that any of their
 PI’s must of necessity be implemented in a particular operating
 system’s "hard-core supervisor" or equivalent) and their PI’s
 must be able to behave as such.

 Visualization

 Figures 1 and 2 (adapted from [6]) present, respectively, an
 abstract rendition of the ARPANET Reference Model and a
 particular version of a protocol suite designed to that model.
 Just as one learns in Geometry that one cannot "prove" anything
 from the figures in the text, they are intended only to
 supplement the prose description above. (At least they bear no
 resemblance to highrise apartment houses.)

 TCP/IP Design Goals and Constraints

 The foregoing description of the ARM, in the interests of
 conciseness, deferred detailed discussion of two rather relevant
 topics: just what TCP and IP (the Transmission Control Protocol
 and the Internet Protocol) are "about", and just what role
 Gateways are

 14

 RFC 871 September 1982

 expected to play in the model. We turn to those topics now,
 under separate headings.

 As has been stated, with the success of the ARPANET [7] as
 both a proof-of-concept of intercomputer resource sharing via a
 packet-switched communications subnetwork and a (still)
 functional resource sharing network, a number of other bodies,
 research and commercial, developed "their own networks." Often
 just the communications subnetwork was intended, with the goal
 being to achieve remote access to attached Hosts rather than
 resource sharing among them, but nonetheless new networks
 abounded. Hosts attached to the original ARPANET or to DoD nets
 meant to be transferences of ARPANET technology should, it was
 perceived in the research community, be able to do resource
 sharing (i.e., interpret common high level protocols) with Hosts
 attached to these other networks. Thus, the first discernible
 goal of what was to become TCP/IP was to develop a protocol to
 achieve "internetting".

 At roughly the same time--actually probably chronologically
 prior, but not logically prior--the research community came to
 understand that the original ARPANET Host-Host Protocol or AH-HP
 (often miscalled NCP because it was the most visible component of
 the Network Control Program of the early literature) was somewhat
 flawed, particularly in the area of "robustness." The comm
 subnet was not only relied upon to deliver messages accurately
 and in order, but it was even expected to manage the transfer of
 bits from Hosts to and from its nodal processors over a hardware
 interface and "link protocol" that did no error checking. So,
 although the ARPANET-as-subnet has proven to be quite good in
 managing those sorts of things, surely if internetting were to be
 achieved over subnets potentially much less robust than the
 ARPANET subnet, the second discernible goal must be the
 reliability of the Host-to-Host protocol. That is, irrespective
 of the properties of the communications subnetworks involved in
 internetting, TCP is to furnish its users--whether they be
 processes interpreting formal protocols or simply processes
 communicating in an ad hoc fashion--with the ability to
 communicate as if their respective containing Hosts were attached
 to the best comm subnet possible (e.g., a hardwired connection).

 The mechanizations considered to achieve reliability and
 even those for internetting were alien enough to AH-HP’s style,
 though, and the efficiency of several of AH-HP’s native
 mechanisms (particularly Flow Control and the notion of a Control
 Link) had been questioned often enough, that a good Host-Host
 protocol could not be a simple extension of AH-HP. Thus, along
 with the desire for reliability came a necessity to furnish a
 good Host-Host protocol, a

 15

 RFC 871 September 1982

 design goal easy to overlook. This is a rather subtle issue in
 that it brings into play a wealth of prior art. For present
 purposes, in practical terms it means that the "good" ideas
 (according to the technical intuition of the designers) of
 AH-HP--such as sockets, logical connections, Well-Known Sockets,
 and in general the interprocess communication premise--are
 retained in TCP without much discussion, while the "bad" ideas
 are equally tacitly jettisoned in favor of ones deemed either
 more appropriate in their own right or more consistent with the
 other two goals.

 It could be argued that other goals are discernible, but the
 three cited--which may be restated and compressed as a desire to
 offer a good Host-Host protocol to achieve reliable
 internetting--are challenging enough, when thought about hard for
 a few years, to justify a document of even more than this one’s
 length. What of the implied and/or accepted design constraints,
 though?

 The first discernible design constraint borders on the
 obvious: Just as the original ARPANET popularized
 packet-switching (and, unfortunately to a lesser extent, resource
 sharing), its literature popularized the notion of "Layering."
 Mechanistically, layering is easy to describe: the control
 information of a given protocol must be treated strictly as data
 by the next "lower" protocol (with processes "at the top," and
 the/a transmission medium "at the bottom"), as discussed earlier.
 Philosophically, the notion is sufficiently subtle that even
 today researchers of good will still argue over what "proper"
 layering implies, also as discussed earlier. For present
 purposes, however, it suffices to observe the following:
 Layering is a useful concept. The precise set of functions
 offered by a given layer is open to debate, as is the precise
 number of layers necessary for a complete protocol suite to
 achieve resource sharing. (Most researchers from the ARPANET
 "world" tend to think of only three layers--the process,
 applications, or user level; the Host-Host level; and the network
 level--though if pressed they acknowledge that "the IMPs must
 have a protocol too." Adherents of the International Standards
 Organization’s "Open System Interconnection" program--which
 appears to be how they spell resource sharing--claim that seven
 is the right number of levels--though if pressed they acknowledge
 that "one or two of them have sublevels." And adherents of the
 Consultative Committee for International Telephony and Telegraphy
 don’t seem particularly concerned with resource sharing to begin
 with.) At any rate, TCP and IP are constrained to operate in a
 (or possibly in more than one) layered protocol hierarchy.
 Indeed, although it is not the sole reason, this fact is the
 primary rationale for separating the internetting mechanization
 into a discrete protocol (the Internet Protocol: IP). In other
 words, although designed

 16

 RFC 871 September 1982

 "for" the ARM, TCP and IP are actually so layered as to be useful
 even outside the ARM.

 It should be noted that as a direct consequence of the
 Layering constraint, TCP must be capable of operating "above" a
 functionally- equivalent protocol other than IP (e.g., an
 interface protocol directly into a proximate comm subnet, if
 internetting is not being done), and IP must be capable of
 supporting user protocols other than TCP (e.g., a non-reliable
 "Real-Time" protocol).

 Resisting the temptation to attempt to do justice to the
 complexities of Layering, we move on to a second design
 constraint, which also borders on the obvious: Only minimal
 assumptions can be made about the properties of the various
 communications subnetworks in play. (The "network" composed of
 the concatenation of such subnets is sometimes called "a
 catenet," though more often--and less picturesquely--merely "an
 internet.") After all, the main goal is to let processes on
 Hosts attached to, essentially, "any old (or new) net"
 communicate, and to limit that communication to processes on
 Hosts attached to comm subnets that, say, do positive
 acknowledgments of message delivery would be remiss. [8]

 Given this constraint, by the way, it is quite natural to
 see the more clearly Host-to-Host functions vested in TCP and the
 more clearly Host-to-catenet functions vested in IP. It is,
 however, a misconception to believe that IP was designed in the
 expectation that comm subnets "should" present only the "lowest
 common denominator" of functionality; rather, IP furnishes TCP
 with what amounts to an abstraction (some would say a
 virtualization--in the ARPANET Telnet Protocol sense of
 virtualizing as meaning mapping from/to a common intermediate
 representation to/from a given native representation) of the
 properties of "any" comm subnet including, it should be noted,
 even one which presents an X.25 interface. That is, IP allows
 for the application to a given transmission of whatever generic
 properties its proximate subnet offers equivalents for; its
 design neither depends upon nor ignores the presence of any
 property other than the ability to try to get some packet of bits
 to some destination, which surely is an irreducible minimum for
 the functionality of anything one would be willing to call a
 network.

 Finally, we take note of a design constraint rarely
 enunciated in the literature, but still a potent factor in the
 design process: Probably again stemming from the popularity of
 the original ARPANET, as manifested in the number of types of
 Hosts (i.e., operating systems) attached to it, minimal
 assumptions are made about the nature or even the "power" of the
 Hosts which could implement TCP/IP. Clearly, some notion of
 process is necessary if there is to

 17

 RFC 871 September 1982

 be interprocess communication, but even here the entire Host
 might constitute a single process from the perspective of the
 catenet. Less clearly, but rather importantly, Hosts must either
 "be able to tell time" or at least be able to "fake" that
 ability; this is in order to achieve the reliability goal, which
 leads to a necessity for Hosts to retransmit messages (which may
 have gotten lost or damaged in the catenet), which in turn leads
 to a necessity to know when to retransmit. It should be noted,
 however, that this does not preclude a (presumably quite modestly
 endowed) Host’s simply going into a controlled loop between
 transmissions and retransmitting after enough megapasses through
 the loop have been made--if, of course, the acknowledgment of
 receipt of the transmission in question has not already arrived
 "in the meantime."

 To conclude with a formulation somewhere between the concise
 and the terse, TCP/IP are to constitute a means for processes on
 Hosts about which minimal assumptions are made to do reliable
 interprocess communication in a layered protocol suite over a
 catenet consisting of communications subnetworks about which
 minimal assumptions are made. Though it nearly goes without
 saying, we would probably be remiss not to conclude by observing
 that that’s a lot harder to do than to say.

 Gateways

 One other aspect of the ARPANET Reference Model bears
 separate mention. Even though it is an exceedingly fine point as
 to whether it’s actually "part" of the Model or merely a sine qua
 non contextual assumption, the role of Gateways is of
 considerable importance to the functioning of the Internet
 Protocol, IP.

 As noted, the defining characteristic of a Gateway is that
 it attaches to two or more proximate comm subnets as if it were a
 Host. That is, from "the network’s" point of view, Gateways are
 not distinguished from Hosts; rather, "normal" traffic will go to
 them, addressed according to the proximate net’s interface
 protocol. However, the most important property of Gateways is
 that they interpret a full version of IP which deals with
 internet routing (Host IP interpreters are permitted to take a
 static view of routing, sending datagrams which are destined for
 Hosts not directly attached to the proximate net to a known
 Gateway, or Gateways, addressed on the proximate net), as well of
 course, as with fragmentation of datagrams which, although of
 permissible size on one of their proximate nets, are too large
 for the next proximate net (which contains either the target Host
 or still another Gateway).

 18

 RFC 871 September 1982

 Aside from their role in routing, another property of
 Gateways is also of significance: Gateways do not deal with
 protocols above IP. That is, it is an explicit assumption of the
 ARM that the catenet will be "protocol compatible", in the sense
 that no attempt will be made to translate or map between
 dissimilar Host-Host protocols (e.g., TCP and AH-HP) or
 dissimilar Process-level protocols (e.g., ARPANET FTP and EDN
 FTP) at the Gateways. The justifications for this position are
 somewhat complex; the interested reader is encouraged to see
 Reference [10]. For present purposes, however, it should suffice
 to note that the case against translating/mapping Gateways is a
 sound one, and that, as with the ARMS protocols, the great
 practical virtue of what are sometimes called "IP Gateways" is
 that they are in place and running.

 "Architectural" Highlights

 As was implied earlier, one of the problems with viewing a
 reference model prescriptively rather than descriptively is that
 the articulation of the model must be more precise than appears
 to be humanly possible. That the ISORM, in striving for
 superhuman precision, fails to achieve it is not grounds for
 censure. However, by reaching a degree of apparent precision
 that has enticed at least some of its readers to attempt to use
 it in a prescriptive fashion, the ISORM has introduced a number
 of ambiguities which have been attributed as well to the ARM by
 relative laymen in intercomputer networking whose initial
 exposure to the field was the ISORM. Therefore, we conclude this
 not-very-rigorous paper with a highly informal treatment of
 various points of confusion stemming from attempting to apply the
 ISORM to the ARM.

 (It should be noted, by the way, that one of the most
 striking ambiguities about the ISORM is just what role X.25 plays
 in it: We have been informed by a few ISORMites that X.25 "is"
 Levels 1-3, and we accepted that as factual until we were told
 during the review process of the present paper that "that’s not
 what we believe in the U.K." What follows, then, is predicated
 on the assumption that the earlier reports were probably but not
 definitely accurate--and if it turns out to be in time to help
 prevent ISO from embracing X.25 exclusively by pointing out some
 of the problems entailed, so much the better.)

 "Customized Parking Garages"

 The typical picture of the ISORM shows what looks like two
 highrises with what looks like two parking garages between them.
 (That is, seven layers of protocol per "Data Terminal Equipment",
 three layers per "Data Circuit Terminating Equipment".) The
 problem

 19

 RFC 871 September 1982

 is that only one "style" of parking garage--i.e., one which
 presents an X.25 interface--is commonly understood to be
 available to stand beside an ISORM DTE by those who believe that
 ISO has adopted X.25 as its L1-3. In the ARM, on the other hand,
 no constraints are levied on the Communications Subnetwork
 Processors. Thus, satellite communications, "Packet Radios",
 "Ethernets" and the like are all accommodated by the ARM.

 Also, the sort of Outboard Processing Environment mentioned
 earlier in which networking protocols are interpreted on behalf
 of the Host in a distributed processing fashion is quite
 comfortably accommodated by the ARM. This is not to say that one
 couldn’t develop an OPE for/to the ISORM, but rather that doing
 so does not appear to us to be natural to it, for at least two
 reasons: 1. The Session Level associates sockets with processes,
 hence it belongs "inboard". The Presentation Level involves
 considerable bit-diddling, hence it belongs "outboard". The
 Presentation Level is, unfortunately, above the Session Level.
 This seems to indicate that outboard processing wasn’t taken into
 account by the formulators of the ISORM. 2. Although some
 ISORMites have claimed that "X.25 can be used as a Host-Front End
 Protocol", it doesn’t look like one to us, even if the ability to
 do end-to-end things via what is nominally the Network interface
 is somewhat suggestive. (Those who believe that you need a
 protocol as strong as TCP below X.25 to support the virtual
 circuit illusion might argue that you’ve actually outboarded the
 Host-Host layer, but both the X.25 spec and the ISORM appeal to
 protocols above X.25 for full L II functionality.) Perhaps, with
 sufficient ingenuity, one might use X.25 to convey an H-FP, but
 it seems clear it isn’t meant to be one in and of itself.

 "Plenty of Roads"

 Based upon several pictures presented at conferences and in
 articles, DCE’s in the X.25-based ISORM appear to many to be
 required to present X.25 interfaces to each other as well as to
 their DTE’s. Metaphorically, the parking garages have single
 bridges between them. In the ARM, the CSNP-CSNP protocol is
 explicitly outside the model, thus there can be as many "roads"
 as needed between the ARM equivalent to ISORM parking garages.
 This also allays fears about the ability to take advantage of
 alternate routing in X.25 subnets or in X.75 internets (because
 both X.25 and X.75 are "hop-by-hop" oriented, and would not seem
 to allow for alternate routing without revision).

 20

 RFC 871 September 1982

 "Multiple Apartments Per Floor"

 As noted, the ISORM’s strictures on inter-entity
 communication within each "highrise" are equivalent to having to
 climb downstairs and then back up to visit another apartment on
 your own floor. The ARM explicitly expects PI’s within a layer
 to interface directly with one another when appropriate,
 metaphorically giving the effect of multiple apartments on each
 floor off a common hallway. (Also, for those who believe the
 ISORM implies only one protocol/apartment per layer/story, again
 the ARM is more flexible.)

 "Elevators"

 The ISORM is widely construed as requiring each layer to be
 traversed on every transmission (although there are rumors of the
 forthcoming introduction of "null layers"), giving the effect of
 having to climb all seven stories’ worth of stairs every time you
 enter the highrise. In the ARM, only Layer I, the Network
 Interface layer, must be traversed; protocols in Layers II and/or
 III need not come into play, giving the effect of being able to
 take an elevator rather than climb the stairs.

 "Straight Clotheslines"

 Because they appear to have to go down to L3 for their
 initiation, the ISORM’s Session and Transport connections are, to
 us, metaphorically tangled clotheslines; the ARM’s logical
 connections are straight (and go from the second floor to the
 second floor without needing a pole that gets in the way of the
 folks on the third floor--if that doesn’t make a weak metaphor
 totally feeble.)

 "Townhouse Styles Available"

 Should ISORM Level 6 and 7 protocols eventuate which are
 desirable, the "two-story townhouse style apartments" they
 represent can be erected on an ARM L I - L II (Network Interface
 and Host-Host Layers) "foundation". With some clever carpentry,
 even ISORM L5 might be cobbled in.

 "Manned Customs Sheds"

 Although it’s straining the architectural metaphor quite
 hard, one of the unfortunate implications of the ISORM’s failure
 to address operating system integration issues is that the notion
 of "Expedited Data" exchanges between "peer entities" might only
 amount to an SST flight to a foreign land where there’s no one on
 duty at

 21

 RFC 871 September 1982

 the Customs Shed (and the door to the rest of the airport is
 locked from the other side). By clearly designating the
 Host-Host (L II) mechanism(s) which are to be used by Layer III
 (Process-Level/ Applications) protocols to convey "out-of-band
 signals", the ARM gives the effect of keeping the Customs Sheds
 manned at all times. (It should be noted, by the way, that we
 acknowledge the difficulty of addressing system integration
 issues without biasing the discussion toward particular systems;
 we feel, however, that not trying to do so is far worse than
 trying and failing to avoid all parochialism.)

 "Ready For Immediate Occupancy"

 The ARM protocol suite has been implemented on a number of
 different operating systems. The ISORM protocol suite
 "officially" offers at most (and not in the U.K., it should be
 recalled) only the highly constraining functionality of X.25 as
 L1-L3; L4-L7 are still in the design and agreement processes,
 after which they must presumably be subjected to stringent
 checkout in multiple implementations before becoming useful
 standards. The metaphorical highrises, then, are years away from
 being fit for occupancy, even if one is willing to accept the
 taste of the interior decorators who seem to insist on building
 in numerous features of dubious utility and making you take fully
 furnished apartments whether you like it or not; the ARM
 buildings, on the other hand, offer stoves and refrigerators, but
 there’s plenty of room for your own furniture-- and they’re ready
 for immediate occupancy.

 Conclusion

 The architectural metaphor might have been overly extended
 as it was, but it could have been drawn out even further to point
 up more issues on which the ARM appears to us to be superior to
 the ISORM, if our primary concern were which is "better". In
 fairness, the one issue it omitted which many would take to be in
 the ISORM’s favor is that "vendor support" of interpreters of the
 ISORM protocols will eventually amount to a desirable
 "prefabrication", while the building of the ARM PI’s is believed
 to be labor-intensive. That would indeed be a good point, if it
 were well-founded. Unfortunately for its proponents, however,
 close scrutiny of the vendor support idea suggests that it is
 largely illusory (vide [11]), especially in light of the amount
 of time it will take for the international standardization
 process to run its course, and the likelihood that specification
 ambiguities and optional features will handicap interoperability.
 Rather than extend the present paper even further, then, it seems
 fair to conclude that with the possible exception of "vendor
 support" (with which exception we take

 22

 RFC 871 September 1982

 exception, for it should be noted that a number of vendors are
 already offering support for TCP/IP), the ARPANET Reference Model
 and the protocols designed in conformance with it are at least
 worthy of consideration by anybody who’s planning to do real
 inter- computer networking in the next several years--especially
 if they have operating systems with counterparts on the present
 ARPANET, so that most if not all of the labor intensive part has
 been taken care of already--irrespective of one’s views on how
 good the ISORM protocols eventually will be.

 Acknowledgments

 Although it has seldom been more germane to observe that
 "any remaining shortcomings are the author’s responsibility",
 this paper has benefited tremendously from the close scrutiny and
 constructive comments of several distinguished members of both
 the research community and the (DoD) Protocol Standards Technical
 Panel. The author is not only extremely grateful to, but is also
 extremely pleased to acknowledge his indebtedness to the
 following individuals (cited in alphabetical order): Mr. Trevor
 Benjamin, Royal Signals and Radar Establishment (U.K.); Mr.
 Edward Cain, Chairman of the PSTP; Dr. Vinton Cerf, DARPA/IPTO
 (at the time this was written); Dr. David Clark, M.I.T.
 Laboratory for Computer Science (formerly Project MAC); and Dr.
 Jonathan Postel, U.S.C. Information Sciences Institute.
 Posterity may or may not thank them for their role in turning an
 act of personal catharsis into a fair semblance of a "real"
 paper, but the author emphatically does.

 Notes and References

 [1] It almost goes without saying that the subtheme is certainly
 not intended to be a definitive statement of the relative
 merits of the two approaches, although, as will be seen, the
 ARM comes out ahead, in our view. But then, the reader
 might well say, what else should I expect from a paper
 written by one of the developers of the ARM? To attempt to
 dispel thoughts of prejudgment, the author would observe
 that although he is indeed an Old Network Boy of the
 ARPANET, he was not a member of the TCP/IP (the keystone of
 the current ARM) design team, and that he began looking into
 ARM "vs." ISORM from the position of "a plague on both your
 houses". That he has concluded that the differences between
 TCP/IP-based ARM intercomputer networking and X.25-based
 ISORM intercomputer networking are like day and night may be
 taken as indicative of something, but that he also holds
 that the day is at least partly cloudy and the night is not
 altogether moonless should at least meliorate fears of
 prejudice. That is, of course the

 23

 RFC 871 September 1982

 ISORM has its merits and the ARM its demerits neither of
 which are dealt with here. But "A Perspective" really means
 "My Perspective", and the author really is more concerned in
 this context with exposition of the ARM than with twitting
 the ISORM, even if he couldn’t resist including the
 comparisons subtheme because of the one-sidedness of the
 ISORM publicity he has perceived of late.

 [2] Source material for this section was primarily drawn from
 the author’s personal experience as a member the NWG and
 from numerous conversations with Dr. Jonathan B. Postel,
 long-time Chairman of the NWG and participant in the design
 meetings prior to the author’s involvement. (See also
 Acknowledgments.)

 [3] Padlipsky, M. A. "The Elements of Networking Style", M81-41,
 The MITRE Corporation, Bedford, MA, October 1981

 [4] Yes, the notion of using "protocols" might well count as an
 axiom in its own right, but, no, we’re not going to pretend
 to be that rigorous.

 [5] That is, about three tenths of the possible span of
 "Session" functionality, which has to do with making up for
 the lack of Well-Known Sockets, isn’t subsumed by the ARM
 Process-Level protocols, but the rest is, or could be.

 [6] Davidson, J., et al., "The ARPANET Telnet Protocol: Its
 Purpose, Principles, Implementation, and Impact on Host
 Operating System Design," Proc Fifth Data Communications
 Symposium, ACM/IEEE, Snowbird, Utah, September, 1977.

 [7] See Proceedings of the 1970 SJCC, "Resource Sharing Computer
 Networks" session, and Proceedings of the 1972 SJCC, "The
 ARPA Network" session for the standard open literature
 references to the early ARPANET. Other source material for
 this chapter is drawn from the author’s personal
 conversations with TCP/IP’s principal developers; see also
 Acknowledgments.

 [8] A strong case can be made for desiring that the comm subnets
 make a "datagram" (or "connectionless") mode of interface
 available, based upon the desire to support such
 functionality as Packetized Speech, broadcast addressing,
 and mobile subscribers, among other things. For a more
 complete description of this point of view, see [9]. For
 present

 24

 RFC 871 September 1982

 purposes, we do not cite the presentation of a datagram mode
 interface as a design constraint because it is
 possible--albeit undesirable--to operate IP "on top of" a
 comm subnet which does not present such an interface.

 [9] Cerf, V. G. and R. E. Lyons, "Military Requirements for
 Packet-Switched Networks and for Their Protocol
 Standardization" Proc EASCON 1982.

 [10] Padlipsky, M. A., "Gateways, Architectures and Heffalumps",
 M82-51, The MITRE Corporation, Bedford, MA, September 1982.

 [11] ---------- "The Illusion of Vendor Support", M82-49, The
 MITRE Corporation, Bedford, MA, September 1982.

 NOTE: Figure 1: ARM in the Abstract, and Figure 2: ARMS,
 Somewhat Particularized, may be obtained by writing to: Mike
 Padlipsky, MITRE Corporation, P.O. Box 208, Bedford,
 Massachusetts 01730, or sending computer mail to
 Padlipsky@USC-ISIA.

 25

