
Network Working Group P. Mockapetris
Request for Comments: 883 ISI
 November 1983

 DOMAIN NAMES - IMPLEMENTATION and SPECIFICATION

 +---+
 | |
 | This memo discusses the implementation of domain |
 | name servers and resolvers, specifies the format of |
 | transactions, and discusses the use of domain names |
 | in the context of existing mail systems and other |
 | network software. |
 | |
 | This memo assumes that the reader is familiar with |
 | RFC 882, "Domain Names - Concepts and Facilities" |
 | which discusses the basic principles of domain |
 | names and their use. |
 | |
 | The algorithms and internal data structures used in |
 | this memo are offered as suggestions rather than |
 | requirements; implementers are free to design their |
 | own structures so long as the same external |
 | behavior is achieved. |
 | |
 +---+

 +---+
 | |
 | ***** WARNING ***** |
 | |
 | This RFC contains format specifications which |
 | are preliminary and are included for purposes |
 | of explanation only. Do not attempt to use |
 | this information for actual implementations. |
 | |
 +---+

Mockapetris [Page i]

RFC 883 November 1983
 Domain Names - Implementation and Specification

TABLE OF CONTENTS
 INTRODUCTION..3
 Overview...3
 Implementation components..2
 Conventions..6
 Design philosophy..8
 NAME SERVER TRANSACTIONS...11
 Introduction..11
 Query and response transport....................................11
 Overall message format..13
 The contents of standard queries and responses..................15
 Standard query and response example.............................15
 The contents of inverse queries and responses...................17
 Inverse query and response example..............................18
 Completion queries and responses................................19
 Completion query and response example...........................22
 Recursive Name Service..24
 Header section format...26
 Question section format...29
 Resource record format..30
 Domain name representation and compression......................31
 Organization of the Shared database.............................33
 Query processing..36
 Inverse query processing..37
 Completion query processing.....................................38
 NAME SERVER MAINTENANCE..39
 Introduction..39
 Conceptual model of maintenance operations......................39
 Name server data structures and top level logic.................41
 Name server file loading..43
 Name server file loading example................................45
 Name server remote zone transfer................................47
 RESOLVER ALGORITHMS..50
 Operations..50
 DOMAIN SUPPORT FOR MAIL..52
 Introduction..52
 Agent binding...53
 Mailbox binding...54
 Appendix 1 - Domain Name Syntax Specification......................56
 Appendix 2 - Field formats and encodings...........................57
 TYPE values...57
 QTYPE values..57
 CLASS values..58
 QCLASS values...58
 Standard resource record formats................................59
 Appendix 3 - Internet specific field formats and operations........67
 REFERENCES and BIBLIOGRAPHY..72
 INDEX..73

Mockapetris [Page ii]

RFC 883 November 1983
 Domain Names - Implementation and Specification

INTRODUCTION

 Overview

 The goal of domain names is to provide a mechanism for naming
 resources in such a way that the names are usable in different
 hosts, networks, protocol families, internets, and administrative
 organizations.

 From the user’s point of view, domain names are useful as
 arguments to a local agent, called a resolver, which retrieves
 information associated with the domain name. Thus a user might
 ask for the host address or mail information associated with a
 particular domain name. To enable the user to request a
 particular type of information, an appropriate query type is
 passed to the resolver with the domain name. To the user, the
 domain tree is a single information space.

 From the resolver’s point of view, the database that makes up the
 domain space is distributed among various name servers. Different
 parts of the domain space are stored in different name servers,
 although a particular data item will usually be stored redundantly
 in two or more name servers. The resolver starts with knowledge
 of at least one name server. When the resolver processes a user
 query it asks a known name server for the information; in return,
 the resolver either receives the desired information or a referral
 to another name server. Using these referrals, resolvers learn
 the identities and contents of other name servers. Resolvers are
 responsible for dealing with the distribution of the domain space
 and dealing with the effects of name server failure by consulting
 redundant databases in other servers.

 Name servers manage two kinds of data. The first kind of data
 held in sets called zones; each zone is the complete database for
 a particular subtree of the domain space. This data is called
 authoritative. A name server periodically checks to make sure
 that its zones are up to date, and if not obtains a new copy of
 updated zones from master files stored locally or in another name
 server. The second kind of data is cached data which was acquired
 by a local resolver. This data may be incomplete but improves the
 performance of the retrieval process when non-local data is
 repeatedly accessed. Cached data is eventually discarded by a
 timeout mechanism.

 This functional structure isolates the problems of user interface,
 failure recovery, and distribution in the resolvers and isolates
 the database update and refresh problems in the name servers.

Mockapetris [Page 1]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Implementation components

 A host can participate in the domain name system in a number of
 ways, depending on whether the host runs programs that retrieve
 information from the domain system, name servers that answer
 queries from other hosts, or various combinations of both
 functions. The simplest, and perhaps most typical, configuration
 is shown below:

 Local Host | Foreign
 |
 +---------+ +----------+ | +--------+
 | | user queries | |queries | | |
 | User |-------------->| |---------|->|Foreign |
 | Program | | Resolver | | | Name |
 | |<--------------| |<--------|--| Server |
 | | user responses| |responses| | |
 +---------+ +----------+ | +--------+
 | A |
 cache additions | | references |
 V | |
 +----------+ |
 | database | |
 +----------+ |

 User programs interact with the domain name space through
 resolvers; the format of user queries and user responses is
 specific to the host and its operating system. User queries will
 typically be operating system calls, and the resolver and its
 database will be part of the host operating system. Less capable
 hosts may choose to implement the resolver as a subroutine to be
 linked in with every program that needs its services.

 Resolvers answer user queries with information they acquire via
 queries to foreign name servers, and may also cache or reference
 domain information in the local database.

 Note that the resolver may have to make several queries to several
 different foreign name servers to answer a particular user query,
 and hence the resolution of a user query may involve several
 network accesses and an arbitrary amount of time. The queries to
 foreign name servers and the corresponding responses have a
 standard format described in this memo, and may be datagrams.

Mockapetris [Page 2]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Depending on its capabilities, a name server could be a stand
 alone program on a dedicated machine or a process or processes on
 a large timeshared host. A simple configuration might be:

 Local Host | Foreign
 |
 +---------+ |
 / /| |
 +---------+ | +----------+ | +--------+
 | | | | |responses| | |
 | | | | Name |---------|->|Foreign |
 | Master |-------------->| Server | | |Resolver|
 | files | | | |<--------|--| |
 | |/ | | queries | +--------+
 +---------+ +----------+ |

 Here the name server acquires information about one or more zones
 by reading master files from its local file system, and answers
 queries about those zones that arrive from foreign resolvers.

 A more sophisticated name server might acquire zones from foreign
 name servers as well as local master files. This configuration is
 shown below:

 Local Host | Foreign
 |
 +---------+ |
 / /| |
 +---------+ | +----------+ | +--------+
 | | | | |responses| | |
 | | | | Name |---------|->|Foreign |
 | Master |-------------->| Server | | |Resolver|
 | files | | | |<--------|--| |
 | |/ | | queries | +--------+
 +---------+ +----------+ |
 A |maintenance | +--------+
 | \------------|->| |
 | queries | |Foreign |
 | | | Name |
 \------------------|--| Server |
 maintenance responses | +--------+

 In this configuration, the name server periodically establishes a
 virtual circuit to a foreign name server to acquire a copy of a
 zone or to check that an existing copy has not changed. The
 messages sent for these maintenance activities follow the same
 form as queries and responses, but the message sequences are
 somewhat different.

Mockapetris [Page 3]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 The information flow in a host that supports all aspects of the
 domain name system is shown below:

 Local Host | Foreign
 |
 +---------+ +----------+ | +--------+
 | | user queries | |queries | | |
 | User |-------------->| |---------|->|Foreign |
 | Program | | Resolver | | | Name |
 | |<--------------| |<--------|--| Server |
 | | user responses| |responses| | |
 +---------+ +----------+ | +--------+
 | A |
 cache additions | | references |
 V | |
 +----------+ |
 | Shared | |
 | database | |
 +----------+ |
 A | |
 +---------+ refreshes | | references |
 / /| | V |
 +---------+ | +----------+ | +--------+
 | | | | |responses| | |
 | | | | Name |---------|->|Foreign |
 | Master |-------------->| Server | | |Resolver|
 | files | | | |<--------|--| |
 | |/ | | queries | +--------+
 +---------+ +----------+ |
 A |maintenance | +--------+
 | \------------|->| |
 | queries | |Foreign |
 | | | Name |
 \------------------|--| Server |
 maintenance responses | +--------+

 The shared database holds domain space data for the local name
 server and resolver. The contents of the shared database will
 typically be a mixture of authoritative data maintained by the
 periodic refresh operations of the name server and cached data
 from previous resolver requests. The structure of the domain data
 and the necessity for synchronization between name servers and
 resolvers imply the general characteristics of this database, but
 the actual format is up to the local implementer. This memo
 suggests a multiple tree format.

Mockapetris [Page 4]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 This memo divides the implementation discussion into sections:

 NAME SERVER TRANSACTIONS, which discusses the formats for name
 servers queries and the corresponding responses.

 NAME SERVER MAINTENANCE, which discusses strategies,
 algorithms, and formats for maintaining the data residing in
 name servers. These services periodically refresh the local
 copies of zones that originate in other hosts.

 RESOLVER ALGORITHMS, which discusses the internal structure of
 resolvers. This section also discusses data base sharing
 between a name server and a resolver on the same host.

 DOMAIN SUPPORT FOR MAIL, which discusses the use of the domain
 system to support mail transfer.

Mockapetris [Page 5]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Conventions

 The domain system has several conventions dealing with low-level,
 but fundamental, issues. While the implementer is free to violate
 these conventions WITHIN HIS OWN SYSTEM, he must observe these
 conventions in ALL behavior observed from other hosts.

 ********** Data Transmission Order **********

 The order of transmission of the header and data described in this
 document is resolved to the octet level. Whenever a diagram shows
 a group of octets, the order of transmission of those octets is
 the normal order in which they are read in English. For example,
 in the following diagram the octets are transmitted in the order
 they are numbered.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 1 | 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 3 | 4 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 5 | 6 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Transmission Order of Bytes

 Whenever an octet represents a numeric quantity the left most bit
 in the diagram is the high order or most significant bit. That
 is, the bit labeled 0 is the most significant bit. For example,
 the following diagram represents the value 170 (decimal).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 0 1 0 1 0 1 0|
 +-+-+-+-+-+-+-+-+

 Significance of Bits

 Similarly, whenever a multi-octet field represents a numeric
 quantity the left most bit of the whole field is the most
 significant bit. When a multi-octet quantity is transmitted the
 most significant octet is transmitted first.

Mockapetris [Page 6]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 ********** Character Case **********

 All comparisons between character strings (e.g. labels, domain
 names, etc.) are done in a case-insensitive manner.

 When data enters the domain system, its original case should be
 preserved whenever possible. In certain circumstances this cannot
 be done. For example, if two domain names x.y and X.Y are entered
 into the domain database, they are interpreted as the same name,
 and hence may have a single representation. The basic rule is
 that case can be discarded only when data is used to define
 structure in a database, and two names are identical when compared
 in a case insensitive manner.

 Loss of case sensitive data must be minimized. Thus while data
 for x.y and X.Y may both be stored under x.y, data for a.x and B.X
 can be stored as a.x and B.x, but not A.x, A.X, b.x, or b.X. In
 general, this prevents the first component of a domain name from
 loss of case information.

 Systems administrators who enter data into the domain database
 should take care to represent the data they supply to the domain
 system in a case-consistent manner if their system is
 case-sensitive. The data distribution system in the domain system
 will ensure that consistent representations are preserved.

Mockapetris [Page 7]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Design philosophy

 The design presented in this memo attempts to provide a base which
 will be suitable for several existing networks. An equally
 important goal is to provide these services within a framework
 that is capable of adjustment to fit the evolution of services in
 early clients as well as to accommodate new networks.

 Since it is impossible to predict the course of these
 developments, the domain system attempts to provide for evolution
 in the form of an extensible framework. This section describes
 the areas in which we expect to see immediate evolution.

 DEFINING THE DATABASE

 This memo defines methods for partitioning the database and data
 for host names, host addresses, gateway information, and mail
 support. Experience with this system will provide guidance for
 future additions.

 While the present system allows for many new RR types, classes,
 etc., we feel that it is more important to get the basic services
 in operation than to cover an exhaustive set of information.
 Hence we have limited the data types to those we felt were
 essential, and would caution designers to avoid implementations
 which are based on the number of existing types and classes.
 Extensibility in this area is very important.

 While the domain system provides techniques for partitioning the
 database, policies for administrating the orderly connection of
 separate domains and guidelines for constructing the data that
 makes up a particular domain will be equally important to the
 success of the system. Unfortunately, we feel that experience
 with prototype systems will be necessary before this question can
 be properly addressed. Thus while this memo has minimal
 discussion of these issues, it is a critical area for development.

 TYING TOGETHER INTERNETS

 Although it is very difficult to characterize the types of
 networks, protocols, and applications that will be clients of the
 domain system, it is very obvious that some of these applications
 will cross the boundaries of network and protocol. At the very
 least, mail is such a service.

 Attempts to unify two such systems must deal with two major
 problems:

 1. Differing formats for environment sensitive data. For example,

Mockapetris [Page 8]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 network addresses vary in format, and it is unreasonable to
 expect to enforce consistent conventions.

 2. Connectivity may require intermediaries. For example, it is a
 frequent occurence that mail is sent between hosts that share
 no common protocol.

 The domain system acknowledges that these are very difficult
 problems, and attempts to deal with both problems through its
 CLASS mechanism:

 1. The CLASS field in RRs allows data to be tagged so that all
 programs in the domain system can identify the format in use.

 2. The CLASS field allows the requestor to identify the format of
 data which can be understood by the requestor.

 3. The CLASS field guides the search for the requested data.

 The last point is central to our approach. When a query crosses
 protocol boundaries, it must be guided though agents capable of
 performing whatever translation is required. For example, when a
 mailer wants to identify the location of a mailbox in a portion of
 the domain system that doesn’t have a compatible protocol, the
 query must be guided to a name server that can cross the boundary
 itself or form one link in a chain that can span the differences.

 If query and response transport were the only problem, then this
 sort of problem could be dealt with in the name servers
 themselves. However, the applications that will use domain
 service have similar problems. For example, mail may need to be
 directed through mail gateways, and the characteristics of one of
 the environments may not permit frequent connectivity between name
 servers in all environments.

 These problems suggest that connectivity will be achieved through
 a variety of measures:

 Translation name servers that act as relays between different
 protocols.

 Translation application servers that translate application
 level transactions.

 Default database entries that route traffic through application
 level forwarders in ways that depend on the class of the
 requestor.

 While this approach seems best given our current understanding of

Mockapetris [Page 9]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 the problem, we realize that the approach of using resource data
 that transcends class may be appropriate in future designs or
 applications. By not defining class to be directly related to
 protocol, network, etc., we feel that such services could be added
 by defining a new "universal" class, while the present use of
 class will provide immediate service.

 This problem requires more thought and experience before solutions
 can be discovered. The concepts of CLASS, recursive servers and
 other mechanisms are intended as tools for acquiring experience
 and not as final solutions.

Mockapetris [Page 10]

RFC 883 November 1983
 Domain Names - Implementation and Specification

NAME SERVER TRANSACTIONS

 Introduction

 The primary purpose of name servers is to receive queries from
 resolvers and return responses. The overall model of this service
 is that a program (typically a resolver) asks the name server
 questions (queries) and gets responses that either answer the
 question or refer the questioner to another name server. Other
 functions related to name server database maintenance use similar
 procedures and formats and are discussed in a section later in
 this memo.

 There are three kinds of queries presently defined:

 1. Standard queries that ask for a specified resource attached
 to a given domain name.

 2. Inverse queries that specify a resource and ask for a domain
 name that possesses that resource.

 3. Completion queries that specify a partial domain name and a
 target domain and ask that the partial domain name be
 completed with a domain name close to the target domain.

 This memo uses an unqualified reference to queries to refer to
 either all queries or standard queries when the context is clear.

 Query and response transport

 Name servers and resolvers use a single message format for all
 communications. The message format consists of a variable-length
 octet string which includes binary values.

 The messages used in the domain system are designed so that they
 can be carried using either datagrams or virtual circuits. To
 accommodate the datagram style, all responses carry the query as
 part of the response.

 While the specification allows datagrams to be used in any
 context, some activities are ill suited to datagram use. For
 example, maintenance transactions and recursive queries typically
 require the error control of virtual circuits. Thus datagram use
 should be restricted to simple queries.

 The domain system assumes that a datagram service provides:

 1. A non-reliable (i.e. best effort) method of transporting a
 message of up to 512 octets.

Mockapetris [Page 11]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Hence datagram messages are limited to 512 octets. If a
 datagram message would exceed 512 octets, it is truncated
 and a truncation flag is set in its header.

 2. A message size that gives the number of octets in the
 datagram.

 The main implications for programs accessing name servers via
 datagrams are:

 1. Datagrams should not be used for maintenance transactions
 and recursive queries.

 2. Since datagrams may be lost, the originator of a query must
 perform error recovery (such as retransmissions) as
 appropriate.

 3. Since network or host delay may cause retransmission when a
 datagram has not been lost, the originator of a query must
 be ready to deal with duplicate responses.

 The domain system assumes that a virtual circuit service provides:

 1. A reliable method of transmitting a message of up to 65535
 octets.

 2. A message size that gives the number of octets in the
 message.

 If the virtual circuit service does not provide for message
 boundary detection or limits transmission size to less than
 65535 octets, then messages are prefaced with an unsigned 16
 bit length field and broken up into separate transmissions
 as required. The length field is only prefaced on the first
 message. This technique is used for TCP virtual circuits.

 3. Multiple messages may be sent over a virtual circuit.

 4. A method for closing a virtual circuit.

 5. A method for detecting that the other party has requested
 that the virtual circuit be closed.

 The main implications for programs accessing name servers via
 virtual circuits are:

 1. Either end of a virtual circuit may initiate a close when
 there is no activity in progress. The other end should
 comply.

Mockapetris [Page 12]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 The decision to initiate a close is a matter of individual
 site policy; some name servers may leave a virtual circuit
 open for an indeterminate period following a query to allow
 for subsequent queries; other name servers may choose to
 initiate a close following the completion of the first query
 on a virtual circuit. Of course, name servers should not
 close the virtual circuit in the midst of a multiple message
 stream used for zone transfer.

 2. Since network delay may cause one end to erroneously believe
 that no activity is in progress, a program which receives a
 virtual circuit close while a query is in progress should
 close the virtual circuit and resubmit the query on a new
 virtual circuit.

 All messages may use a compression scheme to reduce the space
 consumed by repetitive domain names. The use of the compression
 scheme is optional for the sender of a message, but all receivers
 must be capable of decoding compressed domain names.

 Overall message format

 All messages sent by the domain system are divided into 5 sections
 (some of which are empty in certain cases) shown below:

 +---------------------+
 | Header |
 +---------------------+
 | Question | the question for the name server
 +---------------------+
 | Answer | answering resource records (RRs)
 +---------------------+
 | Authority | RRs pointing toward an authority
 +---------------------+
 | Additional | RRs holding pertinent information
 +---------------------+

 The header section is always present. The header includes fields
 that specify which of the remaining sections are present, and also
 specify whether the message is a query, inverse query, completion
 query, or response.

 The question section contains fields that describe a question to a
 name server. These fields are a query type (QTYPE), a query class
 (QCLASS), and a query domain name (QNAME).

 The last three sections have the same format: a possibly empty
 list of concatenated resource records (RRs). The answer section
 contains RRs that answer the question; the authority section

Mockapetris [Page 13]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 contains RRs that point toward an authoritative name server; the
 additional records section contains RRs which relate to the query,
 but are not strictly answers for the question.

 The next two sections of this memo illustrate the use of these
 message sections through examples; a detailed discussion of data
 formats follows the examples.

Mockapetris [Page 14]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 The contents of standard queries and responses

 When a name server processes a standard query, it first determines
 whether it is an authority for the domain name specified in the
 query.

 If the name server is an authority, it returns either:

 1. the specified resource information

 2. an indication that the specified name does not exist

 3. an indication that the requested resource information does
 not exist

 If the name server is not an authority for the specified name, it
 returns whatever relevant resource information it has along with
 resource records that the requesting resolver can use to locate an
 authoritative name server.

 Standard query and response example

 The overall structure of a query for retrieving information for
 Internet mail for domain F.ISI.ARPA is shown below:

 +---+
 Header | OPCODE=QUERY, ID=2304 |
 +---+
 Question |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

 The header includes an opcode field that specifies that this
 datagram is a query, and an ID field that will be used to
 associate replies with the original query. (Some additional
 header fields have been omitted for clarity.) The question
 section specifies that the type of the query is for mail agent
 information, that only ARPA Internet information is to be
 considered, and that the domain name of interest is F.ISI.ARPA.
 The remaining sections are empty, and would not use any octets in
 a real query.

Mockapetris [Page 15]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 One possible response to this query might be:

 +---+
 Header | OPCODE=RESPONSE, ID=2304 |
 +---+
 Question |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
 +---+
 Answer | <empty> |
 +---+
 Authority | ARPA NS IN A.ISI.ARPA |
 | ------- |
 | ARPA NS IN F.ISI.ARPA |
 +---+
 Additional | F.ISI.ARPA A IN 10.2.0.52 |
 | ------- |
 | A.ISI.ARPA A IN 10.1.0.22 |
 +---+

 This type of response would be returned by a name server that was
 not an authority for the domain name F.ISI.ARPA. The header field
 specifies that the datagram is a response to a query with an ID of
 2304. The question section is copied from the question section in
 the query datagram.

 The answer section is empty because the name server did not have
 any information that would answer the query. (Name servers may
 happen to have cached information even if they are not
 authoritative for the query.)

 The best that this name server could do was to pass back
 information for the domain ARPA. The authority section specifies
 two name servers for the domain ARPA using the Internet family:
 A.ISI.ARPA and F.ISI.ARPA. Note that it is merely a coincidence
 that F.ISI.ARPA is a name server for ARPA as well as the subject
 of the query.

 In this case, the name server included in the additional records
 section the Internet addresses for the two hosts specified in the
 authority section. Such additional data is almost always
 available.

 Given this response, the process that originally sent the query
 might resend the query to the name server on A.ISI.ARPA, with a
 new ID of 2305.

Mockapetris [Page 16]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 The name server on A.ISI.ARPA might return a response:

 +---+
 Header | OPCODE=RESPONSE, ID=2305 |
 +---+
 Question |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
 +---+
 Answer | F.ISI.ARPA MD IN F.ISI.ARPA |
 | ------- |
 | F.ISI.ARPA MF IN A.ISI.ARPA |
 +---+
 Authority | <empty> |
 +---+
 Additional | F.ISI.ARPA A IN 10.2.0.52 |
 | ------- |
 | A.ISI.ARPA A IN 10.1.0.22 |
 +---+

 This query was directed to an authoritative name server, and hence
 the response includes an answer but no authority records. In this
 case, the answer section specifies that mail for F.ISI.ARPA can
 either be delivered to F.ISI.ARPA or forwarded to A.ISI.ARPA. The
 additional records section specifies the Internet addresses of
 these hosts.

 The contents of inverse queries and responses

 Inverse queries reverse the mappings performed by standard query
 operations; while a standard query maps a domain name to a
 resource, an inverse query maps a resource to a domain name. For
 example, a standard query might bind a domain name to a host
 address; the corresponding inverse query binds the host address to
 a domain name.

 Inverse query mappings are not guaranteed to be unique or complete
 because the domain system does not have any internal mechanism for
 determining authority from resource records that parallels the
 capability for determining authority as a function of domain name.
 In general, resolvers will be configured to direct inverse queries
 to a name server which is known to have the desired information.

 Name servers are not required to support any form of inverse
 queries; it is anticipated that most name servers will support
 address to domain name conversions, but no other inverse mappings.
 If a name server receives an inverse query that it does not
 support, it returns an error response with the "Not Implemented"
 error set in the header. While inverse query support is optional,
 all name servers must be at least able to return the error
 response.

Mockapetris [Page 17]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 When a name server processes an inverse query, it either returns:

 1. zero, one, or multiple domain names for the specified
 resource

 2. an error code indicating that the name server doesn’t
 support inverse mapping of the specified resource type.

 Inverse query and response example

 The overall structure of an inverse query for retrieving the
 domain name that corresponds to Internet address 10.2.0.52 is
 shown below:

 +---+
 Header | OPCODE=IQUERY, ID=997 |
 +---+
 Question | <empty> |
 +---+
 Answer | <anyname> A IN 10.2.0.52 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

 This query asks for a question whose answer is the Internet style
 address 10.2.0.52. Since the owner name is not known, any domain
 name can be used as a placeholder (and is ignored). The response
 to this query might be:

 +---+
 Header | OPCODE=RESPONSE, ID=997 |
 +---+
 Question | QTYPE=A, QCLASS=IN, QNAME=F.ISI.ARPA |
 +---+
 Answer | F.ISI.ARPA A IN 10.2.0.52 |
 +---+
 Authority | <empty> |
 +---+
 Additional | <empty> |
 +---+

 Note that the QTYPE in a response to an inverse query is the same
 as the TYPE field in the answer section of the inverse query.
 Responses to inverse queries may contain multiple questions when
 the inverse is not unique.

Mockapetris [Page 18]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Completion queries and responses

 Completion queries ask a name server to complete a partial domain
 name and return a set of RRs whose domain names meet a specified
 set of criteria for "closeness" to the partial input. This type
 of query can provide a local shorthand for domain names or command
 completion similar to that in TOPS-20.

 Implementation of completion query processing is optional in a
 name server. However, a name server must return a "Not
 Implemented" (NI) error response if it does not support
 completion.

 The arguments in a completion query specify:

 1. A type in QTYPE that specifies the type of the desired name.
 The type is used to restrict the type of RRs which will match
 the partial input so that completion queries can be used for
 mailbox names, host names, or any other type of RR in the
 domain system without concern for matches to the wrong type of
 resource.

 2. A class in QCLASS which specifies the desired class of the RR.

 3. A partial domain name that gives the input to be completed.
 All returned RRs will begin with the partial string. The
 search process first looks for names which qualify under the
 assumption that the partial string ends with a full label
 ("whole label match"); if this search fails, the search
 continues under the assumption that the last label in the
 partial sting may be an incomplete label ("partial label
 match"). For example, if the partial string "Smith" was used
 in a mailbox completion, it would match Smith@ISI.ARPA in
 preference to Smithsonian@ISI.ARPA.

 The partial name is supplied by the user through the user
 program that is using domain services. For example, if the
 user program is a mail handler, the string might be "Mockap"
 which the user intends as a shorthand for the mailbox
 Mockapetris@ISI.ARPA; if the user program is TELNET, the user
 might specify "F" for F.ISI.ARPA.

 In order to make parsing of messages consistent, the partial
 name is supplied in domain name format (i.e. a sequence of
 labels terminated with a zero length octet). However, the
 trailing root label is ignored during matching.

 4. A target domain name which specifies the domain which is to be
 examined for matches. This name is specified in the additional

Mockapetris [Page 19]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 section using a NULL RR. All returned names will end with the
 target name.

 The user program which constructs the query uses the target
 name to restrict the search. For example, user programs
 running at ISI might restrict completion to names that end in
 ISI.ARPA; user programs running at MIT might restrict
 completion to the domain MIT.ARPA.

 The target domain name is also used by the resolver to
 determine the name server which should be used to process the
 query. In general, queries should be directed to a name server
 that is authoritative for the target domain name. User
 programs which wish to provide completion for a more than one
 target can issue multiple completion queries, each directed at
 a different target. Selection of the target name and the
 number of searches will depend on the goals of the user
 program.

 5. An opcode for the query. The two types of completion queries
 are "Completion Query - Multiple", or CQUERYM, which asks for
 all RRs which could complete the specified input, and
 "Completion Query - Unique", or CQUERYU, which asks for the
 "best" completion.

 CQUERYM is used by user programs which want to know if
 ambiguities exist or wants to do its own determinations as to
 the best choice of the available candidates.

 CQUERYU is used by user programs which either do not wish to
 deal with multiple choices or are willing to use the closeness
 criteria used by CQUERYU to select the best match.

 When a name server receives either completion query, it first
 looks for RRs that begin (on the left) with the same labels as are
 found in QNAME (with the root deleted), and which match the QTYPE
 and QCLASS. This search is called "whole label" matching. If one
 or more hits are found the name server either returns all of the
 hits (CQUERYM) or uses the closeness criteria described below to
 eliminate all but one of the matches (CQUERYU).

 If the whole label match fails to find any candidates, then the
 name server assumes that the rightmost label of QNAME (after root
 deletion) is not a complete label, and looks for candidates that
 would match if characters were added (on the right) to the
 rightmost label of QNAME. If one or more hits are found the name
 server either returns all of the hits (CQUERYM) or uses the
 closeness criteria described below to eliminate all but one of the
 matches (CQUERYU).

Mockapetris [Page 20]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 If a CQUERYU query encounters multiple hits, it uses the following
 sequence of rules to discard multiple hits:

 1. Discard candidates that have more labels than others. Since
 all candidates start with the partial name and end with the
 target name, this means that we select those entries that
 require the fewest number of added labels. For example, a host
 search with a target of "ISI.ARPA" and a partial name of "A"
 will select A.ISI.ARPA in preference to A.IBM-PCS.ISI.ARPA.

 2. If partial label matching was used, discard those labels which
 required more characters to be added. For example, a mailbox
 search for partial "X" and target "ISI.ARPA" would prefer
 XX@ISI.ARPA to XYZZY@ISI.ARPA.

 If multiple hits are still present, return all hits.

 Completion query mappings are not guaranteed to be unique or
 complete because the domain system does not have any internal
 mechanism for determining authority from a partial domain name
 that parallels the capability for determining authority as a
 function of a complete domain name. In general, resolvers will be
 configured to direct completion queries to a name server which is
 known to have the desired information.

 When a name server processes a completion query, it either
 returns:

 1. An answer giving zero, one, or more possible completions.

 2. an error response with Not Implemented (NI) set.

Mockapetris [Page 21]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Completion query and response example

 Suppose that the completion service was used by a TELNET program
 to allow a user to specify a partial domain name for the desired
 host. Thus a user might ask to be connected to "B". Assuming
 that the query originated from an ISI machine, the query might
 look like:

 +---+
 Header | OPCODE=CQUERYU, ID=409 |
 +---+
 Question | QTYPE=A, QCLASS=IN, QNAME=B |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | ISI.ARPA NULL IN |
 +---+

 The partial name in the query is "B", the mappings of interest are
 ARPA Internet address records, and the target domain is ISI.ARPA.
 Note that NULL is a special type of NULL resource record that is
 used as a placeholder and has no significance; NULL RRs obey the
 standard format but have no other function.

 The response to this completion query might be:

 +---+
 Header | OPCODE=RESPONSE, ID=409 |
 +---+
 Question | QTYPE=A, QCLASS=IN, QNAME=B |
 +---+
 Answer | B.ISI.ARPA A IN 10.3.0.52 |
 +---+
 Authority | <empty> |
 +---+
 Additional | ISI.ARPA NULL IN |
 +---+

 This response has completed B to mean B.ISI.ARPA.

Mockapetris [Page 22]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Another query might be:

 +---+
 Header | OPCODE=CQUERYM, ID=410 |
 +---+
 Question | QTYPE=A, QCLASS=IN, QNAME=B |
 +---+
 Answer | <empty> |
 +---+
 Authority | <empty> |
 +---+
 Additional | ARPA NULL IN |
 +---+

 This query is similar to the previous one, but specifies a target
 of ARPA rather than ISI.ARPA. It also allows multiple matches.
 In this case the same name server might return:

 +---+
 Header | OPCODE=RESPONSE, ID=410 |
 +---+
 Question | QTYPE=A, QCLASS=IN, QNAME=B |
 +---+
 Answer | B.ISI.ARPA A IN 10.3.0.52 |
 | - |
 | B.BBN.ARPA A IN 10.0.0.49 |
 | - |
 | B.BBNCC.ARPA A IN 8.1.0.2 |
 +---+
 Authority | <empty> |
 +---+
 Additional | ARPA NULL IN |
 +---+

 This response contains three answers, B.ISI.ARPA, B.BBN.ARPA, and
 B.BBNCC.ARPA.

Mockapetris [Page 23]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Recursive Name Service

 Recursive service is an optional feature of name servers.

 When a name server receives a query regarding a part of the name
 space which is not in one of the name server’s zones, the standard
 response is a message that refers the requestor to another name
 server. By iterating on these referrals, the requestor eventually
 is directed to a name server that has the required information.

 Name servers may also implement recursive service. In this type
 of service, a name server either answers immediately based on
 local zone information, or pursues the query for the requestor and
 returns the eventual result back to the original requestor.

 A name server that supports recursive service sets the Recursion
 Available (RA) bit in all responses it generates. A requestor
 asks for recursive service by setting the Recursion Desired (RD)
 bit in queries. In some situations where recursive service is the
 only path to the desired information (see below), the name server
 may go recursive even if RD is zero.

 If a query requests recursion (RD set), but the name server does
 not support recursion, and the query needs recursive service for
 an answer, the name server returns a "Not Implemented" (NI) error
 code. If the query can be answered without recursion since the
 name server is authoritative for the query, it ignores the RD bit.

 Because of the difficulty in selecting appropriate timeouts and
 error handling, recursive service is best suited to virtual
 circuits, although it is allowed for datagrams.

 Recursive service is valuable in several special situations:

 In a system of small personal computers clustered around one or
 more large hosts supporting name servers, the recursive
 approach minimizes the amount of code in the resolvers in the
 personal computers. Such a design moves complexity out of the
 resolver into the name server, and may be appropriate for such
 systems.

 Name servers on the boundaries of different networks may wish
 to offer recursive service to create connectivity between
 different networks. Such name servers may wish to provide
 recursive service regardless of the setting of RD.

 Name servers that translate between domain name service and
 some other name service may wish to adopt the recursive style.
 Implicit recursion may be valuable here as well.

Mockapetris [Page 24]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 These concepts are still under development.

Mockapetris [Page 25]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Header section format

 +---+
 | |
 | ***** WARNING ***** |
 | |
 | The following format is preliminary and is |
 | included for purposes of explanation only. In |
 | particular, the size and position of the |
 | OPCODE, RCODE fields and the number and |
 | meaning of the single bit fields are subject |
 | to change. |
 | |
 +---+

 The header contains the following fields:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 ID - A 16 bit identifier assigned by the program that
 generates any kind of query. This identifier is copied
 into all replies and can be used by the requestor to
 relate replies to outstanding questions.

 QR - A one bit field that specifies whether this message is a
 query (0), or a response (1).

 OPCODE - A four bit field that specifies kind of query in this
 message. This value is set by the originator of a query
 and copied into the response. The values are:

 0 a standard query (QUERY)

Mockapetris [Page 26]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 1 an inverse query (IQUERY)

 2 an completion query allowing multiple
 answers (CQUERYM)

 2 an completion query requesting a single
 answer (CQUERYU)

 4-15 reserved for future use

 AA - Authoritative Answer - this bit is valid in responses,
 and specifies that the responding name server
 is an authority for the domain name in the
 corresponding query.

 TC - TrunCation - specifies that this message was truncated
 due to length greater than 512 characters.
 This bit is valid in datagram messages but not
 in messages sent over virtual circuits.

 RD - Recursion Desired - this bit may be set in a query and
 is copied into the response. If RD is set, it
 directs the name server to pursue the query
 recursively. Recursive query support is
 optional.

 RA - Recursion Available - this be is set or cleared in a
 response, and denotes whether recursive query
 support is available in the name server.

 RCODE - Response code - this 4 bit field is set as part of
 responses. The values have the following
 interpretation:

 0 No error condition

 1 Format error - The name server was unable
 to interpret the query.

 2 Server failure - The name server was unable
 to process this query due to a problem with
 the name server.

 3 Name Error - Meaningful only for responses
 from an authoritative name server, this
 code signifies that the domain name
 referenced in the query does not exist.

Mockapetris [Page 27]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 4 Not Implemented - The name server does not
 support the requested kind of query.

 5 Refused - The name server refuses to
 perform the specified operation for policy
 reasons. For example, a name server may
 not wish to provide the information to the
 particular requestor, or a name server may
 not wish to perform a particular operation
 (e.g. zone transfer) for particular data.

 6-15 Reserved for future use.

 QDCOUNT - an unsigned 16 bit integer specifying the number of
 entries in the question section.

 ANCOUNT - an unsigned 16 bit integer specifying the number of
 resource records in the answer section.

 NSCOUNT - an unsigned 16 bit integer specifying the number of name
 server resource records in the authority records
 section.

 ARCOUNT - an unsigned 16 bit integer specifying the number of
 resource records in the additional records section.

Mockapetris [Page 28]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Question section format

 The question section is used in all kinds of queries other than
 inverse queries. In responses to inverse queries, this section
 may contain multiple entries; for all other responses it contains
 a single entry. Each entry has the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / QNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QCLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 QNAME - a variable number of octets that specify a domain name.
 This field uses the compressed domain name format
 described in the next section of this memo. This field
 can be used to derive a text string for the domain name.
 Note that this field may be an odd number of octets; no
 padding is used.

 QTYPE - a two octet code which specifies the type of the query.
 The values for this field include all codes valid for a
 TYPE field, together with some more general codes which
 can match more than one type of RR. For example, QTYPE
 might be A and only match type A RRs, or might be MAILA,
 which matches MF and MD type RRs. The values for this
 field are listed in Appendix 2.

 QCLASS - a two octet code that specifies the class of the query.
 For example, the QCLASS field is IN for the ARPA
 Internet, CS for the CSNET, etc. The numerical values
 are defined in Appendix 2.

Mockapetris [Page 29]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Resource record format

 The answer, authority, and additional sections all share the same
 format: a variable number of resource records, where the number of
 records is specified in the corresponding count field in the
 header. Each resource record has the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 NAME - a compressed domain name to which this resource record
 pertains.

 TYPE - two octets containing one of the RR type codes defined
 in Appendix 2. This field specifies the meaning of the
 data in the RDATA field.

 CLASS - two octets which specify the class of the data in the
 RDATA field.

 TTL - a 16 bit unsigned integer that specifies the time
 interval (in seconds) that the resource record may be
 cached before it should be discarded. Zero values are
 interpreted to mean that the RR can only be used for the
 transaction in progress, and should not be cached. For
 example, SOA records are always distributed with a zero
 TTL to prohibit caching. Zero values can also be used
 for extremely volatile data.

Mockapetris [Page 30]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 RDLENGTH- an unsigned 16 bit integer that specifies the length in
 octets of the RDATA field.

 RDATA - a variable length string of octets that describes the
 resource. The format of this information varies
 according to the TYPE and CLASS of the resource record.
 For example, the if the TYPE is A and the CLASS is IN,
 the RDATA field is a 4 octet ARPA Internet address.

 Formats for particular resource records are shown in Appendicies 2
 and 3.

 Domain name representation and compression

 Domain names messages are expressed in terms of a sequence of
 labels. Each label is represented as a one octet length field
 followed by that number of octets. Since every domain name ends
 with the null label of the root, a compressed domain name is
 terminated by a length byte of zero. The high order two bits of
 the length field must be zero, and the remaining six bits of the
 length field limit the label to 63 octets or less.

 To simplify implementations, the total length of label octets and
 label length octets that make up a domain name is restricted to
 255 octets or less. Since the trailing root label and its dot are
 not printed, printed domain names are 254 octets or less.

 Although labels can contain any 8 bit values in octets that make
 up a label, it is strongly recommended that labels follow the
 syntax described in Appendix 1 of this memo, which is compatible
 with existing host naming conventions. Name servers and resolvers
 must compare labels in a case-insensitive manner, i.e. A=a, and
 hence all character strings must be ASCII with zero parity.
 Non-alphabetic codes must match exactly.

 Whenever possible, name servers and resolvers must preserve all 8
 bits of domain names they process. When a name server is given
 data for the same name under two different case usages, this
 preservation is not always possible. For example, if a name
 server is given data for ISI.ARPA and isi.arpa, it should create a
 single node, not two, and hence will preserve a single casing of
 the label. Systems with case sensitivity should take special
 precautions to insure that the domain data for the system is
 created with consistent case.

 In order to reduce the amount of space used by repetitive domain
 names, the sequence of octets that defines a domain name may be
 terminated by a pointer to the length octet of a previously
 specified label string. The label string that the pointer

Mockapetris [Page 31]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 specifies is appended to the already specified label string.
 Exact duplication of a previous label string can be done with a
 single pointer. Multiple levels are allowed.

 Pointers can only be used in positions in the message where the
 format is not class specific. If this were not the case, a name
 server that was handling a RR for another class could make
 erroneous copies of RRs. As yet, there are no such cases, but
 they may occur in future RDATA formats.

 If a domain name is contained in a part of the message subject to
 a length field (such as the RDATA section of an RR), and
 compression is used, the length of the compressed name is used in
 the length calculation, rather than the length of the expanded
 name.

 Pointers are represented as a two octet field in which the high
 order 2 bits are ones, and the low order 14 bits specify an offset
 from the start of the message. The 01 and 10 values of the high
 order bits are reserved for future use and should not be used.

 Programs are free to avoid using pointers in datagrams they
 generate, although this will reduce datagram capacity. However
 all programs are required to understand arriving messages that
 contain pointers.

 For example, a datagram might need to use the domain names
 F.ISI.ARPA, FOO.F.ISI.ARPA, ARPA, and the root. Ignoring the
 other fields of the message, these domain names might be
 represented as:

Mockapetris [Page 32]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 20 | 1 | F |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 22 | 3 | I |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 24 | S | I |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 26 | 4 | A |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 28 | R | P |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 30 | A | 0 |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 40 | 3 | F |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 42 | O | O |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 44 | 1 1| 20 |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 64 | 1 1| 26 |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 92 | 0 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 The domain name for F.ISI.ARPA is shown at offset 20. The domain
 name FOO.F.ISI.ARPA is shown at offset 40; this definition uses a
 pointer to concatenate a label for FOO to the previously defined
 F.ISI.ARPA. The domain name ARPA is defined at offset 64 using a
 pointer to the ARPA component of the name F.ISI.ARPA at 20; note
 that this reference relies on ARPA being the last label in the
 string at 20. The root domain name is defined by a single octet
 of zeros at 92; the root domain name has no labels.

 Organization of the Shared database

 While name server implementations are free to use any internal
 data structures they choose, the suggested structure consists of
 several separate trees. Each tree has structure corresponding to
 the domain name space, with RRs attached to nodes and leaves.
 Each zone of authoritative data has a separate tree, and one tree
 holds all non-authoritative data. All of the trees corresponding
 to zones are managed identically, but the non-authoritative or
 cache tree has different management procedures.

Mockapetris [Page 33]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Data stored in the database can be kept in whatever form is
 convenient for the name server, so long as it can be transformed
 back into the format needed for messages. In particular, the
 database will probably use structure in place of expanded domain
 names, and will also convert many of the time intervals used in
 the domain systems to absolute local times.

 Each tree corresponding to a zone has complete information for a
 "pruned" subtree of the domain space. The top node of a zone has
 a SOA record that marks the start of the zone. The bottom edge of
 the zone is delimited by nodes containing NS records signifying
 delegation of authority to other zones, or by leaves of the domain
 tree. When a name server contains abutting zones, one tree will
 have a bottom node containing a NS record, and the other tree will
 begin with a tree location containing a SOA record.

 Note that there is one special case that requires consideration
 when a name server is implemented. A node that contains a SOA RR
 denoting a start of zone will also have NS records that identify
 the name servers that are expected to have a copy of the zone.
 Thus a name server will usually find itself (and possibly other
 redundant name servers) referred to in NS records occupying the
 same position in the tree as SOA records. The solution to this
 problem is to never interpret a NS record as delimiting a zone
 started by a SOA at the same point in the tree. (The sample
 programs in this memo deal with this problem by processing SOA
 records only after NS records have been processed.)

 Zones may also overlap a particular part of the name space when
 they are of different classes.

 Other than the abutting and separate class cases, trees are always
 expected to be disjoint. Overlapping zones are regarded as a
 non-fatal error. The scheme described in this memo avoids the
 overlap issue by maintaining separate trees; other designs must
 take the appropriate measures to defend against possible overlap.

 Non-authoritative data is maintained in a separate tree. This
 tree is unlike the zone trees in that it may have "holes". Each
 RR in the cache tree has its own TTL that is separately managed.
 The data in this tree is never used if authoritative data is
 available from a zone tree; this avoids potential problems due to
 cached data that conflicts with authoritative data.

 The shared database will also contain data structures to support
 the processing of inverse queries and completion queries if the
 local system supports these optional features. Although many
 schemes are possible, this memo describes a scheme that is based
 on tables of pointers that invert the database according to key.

Mockapetris [Page 34]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Each kind of retrieval has a separate set of tables, with one
 table per zone. When a zone is updated, these tables must also be
 updated. The contents of these tables are discussed in the
 "Inverse query processing" and "Completion query processing"
 sections of this memo.

 The database implementation described here includes two locks that
 are used to control concurrent access and modification of the
 database by name server query processing, name server maintenance
 operations, and resolver access:

 The first lock ("main lock") controls access to all of the
 trees. Multiple concurrent reads are allowed, but write access
 can only be acquired by a single process. Read and write
 access are mutually exclusive. Resolvers and name server
 processes that answer queries acquire this lock in read mode,
 and unlock upon completion of the current message. This lock
 is acquired in write mode by a name server maintenance process
 when it is about to change data in the shared database. The
 actual update procedures are described under "NAME SERVER
 MAINTENANCE" but are designed to be brief.

 The second lock ("cache queue lock") controls access to the
 cache queue. This queue is used by a resolver that wishes to
 add information to the cache tree. The resolver acquires this
 lock, then places the RRs to be cached into the queue. The
 name server maintenance procedure periodically acquires this
 lock and adds the queue information to the cache. The
 rationale for this procedure is that it allows the resolver to
 operate with read-only access to the shared database, and
 allows the update process to batch cache additions and the
 associated costs for inversion calculations. The name server
 maintenance procedure must take appropriate precautions to
 avoid problems with data already in the cache, inversions, etc.

 This organization solves several difficulties:

 When searching the domain space for the answer to a query, a
 name server can restrict its search for authoritative data to
 that tree that matches the most labels on the right side of the
 domain name of interest.

 Since updates to a zone must be atomic with respect to
 searches, maintenance operations can simply acquire the main
 lock, insert a new copy of a particular zone without disturbing
 other zones, and then release the storage used by the old copy.
 Assuming a central table pointing to valid zone trees, this
 operation can be a simple pointer swap.

Mockapetris [Page 35]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 TTL management of zones can be performed using the SOA record
 for the zone. This avoids potential difficulties if individual
 RRs in a zone could be timed out separately. This issue is
 discussed further in the maintenance section.

 Query processing

 The following algorithm outlines processing that takes place at a
 name server when a query arrives:

 1. Search the list of zones to find zones which have the same
 class as the QCLASS field in the query and have a top domain
 name that matches the right end of the QNAME field. If there
 are none, go to step 2. If there are more than one, pick the
 zone that has the longest match and go to step 3.

 2. Since the zone search failed, the only possible RRs are
 contained in the non-authoritative tree. Search the cache tree
 for the NS record that has the same class as the QCLASS field
 and the largest right end match for domain name. Add the NS
 record or records to the authority section of the response. If
 the cache tree has RRs that are pertinent to the question
 (domain names match, classes agree, not timed-out, and the type
 field is relevant to the QTYPE), copy these RRs into the answer
 section of the response. The name server may also search the
 cache queue. Go to step 4.

 3. Since this zone is the best match, the zone in which QNAME
 resides is either this zone or a zone to which this zone will
 directly or indirectly delegate authority. Search down the
 tree looking for a NS RR or the node specified by QNAME.

 If the node exists and has no NS record, copy the relevant
 RRs to the answer section of the response and go to step 4.

 If a NS RR is found, either matching a part or all of QNAME,
 then QNAME is in a delegated zone outside of this zone. If
 so, copy the NS record or records into the authority section
 of the response, and search the remainder of the zone for an
 A type record corresponding to the NS reference. If the A
 record is found, add it to the additional section. Go to
 step 2.

 If the node is not found and a NS is not found, there is no
 such name; set the Name error bit in the response and exit.

 4. When this step is reached, the answer and authority sections
 are complete. What remains is to complete the additional
 section. This procedure is only possible if the name server

Mockapetris [Page 36]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 knows the data formats implied by the class of records in the
 answer and authority sections. Hence this procedure is class
 dependent. Appendix 3 discusses this procedure for Internet
 class data.

 While this algorithm deals with typical queries and databases,
 several additions are required that will depend on the database
 supported by the name server:

 QCLASS=*

 Special procedures are required when the QCLASS of the query is
 "*". If the database contains several classes of data, the
 query processing steps above are performed separately for each
 CLASS, and the results are merged into a single response. The
 name error condition is not meaningful for a QCLASS=* query.
 If the requestor wants this information, it must test each
 class independently.

 If the database is limited to data of a particular class, this
 operation can be performed by simply reseting the authoritative
 bit in the response, and performing the query as if QCLASS was
 the class used in the database.

 * labels in database RRs

 Some zones will contain default RRs that use * to match in
 cases where the search fails for a particular domain name. If
 the database contains these records then a failure must be
 retried using * in place of one or more labels of the search
 key. The procedure is to replace labels from the left with
 "*"s looking for a match until either all labels have been
 replaced, or a match is found. Note that these records can
 never be the result of caching, so a name server can omit this
 processing for zones that don’t contain RRs with * in labels,
 or can omit this processing entirely if * never appears in
 local authoritative data.

 Inverse query processing

 Name servers that support inverse queries can support these
 operations through exhaustive searches of their databases, but
 this becomes impractical as the size of the database increases.
 An alternative approach is to invert the database according to the
 search key.

 For name servers that support multiple zones and a large amount of
 data, the recommended approach is separate inversions for each

Mockapetris [Page 37]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 zone. When a particular zone is changed during a refresh, only
 its inversions need to be redone.

 Support for transfer of this type of inversion may be included in
 future versions of the domain system, but is not supported in this
 version.

 Completion query processing

 Completion query processing shares many of the same problems in
 data structure design as are found in inverse queries, but is
 different due to the expected high rate of use of top level labels
 (ie., ARPA, CSNET). A name server that wishes to be efficient in
 its use of memory may well choose to invert only occurrences of
 ARPA, etc. that are below the top level, and use a search for the
 rare case that top level labels are used to constrain a
 completion.

Mockapetris [Page 38]

RFC 883 November 1983
 Domain Names - Implementation and Specification

NAME SERVER MAINTENANCE

 Introduction

 Name servers perform maintenance operations on their databases to
 insure that the data they distribute is accurate and timely. The
 amount and complexity of the maintenance operations that a name
 server must perform are related to the size, change rate, and
 complexity of the database that the name server manages.

 Maintenance operations are fundamentally different for
 authoritative and non-authoritative data. A name server actively
 attempts to insure the accuracy and timeliness of authoritative
 data by refreshing the data from master copies. Non-authoritative
 data is merely purged when its time-to-live expires; the name
 server does not attempt to refresh it.

 Although the refreshing scheme is fairly simple to implement, it
 is somewhat less powerful than schemes used in other distributed
 database systems. In particular, an update to the master does not
 immediately update copies, and should be viewed as gradually
 percolating though the distributed database. This is adequate for
 the vast majority of applications. In situations where timliness
 is critical, the master name server can prohibit caching of copies
 or assign short timeouts to copies.

 Conceptual model of maintenance operations

 The vast majority of information in the domain system is derived
 from master files scattered among hosts that implement name
 servers; some name servers will have no master files, other name
 servers will have one or more master files. Each master file
 contains the master data for a single zone of authority rather
 than data for the whole domain name space. The administrator of a
 particular zone controls that zone by updating its master file.

 Master files and zone copies from remote servers may include RRs
 that are outside of the zone of authority when a NS record
 delegates authority to a domain name that is a descendant of the
 domain name at which authority is delegated. These forward
 references are a problem because there is no reasonable method to
 guarantee that the A type records for the delegatee are available
 unless they can somehow be attached to the NS records.

 For example, suppose the ARPA zone delegates authority at
 MIT.ARPA, and states that the name server is on AI.MIT.ARPA. If a
 resolver gets the NS record but not the A type record for
 AI.MIT.ARPA, it might try to ask the MIT name server for the
 address of AI.MIT.ARPA.

Mockapetris [Page 39]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 The solution is to allow type A records that are outside of the
 zone of authority to be copied with the zone. While these records
 won’t be found in a search for the A type record itself, they can
 be protected by the zone refreshing system, and will be passed
 back whenever the name server passes back a referral to the
 corresponding NS record. If a query is received for the A record,
 the name server will pass back a referral to the name server with
 the A record in the additional section, rather than answer
 section.

 The only exception to the use of master files is a small amount of
 data stored in boot files. Boot file data is used by name servers
 to provide enough resource records to allow zones to be imported
 from foreign servers (e.g. the address of the server), and to
 establish the name and address of root servers. Boot file records
 establish the initial contents of the cache tree, and hence can be
 overridden by later loads of authoritative data.

 The data in a master file first becomes available to users of the
 domain name system when it is loaded by the corresponding name
 server. By definition, data from a master file is authoritative.

 Other name servers which wish to be authoritative for a particular
 zone do so by transferring a copy of the zone from the name server
 which holds the master copy using a virtual circuit. These copies
 include parameters which specify the conditions under which the
 data in the copy is authoritative. In the most common case, the
 conditions specify a refresh interval and policies to be followed
 when the refresh operation cannot be performed.

 A name server may acquire multiple zones from different name
 servers and master files, but the name server must maintain each
 zone separately from others and from non-authoritative data.

 When the refresh interval for a particular zone copy expires, the
 name server holding the copy must consult the name server that
 holds the master copy. If the data in the zone has not changed,
 the master name server instructs the copy name server to reset the
 refresh interval. If the data has changed, the master passes a
 new copy of the zone and its associated conditions to the copy
 name server. Following either of these transactions, the copy
 name server begins a new refresh interval.

 Copy name servers must also deal with error conditions under which
 they are unable to communicate with the name server that holds the
 master copy of a particular zone. The policies that a copy name
 server uses are determined by other parameters in the conditions
 distributed with every copy. The conditions include a retry
 interval and a maximum holding time. When a copy name server is

Mockapetris [Page 40]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 unable to establish communications with a master or is unable to
 complete the refresh transaction, it must retry the refresh
 operation at the rate specified by the retry interval. This retry
 interval will usually be substantially shorter than the refresh
 interval. Retries continue until the maximum holding time is
 reached. At that time the copy name server must assume that its
 copy of the data for the zone in question is no longer
 authoritative.

 Queries must be processed while maintenance operations are in
 progress because a zone transfer can take a long time. However,
 to avoid problems caused by access to partial databases, the
 maintenance operations create new copies of data rather than
 directly modifying the old copies. When the new copy is complete,
 the maintenance process locks out queries for a short time using
 the main lock, and switches pointers to replace the old data with
 the new. After the pointers are swapped, the maintenance process
 unlocks the main lock and reclaims the storage used by the old
 copy.

 Name server data structures and top level logic

 The name server must multiplex its attention between multiple
 activities. For example, a name server should be able to answer
 queries while it is also performing refresh activities for a
 particular zone. While it is possible to design a name server
 that devotes a separate process to each query and refresh activity
 in progress, the model described in this memo is based on the
 assumption that there is a single process performing all
 maintenance operations, and one or more processes devoted to
 handling queries. The model also assumes the existence of shared
 memory for several control structures, the domain database, locks,
 etc.

 The model name server uses the following files and shared data
 structures:

 1. A configuration file that describes the master and boot
 files which the name server should load and the zones that
 the name server should attempt to load from foreign name
 servers. This file establishes the initial contents of the
 status table.

 2. Domain data files that contain master and boot data to be
 loaded.

 3. A status table that is derived from the configuration file.
 Each entry in this table describes a source of data. Each
 entry has a zone number. The zone number is zero for

Mockapetris [Page 41]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 non-authoritative sources; authoritative sources are
 assigned separate non-zero numbers.

 4. The shared database that holds the domain data. This
 database is assumed to be organized in some sort of tree
 structure paralleling the domain name space, with a list of
 resource records attached to each node and leaf in the tree.
 The elements of the resource record list need not contain
 the exact data present in the corresponding output format,
 but must contain data sufficient to create the output
 format; for example, these records need not contain the
 domain name that is associated with the resource because
 that name can be derived from the tree structure. Each
 resource record also internal data that the name server uses
 to organize its data.

 5. Inversion data structures that allow the name server to
 process inverse queries and completion queries. Although
 many structures could be used, the implementation described
 in this memo supposes that there is one array for every
 inversion that the name server can handle. Each array
 contains a list of pointers to resource records such that
 the order of the inverted quantities is sorted.

 6. The main and cache queue locks

 7. The cache queue

 The maintenance process begins by loading the status table from
 the configuration file. It then periodically checks each entry,
 to see if its refresh interval has elapsed. If not, it goes on to
 the next entry. If so, it performs different operations depending
 on the entry:

 If the entry is for zone 0, or the cache tree, the maintenance
 process checks to see if additions or deletions are required.
 Additions are acquired from the cache queue using the cache
 queue lock. Deletions are detected using TTL checks. If any
 changes are required, the maintenance process recalculates
 inversion data structures and then alters the cache tree under
 the protection of the main lock. Whenever the maintenance
 process modifies the cache tree, it resets the refresh interval
 to the minimum of the contained TTLs and the desired time
 interval for cache additions.

 If the entry is not zone 0, and the entry refers to a local
 file, the maintenance process checks to see if the file has
 been modified since its last load. If so the file is reloaded
 using the procedures specified under "Name server file

Mockapetris [Page 42]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 loading". The refresh interval is reset to that specified in
 the SOA record if the file is a master file.

 If the entry is for a remote master file, the maintenance
 process checks for a new version using the procedure described
 in "Names server remote zone transfer".

 Name server file loading

 Master files are kept in text form for ease of editing by system
 maintainers. These files are not exchanged by name servers; name
 servers use the standard message format when transferring zones.

 Organizations that want to have a domain, but do not want to run a
 name server, can use these files to supply a domain definition to
 another organization that will run a name server for them. For
 example, if organization X wants a domain but not a name server,
 it can find another organization, Y, that has a name server and is
 willing to provide service for X. Organization X defines domain X
 via the master file format and ships a copy of the master file to
 organization Y via mail, FTP, or some other method. A system
 administrator at Y configures Y’s name server to read in X’s file
 and hence support the X domain. X can maintain the master file
 using a text editor and send new versions to Y for installation.

 These files have a simple line-oriented format, with one RR per
 line. Fields are separated by any combination of blanks and tab
 characters. Tabs are treated the same as spaces; in the following
 discussion the term "blank" means either a tab or a blank. A line
 can be either blank (and ignored), a RR, or a $INCLUDE line.

 If a RR line starts with a domain name, that domain name is used
 to specify the location in the domain space for the record, i.e.
 the owner. If a RR line starts with a blank, it is loaded into
 the location specified by the most recent location specifier.

 The location specifiers are assumed to be relative to some origin
 that is provided by the user of a file unless the location
 specifier contains the root label. This provides a convenient
 shorthand notation, and can also be used to prevent errors in
 master files from propagating into other zones. This feature is
 particularly useful for master files imported from other sites.

 An include line begins with $INCLUDE, starting at the first line
 position, and is followed by a local file name and an optional
 offset modifier. The filename follows the appropriate local
 conventions. The offset is one or more labels that are added to
 the offset in use for the file that contained the $INCLUDE. If
 the offset is omitted, the included file is loaded using the

Mockapetris [Page 43]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 offset of the file that contained the $INCLUDE command. For
 example, a file being loaded at offset ARPA might contain the
 following lines:

 $INCLUDE <subsys>isi.data ISI
 $INCLUDE <subsys>addresses.data

 The first line would be interpreted to direct loading of the file
 <subsys>isi.data at offset ISI.ARPA. The second line would be
 interpreted as a request to load data at offset ARPA.

 Note that $INCLUDE commands do not cause data to be loaded into a
 different zone or tree; they are simply ways to allow data for a
 given zone to be organized in separate files. For example,
 mailbox data might be kept separately from host data using this
 mechanism.

 Resource records are entered as a sequence of fields corresponding
 to the owner name, TTL, CLASS, TYPE and RDATA components. (Note
 that this order is different from the order used in examples and
 the order used in the actual RRs; the given order allows easier
 parsing and defaulting.)

 The owner name is derived from the location specifier.

 The TTL field is optional, and is expressed as a decimal
 number. If omitted TTL defaults to zero.

 The CLASS field is also optional; if omitted the CLASS defaults
 to the most recent value of the CLASS field in a previous RR.

 The RDATA fields depend on the CLASS and TYPE of the RR. In
 general, the fields that make up RDATA are expressed as decimal
 numbers or as domain names. Some exceptions exist, and are
 documented in the RDATA definitions in Appendicies 2 and 3 of
 this memo.

 Because CLASS and TYPE fields don’t contain any common
 identifiers, and because CLASS and TYPE fields are never decimal
 numbers, the parse is always unique.

 Because these files are text files several special encodings are
 necessary to allow arbitrary data to be loaded. In particular:

 . A free standing dot is used to refer to the current domain
 name.

 @ A free standing @ is used to denote the current origin.

Mockapetris [Page 44]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 .. Two free standing dots represent the null domain name of
 the root.

 \X where X is any character other than a digit (0-9), is used
 to quote that character so that its special meaning does
 not apply. For example, "\." can be used to place a dot
 character in a label.

 \DDD where each D is a digit is the octet corresponding to the
 decimal number described by DDD. The resulting octet is
 assumed to be text and is not checked for special meaning.

 () Parentheses are used to group data that crosses a line
 boundary. In effect, line terminations are not recognized
 within parentheses.

 ; Semicolon is used to start a comment; the remainder of the
 line is ignored.

 Name server file loading example

 A name server for F.ISI.ARPA , serving as an authority for the
 ARPA and ISI.ARPA domains, might use a boot file and two master
 files. The boot file initializes some non-authoritative data, and
 would be loaded without an origin:

 .. 9999999 IN NS B.ISI.ARPA
 9999999 CS NS UDEL.CSNET
 B.ISI.ARPA 9999999 IN A 10.3.0.52
 UDEL.CSNET 9999999 CS A 302-555-0000

 This file loads non-authoritative data which provides the
 identities and addresses of root name servers. The first line
 contains a NS RR which is loaded at the root; the second line
 starts with a blank, and is loaded at the most recent location
 specifier, in this case the root; the third and fourth lines load
 RRs at B.ISI.ARPA and UDEL.CSNET, respectively. The timeouts are
 set to high values (9999999) to prevent this data from being
 discarded due to timeout.

 The first master file loads authoritative data for the ARPA
 domain. This file is designed to be loaded with an origin of
 ARPA, which allows the location specifiers to omit the trailing
 .ARPA labels.

Mockapetris [Page 45]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 @ IN SOA F.ISI.ARPA Action.E.ISI.ARPA (
 20 ; SERIAL
 3600 ; REFRESH
 600 ; RETRY
 3600000; EXPIRE
 60) ; MINIMUM
 NS F.ISI.ARPA ; F.ISI.ARPA is a name server for ARPA
 NS A.ISI.ARPA ; A.ISI.ARPA is a name server for ARPA
 MIT NS AI.MIT.ARPA; delegation to MIT name server
 ISI NS F.ISI.ARPA ; delegation to ISI name server

 UDEL MD UDEL.ARPA
 A 10.0.0.96
 NBS MD NBS.ARPA
 A 10.0.0.19
 DTI MD DTI.ARPA
 A 10.0.0.12

 AI.MIT A 10.2.0.6
 F.ISI A 10.2.0.52

 The first group of lines contains the SOA record and its
 parameters, and identifies name servers for this zone and for
 delegated zones. The Action.E.ISI.ARPA field is a mailbox
 specification for the responsible person for the zone, and is the
 domain name encoding of the mail destination Action@E.ISI.ARPA.
 The second group specifies data for domain names within this zone.
 The last group has forward references for name server address
 resolution for AI.MIT.ARPA and F.ISI.ARPA. This data is not
 technically within the zone, and will only be used for additional
 record resolution for NS records used in referrals. However, this
 data is protected by the zone timeouts in the SOA, so it will
 persist as long as the NS references persist.

 The second master file defines the ISI.ARPA environment, and is
 loaded with an origin of ISI.ARPA:

 @ IN SOA F.ISI.ARPA Action\.ISI.E.ISI.ARPA (
 20 ; SERIAL
 7200 ; REFRESH
 600 ; RETRY
 3600000; EXPIRE
 60) ; MINIMUM
 NS F.ISI.ARPA ; F.ISI.ARPA is a name server
 A A 10.1.0.32
 MD A.ISI.ARPA
 MF F.ISI.ARPA
 B A 10.3.0.52
 MD B.ISI.ARPA

Mockapetris [Page 46]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 MF F.ISI.ARPA
 F A 10.2.0.52
 MD F.ISI.ARPA
 MF A.ISI.ARPA
 $INCLUDE <SUBSYS>ISI-MAILBOXES.TXT

 Where the file <SUBSYS>ISI-MAILBOXES.TXT is:

 MOE MB F.ISI.ARPA
 LARRY MB A.ISI.ARPA
 CURLEY MB B.ISI.ARPA
 STOOGES MB B.ISI.ARPA
 MG MOE.ISI.ARPA
 MG LARRY.ISI.ARPA
 MG CURLEY.ISI.ARPA

 Note the use of the \ character in the SOA RR to specify the
 responsible person mailbox "Action.ISI@E.ISI.ARPA".

 Name server remote zone transfer

 When a name server needs to make an initial copy of a zone or test
 to see if a existing zone copy should be refreshed, it begins by
 attempting to open a virtual circuit to the foreign name server.

 If this open attempt fails, and this was an initial load attempt,
 it schedules a retry and exits. If this was a refresh operation,
 the name server tests the status table to see if the maximum
 holding time derived from the SOA EXPIRE field has elapsed. If
 not, the name server schedules a retry. If the maximum holding
 time has expired, the name server invalidates the zone in the
 status table, and scans all resource records tagged with this zone
 number. For each record it decrements TTL fields by the length of
 time since the data was last refreshed. If the new TTL value is
 negative, the record is deleted. If the TTL value is still
 positive, it moves the RR to the cache tree and schedules a retry.

 If the open attempt succeeds, the name server sends a query to the
 foreign name server in which QTYPE=SOA, QCLASS is set according to
 the status table information from the configuration file, and
 QNAME is set to the domain name of the zone of interest.

 The foreign name server will return either a SOA record indicating
 that it has the zone or an error. If an error is detected, the
 virtual circuit is closed, and the failure is treated in the same
 way as if the open attempt failed.

 If the SOA record is returned and this was a refresh, rather than
 an initial load of the zone, the name server compares the SERIAL

Mockapetris [Page 47]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 field in the new SOA record with the SERIAL field in the SOA
 record of the existing zone copy. If these values match, the zone
 has not been updated since the last copy and hence there is no
 reason to recopy the zone. In this case the name server resets
 the times in the existing SOA record and closes the virtual
 circuit to complete the operation.

 If this is initial load, or the SERIAL fields were different, the
 name server requests a copy of the zone by sending the foreign
 name server an AXFR query which specifies the zone by its QCLASS
 and QNAME fields.

 When the foreign name server receives the AXFR request, it sends
 each node from the zone to the requestor in a separate message.
 It begins with the node that contains the SOA record, walks the
 tree in breadth-first order, and completes the transfer by
 resending the node containing the SOA record.

 Several error conditions are possible:

 If the AXFR request cannot be matched to a SOA, the foreign
 name server will return a single message in response that does
 not contain the AXFR request. (The normal SOA query preceding
 the AXFR is designed to avoid this condition, but it is still
 possible.)

 The foreign name server can detect an internal error or detect
 some other condition (e.g. system going down, out of resources,
 etc.) that forces the transfer to be aborted. If so, it sends
 a message with the "Server failure" condition set. If the AXFR
 can be immediately retried with some chance of success, it
 leaves the virtual open; otherwise it initiates a close.

 If the foreign name server doesn’t wish to perform the
 operation for policy reasons (i.e. the system administrator
 wishes to forbid zone copies), the foreign server returns a
 "Refused" condition.

 The requestor receives these records and builds a new tree. This
 tree is not yet in the status table, so its data are not used to
 process queries. The old copy of the zone, if any, may be used to
 satisfy request while the transfer is in progress.

 When the requestor receives the second copy of the SOA node, it
 compares the SERIAL field in the first copy of the SOA against the
 SERIAL field in the last copy of the SOA record. If these don’t
 match, the foreign server updated its zone while the transfer was
 in progress. In this case the requestor repeats the AXFR request
 to acquire the newer version.

Mockapetris [Page 48]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 If the AXFR transfer eventually succeeds, the name server closes
 the virtual circuit and and creates new versions of inversion data
 structures for this zone. When this operation is complete, the
 name server acquires the main lock in write mode and then replaces
 any old copy of the zone and inversion data structures with new
 ones. The name server then releases the main lock, and can
 reclaim the storage used by the old copy.

 If an error occurs during the AXFR transfer, the name server can
 copy any partial information into its cache tree if it wishes,
 although it will not normally do so if the zone transfer was a
 refresh rather than an initial load.

Mockapetris [Page 49]

RFC 883 November 1983
 Domain Names - Implementation and Specification

RESOLVER ALGORITHMS

 Operations

 Resolvers have a great deal of latitude in the semantics they
 allow in user calls. For example, a resolver might support
 different user calls that specify whether the returned information
 must be from and authoritative name server or not. Resolvers are
 also responsible for enforcement of any local restrictions on
 access, etc.

 In any case, the resolver will transform the user query into a
 number of shared database accesses and queries to remote name
 servers. When a user requests a resource associated with a
 particular domain name, the resolver will execute the following
 steps:

 1. The resolver first checks the local shared database, if any,
 for the desired information. If found, it checks the
 applicable timeout. If the timeout check succeeds, the
 information is used to satisfy the user request. If not, the
 resolver goes to step 2.

 2. In this step, the resolver consults the shared database for the
 name server that most closely matches the domain name in the
 user query. Multiple redundant name servers may be found. The
 resolver goes to step 3.

 3. In this step the resolver chooses one of the available name
 servers and sends off a query. If the query fails, it tries
 another name server. If all fail, an error indication is
 returned to the user. If a reply is received the resolver adds
 the returned RRs to its database and goes to step 4.

 4. In this step, the resolver interprets the reply. If the reply
 contains the desired information, the resolver returns the
 information to the user. The the reply indicates that the
 domain name in the user query doesn’t exist, then the resolver
 returns an error to the user. If the reply contains a
 transient name server failure, the resolver can either wait and
 retry the query or go back to step 3 and try a different name
 server. If the reply doesn’t contain the desired information,
 but does contain a pointer to a closer name server, the
 resolver returns to step 2, where the closer name servers will
 be queried.

 Several modifications to this algorithm are possible. A resolver
 may not support a local cache and instead only cache information
 during the course of a single user request, discarding it upon

Mockapetris [Page 50]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 completion. The resolver may also find that a datagram reply was
 truncated, and open a virtual circuit so that the complete reply
 can be recovered.

 Inverse and completion queries must be treated in an
 environment-sensitive manner, because the domain system doesn’t
 provide a method for guaranteeing that it can locate the correct
 information. The typical choice will be to configure a resolver
 to use a particular set of known name servers for inverse queries.

Mockapetris [Page 51]

RFC 883 November 1983
 Domain Names - Implementation and Specification

DOMAIN SUPPORT FOR MAIL

 Introduction

 Mail service is a particularly sensitive issue for users of the
 domain system because of the lack of a consistent system for
 naming mailboxes and even hosts, and the need to support continued
 operation of existing services. This section discusses an
 evolutionary approach for adding consistent domain name support
 for mail.

 The crucial issue is deciding on the types of binding to be
 supported. Most mail systems specify a mail destination with a
 two part construct such as X@Y. The left hand side, X, is an
 string, often a user or account, and Y is a string, often a host.
 This section refers to the part on the left, i.e. X, as the local
 part, and refers to the part on the right, i.e. Y, as the global
 part.

 Most existing mail systems route mail based on the global part; a
 mailer with mail to deliver to X@Y will decide on the host to be
 contacted using only Y. We refer to this type of binding as
 "agent binding".

 For example, mail addressed to Mockapetris@ISIF is delivered to
 host USC-ISIF (USC-ISIF is the official name for the host
 specified by nickname ISIF).

 More sophisticated mail systems use both the local and global
 parts, i.e. both X and Y to determine which host should receive
 the mail. These more sophisticated systems usually separate the
 binding of the destination to the host from the actual delivery.
 This allows the global part to be a generic name rather than
 constraining it to a single host. We refer to this type of
 binding as "mailbox binding".

 For example, mail addressed to Mockapetris@ISI might be bound
 to host F.ISI.ARPA, and subsequently delivered to that host,
 while mail for Cohen@ISI might be bound to host B.ISI.ARPA.

 The domain support for mail consists of two levels of support,
 corresponding to these two binding models.

 The first level, agent binding, is compatible with existing
 ARPA Internet mail procedures and uses maps a global part onto
 one or more hosts that will accept the mail. This type of
 binding uses the MAILA QTYPE.

 The second level, mailbox binding, offers extended services

Mockapetris [Page 52]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 that map a local part and a global part onto one or more sets
 of data via the MAILB QTYPE. The sets of data include hosts
 that will accept the mail, mailing list members (mail groups),
 and mailboxes for reporting errors or requests to change a mail
 group.

 The domain system encodes the global part of a mail destination as
 a domain name and uses dots in the global part to separate labels
 in the encoded domain name. The domain system encodes the local
 part of a mail destination as a single label, and any dots in this
 part are simply copied into the label. The domain system forms a
 complete mail destination as the local label concatenated to the
 domain string for the global part. We call this a mailbox.

 For example, the mailbox Mockapetris@F.ISI.ARPA has a global
 domain name of three labels, F.ISI.ARPA. The domain name
 encoding for the whole mailbox is Mockapetris.F.ISI.ARPA. The
 mailbox Mockapetris.cad@F.ISI.ARPA has the same domain name for
 the global part and a 4 label domain name for the mailbox of
 Mockapetris\.cad.F.ISI.ARPA (the \ is not stored in the label,
 its merely used to denote the "quoted" dot).

 It is anticipated that the Internet system will adopt agent
 binding as part of the initial implementation of the domain
 system, and that mailbox binding will eventually become the
 preferred style as organizations convert their mail systems to the
 new style. To facilitate this approach, the domain information
 for these two binding styles is organized to allow a requestor to
 determine which types of support are available, and the
 information is kept in two disjoint classes.

 Agent binding

 In agent binding, a mail system uses the global part of the mail
 destination as a domain name, with dots denoting structure. The
 domain name is resolved using a MAILA query which return MF and MD
 RRs to specify the domain name of the appropriate host to receive
 the mail. MD (Mail delivery) RRs specify hosts that are expected
 to have the mailbox in question; MF (Mail forwarding) RRs specify
 hosts that are expected to be intermediaries willing to accept the
 mail for eventual forwarding. The hosts are hints, rather than
 definite answers, since the query is made without the full mail
 destination specification.

 For example, mail for MOCKAPETRIS@F.ISI.ARPA would result in a
 query with QTYPE=MAILA and QNAME=F.ISI.ARPA, which might return
 two RRs:

Mockapetris [Page 53]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 F.ISI.ARPA MD IN F.ISI.ARPA
 F.ISI.ARPA MF IN A.ISI.ARPA

 The mailer would interpret these to mean that the mail agent on
 F.ISI.ARPA should be able to deliver the mail directly, but that
 A.ISI.ARPA is willing to accept the mail for probable forwarding.

 Using this system, an organization could implement a system that
 uses organization names for global parts, rather than the usual
 host names, but all mail for the organization would be routed the
 same, regardless of its local part. Hence and organization with
 many hosts would expect to see many forwarding operations.

 Mailbox binding

 In mailbox binding, the mailer uses the entire mail destination
 specification to construct a domain name. The encoded domain name
 for the mailbox is used as the QNAME field in a QTYPE=MAILB query.

 Several outcomes are possible for this query:

 1. The query can return a name error indicating that the mailbox
 does not exist as a domain name.

 In the long term this would indicate that the specified mailbox
 doesn’t exist. However, until the use of mailbox binding is
 universal, this error condition should be interpreted to mean
 that the organization identified by the global part does not
 support mailbox binding. The appropriate procedure is to
 revert to agent binding at this point.

 2. The query can return a Mail Rename (MR) RR.

 The MR RR carries new mailbox specification in its RDATA field.
 The mailer should replace the old mailbox with the new one and
 retry the operation.

 3. The query can return a MB RR.

 The MB RR carries a domain name for a host in its RDATA field.
 The mailer should deliver the message to that host via whatever
 protocol is applicable, e.g. SMTP.

 4. The query can return one or more Mail Group (MG) RRs.

 This condition means that the mailbox was actually a mailing
 list or mail group, rather than a single mailbox. Each MG RR
 has a RDATA field that identifies a mailbox that is a member of

Mockapetris [Page 54]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 the group. The mailer should deliver a copy of the message to
 each member.

 5. The query can return a MB RR as well as one or more MG RRs.

 This condition means the the mailbox was actually a mailing
 list. The mailer can either deliver the message to the host
 specified by the MB RR, which will in turn do the delivery to
 all members, or the mailer can use the MG RRs to do the
 expansion itself.

 In any of these cases, the response may include a Mail Information
 (MINFO) RR. This RR is usually associated with a mail group, but
 is legal with a MB. The MINFO RR identifies two mailboxes. One
 of these identifies a responsible person for the original mailbox
 name. This mailbox should be used for requests to be added to a
 mail group, etc. The second mailbox name in the MINFO RR
 identifies a mailbox that should receive error messages for mail
 failures. This is particularly appropriate for mailing lists when
 errors in member names should be reported to a person other than
 the one who sends a message to the list. New fields may be added
 to this RR in the future.

Mockapetris [Page 55]

RFC 883 November 1983
 Domain Names - Implementation and Specification

Appendix 1 - Domain Name Syntax Specification

 The preferred syntax of domain names is given by the following BNF
 rules. Adherence to this syntax will result in fewer problems with
 many applications that use domain names (e.g., mail, TELNET). Note
 that some applications use domain names containing binary information
 and hence do not follow this syntax.

 <domain> ::= <subdomain> | " "

 <subdomain> ::= <label> | <subdomain> "." <label>

 <label> ::= <letter> [[<ldh-str>] <let-dig>]

 <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

 <let-dig-hyp> ::= <let-dig> | "-"

 <let-dig> ::= <letter> | <digit>

 <letter> ::= any one of the 52 alphabetic characters A through Z
 in upper case and a through z in lower case

 <digit> ::= any one of the ten digits 0 through 9

 Note that while upper and lower case letters are allowed in domain
 names no significance is attached to the case. That is, two names
 with the same spelling but different case are to be treated as if
 identical.

 The labels must follow the rules for ARPANET host names. They must
 start with a letter, end with a letter or digit, and have as interior
 characters only letters, digits, and hyphen. There are also some
 restrictions on the length. Labels must be 63 characters or less.

 For example, the following strings identify hosts in the ARPA
 Internet:

 F.ISI.ARPA LINKABIT-DCN5.ARPA UCL-TAC.ARPA

Mockapetris [Page 56]

RFC 883 November 1983
 Domain Names - Implementation and Specification

Appendix 2 - Field formats and encodings

 +---+
 | |
 | ***** WARNING ***** |
 | |
 | The following formats are preliminary and |
 | are included for purposes of explanation only.|
 | In particular, new RR types will be added, |
 | and the size, position, and encoding of |
 | fields are subject to change. |
 | |
 +---+

 TYPE values

 TYPE fields are used in resource records. Note that these types
 are not the same as the QTYPE fields used in queries, although the
 functions are often similar.

 TYPE value meaning

 A 1 a host address

 NS 2 an authoritative name server

 MD 3 a mail destination

 MF 4 a mail forwarder

 CNAME 5 the canonical name for an alias

 SOA 6 marks the start of a zone of authority

 MB 7 a mailbox domain name

 MG 8 a mail group member

 MR 9 a mail rename domain name

 NULL 10 a null RR

 WKS 11 a well known service description

 PTR 12 a domain name pointer

 HINFO 13 host information

 MINFO 14 mailbox or mail list information

Mockapetris [Page 57]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 QTYPE values

 QTYPE fields appear in the question part of a query. They include
 the values of TYPE with the following additions:

 AXFR 252 A request for a transfer of an entire zone of authority

 MAILB 253 A request for mailbox-related records (MB, MG or MR)

 MAILA 254 A request for mail agent RRs (MD and MF)

 * 255 A request for all records

 CLASS values

 CLASS fields appear in resource records

 CLASS value meaning

 IN 1 the ARPA Internet

 CS 2 the computer science network (CSNET)

 QCLASS values

 QCLASS fields appear in the question section of a query. They
 include the values of CLASS with the following additions:

 * 255 any class

Mockapetris [Page 58]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 Standard resource record formats

 All RRs have the same top level format shown below:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 NAME - a compressed domain name to which this resource
 record pertains.

 TYPE - two octets containing one of the RR type codes
 defined in Appendix 2. This field specifies the
 meaning of the data in the RDATA field.

 CLASS - two octets which specifies the class of the data in
 the RDATA field.

 TTL - a 16 bit signed integer that specifies the time
 interval that the resource record may be cached
 before the source of the information should again be
 consulted. Zero values are interpreted to mean that
 the RR can only be used for the transaction in
 progress, and should not be cached. For example, SOA
 records are always distributed with a zero TTL to
 prohibit caching. Zero values can also be used for
 extremely volatile data.

 RDLENGTH- an unsigned 16 bit integer that specifies the length
 in octets of the RDATA field.

Mockapetris [Page 59]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 RDATA - a variable length string of octets that describes the
 resource. The format of this information varies
 according to the TYPE and CLASS of the resource
 record.

 The format of the RDATA field is standard for all classes for the
 RR types NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR, HINFO, MINFO and
 NULL. These formats are shown below together with the appropriate
 additional section RR processing.

 CNAME RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 CNAME - A compressed domain name which specifies that the
 domain name of the RR is an alias for a canonical
 name specified by CNAME.

 CNAME records cause no additional section processing. The
 RDATA section of a CNAME line in a master file is a standard
 printed domain name.

 HINFO RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / CPU /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / OS /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 CPU - A character string which specifies the CPU type. The
 character string is represented as a single octet
 length followed by that number of characters. The
 following standard strings are defined:.

 PDP-11/70 C/30 C/70 VAX-11/780
 H-316 H-516 DEC-2060 DEC-1090T
 ALTO IBM-PC IBM-PC/XT PERQ
 IBM-360/67 IBM-370/145

 OS - A character string which specifies the operating system
 type. The character string is represented as a single octet

Mockapetris [Page 60]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 length followed by that number of characters. The following
 standard types are defined:.

 ASP AUGUST BKY CCP
 DOS/360 ELF EPOS EXEC-8
 GCOS GPOS ITS INTERCOM
 KRONOS MCP MOS MPX-RT
 MULTICS MVT NOS NOS/BE
 OS/MVS OS/MVT RIG RSX11
 RSX11M RT11 SCOPE SIGNAL
 SINTRAN TENEX TOPS10 TOPS20
 TSS UNIX VM/370 VM/CMS
 VMS WAITS

 HINFO records cause no additional section processing.

 HINFO records are used to acquire general information about a
 host. The main use is for protocols such as FTP that can use
 special procedures when talking between machines or operating
 systems of the same type.

 MB RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MADNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 MADNAME - A compressed domain name which specifies a host which
 has the specified mailbox.

 MB records cause additional section processing which looks up
 an A type record corresponding to MADNAME. The RDATA section
 of a MB line in a master file is a standard printed domain
 name.

 MD RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MADNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 MADNAME - A compressed domain name which specifies a host which

Mockapetris [Page 61]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 has a mail agent for the domain which should be able
 to deliver mail for the domain.

 MD records cause additional section processing which looks up
 an A type record corresponding to MADNAME. The RDATA section
 of a MD line in a master file is a standard printed domain
 name.

 MF RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MADNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 MADNAME - A compressed domain name which specifies a host which
 has a mail agent for the domain which will accept
 mail for forwarding to the domain.

 MF records cause additional section processing which looks up
 an A type record corresponding to MADNAME. The RDATA section
 of a MF line in a master file is a standard printed domain
 name.

 MG RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MGMNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 MGMNAME - A compressed domain name which specifies a mailbox
 which is a member of the mail group specified by the
 domain name.

 MF records cause no additional section processing. The RDATA
 section of a MF line in a master file is a standard printed
 domain name.

Mockapetris [Page 62]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 MINFO RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RMAILBX /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / EMAILBX /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 RMAILBX - A compressed domain name which specifies a mailbox
 which is responsible for the mailing list or mailbox.
 If this domain name names the root, the owner of the
 MINFO RR is responsible for itself. Note that many
 existing mailing lists use a mailbox X-request for
 the RMAILBX field of mailing list X, e.g.
 Msgroup-request for Msgroup. This field provides a
 more general mechanism.

 EMAILBX - A compressed domain name which specifies a mailbox
 which is to receive error messages related to the
 mailing list or mailbox specified by the owner of the
 MINFO RR (similar to the ERRORS-TO: field which has
 been proposed). If this domain name names the root,
 errors should be returned to the sender of the
 message.

 MINFO records cause no additional section processing. Although
 these records can be associated with a simple mailbox, they are
 usually used with a mailing list. The MINFO section of a MF
 line in a master file is a standard printed domain name.

 MR RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NEWNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 NEWNAME - A compressed domain name which specifies a mailbox
 which is the proper rename of the specified mailbox.

 MR records cause no additional section processing. The RDATA
 section of a MR line in a master file is a standard printed
 domain name.

Mockapetris [Page 63]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 NULL RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / <anything> /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Anything at all may be in the RDATA field so long as it is
 65535 octets or less.

 NULL records cause no additional section processing. NULL RRs
 are not allowed in master files.

 NS RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / NSDNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 NSDNAME - A compressed domain name which specifies a host which
 has a name server for the domain.

 NS records cause both the usual additional section processing
 to locate a type A record, and a special search of the zone in
 which they reside. The RDATA section of a NS line in a master
 file is a standard printed domain name.

 PTR RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / PTRDNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 PTRDNAME - A compressed domain name which points to some
 location in the domain name space.

 PTR records cause no additional section processing. These RRs
 are used in special domains to point to some other location in
 the domain space. These records are simple data, and don’t
 imply any special processing similar to that performed by
 CNAME, which identifies aliases. Appendix 3 discusses the use
 of these records in the ARPA Internet address domain.

Mockapetris [Page 64]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 SOA RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / MNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 / RNAME /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | SERIAL |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | REFRESH |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RETRY |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | EXPIRE |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | MINIMUM |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 MNAME - The domain name of the name server that was the
 original source of data for this zone.

 RNAME - A domain name which specifies the mailbox of the
 person responsible for this zone.

 SERIAL - The unsigned 16 bit version number of the of the
 original copy of the zone. This value wraps and
 should be compared using sequence space arithmetic.

 REFRESH - The unsigned 32 bit time interval before the zone
 should be refreshed.

 RETRY - The unsigned 32 bit time interval that should elapse
 before a failed refresh should be retried.

 EXPIRE - A 32 bit time value that specifies the upper limit on
 the time interval that can elapse before the zone is
 no longer authoritative.

 MINIMUM - The unsigned 16 bit minimum TTL field that should be
 exported with any RR from this zone (other than the
 SOA itself).

 SOA records cause no additional section processing. The RDATA

Mockapetris [Page 65]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 section of a SOA line in a master file is a standard printed
 domain name for MNAME, a standard X@Y mailbox specification for
 RNAME, and decimal numbers for the remaining parameters.

 All times are in units of seconds.

 Most of these fields are pertinent only for name server
 maintenance operations. However, MINIMUM is used in all query
 operations that retrieve RRs from a zone. Whenever a RR is
 sent in a response to a query, the TTL field is set to the
 maximum of the TTL field from the RR and the MINIMUM field in
 the appropriate SOA. Thus MINIMUM is a lower bound on the TTL
 field for all RRs in a zone. RRs in a zone are never discarded
 due to timeout unless the whole zone is deleted. This prevents
 partial copies of zones.

Mockapetris [Page 66]

RFC 883 November 1983
 Domain Names - Implementation and Specification

Appendix 3 - Internet specific field formats and operations

 Message transport

 The Internet supports name server access using TCP [10] on server
 port 53 (decimal) as well as datagram access using UDP [11] on UDP
 port 53 (decimal). Messages sent over TCP virtual circuits are
 preceded by an unsigned 16 bit length field which describes the
 length of the message, excluding the length field itself.

 +---+
 | |
 | ***** WARNING ***** |
 | |
 | The following formats are preliminary and |
 | are included for purposes of explanation only.|
 | In particular, new RR types will be added, |
 | and the size, position, and encoding of |
 | fields are subject to change. |
 | |
 +---+

 A RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 ADDRESS - A 32 bit ARPA internet address

 Hosts that have multiple ARPA Internet addresses will have
 multiple A records.

 A records cause no additional section processing. The RDATA
 section of an A line in a master file is an Internet address
 expressed as four decimal numbers separated by dots without any
 imbedded spaces (e.g., "10.2.0.52" or "192.0.5.6").

Mockapetris [Page 67]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 WKS RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADDRESS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PROTOCOL | |
 +--+--+--+--+--+--+--+--+ |
 | |
 / <BIT MAP> /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 ADDRESS - An 32 bit ARPA Internet address

 PROTOCOL - An 8 bit IP protocol number

 <BIT MAP> - A variable length bit map. The bit map must be a
 multiple of 8 bits long.

 The WKS record is used to describe the well known services
 supported by a particular protocol on a particular internet
 address. The PROTOCOL field specifies an IP protocol number, and
 the bit map has one bit per port of the specified protocol. The
 first bit corresponds to port 0, the second to port 1, etc. If
 less than 256 bits are present, the remainder are assumed to be
 zero. The appropriate values for ports and protocols are
 specified in [13].

 For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP
 port 25 (SMTP). If this bit is set, a SMTP server should be
 listening on TCP port 25; if zero, SMTP service is not supported
 on the specified address.

 The anticipated use of WKS RRs is to provide availability
 information for servers for TCP and UDP. If a server supports
 both TCP and UDP, or has multiple Internet addresses, then
 multiple WKS RRs are used.

 WKS RRs cause no additional section processing. The RDATA section
 of a WKS record consists of a decimal protocol number followed by
 mnemonic identifiers which specify bits to be set to 1.

 IN-ADDR special domain

 The ARPA internet uses a special domain to support gateway
 location and ARPA Internet address to host mapping. The intent of
 this domain is to allow queries to locate all gateways on a

Mockapetris [Page 68]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 particular network in the ARPA Internet, and also to provide a
 guaranteed method to perform host address to host name mapping.

 Note that both of these services are similar to functions that
 could be performed by inverse queries; the difference is that this
 part of the domain name space is structured according to address,
 and hence can guarantee that the appropriate data can be located
 without an exhaustive search of the domain space. It is
 anticipated that the special tree will be used by ARPA Internet
 resolvers for all gateway location services, but that address to
 name resolution will be performed by first trying the inverse
 query on the local name server database followed by a query in the
 special space if the inverse query fails.

 The domain is a top level domain called IN-ADDR whose substructure
 follows the ARPA Internet addressing structure.

 Domain names in the IN-ADDR domain are defined to have up to four
 labels in addition to the IN-ADDR label. Each label is a
 character string which expresses a decimal value in the range
 0-255 (with leading zeros omitted except in the case of a zero
 octet which is represented by a single zero). These labels
 correspond to the 4 octets of an ARPA Internet address.

 Host addresses are represented by domain names that have all four
 labels specified. Thus data for ARPA Internet address 10.2.0.52
 is located at domain name 52.0.2.10.IN-ADDR. The reversal, though
 awkward to read, allows zones to follow the natural grouping of
 hosts within networks. For example, 10.IN-ADDR can be a zone
 containing data for the ARPANET, while 26.IN-ADDR can be a
 separate zone for MILNET. Address nodes are used to hold pointers
 to primary host names in the normal domain space.

 Network addresses correspond to some of the non-terminal nodes in
 the IN-ADDR tree, since ARPA Internet network numbers are either
 1, 2, or 3 octets. Network nodes are used to hold pointers to
 primary host names (which happen to be gateways) in the normal
 domain space. Since a gateway is, by definition, on more than one
 network, it will typically have two or more network nodes that
 point at the gateway. Gateways will also have host level pointers
 at their fully qualified addresses.

 Both the gateway pointers at network nodes and the normal host
 pointers at full address nodes use the PTR RR to point back to the
 primary domain names of the corresponding hosts.

 For example, part of the IN-ADDR domain will contain information
 about the ISI to MILNET and MIT gateways, and hosts F.ISI.ARPA and
 MULTICS.MIT.ARPA. Assuming that ISI gateway has addresses

Mockapetris [Page 69]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 10.2.0.22 and 26.0.0.103, and a name MILNET-GW.ISI.ARPA, and the
 MIT gateway has addresses 10.0.0.77 and 18.10.0.4 and a name
 GW.MIT.ARPA, the domain database would contain:

 10.IN-ADDR PTR IN MILNET-GW.ISI.ARPA
 10.IN-ADDR PTR IN GW.MIT.ARPA
 18.IN-ADDR PTR IN GW.MIT.ARPA
 26.IN-ADDR PTR IN MILNET-GW.ISI.ARPA
 22.0.2.10.IN-ADDR PTR IN MILNET-GW.ISI.ARPA
 103.0.0.26.IN-ADDR PTR IN MILNET-GW.ISI.ARPA
 77.0.0.10.IN-ADDR PTR IN GW.MIT.ARPA
 4.0.10.18.IN-ADDR PTR IN GW.MIT.ARPA
 52.0.2.10.IN-ADDR PTR IN F.ISI.ARPA
 6.0.0.10.IN-ADDR PTR IN MULTICS.MIT.ARPA

 Thus a program which wanted to locate gateways on net 10 would
 originate a query of the form QTYPE=PTR, QCLASS=IN,
 QNAME=10.IN-ADDR. It would receive two RRs in response:

 10.IN-ADDR PTR IN MILNET-GW.ISI.ARPA
 10.IN-ADDR PTR IN GW.MIT.ARPA

 The program could then originate QTYPE=A, QCLASS=IN queries for
 MILNET-GW.ISI.ARPA and GW.MIT.ARPA to discover the ARPA Internet
 addresses of these gateways.

 A resolver which wanted to find the host name corresponding to
 ARPA Internet host address 10.0.0.6 might first try an inverse
 query on the local name server, but find that this information
 wasn’t available. It could then try a query of the form
 QTYPE=PTR, QCLASS=IN, QNAME=6.0.0.10.IN-ADDR, and would receive:

 6.0.0.10.IN-ADDR PTR IN MULTICS.MIT.ARPA

 Several cautions apply to the use of these services:

 Since the IN-ADDR special domain and the normal domain for a
 particular host or gateway will be in different zones, the
 possibility exists that that the data may be inconsistent.

 Gateways will often have two names in separate domains, only
 one of which can be primary.

 Systems that use the domain database to initialize their
 routing tables must start with enough gateway information to
 guarantee that they can access the appropriate name server.

 The gateway data only reflects the existence of a gateway in a

Mockapetris [Page 70]

RFC 883 November 1983
 Domain Names - Implementation and Specification

 manner equivalent to the current HOSTS.TXT file. It doesn’t
 replace the dynamic availability information from GGP or EGP.

Mockapetris [Page 71]

RFC 883 November 1983
 Domain Names - Implementation and Specification

REFERENCES and BIBLIOGRAPHY

 [1] E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet
 Host Table Specification", RFC 810, Network Information Center,
 SRI International, March 1982.

 [2] J. Postel, "Computer Mail Meeting Notes", RFC 805,
 USC/Information Sciences Institute, February 1982.

 [3] Z. Su, and J. Postel, "The Domain Naming Convention for Internet
 User Applications", RFC 819, Network Information Center, SRI
 International, August 1982.

 [4] Z. Su, "A Distributed System for Internet Name Service",
 RFC 830, Network Information Center, SRI International,
 October 1982.

 [5] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC 812, Network
 Information Center, SRI International, March 1982.

 [6] M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name
 Server", Computer Networks, vol 6, nr 3, July 1982.

 [7] K. Harrenstien, "NAME/FINGER", RFC 742, Network Information
 Center, SRI International, December 1977.

 [8] J. Postel, "Internet Name Server", IEN 116, USC/Information
 Sciences Institute, August 1979.

 [9] K. Harrenstien, V. White, and E. Feinler, "Hostnames Server",
 RFC 811, Network Information Center, SRI International,
 March 1982.

 [10] J. Postel, "Transmission Control Protocol", RFC 793,
 USC/Information Sciences Institute, September 1981.

 [11] J. Postel, "User Datagram Protocol", RFC 768, USC/Information
 Sciences Institute, August 1980.

 [12] J. Postel, "Simple Mail Transfer Protocol", RFC 821,
 USC/Information Sciences Institute, August 1980.

 [13] J. Reynolds, and J. Postel, "Assigned Numbers", RFC 870,
 USC/Information Sciences Institute, October 1983.

 [14] P. Mockapetris, "Domain names - Concepts and Facilities,"
 RFC 882, USC/Information Sciences Institute, November 1983.

Mockapetris [Page 72]

RFC 883 November 1983
 Domain Names - Implementation and Specification

INDEX

 * usage..37, 57

 A RDATA format...67

 byte order..6

 cache queue..35, 42
 character case..7, 31
 CLASS...9, 58
 completion...19
 compression..31
 CNAME RR...60

 header format..26
 HINFO RR...60

 include files..43
 inverse queries..17

 mailbox names..53
 master files...43
 MB RR..61
 MD RR..61
 message format...13
 MF RR..62
 MG RR..62
 MINFO RR...63
 MR RR..63

 NULL RR..64
 NS RR..64

 PTR RR...64, 69

 QCLASS...58
 QTYPE..57
 queries (standard)...15

 recursive service..24
 RR format..59

 SOA RR...65
 Special domains..68

 TYPE...57

 WKS type RR..68

Mockapetris [Page 73]

