
Network Working Group David J. Farber
Request for Comments: 914 Gary S. Delp
 Thomas M. Conte
 University of Delaware
 September 1984

 A Thinwire Protocol
 for connecting personal computers
 to the INTERNET

Status of this Memo

 This RFC focuses discussion on the particular problems in the
 ARPA-Internet of low speed network interconnection with personal
 computers, and possible methods of solution. None of the proposed
 solutions in this document are intended as standards for the
 ARPA-Internet. Rather, it is hoped that a general consensus will
 emerge as to the appropriate solution to the problems, leading
 eventually to the adoption of standards. Distribution of this memo
 unlimited.

What is the Problem Anyway ?

 As we connect workstations and personal computers to the INTERNET,
 many of the cost/speed communication tradeoffs change. This has made
 us reconsider the way we juggle the protocol and hardware design
 tradeoffs. With substantial computing power available in the $3--10K
 range, it is feasible to locate computers at their point of use,
 including in buildings, in our homes, and other places remote from
 the existing high speed connections. Dedicated 56k baud lines are
 costly, have limited availability, and long lead time for
 installation. High speed LAN’s are not an applicable interconnection
 solution. These two facts ensure that readily available 1200 / 2400
 baud phone modems over dialed or leased telephone lines will be an
 important part of the interconnection scheme in the near future.
 This paper will consider some of the problems and possibilities
 involved with using a "thin" (less than 9600 baud) data path. A trio
 of "THINWIRE" protocols for connecting a personal computer to the
 INTERNET are presented for discussion.

 Although the cost and flexibility of telephone modems is very
 attractive, their low speed produces some major problems. As an
 example, a minimum TCP/IP Telnet packet (one character) is 41 bytes
 long. At 1200 baud, the transmission time for such a packet would be
 around 0.3 seconds. This is equivalent to using a 30 baud line for
 single character transmission. (Throughout the paper, the assumption
 is made that the transmission speed is limited only by the speed of
 the communication line. We also assume that the line will act as a
 synchronous link when calculating speed. In reality, with interrupt,
 computational, and framing overhead, the times could be 10-50%
 worse.)

 In many cases, local echo and line editing can allow acceptable

Farber & Delp & Conte [Page 1]

RFC 914 September 1984
Thinwire Protocol

 Telnet behavior, but many applications will work only with character
 at a time transmission. In addition, multiple data streams can be
 very useful for fully taking advantage of the personal
 computer/Internet link. Thus this proposal.

 There are several forms that a solution to this problem can take.
 Three of these are listed below, followed by descriptions of possible
 solutions of each form.

 o As a non-solution, one can learn to live with the slow
 communication (possibly a reasonable thing to do for background
 file transfer and one-time inquiries to time, date, or
 quote-of-the-day servers).

 o Using TCP/IP, one can intercept the link level transmissions,
 and try various kinds of compression algorithms. This provides
 for a symmetrical structure on either side of the "Thinwire".

 o One could build an "asymmetrical" gateway which takes some of
 the transport and network communication overhead away from both
 the serial link and the personal computer. The object would be
 to make the PC do the local work, and to make the
 interconnection with the extended network a benefit to the PC
 and not a drain on the facilities of the PC.

 The first form has the advantage of simplicity and ease of
 implementation. The disadvantages have been discussed above. The
 second form, compression at link level, can be exploited in two ways.

 Thinwire I is a simple robust compressor, which will reduce the 41
 byte minimum TCP/IP Telnet packets to a series of 17 byte update
 packets. This would improve the effective baud rate from 30 baud
 to 70 baud over a 1200 baud line (for single character packets).

 Thinwire II uses a considerably more complex technique, and takes
 advantage of the storage and processing power on either side of
 the thinwire link. Thinwire II will compress packets from
 multiple TCP/IP connections from 41 bytes down to 13 bytes. The
 increased communication rate is 95 (effective) baud for single
 character packets.

 The third form balances the characteristics of the personal computer,
 the communications line, the gateway, and the Internet protocols to
 optimize the utility of the communications and the workstation
 itself. Instead of running full transport and internet layers on the
 PC, the PC and the gateway manage a single reliable stream,
 multiplexing data on this stream with control requests. Without the
 interneting and flow control structures traveling over the
 communications line on a per/packet basis, the data flow can be

Farber & Delp & Conte [Page 2]

RFC 914 September 1984
Thinwire Protocol

 compressed a great deal. As there is some switching overhead, and a
 reliable link level protocol is needed on the serial line, the
 average effective baud rate would be in the 900 baud range.

 Each of these Thinwire possibilities will be explored in detail.

Thinwire I

 The simplest technique for the compression of packets which have
 similar headers is for both the transmitting and receiving host to
 store the most recent packet and transmit just the changes from one
 packet to the next. The updated information is transmitted by
 sending a packet including the updated information along with a
 description of where the information should be placed. A series of
 descriptor-data blocks would make up the update packet. The
 descriptor consists of the offset from the last byte changed to the
 start of the data to be changed and a count of the number of data
 bytes to be substituted into the old template. The descriptor is one
 byte long, with two four bit fields; offsets and counts of up to 15
 bytes can be described. In the most pathological case the descriptor
 adds an extra byte for every 15 bytes (or a 6% expansion).

 An example of Thinwire I in action is shown in Appendix A. A
 sequence of two single character TCP/IP Telnet packets is shown. The
 "update" packet which would actually be transmitted is shown
 following them. Each Telnet packet is 41 bytes long; the typical
 update is 17 bytes. This technique is a useful improvement over
 sending entire packets. It is also computationally simple. It
 suffers from two problems: the compression is modest, and, if there
 is more than one class of packets being handled, the assumption of
 common header information breaks down, causing the compression of
 each class to suffer.

Thinwire II

 Both of the problems described above suggest that a more
 computationally complex protocol may be appropriate. Any major
 improvement in data compression must depend on knowledge of the
 protocols being used. Thinwire II uses this knowledge to accomplish
 two things. First, the packets are sorted into classes. The packets
 from each TCP connection using the thinwire link, would, because of
 their header similarities, make up a class of packets. Recognizing
 these classes and sorting by them is called "matching templates".
 Second, knowledge of the protocols is used to compress the updates.
 A bitfield indicating which fields in the header have changed,
 followed only by the changed fields, is much shorter than the general
 form of change notices. Simple arithmetic is allowed, so 32 bit

Farber & Delp & Conte [Page 3]

RFC 914 September 1984
Thinwire Protocol

 fields can often be updated in 8 or 16 bits. By using the sorting,
 protocol-specific updating, Thinwire II provides significant
 compression.

 A typical transaction is described in Appendix B. The "template
 matching" is based on the unchanging fields in each class of packet.
 A TCP/IP packet would match on the following fields: network type
 field(IP), version, type of service, protocol(TCP), and source and
 destination address and port. Note that the 41 bytes have been
 reduced to 13 bytes. An additional advantage is that multiple
 classes of packets can be transported across the same line without
 affecting the compression of each other, just by matching and storing
 multiple templates.

 Some of the implications of this system are:

 o The necessity of saving several templates (one for each
 TCP/IP connection) means that there will be a relatively
 large memory requirement. This requirement for current
 personal computers is reasonable. In addition, the gateway
 must keep tables for several connections at a time.

 o The Thinwire links are slow (that’s why we call them thin);
 much slower than normal disk access. There is no reason that
 inactive templates cannot be swapped out to disk and
 retrieved when needed if memory is limited. (Note that as
 memory density increases, this is less and less of a
 problem.)

 o There is state information in the connections. If the two
 sides get out of synchronization with each other, data flow
 stops. This means that some method of error detection and
 recovery must be provided.

 o To minimize the problem described above, the protocol used on
 the serial line must be reliable. See Appendix D for details
 of SLIP, Serial Line Interface Protocol, as an example of
 such a protocol. There must also be periodic
 resynchronization. (For example, every Nth packet would be
 transmitted in full).

 o The asynchronous link is not, by its nature, a packet
 oriented system; a packet structure will need to be layered
 on the character at a time transfer. However, if the
 protocol layer below thinwire (SLIP) can be trusted, the
 formation of packets is a simple matter.

 o Thinwire II will need to be enhanced for each new protocol

Farber & Delp & Conte [Page 4]

RFC 914 September 1984
Thinwire Protocol

 (TCP, UDP, TP4) it is called upon to service. Any packet
 type not recognized by the Thinwire connection will be
 transmitted in full.

 For maintaining full network service, Thinwire II or a close variant
 seems to be the solution.

Thinwire III

 When transmissions at the local network (link) level are not
 required, if only the available services are desired, then a solution
 based on Thinwire III may be appropriate. A star network with a
 gateway in the center serving as the connection between a number of
 Personal Computers and the Internet is the key of Thinwire III.
 Rather than providing connections at the network/link level, Thinwire
 III assumes that there is a reliable serial link (SLIP or equivalent)
 beneath it and that the workstation/personal computer has better
 things to do than manage TCP state tables, timeouts, etc. It also
 assumes that the gateway supporting the Thinwire III connections is
 powerful enough to run many TCP connections and several SLIP’s at the
 same time. The gateway fills in for the limitations of the
 communications line and the personal computer. It provides a gateway
 to the INTERNET, managing the transport and network functions,
 providing both reliable stream and datagram service.

 In Thinwire III, the gateway starts an interpreter for each SLIP
 connection from a personal computer. The gateway will open TCP, UDP,
 and later TP4 connections on the request of the personal computer.
 Acting as the agent for the personal computer, it will manage the
 remote negotiations and the data flow to and from the personal
 computer. Multiple connections can be opened, with inline logical
 switches in the reliable data flow indicating which connection the
 data is destined for. Additional escaped sequences will send error
 and informational data between the two Thinwire III communicators.

 This protocol is not symmetric. The gateway will open connections to
 the INTERNET world as an agent for the personal computer, but the
 gateway will not be able to open inbound connections to the personal
 computer, as the personal computer is perceived as a stub host. The
 personal computer may however passively open connections on the
 gateway to act as a server. Extended control sequences are specified
 to handle the multiple connection negotiation that this server
 ability will entail.

 This protocol seems to ignore the problem of flow control. Our
 thought is that the processing on either side of the communication
 link will be much speedier than the link itself. The buffering for
 the communication line and the user process blocking for this will

Farber & Delp & Conte [Page 5]

RFC 914 September 1984
Thinwire Protocol

 provide most of the flow control. For the rare instances that this
 is not sufficient, there are control messages to delay the flow to a
 port or all data flow.

 A tentative specification for Thinwire III is attached as Appendix C.

The authors acknowledge the shoulders upon which they stand, and
apologize for the toes they step on. Ongoing work is being done by Eric
Thayer, Guru Parulkar, and John Jaggers. Special thanks are extended to
Peter vonGlahn, Jon Postel and Helen Delp for their helpful comments on
earlier drafts. Responses will be greatly appreciated at the following
addresses:

 Dave Farber <Farber@udel-ee>
 Gary Delp <Delp@udel-ee>
 Tom Conte <Conte@udel-ee>

Farber & Delp & Conte [Page 6]

RFC 914 September 1984
Thinwire Protocol

Appendix A -- Example of Thinwire I Compression

 Here is an example of how Thinwire I would operate in a common
 situation. The connection is a TCP/IP Telnet connection. The first
 TCP/IP Telnet packet is on the next page; it simulates the typing of
 the character "a". The second packet would be produced by typing
 "d"; it is shown on the following page. The compressed version is on
 the third page following.

 [NOTE: The checksums pictured have not been calculated. Binary in
 MSB to LSB format]

Farber & Delp & Conte [Page 7]

RFC 914 September 1984
Thinwire Protocol

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP +-+
header:|Version| IHL |Type of Service| Total Length |
 |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
P | 4 | 5 | 0 | 41 |
a +-+
c | Identification |Flags| Fragment Offset |
k |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
e | 1 | 0 | 0 |
t +-+
- | Time to live | Protocol | Header Checksum |
1 |0 1 1 0 0 1 0 1|0 0 0 0 0 1 1 0|0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0|
 | 101 | 6 | nnn |
 +-+
 | Source Address |
 |1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0|
 | 192. | 5. | 39. | 20 |
 +-+
 | Destination Address |
 |0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0|
 | 10. | 2. | 0. | 52 |
 +-+
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
TCP +-+
header:| Source Port | Destination Port |
 |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|
 | 1025 | 27 |
 +-+
 | Sequence Number |
 |0 1 0 0 1 0 1 1 0 0|
 | 300 |
 +-+
 | Acknowledgement Number |
 |0 1 1 0 0 1 0 0|
 | 100 |
 +-+
 |offset | Reserved |U A P R S F| Window |
 |0 1 0 1|0 0 0 0 0 0|0 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
 | 5 | 0 | 16 | 512 |
 +-+
 | Checksum | Urgent Pointer |
 |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 | nnn | 0 |
 +-+
 | Data |
 |0 1 1 0 0 0 0 1 0|
 | "a" |
 +-+

Farber & Delp & Conte [Page 8]

RFC 914 September 1984
Thinwire Protocol

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP +-+
header:|Version| IHL |Type of Service| Total Length |
 |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
 | 4 | 5 | 0 | 41 |
 +-+
P | Identification* |Flags| Fragment Offset |
a |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
c | 2 | 0 | 0 |
k +-+
e | Time to live*| Protocol | Header Checksum* |
t |0 1 1 0 0 1 1 0|0 0 0 0 0 1 1 0|0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0|
- | 102 | 6 | nnn |
2 +-+
 | Source Address |
 |1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0|
 | 192. | 5. | 39. | 20 |
 +-+
 | Destination Address |
 |0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0|
 | 10. | 2. | 0. | 52 |
 +-+
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
TCP +-+
header:| Source Port | Destination Port |
 |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|
 | 1025 | 27 |
* ’s +-+
show | Sequence Number* |
changed|0 1 0 0 1 0 1 1 0 1|
fields | 301 |
 +-+
 | Acknowledgement Number* |
 |0 1 1 0 0 1 0 1|
 | 101 |
 +-+
 |offset | Reserved |U A P R S F| Window |
 |0 1 0 1|0 0 0 0 0 0|0 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
 | 5 | 0 | 16 | 512 |
 +-+
 | Checksum* | Urgent Pointer |
 |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 | nnn | 0 |
 +-+
 | Data* |
 |0 1 1 0 0 1 0|
 | "d" |
 +-+

Farber & Delp & Conte [Page 9]

RFC 914 September 1984
Thinwire Protocol

 The Thinwire Driver finds the template (which is the previous packet
 sent), compares the template to the packet and creates a change
 message (field names of change record data have been added for
 comparison):

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Descriptor byte| Data: |Descriptor byte| Data: | | |
 |offset |length | Identification|offset |length | Time to live |
 |0 0 1 0|0 0 0 1|0 0 0 0 0 0 1 0|0 0 1 0|0 0 0 1|0 1 1 1 0 1 1 0|
 | 2 | 1 | 2 | 2 | 1 | 102 |
 +-+
 |Descriptor byte| Data: |Descriptor byte| | |
 | offset| length| Header Checksum |offset |length |
 |0 0 1 0|0 0 1 0|1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0|1 1 1 1|0 0 1 0|
 | 2 | 2 | nn | 15 | 2 |
 +-+
 | Data: |Descriptor byte| Data: |Descriptor byte| | |
 | Seq Number |offset |length | Ack Number |offset |length |
 |0 0 1 0 1 1 0 1|0 0 1 1|0 0 0 1|0 1 1 0 0 1 0 1|0 1 1 1|0 0 1 0|
 | 301 | 3 | 1 | 101 | 7 | 2 |
 +-+
 | Data: |Descriptor byte| Data: | |
 | -- TCP Checksum -- |offset |length | data |
 |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0|0 0 0 1|0 1 1 0 0 1 0 0|
 | nn | 2 | 1 | "d" |
 +-+
 |Descriptor byte|
 |offset |length |
 |0 0 0 0|0 0 0 0| the 0 0 offset/length record ends the update.
 | 0 | 0 |
 +-+-+-+-+-+-+-+-+

 Thinwire I then sends this message over the line where the previous
 packet is updated to form the new packet. Note: One can see that a
 series of null descriptor bytes will reset the connection.

Farber & Delp & Conte [Page 10]

RFC 914 September 1984
Thinwire Protocol

Appendix B -- Examples of Thinwire II Compression

 This Appendix provides an example of how the Thinwire II would
 operate in a common situation. The same original packets are used as
 in Appendix A, so only the updates are shown.

 As the later field definitions depend on the contents of earlier
 fields, a field by field analysis of the update packets will be
 useful.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 Thinwire II |U|L|Template no| Len of change | Type of Packet|
 minimum |0|0|0 0 0 1 0 1|0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 1|
 header: |N N| 5 | 41 | TCP/IP |
 +-+

 The first bit is the UPDATE bit. If it is a 0 this packet
 describes a new template, and the entire new packet is included,
 following the header. If there was a previous template with the
 same number, it will be cleared and replaced by the new template.
 If the UPDATE bit is a 1, then this packet should be used to
 update the template with the number given in the template number
 field.

 The second bit is the LONG bit. If it is a 1 it indicates a LONG
 packet. This means that the update length field will be 16 bits
 instead of 8 bits.

 The remaining 6 bits in the first byte indicate the template
 number that this packet is an update to.

 The template number is followed by 1 or 2 bytes (depending on the
 value of the LONG bit) which give the length of the packet. This
 is the number of data bytes following the variable length header.

 If the UPDATE bit is 0 on this packet, the next byte will be a
 flag telling what type of packet the sender thinks this packet is.
 The flag will be saved by the receiver to interpret the update
 packets. Type 0 is for unknown types. If the type 0 flag is set,
 there will be no updates to this template number. Type 1 is
 TCP/IP; the method of updating will be described below. Type 2 is
 UDP/IP; the method of update is not described at this time.

 At this time we have enough information to encode packet 1 of the
 example. Assuming for the moment that this is the first packet for
 this connection, the UPDATE bit would be set to 0. As the packet has
 a length of 41 and so can be described in 8 bits, the LONG bit would
 be set to 0. A template number not in use (or the oldest in use

Farber & Delp & Conte [Page 11]

RFC 914 September 1984
Thinwire Protocol

 template number) would be assigned to this packet. The number 5 is
 illustrated. The Length of Packet would be given as 41, and the Type
 Flag set to TCP/IP (1). The 41 bytes of the packet would follow.

 The transmission of packet 2 requires the specification of Type 1
 (TCP/IP) updating. There are portions of the packets which will
 always be the same; these are described in the body of the paper, and
 are used to match the template. These do not need to be transmitted
 for an update. There are portions of the packet which will always
 (well almost always) change. These are the IP Header checksum, the
 IP Identification number, and the TCP checksum. These are
 transmitted, in that order, with each template update immediately
 after the packet length byte/bytes. Following the invariant portion
 of the header are updates to the fields which change some of the
 time. Which fields are different is indicated with a bitfield
 describing the changes.

 The Bitfield is used to indicate which fields (of those that may stay
 the same) have changed. The technique for updating the field varies
 with the field description. The specifications for TCP/IP are shown
 in Table B-1.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
Thin- |U|L|Template no| Len of change | Type of Packet|
wire II|0|0|0 0 0 1 0 1|0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 1|
header:|N N| 5 | 41 | TCP/IP |
 +-+
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP +-+
header:|Version| IHL |Type of Service| Total Length |
 |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
P | 4 | 5 | 0 | 44 |
a +-+
c | Identification |Flags| Fragment Offset |
k |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
e | 1 | 0 | 0 |
t +˜+˜+˜+˜+˜.˜+˜+˜+˜+˜+˜+˜+˜+˜+˜+.+˜+˜+˜+˜+˜+˜+˜+˜+˜+˜+˜.˜+˜+˜+˜+˜+
- . . .
1 . . .
 +˜+
 | Checksum | Urgent Pointer |
 |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 | nnn | 0 |
 +-+
 | Data |
 |0 1 1 0 0 0 0 1|
 | "a" |
 +-+-+-+-+-+-+-+-+

Farber & Delp & Conte [Page 12]

RFC 914 September 1984
Thinwire Protocol

 The changed field update information is added to the update header in
 the order that the bits appear in the field. That is, if both the IP
 packet length bit and the Time to Live bit are set, the 2 new bytes
 of the IP Packet length will precede the 1 new byte of the Time to
 Live field.

 The update for packet 2 is shown below. Note that this is an update
 to template 5, the length of update is 8 bits with a value of 1. The
 new checksums and IP Identification Number are included, and the
 flags are set to indicate changes to the following fields: Time to
 Live, Add 8 bits to Sequence and Acknowledgement Numbers. The new
 data is one byte following the header.

 Thinwire II would send this message over the line where it would be
 reassembled into the correct packet.

 Note: For purposes of synchronization, if three 0 length, template 0,
 type 0 packets are received, the next non-zero byte should be treated
 as a start of packet, and the template tables cleared.

 __

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
U	L	Template no	Len of change	IP Header Checksum
1	0	0 0 0 1 0 1	0 0 0 0 0 0 0 1	0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0
Y	N	5	1	nnn
+-+				
IP Identification number	TCP Checksum			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0			
2	nnn			
+-+				
Bitfield	Time to Live	add to Seq no.	add to Ack Num	
0 0 1 0 1 0 0 0	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1	
T Ad8	1	1	1	
+-+				
data				
0 0 0 1 0 1 1 1				
"d"				
 +-+-+-+-+-+-+-+-+

 Packet 2. Thinwire II update

 __

Farber & Delp & Conte [Page 13]

RFC 914 September 1984
Thinwire Protocol

Appendix C -- Tentative Specification for Thinwire III

 Thinwire III, as stated in the body of this paper, provides multiple
 virtual connections over a single physical connection. As Thinwire
 III is based on a single point to point connection, much of the
 per/datagram information (routing and sequencing) of other transport
 systems can be eliminated. In the steady state any bytes received by
 thinwire III are sent to the default higher level protocol
 connection. There are escaped control sequences which allow the
 creation of additional connections, the switching of the default
 connection, the packetizing of datagrams, and the passing of
 information between the gateway and the personal computer. The
 gateway and the personal computer manage a single full duplex stream,
 multiplexing control requests and streams of data through the use of
 embedded logical switches.

 The ascii character "z" (binary 01011011) is used as the escape
 character. The byte following the "z" is interpreted to determine
 the command. Table C-1 shows the general classes the bytes (Request
 codes) can fall into.

 In order to transmit the character "z", two "z"’s are transmitted.
 The first is interpreted as an escape, the second as the lower case
 letter "z" to be transmitted to the default connection. The letter z
 was chosen as the escape for its low occurrence in text and control
 data streams, because it should pass easily through any lower level
 protocols, and for its generally innocuous behavior.

 Descriptions of specifications of each of the Request codes are
 below.

 Starting with the range 0-31; these Request codes change the default
 connection. After a connection has been established, any characters
 which come across the line that are not part of a Request code
 sequence are transmitted to one of the connections. To begin with
 this connection defaults to Zero, but when the "Switch Default
 Connection" command is received, characters are sent to the
 connection named in the request until a new request is received.
 Zero is a special diagnostic connection; anything received on
 connection number Zero should be echoed back to the sender on
 connection number One. Anything received on connection number One
 should be placed on the diagnostic output of the receiving host. Any
 other connection number indicates data which should be sent out the
 numbered connection. If the numbered connection has not been opened,
 the data can be thrown away, and an Error Control Message returned to
 the sender.

 Escapes followed by numbers 32 through 255 are for new connections,
 requests for information, and error messages. The escape will be

Farber & Delp & Conte [Page 14]

RFC 914 September 1984
Thinwire Protocol

 followed by a Request code, a one byte Request Sequence Number (so
 that the Reply to Request can be asynchronously associated with the
 Request), and the arguments for the specific request. (The length of
 the argument field will be determined by the Request code.) The
 format of the request will be as pictured below:

 "z" <Request Code> <Request Sequence Number> [<Arguments> ...]

 At this time the Request codes 32-63 are reserved.

 The Request codes 64-127 are for stream server open requests. For
 the purposes of compression, many of the common servers are assigned
 single byte codes. See Table C-2.

 Request code 68 is to a connection to the default hostname server
 used by the gateway. It takes 3 bytes for this request. It has the
 form:

 "z" < 68 > < Request Sequence Number >

 Request code 95 is to open any specified TCP Port at the specified
 address. It takes 9 bytes for this request. It has the form:

 "z" < 95 > < Request Sequence Number > < 4 bytes of IP address> <
 2 bytes of TCP Port >

 Request codes 96-127 are RESERVED for alternate transport protocols.

 The Request codes 128-191 are used for framing Datagrams and opening
 new Datagram connections. The code 128 is the Start of Datagram
 code. The format is:

 "z" <128> <Length of Datagram (2 bytes)> <Socket> Data ...

 As with the Stream opens, there are a number of assigned ports with
 codes for them. They are listed in Table C-3.

 The Request Codes 192-254 are control, status and informational
 requests. These are still under development, but will include:

 -flow control
 -get host/server/protocol by entry/name/number.
 -additional error messages
 -overall reset
 -open passive connection

 The Request Code 252 is the request to close a connection. This
 Code, followed by the connection number, indicates that no more data

Farber & Delp & Conte [Page 15]

RFC 914 September 1984
Thinwire Protocol

 will be sent out this connection number. A second request with the
 same connection number will indicate that no more data will be
 accepted on this connection.

 The Request Code 253 is the information request for a connection. The
 protocol, status, and port number of the connection should be
 returned. The format of this reply has yet to be specified.

 The Request code 254 is an error notification. These are to be
 acknowledged with their Request Sequence Numbers. Error codes are
 under development.

 The Request code 255 is the Reply to Request. The Request Sequence
 Number identifies the request being replied to. The format is:

 "z" <255> <Request Sequence Number (in reply to)> <Length of reply
 (1 byte)> Reply...

 The Thinwire Drivers on each side will wait at their inbound sockets,
 and relay across the thinwire link
 character-by-character/packet-by-packet for the stream/datagram
 connections.

 Thinwire III is labeled as a tentative specification, because at this
 time, in order to publish this RFC in a timely fashion, several minor
 issues are still unresolved. An example is the scheduling of serial
 line use. Short messages could be given priority over long packets,
 or priority schemes could be changed during the session, depending
 upon the interactive desire of the user. Addition issues will be
 resolved in the future.

Farber & Delp & Conte [Page 16]

RFC 914 September 1984
Thinwire Protocol

Appendix D -- Serial Line Interface Protocol (SLIP)

 Initial Specifications and Implementation Suggestions

 PHILOSOPHY

 The world is a dangerous place for bits. Data transmission can be
 an time consuming business when one has to make sure that bits
 don’t get lost, destroyed, or forgotten. To reduce such problems,
 the Serial Line Interface Protocol (SLIP) maintains an attitude
 toward the world that includes both a mistrust of serial lines and
 a margin of laziness. Examples of this approach include how SLIP
 recovers from errors and how SLIP handles the problem of
 resequencing (see PROTOCOL SPECIFICATIONS and IMPLEMENTATION
 SUGGESTIONS).

 THE MESSAGE FORMAT

 Both the Sender Task and the Receiver Task communicate using a
 standard message format and the Sender and Receiver Task of one
 machine’s SLIP communicate using a shared buffer. The message
 begins with a 1 byte Start of Header token (StH, 11111111) and is
 followed by a sequence number of four bits (SEQ) and an
 acknowledgement number of four bits (ACK). Following the StH, SEQ
 and ACK, is a 5 bit length field which specifies the length of the
 data contained in the message. Following the length is a three bit
 field of flags. The first bit is used to indicate that the a
 receive error has occurred, and the ACK is actually a repeat of
 the Last Acknowledged message (a LACK). The second bit is used to
 indicate a Synchronize Sequence Numbers message (SSNM), and the
 third bit is used to indicate a Start of Control Message (SOCM);
 all three of these flags are explained below. Finally, at the end
 of the message is an exclusive-or checksum. The message format is
 shown in figure D-1.

 __

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+...
| StH | SEQ | ACK | Length |Flags|...Data...
+-+...
The maximum data length is 32 bytes. 0 1 2 3 4 5 6 7
This limits the vulnerability of receiver ...-+-+-+-+-+-+-+-+-+-+
timeout errors occurring because of bit error .Data...| Checksum |
in the length field. ...-+-+-+-+-+-+-+-+-+-+

 Figure D-1. SLIP Message Format

 __

Farber & Delp & Conte [Page 17]

RFC 914 September 1984
Thinwire Protocol

 The Sender, when idle but needing to acknowledge, will send out
 short messages of the same format as a regular message but with
 the SOCM flag set and the data field omitted. (This short
 message is called a SOCM, and is used instead of a zero length
 message to avoid the problem of continually ACK’ing ACK’s). The
 Sender Task, when originating a connection (see STARTING UP AND
 FINISHING OFF COMMUNICATIONS), will send out another short message
 but with the SSNM flag set and the data omitted. This message (a
 SSNM) used for a TCP-style 3 way startup handshake.

 PROTOCOL SPECIFICATIONS and SUGGESTIONS

 The SLIP module, when called with data to send, prepends its
 header (SEE ABOVE) to the data, calculates a checksum and appends
 the checksum at the end. (This creates a message.) The message
 has a sequence number associated with it which represents the
 position of the message in the Sender SLIP’s buffers. The
 sequence number for the message can range from 0 to 15 and is
 returned in the ACK field of the other machine’s Sender SLIP
 messages to acknowledge receipt.

 There are two scenarios for transmission. In the first, both
 SLIP’s will be transmitting to each other. To send an
 acknowledgement, the Receiver SLIP uses the ACK field in its next
 outgoing message. To receive an acknowledgement, the Sender checks
 the ACK field of its Receiver’s incoming messages. In the second
 scenario, one SLIP may have no data to transmit for a long time.
 Then, as stated above, to acknowledge a received message, the
 Receiver has its Sender send out a short message, the SOCM (SEE
 ABOVE) which specifies the message it is acknowledging. The SOCM
 includes a checksum of its total contents. If there is a checksum
 error, THE SOCM IS IGNORED.

 When there is a checksum error on a received normal message, the
 Receiver asks its Sender to send out a SOCM with the LACK flag
 set, or set the LACK flag on its next message. The Sender sends
 this flag ONCE then ceases to increment the acknowledgement number
 (the ACK) while the Receiver continues to check incoming messages
 for the sequence number of the message with a checksum error.
 (Note that it continues to react to the acknowledgement field in
 the incoming messages.) When it finds the needed message, it
 resumes accepting the data in new messages and increments the
 acknowledgement number transmitted accordingly.

 The sending SLIP must never send a message greater than four past
 the last message for which it has received an acknowledgement
 (effectively a window size of four). Under normal processing
 loads, a window size greater than four should not be needed, and
 this decreases the probability of random errors creating valid

Farber & Delp & Conte [Page 18]

RFC 914 September 1984
Thinwire Protocol

 acknowledgement or sequence numbers. If the Sender has four
 unacknowledged messages outstanding, it will retransmit the old
 messages, starting from the oldest unacknowledged message. If it
 receives an acknowledgement with the LACK flag set, it transmits
 the message following the LACK number and continues to transmit
 the messages from that one on. Thus a LACK is a message asking
 the Sender to please the Receiver. If the Sender times out on any
 message not logically greater than four past the last acknowledged
 message, it should retransmit the message that timed out and then
 continues to transmit messages following the timed out message.

 The following describes a partial implementation of SLIP. System
 dependent subjects like buffer management, timer handling and
 calling conventions are discussed.

 The SLIP implementation is subdivided into four modules and two
 sets of input/output interfaces. The four modules are: The Sender
 Task, The Receiver Task, the buffer Manager, and SLIPTIME (the
 timer). The two interfaces are to the higher protocol and to the
 lower protocol (the UARTian, an interrupt driven device driver for
 the serial lines).

 OPERATIONS OF THE SENDER TASK

 The Sender Task takes a relatively noncomplex approach to
 transmitting. It sends message zero, sets a timer (using the
 SLIPTIME Task) on the message, and proceeds to send and set timers
 for messages one, two, and three. When the Receiver Task tells
 the Sender Task that a message has been acknowledged, the Sender
 Task then clears the timer for that message, and marks it
 acknowledged. When the Sender Task has finished sending a
 message, it checks several conditions to decide what to do next.
 It first checks to see if a LACK has been received. If it has then
 it clears all the timers, and begins retransmitting messages
 (updating the acknowledgement field and checksum) starting from
 the one after the LACK’ed message. If there is not a LACK waiting
 for the Sender Task, it checks to see if any messages have timed
 out. If a message has timed out, the Sender Task again will clear
 the timers and begin retransmitting from the message number which
 timed out. If neither of these conditions are true, the Sender
 Task checks to see if, because it has looped back to retransmit,
 it has any previously formulated messages to send. If so, it send
 the first of these messages. If it does not have previously
 formulated messages, it checks to see if it is more than three
 past the last acknowledged message. If so, it restarts from the
 message after the last acknowledged message. If none of these are
 true, then it checks to see if there is more data waiting to be
 transmitted. If there is more data available, it forms the
 largest packet it can, and begins to transmit it. If there is no

Farber & Delp & Conte [Page 19]

RFC 914 September 1984
Thinwire Protocol

 more data to transmit, it checks to see if it needs to acknowledge
 a message received from the other side. If so then it sends a
 SOCM. If none of the above conditions create work for the Sender
 Task, the task suspends itself.

 Note that the Sender Task uses the Receiver Task to find out about
 acknowledgements and the Receiver Task uses the Sender Task to
 send acknowledgements to the other SLIP on the other side (via the
 ACK field in the Sender Task’s message). The two tasks on one
 machine communicate through a small buffer. Because
 acknowledgements need to be passed back to the Sender Task
 quickly, the Receiver Task can wake up the Sender Task (unblock
 it).

 OPERATIONS OF THE RECEIVER TASK

 The Receiver Task checks the checksums of the messages coming into
 it. When it gets a checksum error, it tells the Sender Task to
 mark the next acknowledgement as a LACK. It then throws away all
 messages coming into it that don’t match the message it wants and
 continues to acknowledge with the last ACK until it gets the
 message it wants. As a checksum error could be the result of a
 crashed packet, and the StH character can occur within the packet,
 when a checksum error does occur, the recovery includes scanning
 forward from the last StH character for the next StH character
 then attempting to verify a packet beginning from it. A valid
 message includes a valid checksum, and sequence and
 acknowledgement numbers within the active window of numbers. This
 eliminates the need for the resequencing of messages, because the
 Receiver Task throws away anything that would make information in
 its buffers out of sequence.

 OPERATIONS OF SLIPTIME

 The timer task will maintain and update a table of timers for each
 request. Its functions should be called with the timer length and
 the sequence number to associate with the timer. Its functions
 can also be called with a request to delete a timer. An
 interrupt-driven mechanism is used to update the running timers
 and to wake up the Sender when an alarm goes off.

Farber & Delp & Conte [Page 20]

RFC 914 September 1984
Thinwire Protocol

 THE INPUT AND OUTPUT INTERFACES

 To force SLIP to do something, the higher protocol should create a
 buffer and then call SLIP, passing it a pointer to the buffer.
 SLIP will then read the buffer and begin sending it. The call to
 SLIP will return the number of bytes written, negative number
 indicates to the caller that SLIP could not do the request. Exact
 error numbers will be assigned in the future. To ask SLIP to
 receive something, one would call SLIP and SLIP would immediately
 return the number of bytes received or a negative number for an
 error (nothing ready to receive, for example).

 SLIP, when it wants to talk to the underworld of the serial
 interface, will do much the same thing only through a buffer
 written to by the UARTian (for received data) and read from by the
 UARTian (for sent data).

 OPERATIONS OF THE BUFFER/WINDOW MANAGER

 The Manager tends a continuous, circular buffer for the Sender
 Task in which data to be sent (from the downcalling protocol) is
 stored. This buffer is called the INPUT-DATA BUFFER (IDBuff).
 The Manager also manages a SENDER TASK’S OUTPUT-DATA BUFFER
 (SODBuff), which is its output buffer to the UARTian.

 The IDBuff has associated with it some parameters. These
 parameters include: START OF MEMORY (SOM), the start of memory
 reserved for the IDBuff; END OF MEMORY (EOM), the end of memory
 reserved; START OF DATA (SOD), the beginning of the used portion
 of the IDBuff; and END OF DATA (EOD), the end of data in the
 IDBuff. The SOM and EOM are constants whereas the SOD and EOD are
 variables.

 The SODBuff is composed of four buffers for four outbound messages
 (less the checksum). The buffers can be freed up to be
 overwritten when the message that they contain is acknowledged by
 the SLIP on the other side of the line. When a message is in the
 SODBuff, it has associated with it a sequence number (which is the
 message’s sequence number). The Sender Task can reference the
 data in the SODBuff and reference acknowledgements via this
 sequence number.

 When the application has data to be transmitted, it is placed in
 the IDBuff by the application using functions from the Manager and
 the EOD is incremented. If the data the application wants to send
 won’t fit in the buffer, no data is written, and the application
 can either sleep, or continue to attempt to write data until the

Farber & Delp & Conte [Page 21]

RFC 914 September 1984
Thinwire Protocol

 data will fit. The Sender Task calls a Manager function to fill a
 message slot in the SODBuff. The Sender Task then sends its
 message from the SODBuff.

 The Manager also maintains a buffer set for the Receiver Task. The
 buffers are similar to those of the Sender Task. There is a
 CHECKSUMMED OUTPUT-DATA BUFFER (CODBuff), which is the final
 output from SLIP that the higher level protocol may read. The
 CODBuff is also controlled by the four parameters START OF MEMORY,
 END OF MEMORY, START OF DATA, and END OF DATA (SOM, EOM, SOD, and
 EOD).

 There is also an inbound circular buffer the analog of the
 SODBuff, called the RECEIVER TASK’S INPUT-DATA BUFFER (RIDBuff).

 When the UARTian gets data, it places the data in the RIDBuff.
 After this, the Receiver Task checksums the data. If the checksum
 is good and the Receiver Task opts to acknowledge the message, it
 moves the data to the CODBuff, increments EOD, and frees up space
 in the RIDBuff. The higher level application can then take data
 off on the CODBuff, incrementing SOD as it does so.

 STARTING UP AND FINISHING OFF COMMUNICATIONS

 The problem is that the SLIP’s on either side need to know (and
 keep knowing) the sequence number of the other SLIP. The easiest
 way to solve most of these problems is to have the SLIP check the
 Request to Send and Clear to Send Lines to see if the other SLIP
 is active. On startup, or if it has reason to believe the other
 side has died, the SLIP assumes: all connections are closed, no
 data from any connection has been sent, and both its SEQ and the
 SEQ of the other SLIP are zero. To start up a connection, the
 instigating SLIP sends a SSNM with its starting sequence number in
 it. The receiving SLIP acknowledges this SSNM and replies with
 its starting sequence number (combined into one message). Then
 the sending SLIP acknowledges the receiving SLIP’s starting
 sequence number and the transmission commences. This is the three
 way handshake taken from TCP, After which data transmission can
 begin.

Farber & Delp & Conte [Page 22]

