Net wor k Wor ki ng Group | SO
Request for Comments: 926 Decenber 1984

Protocol for Providing the Connectionl ess-Mode Network Services
(Informally - 1SO IP)
| SO DS 8473

Status of this Meno:

Thi s docunent is distributed as an RFC for information only. It does
not specify a standard for the ARPA-Internet. Distribution of this
meno is unlimted.

Not e:

Thi s docunent has been prepared by retyping the text of 1SO DS 8473 of
May 1984, which is currently undergoing voting within | SO as a Draft
International Standard (DIS). Although this RFC has been revi ewed
after typing, and is believed to be substantially correct, it is

possi bl e that typographic errors not present in the | SO docunent have
been over| ooked.

Al ex McKenzi e
BBN

RFC 926 Decenber 1984

RFC 926
TABLE OF CONTENTS

1 SCOPE AND FI ELD OF APPLICATION. o 2
2 REFERENCES. oo e 3
3 DEFI NI TIONS. . .. e e e e e 4
3.1 Reference Model Definitions............. 4
3.2 Service Conventions Definitions..................... 4
3.3 Net wor k Layer Architecture Definitions.............. 4
3.4 Net wor k Layer Addressing Definitions................ 5
3.5 Additional Definitions.......... 5
4 SYMBOLS AND ABBREVI ATIONS. o e e e 7
4.1 Data Units. e e 7
4.2 Protocol Data Units......... ..., 7
4.3 Protocol Data Unit Fields............... 7
4.4 Paramet ers.o 8
4.5 M scellaneous. 8
5 OVERVIEW OF THE PROTOCOL. . .. oo oo e e e e e 9
5.1 Internal Organization of the Network Layer.......... 9
5.2 Subsets of the Protocol............ 9
5.3 Adr eSSi Ng. . . .o 10
5.4 Service Provided by the Network Layer.............. 10
5.5 Servi ce Assuned fromthe Subnetwork Service

Provider. 11
5.5.1 Subnetwork Addresses.............. ... 12
5.5.2 Subnetwork Quality of Service.................... 12
5.5.3 Subnetwork User Data.............. .. 13
5.5. 4 Subnet wor k Dependent Convergence Functions....... 13
5.6 Servi ce Assuned from Local Evironnment.............. 14
6 PROTOCOL FUNCTI ONS. . . .o e e e e e 16
6.1 PDU Composition Function........................... 16
6.2 PDU Deconposition Function......................... 17
6.3 Header Format Analysis Function.................... 17
6.4 PDU Lifetime Control Function...................... 18
6.5 Route PDU FUNCLIi ON.ot e e 18
6.6 Forward PDU Function............. ... 19
6.7 Segrmentation Function............ 19
6.8 Reassenmbly Function........... 20
6.9 Discard PDU Function............. ..., 21

SO DI'S 8473 (May 1984)

Decenber 1984

[Page i]

RFC 926

NNNNNNNNNNNNNNNNSN 00000000000

NNNNNNNNNNNN

Decenber 1984

10 Error Reporting Function.......................... 22
10. OVEI VI BW. L ot e 22
10. Requirement S, 23
10. Processing of Error Reports..................... 24
11 PDU Header Error Detection........................ 25
12 Padding Function......... 26
13 SECUN T LY. e 26
14 Source Routing Function........................... 27
15 Record Route Function.............. 28
16 Quality of Service Mintenance Function........... 29
17 Cassification of Functions....................... 29

STRUCTURE AND ENCODING OF PDUS. 32
1 SLrUCLUNe. .. 32
2 Fixed Part. 34
2.1 General ... 34
2.2 Net wor k Layer Protocol ldentifier................ 34
2.3 Length Indicator.......... 35
2.4 Version/ Protocol ldentifier Extension............ 35
2.5 PDU Lifetime. e 35
2.6 Flags. ..o 36
2.6.1 Segrmentation Permitted and More Segnents Flags. 36
2.6.2 Error Report Flag.......... 37
2.7 Type Code. 37
2.8 PDU Segrment Length.......... 37
2.9 PDUChECKSUM e e e 38
3 Address Part. 38
3.1 General ... 38
3.1.1 Destination and Source Address Information... 39
4 Segrmentation Part............ i 40
4.1 Data Unit ldentifier.......... 41
4.2 Segrment OfFfset........ 41
4.3 PDU Total Length........... 41
5 PLIioNS Part 41
5.1 General 41
5.2 Padding. 43
5.3 SECUNi LY. oo e 43
5.4 Source ROULING.o e 44
5.5 Recording of Route......... 45
5.6 Quality of Service Maintenance................... 46
6 Priority. . .. 47

SO DI'S 8473 (May 1984)

[Page ii]

RFC 926 Decenber 1984

7.7 Data Part. 47
7.8 Data (DT) PDU. e e 49
7.8.1 StruUCtUre. . . e 49
7.8.1.1 Fixed Part........ 50
7.8.1.2 Addresses. e 50
7.8.1.3 Segmentation. 50
7.8.1.4 Pt T ONS. L 50
7.8.1.5 DAt . . . 50
7.9 I nactive Network Layer Protocol.................... 51
7.9.1 Networ k Layer Protocol Id........................ 51
7.9.2 Data Field.......... 51
7.10 Error Report PDU (ER)........ 52
7.10.1 StrUCtUre. . . 52
7.10.1.1 Fixed Part. i 53
7.10.1.2 Addr 8SSeS. . . i 53
7.10.1.3 Segnentation........ 53
7.10.1.4 Ot ONS. . 54
7.10.1.5 Reason for Discard............................ 54
7.10.1.6 Error Report Data Field....................... 55
8 FORMAL DESCRIPTION. .. oo e e 56
8.1 Val ues of the State Variable....................... 57
8.2 Atomic BEvents. e 57
8.2.1 N. UNI TDATA request and N. UNI TDATA indication..... 57
8.2.2 SN. UNI TDATA request and SN. UNI TDATA i ndi cation... 58
8.2.3 TIMER Atomic BEvents...... 59
8.3 Qperation of the Finite State Automation........... 59
8.3.1 Type and Constant Definitions.................... 61
8.3.2 Interface Definitions............................ 65
8.3.3 Formal Machine Definition........................ 67
9 CONFORMANCE. . . . o e e 84
9.1 Provi si on of Functions for Conformance............. 84

SO DI'S 8473 (May 1984) [Page iii]

RFC 926 Decenber 1984

SO DI'S 8473 (May 1984) [Page i V]

RFC 926 Decenber 1984

I NTRODUCT! ON

This Protocol is one of a set of International Standards produced to
facilitate the interconnection of open systems. The set of standards
covers the services and protocols required to achi eve such

i nt erconnecti on.

This Protocol Standard is positioned with respect to other rel ated
standards by the | ayers defined in the Reference Mddel for Open Systens
I nt erconnection (1SO 7498). In particular, it is a protocol of the

Net wor k Layer. The Protocol herein described is a Subnetwork

I ndependent Convergence Protocol conbined with relay and routing
functions as described in the Internal Organization of the Network
Layer (1SOiiii). This Protocol provides the connectionl ess-node

Net wor k Service as defined in | SO 8348/ DAD1, Addendumto the Network
Service Definition Covering Connectionl ess-node Transni ssion, between
Net wor k Servi ce users and/or Network Layer relay systenmns.

The interrel ationship of these standards is illustrated in Figure 0-1
bel ow:

OSl Network Service Definition

| AN

| |
Pr ot ocol Ref erence to ainms

Specification | Reference to assunptions _

| %
Subnet work Service Definition(s)

Figure 0-1. Interrelationship of Standards

SO DI'S 8473 (May 1984) [Page 1]

RFC 926 Decenber 1984

1 SCOPE AND FI ELD OF APPLI CATI ON

This International Standard specifies a protocol which is used to
provi de the Connectionl ess-node Network Service as described in | SO
8348/ DAD1, Addendumto the Network Service Definition Covering
Connecti onl ess-node Transni ssion. The protocol herein described relies
upon the provision of a connectionl ess-node subnetwork service.

This Standard specifies:

a) procedures for the connectionless transm ssion of data and control
i nformati on fromone network-entity to a peer network-entity;

b) the encoding of the protocol data units used for the transm ssion
of data and control information, conprising a variable-length
protocol header fornat;

c) procedures for the correct interpretation of protocol contro
i nformation; and

d) the functional requirenents for inplenentations claimng
conformance to the Standard.

The procedures are defined in ternms of:

a) the interactions anbng peer network-entities through the exchange
of protocol data units;

b) the interactions between a network-entity and a Network Service
user through the exchange of Network Service primtives; and

c) the interactions between a network-entity and a subnetwork service
provi der through the exchange of subnetwork service primtives.

SO DI'S 8473 (May 1984) [Page 2]

RFC 926

2 REFERENCES

| SO 7498

DP 8524

DI S 8348

| SO 8348/ DAD1

| SO 8348/ DAD2

DP iiii

DP 8509

| SO TC97/ SC16

SO DI'S 8473 (May 1984)

Decenber

I nformation Processing Systens - Open Systens
I nterconnection - Basic Reference Mde

I nformation Processing Systems - Open Systens
I nterconnection - Addendumto | SO 7498 Coveri ng
Connecti onl ess- Mbde Transmi ssi on

I nformation Processing Systenms - Data Communi cati ons
Net wor k Service Definition

I nformation Processing Systenms - Data Communi cati ons
Addendum to the Network Service Definition Covering
Connecti onl ess- Mode Transmi ssion

I nformation Processing Systenms - Data Communi cati ons
Addendum to the Network Service Definition Covering
Net wor k Layer Addressing

I nformation Processing Systens - Data Conmuni cati ons
Internal Organization of the Network Layer

I nformation Processing Systems - Open Systens
I nt erconnection - Service Conventions

A Formal Description Techni que based on an N1825
Extended State Transition Mdel

1984

[Page 3]

RFC 926 Decenber 1984

SECTI ON ONE. GENERAL
3 DEFI NI TI ONS
3.1 Reference Model Definitions
Thi s docunent nmakes use of the follow ng concepts defined in | SO 7498:

a) Network | ayer

b) Network service

c) Network service access point
d) network service access point address
e) Network entity

f) Routing

f) Service

h) Network protocol

i) Network relay

j) Network protocol data unit
k) End system

3.2 Service Conventions Definitions

Thi s docunent nakes use of the follow ng concepts fromthe OSI Service
Conventions (I SO 8509):

) Service user
m Service provider

3.3 Network Layer Architecture Definitions

Thi s docunment makes use of the follow ng concepts fromthe Internal
Organi zation of the Network Layer (I1SOiiii):

n) Subnetwork

SO DI'S 8473 (May 1984) [Page 4]

RFC 926

0)
p)

Rel ay system

Decenber 1984

I nternedi ate system
gq) Subnetwork service

3.4 Network Layer Addressing Definitions

Thi s docunment nmakes use of the follow ng concepts from DI S 8348/ DAD2,
Addendum to the Network Service Definition Covering Network | ayer
addr essi ng:

r)
s)
t)
u)
3.5
For

a)

b)

c)

d)

e)

Network entity title

Net wor k pr ot oco

addr ess information

Subnet wor k addr ess

Donai n

Addi tional Definitions

the purposes of this docunment, the follow ng definitions apply:

aut onat on -

|l ocal matter

segnent -

initial PDU

derived PDU -

a machi ne designed to follow autonatically a
predet erm ned sequence of operations or to respond
to encoded instructions.

a decision made by a systemconcerning its
behavior in the Network Layer that is not subject
to the requirenents of this Protocol

part of the user data provided in the N_UN TDATA
request and delivered in the N_UN TDATA
i ndi cati on.

a protocol data unit carrying the whole of the
user data from an N_UN TDATA request.

a protocol data unit whose fields are identica

to those of an initial PDU, except that it carries
only a segnment of the user data froman N_UN TDATA
request.

SO DI'S 8473 (May 1984) [Page 5]

RFC 926 Decenber 1984

f) segnentation - the act of generating two or nore derived PDUS
froman initial or derived PDU The derived PDUs
together carry the entire user data of the initial
or derived PDU from which they were generat ed.
[Note: it is possible that such an initial PDU
wi |l never actually be generated for a particul ar
N_UNI TDATA request, owing to the inmediate
application of segnentation.]

g) reassenbly - the act of regenerating an initial PDU (in order

to issue an N_UN TDATA indication) fromtwo or
nmore derived PDUs produced by segnentation.

SO DI'S 8473 (May 1984) [Page 6]

RFC 926

Decenber

4 SYMBOLS AND ABBREVI ATI ONS

4.1 Data Units

PDU
NSDU
SNSDU

4.2 Protocol

DT PDU
ER PDU

4.3 Protocol

NPI D
LI

V/ P
LT
SP
VB

E/ R
TP
SL
cS
DAL
DA
SAL
SA
DUl D
SO
TL

SO DI'S 8473 (May 1984)

Prot ocol Data Unit
Net wor k Servi ce Data Unit
Subnet wor k Service Data Unit

Data Units

Data Protocol Data Unit
Error Report Protocol Data Unit

Data Unit Fields

Net wor k Layer Protocol Identifier
Lengt h I ndi cator

Versi on/ protocol ldentifier Extension
Lifetime

Segnentation Permitted Fl ag

More Segnents Fl ag

Error Report Flag

Type

Segment Length

Checksum

Destination Address Length
Destinati on Address

Sour ce Address Length

Sour ce Address

Data Unit Identifier

Segnment O f set

Total Length

1984

[Page 7]

RFC 926

4.4 Paraneters

DA
SA

QGos

Desti nati on Address
Sour ce Address
Quality of Service

4.5 M scell aneous

SNI CP
SNDCP
SNACP
SN

P
NSAP
SNSAP
NPAI
NS

Subnet wor k | ndependent Conver gence Protoco
Subnet wor k Dependent Convergence Protoco
Subnet wor k Access Protoco

Subnet wor k

Pr ot ocol

Net wor k Servi ce Access Poi nt

Subnet wor k Servi ce Access Poi nt

Net wor k Protocol Address |nfornation

Net wor k Servi ce

SO DI'S 8473 (May 1984)

Decenber 1984

[Page 8]

RFC 926 Decenber 1984

5 OVERVI EW CF THE PROTOCOL
5.1 Internal Organization of the Network Layer

The architecture of the Network Layer is described in a separate
docunent, Internal Organization of the Network Layer (1SOiiii), in
whi ch an OSI Network Layer structure is defined, and a structure to
classify protocols as an aid to the progression toward that structure
is presented. This protocol is designed to be used in the context of
t he internetworking protocol approach defined in that docunent,

bet ween Network Service users and/or Network Layer relay systems. As
described in the Internal Oganization of the Network Layer, the
prot ocol herein described is a Subnetwork |Independent Convergence
Prot ocol conbined with relay and routing functions designed to all ow
the incorporation of existing network standards within the COSI

f ramewor k.

A Subnetwor k | ndependent Convergence Protocol is one which can be
defined on a subnetwork independent basis and which is necessary to
support the uni form appearance of the OSI Connecti onl ess-node Networ k
Service between Network Service users and/or Network Layer relay
systens over a set of interconnected honbgeneous or heterogeneous
subnetworks. This protocol is defined in just such a subnetwork

i ndependent way so as to minimze variability where subnetwork
dependent and/or subnetwork access protocols do not provide the CS
Net wor k Ser vi ce.

The subnetwork service required fromthe | ower sublayers by the
protocol described herein is identified in Section 5.5.

5.2 Subsets of the Protoco

Two proper subsets of the full protocol are also defined which pernit
the use of known subnetwork characteristics, and are therefore not
subnet wor k i ndependent .

One protocol subset is for use where it is known that the source and
destination end-systens are connected by a single subnetwork. This is
known as the "l nactive Network Layer Protocol" subset. A second subset
permits sinplification of the header where it is known that the source
and destination end-systens are connected by subnetworks whose
subnetwork service data unit (SNSDU) sizes are greater than or equa

to a known bound | arge enough for segnentation not to be required.
This subset, selected by setting the "segnentation pernmtted" flag to
zero, is known as the "non-segnenting" protocol subset.

SO DI'S 8473 (May 1984) [Page 9]

RFC 926 Decenber 1984

5.3 Addressing

The Source Address and Destination Address paraneters referred to in
Section 7.3 of this International Standard are OSI Network Service
Access Point Addresses. The syntax and semantics of an OSI Network
Service Access Point Address, the syntax and encodi ng of the Network
Prot ocol Address Information enployed by this Protocol, and the

rel ati onship between the NSAP and the NPAl is described in a separate
docunent, | SO 8348/ DAD2, Addendumto the Network Service Definition
covering Network Layer Addressing.

The syntax and semantics of the titles and addresses used for relaying
and routing are also described in | SO 8348/ DAD2.

5.4 Service Provided by the Network Layer

The service provided by the protocol herein described is a
connecti onl ess-node Network Service. The connecti onl ess-nbde Networ k
Service is described in docunment |SO 8348/ DAD1, Addendumto the

Net wor k Service Definition Covering Connectionl ess-node Transmni ssi on
The Network Service primtives provided are sunmari zed bel ow

SO DI'S 8473 (May 1984) [Page 10]

RFC 926 Decenber 1984
Primtives Par anet er s

N_UNI TDATA Request	NS Destination_Address,
I ndi cation	NS_Source_Address,
	NS Quality_of_Service,
	NS Userdata

Table 5-1. Network Service Primtives
The Addendumto the Network Service Definition Covering
Connecti onl ess-node Transni ssion (| SO 8348/ DAD1) states that the
maxi mum si ze of a connectionl ess-node Network-service-data-unit is
limted to 64512 octets.

5.5 Service Assumed from the Subnetwork Service provider

The subnetwork service required to support this protocol is defined as
conprising the following primtives:

Primtives Par armet er s

SN_UNI TDATA Request	SN Destination_Address,
I ndi cation	SN_Source_Address,
	SN Quality of_ Service,
	SN Userdata

Tabl e 5-2. Subnetwork Service Primtives

SO DI'S 8473 (May 1984) [Page 11]

RFC 926 Decenber 1984

5.5.1 Subnetwork Addresses

The source and destination addresses specify the points of attachnent
to a public or private subnetwork(s) involved in the transm ssion
Subnet wor k addresses are defined in the Service Definition of each

i ndi vi dual subnet work

The syntax and semantics of subnetwork addresses are not defined in
this Protocol Standard.

5.5.2 Subnetwork Quality of Service

Subnetwork Quality of Service describes aspects of a subnetwork
connectionl ess-node service which are attributable solely to the
subnetwork service provider

Associ ated wi th each subnetwork connecti onl ess-node transm ssion
certain nmeasures of quality of service are requested when the
primtive action is initiated. These requested nmeasures (or paraneter
val ues and options) are based on a priori know edge by the Network
Service provider of the service(s) nade available to it by the
subnet wor k. Know edge of the nature and type of service available is
typically obtained prior to an invocation of the subnetwork
connecti onl ess- node servi ce.

Not e:

The quality of service paraneters identified for the subnetwork
connectionl ess-node service may in some circunmstances be directly
derivable fromor mappable onto those identified in the
connectionl ess-nbde Network Service; e.g., the paraneters

a) transit delay;

b) protection agai nst unauthorized access;
c) cost determ nants;

d) priority; and

e) residual error probability

as defined in | SO 8348/ DAD1, Addendumto the Network Service

Definition Covering Connectionl ess-node Transni ssion, nmay be
enpl oyed.

SO DI'S 8473 (May 1984) [Page 12]

RFC 926 Decenber 1984

For those subnetworks which do not inherently provide Quality of
Service as a paraneter when the primtive action is initiated, it
is alocal matter as to how the semantics of the service requested
m ght be preserved. In particular, there nay be instances in which
the Quality of Service requested cannot be maintained. In such

ci rcunmst ances, the subnetwork service provider shall attenpt to
deliver the protocol data unit at whatever Quality of Service is
avai |l abl e.

5.5.3 Subnetwork User Data

The SN Userdata is an ordered nultiple of octets, and is transferred
transparently between the specified subnetwork service access points.

The subnetwork service is required to support a subnetwork service
data unit size of at least the maxi num size of the Data PDU header
pl us one octet of NS-Userdata. This requires a nini mum subnetwork

service data unit size of 256 octets.

Where t he subnetwork service can support a subnetwork service data
unit (SNSDU) size greater than the size of the Data PDU header plus
one octet of NS Userdata, the protocol nay take advantage of this. In
particular, if all SNSDU sizes of the subnetworks involved are known
to be large enough that segnentation is not required, then the
"non-segnenti ng” protocol subset may be used.

5.5.4 Subnetwor k Dependent Convergence Functions

Subnet wor k Dependent Convergence Functions nay be perforned to
provi de a connectionl ess-node subnetwork service in the case where
subnet wor ks al so provide a connection-oriented subnetwork service. If
a subnetwork provides a connection-oriented service, some subnetwork
dependent function is assuned to provide a napping into the required
subnet work service described in the preceding text.

A Subnet wor k Dependent Convergence Protocol may al so be enployed in

t hose cases where functions assuned fromthe subnetwork service
provi der are not perforned.

SO DI'S 8473 (May 1984) [Page 13]

RFC 926 Decenber 1984

5.6 Service Assuned from Local Evironnment

A timer service is provided to allow the protocol entity to schedul e
events.

There are three prinitives associated with the S TIMER servi ce:

1) the S-TIMER request;

2) the S TIMER response; and

3) the S_TIMER cancel
The S TIMER request primtive indicates to the |ocal environnent that
it should initiate a tiner of the specified nane and subscript and
maintain it for the duration specified by the tinme paraneter.
The S TIMER response prinmtive is initiated by the | ocal environment
to indicate that the delay requested by the corresponding S TI MER
request printive has el apsed.
The S TIMER cancel prinmtive is an indication to the [ocal environnent
that the specified tiner(s) should be cancelled. If the subscript
paraneter is not specified, then all timers with the specified name
are cancel l ed; otherwi se, the timer of the given nane and subscript is
cancelled. If no tiners correspond to the paraneters specified, the

| ocal environnment takes no action

The paraneters of the S TIMER service prinitives are:

SO DI'S 8473 (May 1984) [Page 14]

RFC 926 Decenber 1984

Primtives Par anet er s

o s e m ee o oo +
| | |
| S _TIMER Request | S Time

| | S_Nane

| | S_Subscript

S_TIMER Response	S_Nane
Cancel	S Subscript
o o o eee e +

Table 5-3. Tiner Primtives

The tine paraneter indicates the time duration of the specified tiner.
An identifying label is associated with a tinmer by nmeans of the nane
paraneter. The subscript paranmeter specifies a value to distinguish
timers with the same nanme. The name and subscript taken together
constitute a unique reference to the tinmer.

SO DI'S 8473 (May 1984) [Page 15]

RFC 926 Decenber 1984

SECTI ON TWO. SPECI FI CATI ON OF THE PROTOCOL
6 PROTOCOL FUNCTI ONS
This section describes the functions perfornmed as part of the Protocol

Not all of the functions nust be perforned by every inplenentation
Section 6.17 specifies which functions nay be onmtted and the correct
behavi or where requested functions are not inplenented.

6.1 PDU Conposition Function

This function is responsible for the construction of a protocol data
unit according to the rules of protocol given in Section 7. Protoco
Control Information required for delivering the data unit to its
destination is determ ned fromcurrent state information and fromthe
paraneters provided with the N _UN TDATA Request; e.g., source and
destination addresses, QOS, etc. User data passed fromthe Network
Service user in the N_UN TDATA Request forns the Data field of the
protocol data unit.

During the conposition of the protocol data unit, a Data Unit
Identifier is assigned to identify uniquely all segnents of the
correspondi ng NS Userdata. The "Reassenbl e PDU' function considers
PDUs to correspond to the sane Initial PDU, and hence N_UN TDATA
request, if they have the sane Source and Destinati on Addresses and
Data Unit ldentifier.

The Data Unit ldentifier is available for ancillary functions such as
error reporting. The originator of the PDU nust choose the Data Unit
Identifier so that it remains unique (for this Source and Destination
Address pair) for the maximumlifetine of the PDU (or any Derived
PDUs) in the network.

SO DI'S 8473 (May 1984) [Page 16]

RFC 926 Decenber 1984

During the conposition of the PDU, a value of the total length of the
PDU is determned by the originator and placed in the Total Length
field of the PDU header. This field is not changed in any Derived PDU
for the lifetinme of the protocol data unit.

Where the non-segmenting subset is enployed, neither the Total Length
field nor the Data Unit Identifier field is present. During the
conposition of the protocol data unit, a value of the total I|ength of
the PDU is determ ned by the originator and placed in the Segnent
Length field of the PDU header. This field is not changed for the
lifetime of the PDU

6.2 PDU Deconposition Function

This function is responsible for renoving the Protocol Contro
Information fromthe protocol data unit. During this process,
information pertinent to the generation of the N_UN TDATA Indication
is retained. The data field of the PDU received is reserved until al
segnents of the original service data unit have been received; this is
the NS Userdata paraneter of the N _UN TDATA | ndication

6.3 Header Format Anal ysis Function

This function deternines whether the full Protocol described in this
Standard is enpl oyed, or one of the defined proper subsets thereof. If
the protocol data unit has a Network Layer Protocol ldentifier
indicating that this is a standard version of the Protocol, this
function deternines whether a PDU received has reached its destination
usi ng the destination address provided in the PDUis the sane as the
one whi ch addresses an NSAP served by this network-entity, then the
PDU has reached its destination; if not, it nust be forwarded.

If the protocol data unit has a Network Layer Protocol Identifier

i ndicating that the Inactive Network Layer Protocol subset is in use,
then no further analysis of the PDU header is required. The

SO DI'S 8473 (May 1984) [Page 17]

RFC 926 Decenber 1984

network-entity in this case determ nes that either the network address
encoded in the network protocol address information of a supporting
subnetwork protocol corresponds to a network Service Access Point
address served by this network-entity, or that an error has occurred.
If the subnetwork PDU has been delivered correctly, then the protoco
data unit may be deconposed according to the procedure described for
that particul ar subnetwork protocol

6.4 PDU Lifetine Control Function

This function is used to enforce the maxinum PDU lifetinme. It is
closely associated with the "Header Format Anal ysis" function. This
function deternines whether a PDU received may be forwarded or whether
its assigned lifetine has expired, in which case it nust be discarded.

The operation of the Lifetine Control function depends upon the
Lifetime field in the PDU header. This field contains, at any tineg,
the remaining lifetime of the PDU (represented in units of 500

M1 liseconds). The Lifetinme of the Initial PDU is deternm ned by the
originating network-entity, and placed in the Lifetinme field of the
PDU.

6.5 Route PDU Function

This function deternmi nes the network-entity to which a protocol data
unit should be forwarded, using the destination NSAP address
paraneters, Quality of Service paraneter, and/or other paraneters. It
determ nes the subnetwork which nust be transited to reach that
network-entity. Were segnentation occurs, it further determ nes which
subnetwork(s) the segnents may transit to reach that network-entity.

SO DI'S 8473 (May 1984) [Page 18]

RFC 926 Decenber 1984

6.6 Forward PDU Functi on

This function issues a subnetwork service prinitive (see Section 5.5)
suppl yi ng the subnetwork identified by the "Route PDU' function with
the protocol data unit as an SNSDU, and the address information
required by that subnetwork to identify the "next" internedi ate-system
wi thin the subnetwork-specific address domai n.

When an Error Report PDU is to be forwarded, and is |onger than the
maxi mum user data acceptable by the subnetwork, it shall be truncated
to the maxi num acceptable length ad forwarded with no other change.
When a Data PDU is to be forwarded ad is |onger than the maxi num user
dat a acceptable by the subnetwork, the Segnentation function is
applied (See Section 6.7, which follows).

6.7 Segnentation Function

Segnmentation is perforned when the size of the protocol data unit is
greater than the maxi num size of the user data paraneter field of the
subnetwork service prinmtive

Segrent ati on consists of conposing two or nore new PDUs (Derived PDUs)
fromthe PDU received. The PDU received nay be the Initial PDU, or it
may be a Derived PDU. The Protocol Control Information required to
identify, route, and forward a PDU is duplicated in each PDU derived
fromthe Initial PDU. The user data encapsulated within the PDU
received is divided such that the Derived PDUs satisfy the size

requi renents of the user data parameter field of the subnetwork
service prinitive

Derived PDUs are identified as being fromthe sanme Initial PDU by
neans of

a) the source address,
b) the destination address, and

c) the data unit identifier

SO DI'S 8473 (May 1984) [Page 19]

RFC 926 Decenber 1984

The following fields of the PDU header are used in conjunction with
the Segnentation function

a) Segnent Offset - identifies at which octet in the data field of
the Initial PDU the segment begins;

b) Segnent Length - specifies the nunber of octets in the Derived
PDU, including both header and dat a;

c) Mre Segnents Flag - set to one if this Derived PDU does not
contain, as its final octet of user data, the final octet of the
Initial PDU, and

d) Total Length - specifies the entire length of the Initial PDU
i ncl udi ng both header and dat a.

Derived PDUs may be further segmented w thout constraining the routing
of the individual Derived PDUs.

A Segnentation Permitted flag is set to one to indicate that
segnentation is permitted. If the Initial PDUis not to be segnented
at any point during its lifetine in the network, the flag is set to
zero.

When the "Segnentation Permitted" flag is set to zero, the non-
segnmenting protocol subset is in use.

6.8 Reassenbly Function

The Reassenbly Function reconstructs the Initial PDU transmitted to
the destination network-entity fromthe Derived PDUs generated during
the lifetinme of the Initial PDU

A bound on the tine during which segnments (Derived PDUs) of an Initia
PDU will be held at a reassenbly point is provided so that resources
may be rel eased when it is no | onger expected that any outstandi ng
segnents of the Initial PDUwII arrive at the reassenbly point. Wen
such an event occurs, segnents (Derived PDUs) of the Initial PDU held
at the reassenbly point are discarded, the resources allocated for

t hose segnents are freed,

SO DI'S 8473 (May 1984) [Page 20]

RFC 926 Decenber 1984

and if selected, an Error Report is generated.
Not e:

The design of the Segnentati on and Reassenbly functions is intended
principally to be used such that reassenbly takes place at the
destinati on. However, other schenmes which

a) interact with the routing algorithmto favor paths on which
fewer segnents are generated

b) generate nore segnments than absolutely required in order to
avoi d additional segnentation at sone subsequent point, or

c) allowpartial/full reassenbly at sone point along the route
where it is known that the subnetwork with the small est PDU
size has been transited

are not precluded. The information necessary to enabl e the use of
one of these alternative strategi es may be nade avail abl e t hrough
the operation of a Network Layer Managenent function

Whil e the exact relationship between reassenbly lifetime and PDU
lifetime is a local matter, the reassenbly algorithm nust preserve
the intent of the PDU Ilifetime. Consequently, the reassenbly
function nust discard PDUs whose lifetinme would otherw se have
expired had they not been under the control of the reassenbly
functi on.

6.9 Discard PDU Function
This function perforns all of the actions necessary to free the
resources reserved by the network-entity in any of the follow ng
situations (Note: the list is not exhaustive):

a) A violation of protocol procedure has occurred.

b) A PDU is received whose checksumis inconsistent with its
contents.

SO DI'S 8473 (May 1984) [Page 21]

RFC 926 Decenber 1984

c) A PDUIis received, but due to congestion, it cannot be processed.
d) A PDU is received whose header cannot be anal yzed.

e) A PDUis received which cannot be segnmented and cannot be
forwarded because its | ength exceeds the maxi num subnet work
service data unit size

f) A PDU is received whose destination address is unreachabl e or
unknown.

g) Incorrect or invalid source routing was specified. This may
include a syntax error in the source routing field, and unknown
or unreachabl e address in the source routing field, or a path
which is not acceptable for other reasons.

h) A PDU is received whose PDU lifetime has expired or the lifetine
expires during reassenbly.

i) A PDUis received which contains an unsupported option

6.10 Error Reporting Function

6.10.1 Overview
This function causes the return of an Error Report PDU to the source
network-entity when a protocol data unit is discarded. An "error
report flag" in the original PDU is set by the source network-entity
to indicate whether or not Error Report PDUs are to be returned.
The Error Report PDU identifies the discarded PDU, specifies the type
of error detected, and identifies the location at which the error was
detected. Part or all of the discarded PDU is included in the data
field of the Error Report PDU

The address of the originator of the Data Protocol Data Unit is

SO DI'S 8473 (May 1984) [Page 22]

RFC 926 Decenber 1984

conveyed as both the destination address of the Error Report PDU as
wel |l as the source address of the original Data PDU;, the latter is
contained in the Data field of the Error Report PDU. The address of
the originator of the Error Report PDU is contained in the source
address field of the header of the Error Report PDU

Not e:

Non-recei pt of an Error Report PDU does not inply correct delivery
of a PDU issued by a source network-entity.

6.10.2 Requirenents

An Error Report PDU shall not be generated to report the discarding
of a PDU that itself contains an Error Report.

An Error Report PDU shall not be generated upon discarding of a PDU
unl ess that PDU has the Error Report flag set to allow Error Reports.

If a Data PDU is discarded, and has the Error Report flag set to
all ow Error Reports, an Error Report PDU shall be generated if the
reason for discard (See Section 6.9) is

a) destination address unreachabl e,

b) source routing failure,

c) unsupported options, or

d) protocol violation

SO DI'S 8473 (May 1984) [Page 23]

RFC 926 Decenber 1984

Not e:

It is intended that this Iist shall include all nontransient
reasons for discard; the list may therefore need to be anmended or
extended in the light of any changes made in the definitions of
such reasons.

If a Data PDUwith the Error Report flag set to allow Error Reports
is discarded for any other reason, an Error Report PDU nay be
generated (as an inplenentati on option).

6.10.3 Processing of Error Reports

Error Report PDUs are forwarded by internmedi ate network-entities in
the sane way as Data PDUs. It is possible that an Error Report PDU
may be | onger than the naxi mum user data size of a subnetwork that
nmust be traversed to reach the origin of the discarded PDU. In this
case, the Forward PDU function shall truncate the PDU to the maxi mum
si ze accept abl e.

The entire header of the discarded data unit shall be included in the
data field of the Error Report PDU. Sone or all of the data field of
the discarded data unit nay al so be incl uded.

Not e:
Since the suppression of Error Report PDUs is controlled by the
originating network-entity and not by the NS User, care should be

exercised by the originator with regard to suppressing ER PDUs so
that error reporting is not suppressed for every PDU generat ed.

SO DI'S 8473 (May 1984) [Page 24]

RFC 926 Decenber 1984

6.11 PDU Header Error Detection

The PDU Header Error Detection function protects against failure of

i nternedi ate or end-system network-entities due to the processing of
erroneous information in the PDU header. The function is realized by a
checksum conmput ed on the PDU header. The checksumis verified at each
poi nt at which the PDU header is processed. If PDU header fields are
nodi fied (for exanple, due to lifetine function), then the checksumis
nodi fied so that the checksumremains valid.

An internediate system network-entity must not reconpute the checksum
for the entire header, even if fields are nodified.

Not e:

This is to ensure that inadvertent nodification of a header while a
PDU i s being processed by an internediate system (for exanple, due
to a menory fault) may still be detected by the PDU Header Error
function.

The use of this function is optional, and is selected by the
originating network-entity. If the function is not used, the checksum
field of the PDU header is set to zero.

If the function is selected by the originating network-entity, the
val ue of the checksumfield causes the followi ng fornulae to be
sati sfi ed:

(sbw) a =0 (rmodul o 255)
i=1 |
L
(Sum (L-i+1) a = 0 (nodulo 255)
i=1 |
Where L = the nunber of octets in the PDU header, and

a = value of octet at position i.

SO DI'S 8473 (May 1984) [Page 25]

RFC 926 Decenber 1984

When the function is in use, neither octet of the checksumfield may
be set to zero

Annex C contains descriptions of algorithnms which nay be used to
cal culate the correct value of the checksumfield when the PDU is
created, and to update the checksum field when the header is nodified.

6.12 Paddi ng Function

The padding function is provided to allow space to be reserved in the
PDU header which is not used to support any other function. Cctet
al i gnment must be mai nt ai ned.

Not e:

An exanpl e of the use of this function is to cause the data field of
a PDU to begin on a convenient boundary for the originating
networ k-entity, such as a conputer word boundary.

6.13 Security

An issue related to the quality of the network service is the
protection of information flow ng between transport-entities. A system
may wi sh to control the distribution of secure data by assigning

| evel s of security to PDUs. As a |ocal consideration, the Network
Service user could be authenticated to ascertain whether the user has
permni ssion to engage in communication at a particular security |leve
before sending the PDU. Wile no protocol exchange is required in the
aut henti cation process, the optional security paranmeter in the options
part of the PDU header may be enpl oyed to convey the particul ar
security | evel between peer network-entities.

The syntax and semantics of the security paraneter are not specified
by this Standard. The security paranmeter is related to the "protection
from unaut hori zed access” Quality of service paraneter described in

| SO 8348/ DAD1, Addendumto the Network Service Definition Covering
Connecti onl ess-node Transni ssion. However, to facilitate

i nteroperation between end-systens and rel ay-systens by avoi di ng
different interpretations of the sane encoding, a mechanismis
provided to distinguish user-defined security encoding from
standar di zed security encodi ng.

SO DI'S 8473 (May 1984) [Page 26]

RFC 926 Decenber 1984

6.14 Source Routing Function

The Source Routing function allows the originator to specify the path
a generated PDU nust take. Source routing can only be selected by the
originator of a PDU. Source Routing is acconplished using a list of

i nternedi ate system addresses (or titles, see Section 5.3 and 5.5.1)
held in a paraneter within the options part of the PDU Header. The
size of the option field is deternmned by the originating
network-entity. The length of this option does not change as the PDU
traverses the network. Associated with this list is an indicator which
identifies the next entry in the list to be used; this indicator is
advanced by the receiver of the PDU when the next address matches its
own address. The indicator is updated as the PDU is forwarded so as to
identify the appropriate entry at each stage of rel aying.

Two fornms of the source routing option are provided. The first form
referred to as conplete source routing, requires that the specified
path nmust be taken; if the specified path cannot be taken, the PDU
must be di scarded. The source may be informed of the discard using the
Error Reporting function described in Section 6.10.

The second formis referred to as partial source routing. Again, each
address in the list nust be visited in the order specified while on
route to the destination. However, with this formof source routing
the PDU may take any path necessary to arrive at the next address in
the list. The PDU will not be discarded (for source routing rel ated
causes) unl ess one of the addresses specified cannot be reached by any
avai l abl e route.

SO DI'S 8473 (May 1984) [Page 27]

RFC 926 Decenber 1984

6.15 Record Route Function

The Record Route function pernmits the exact recording of the paths
taken by a PDU as it traverses a series of interconnected subnetworKks.
A recorded route is conposed of a list of internediate system
addresses held in a paranmeter within the options part of the PDU
header. The size of the option field is determ ned by the originating
network-entity. The length of this option does not change as the PDU
traverses the network.

The list is constructed as the PDU traverses a set of interconnected
subnetworks. Only internedi ate system addresses are included in the
recorded route. The address of the originator of the PDU is not
recorded in the list. Wien an internedi ate system network-entity
processes a PDU containing the record route paraneter, the system
inserts its own address (or titles, see Sections 5.3 or 5.5.1) into
the list of recorded addresses.

The record route option contains an indicator which identifies the
next available octet to be used for recording of route. This
identifier is updated as entries are added to the list. If the
addition of the current address to the Iist would exceed the size of
the option field, the indicator is set to show that recording of route
has term nated. The PDU nmay still be forwarded to its fina
destination, wthout further addition of internediate system

addr esses.

Not e:
The Record Route function is principally intended to be used in the

di agnosi s of network problens. Its nechani sm has been desi gned on
this basis, and may provide a return path.

SO DI'S 8473 (May 1984) [Page 28]

RFC 926 Decenber 1984

6.16 Quality of Service M ntenance Function

In order to support the Quality of Service requested by Network
Service users, the Protocol may need to nake QOS i nformati on avail able
at internediate systems. This information nay be used by network
entities in internediate systens to make routing deci si ons where such
decisions affect the overall QOS provided to NS users.

In those instances where the QOS indi cated cannot be maintained, the
NS provider will attenpt to deliver the PDU at a QOS | ess than that

i ndi cated. The NS provider will not necessarily provide a notification
of failure to neet the indicated quality of service

6.17 dassification of Functions

| mpl enent ati ons do not have to support all of the functions described
in Section 6. Functions are divided into three categories:

Type 1: These functions nmust be supported.

Type 2: These functions may or nay not be supported. If an
i mpl enent ati on does not support a Type 2 function, and the
function is selected by a PDU, then the PDU shall be
di scarded, and an Error Report PDU shall be generated and
forwarded to the originating network-entity, providing that
the Error Report flag is set.

Type 3: These functions may or nay not be supported. If an
i mpl enent ati on does not support a Type 3 function, and the
function is selected by a PDU, then the function is not
performed and the PDU is processed exactly as though the
function was not selected. The protocol data unit shall not
be di scarded.

Tabl e 6-1 shows how the functions are divided into these three
cat egori es:

SO DI'S 8473 (May 1984) [Page 29]

RFC 926 Decenber 1984

| |
| PDU Conposition |
| PDU Deconposition |
| Header Format Anal ysis |
| PDU Lifetine Control |
| Route PDU |
| Forward PDU |
| Segnent PDU |
| Reassenbl e PDU |
| Discard PDU |
| Error Reporting |
| PDU Header Error Detection |
| Paddi ng |
| Security |
| Conpl ete Source Routing |
| Partial Source Routing |
| Priority |
| Record Route |
| Quality of Service Mintenance |

(note 1)

1

1

1

1

1

1

1

1

1

1 (note 1)
1

1 (notes 1 2)
2
2
3
3
3
3

Table 6-1. Categorization of Protocol Functions

SO DI'S 8473 (May 1984) [Page 30]

RFC 926 Decenber 1984

Not es:

1) Wile the Padding, Error Reporting, and Header Error Detection
functions nust be provided, they are provided only when sel ected
by the sending Network Service user

2) The correct treatnent of the Padding function involves no

processing. Therefore, this could equally be described as a Type
3 function.

3) The rationale for the inclusion of type 3 functions is that in
the case of sone functions it is nore inportant to forward the
PDUs between internediate systens or deliver themto an
end-systemthan it is to support the functions. Type 3 functions
shoul d be used in those cases where they are of an advisory
nature and should not be the cause of the discarding of a PDU
when not supported.

SO DI'S 8473 (May 1984) [Page 31]

RFC 926 Decenber 1984

7 STRUCTURE AND ENCODI NG OF PDUS
7.1 Structure
Al'l Protocol Data Units shall contain an integral nunber of octets.
The octets in a PDU are nunbered starting fromone (1) and increasing
in the order in which they are put into an SNSDU. The bits in an octet
are nunbered fromone (1) to eight (8), where bit one (1) is the
| oworder bit.

When consecutive octets are used to represent a binary nunber, the
| ower octet nunber has the nost significant val ue.

Any subnetwork supporting this protocol is required to state in its
specification the way octets are transferred, using the terns "nost
significant bit" and "least significant bit." The PDUs of this
protocol are defined using the terns "nost significant bit" and "l east
significant bit."

Not e:

Wien the encoding of a PDU is represented using a diagramin this
section, the follow ng representation is used:

a) octets are shown with the | owest nunbered octet to the left,
hi gher nunber octets being further to the right;

b) within an octet, bits are shown with bit eight (8) to the left
and bit one (1) to the right.

PDUs shall contain, in the follow ng order
1) the header, conpri sing:
a) the fixed part;
b) the address part;
c) the segnentation part, if present;
d) the options part, if present

and

SO DI'S 8473 (May 1984) [Page 32]

RFC 926 Decenber 1984

2) the data field, if present.

This structure is illustrated bel ow

Part: Descri bed in:

o e - +
Fi xed Part Section 7.2

e e e e +

ook +
| Addr ess Part | Section 7.3

o e - +

e e e e +
| Segnentation Part | Section 7.4

ook +

o e - +
| Options Part | Section 7.5

e e e e +

ook +
Dat a | Section 7.6

o e - +

Figure 7-1. PDU Structure

SO DI'S 8473 (May 1984) [Page 33]

RFC 926 Decenber 1984

7.2 Fixed Part

7.2.1 Cenera
The fixed part contains frequently occuring paraneters including the
type code (DT or ER) of the protocol data unit. The length and the
structure of the fixed part are defined by the PDU code.

The fixed part has the follow ng fornat:

Cct et
e +
| Network Layer Protocol ldentifier | 1
| oo |
| Length | ndi cator | 2
| o |
| Ver si on/ Prot ocol |d Extension | 3
| |
| Lifetime | 4
____________________________________ |
|S IM|ER Type | 5
I Pl S| I
| Segment Length | 6,7
R R REEEE RS |
| Checksum | 8,9
oo e e e e e e e e e e e eaaa +

Figure 7-2. PDU Header--Fi xed Part
7.2.2 Network Layer Protocol ldentifier
The value of this field shall be binary 1000 0001. This field

identifies this Network Layer Protocol as |SO 8473, Protocol for
Provi di ng the Connectionl ess-node Network Service.

SO DI'S 8473 (May 1984) [Page 34]

RFC 926 Decenber 1984

7.2.3 Length I ndicator

The length is indicated by a binary nunber, with a nmaxi mum val ue of

254 (1111 1110). The length indicated is the length in octets of the
header, as described in Section 7.1, Structure. The value 255 (1111

1111) is reserved for possible future extensions.

Not e:

The rules for forwarding and segnmentation ensure that the header
length is the same for all segments (Derived PDUs) of the Initia
PDU, and is the sane as the header length of the Initial PDU

7.2.4 Version/Protocol Identifier Extension

The value of this field is binary 0000 0001. This Identifies a
standard version of |1SO 8473, Protocol for Providing the
Connecti onl ess- nbde Networ k Servi ce.

7.2.5 PDU Lifetime

The Lifetinme field is encoded as a binary nunber representing the
remaining lifetime of the PDU, in units of 500 nmilliseconds.

The Lifetinme field is set by the originating network-entity, and is
decrenented by every network-entity which processes the PDU. The PDU
shall be discarded if the value of the field reaches zero

When a network-entity processes a PDU, it decrements the Lifetinme by
at least one. The Lifetime shall be decrenmented by nore than one if
t he sum of

1) the transit delay in the subnetwork from which the PDU was
recei ved; and

SO DI'S 8473 (May 1984) [Page 35]

RFC 926 Decenber 1984

2) the delay within the system processing the PDU

exceeds or is estimted to exceed 500 nilliseconds. In this case, the
lifetime field should be decrenented by one for each additional 500
nmlliseconds of delay. The deternination of delay need not be

preci se, but where error exists the value used shall be an
overestimate, not an underestinate.

If the Lifetinme reaches a value of zero before the PDU is delivered
to the destination, the PDU shall be discarded. The Error Reporting
function shall be invoked, as described in Section 6.10, Error
Reporting Function, and may result in the generation of an ER PDU. It
is alocal matter whether the destination network-entity perfornms the
Lifetime Control function

When the Segnentation function is applied to a PDU, the Lifetine
field is copied into all of the Derived PDUs.

7.2.6 Flags
7.2.6.1 Segnentation Permitted and More Segnents Fl ags

The Segnmentation Pernmitted flag determ nes whether segnmentation is
permtted. A value of one indicates that segnentation is permtted.

A value of zero indicates that the non-segnenting protocol subset is
enpl oyed. Where this is the case, the segnentation part of the PDU
header is not present, and the Segnent Length field serves as the
Total Length field.

The More Segnents flag indicates whether the data segnent in this
PDU contains (as its last octet) the last octet of the User Data in
the NSDU. Wien the More Segnents flag is set to one (1) then
segrment ati on has taken place and the last octet of the NSDU is not
contained in this PDU. The Mre Segnents flag cannot be set to one
(1) if the Segnentation Permitted flag is not set to one (1).

SO DI'S 8473 (May 1984) [Page 36]

RFC 926 Decenber 1984
When the More Segnents flag is set to zero (0) the | ast octet of the
Data Part of the PDUis the last octet of the NSDU

7.2.6.2 Error Report Flag
When the Error Report flag is set to one, the rules in Section 6.10
are used to determ ne whether to generate an Error Report PDU upon

di scard of the PDU

When the Error Report flag is set to zero, discard of the PDU will
not cause the generation of an Error Report PDU

7.2.7 Type Code

The Type code field identifies the type of the protocol data unit.
Al'l oned val ues are given in Table 7-1:

Bits 54321

Table 7-1. Valid PDU Types
7.2.8 PDU Segnent Length

The Segment Length field specifies the entire Iength of the PDU
segrment including both header and data, if present. Wen the ful
protocol is enployed and a PDU is not segnented, then the val ue of
this field is identical to the value of the Total Length field

| ocated in the Segnentation Part of the header

SO DI'S 8473 (May 1984) [Page 37]

RFC 926 Decenber 1984

When t he Non-segnenting protocol subset is enployed, no segnentation
part is present in the header. In this subset, the Segnent Length
field serves as the Total Length field of the header (see Section
7.4.3).

7.2.9 PDU Checksum

The checksumis conputed on the entire PDU header. This includes the
segnmentation and options parts, if present. A checksumvalue of zero
is reserved to indicate that the checksumis to be ignored. The
operation of the PDU Header Error Detection function ensures that the
val ue zero does not represent a valid checksum A non-zero val ue

i ndi cates that the checksum nust be processed or the PDU nust be

di scarded

7.3 Address Part
7.3.1 CGenera
Address paraneters are distinguished by their |ocation, imediately

following the fixed part of the PDU header. The address part is
illustrated bel ow

SO DI'S 8473 (May 1984) [Page 38]

RFC 926 Decenber 1984

Cct et
o e e m e e e e e e e e e e e e e e e oo +
| N . |
| Destination Address Length Indicator | 10
| |
| o |
| | 11
| Destination Address |
| | m1
| |
| _ |
| Source Address Length Indicator | m
| |
| oo |
| | m+1
| Sour ce Address |
| | n-1

Figure 7-3. PDU header--Address Part
7.3.1.1 Destination and Source Address |nfornation

The Destination and Source addresses are Network Service Access
Poi nt addresses as defined in | SO 8348/ DAD2, Addendumto the Network
Service Definition Covering Network Layer Addressing.

The Destination and Source Address information is of variable
| engt h.

The Destinati on Address Length Indicator field specifies the |ength
of the Destination Address in nunber of octets. The Destination
Address field follows the Destination Address Length I ndicator
field. The Source Address Length Indicator field specifies the

| ength of the Source Address in number of octets. The Source Address
Length Indicator field follows the Destination Address field. The
Source Address field follows the Source Address Length | ndicator
field.

SO DI'S 8473 (May 1984) [Page 39]

RFC 926 Decenber 1984

Each address paraneter is encoded as foll ows:

oo e e e e e e e e e e e e e e e e e e eeee oo +
| Octet | Address paraneter Length |ndicator

I n | (e.g., 'm) I
| Cctets | |
| n+1 | Addr ess Paraneter Val ue

| thru | |
| n+tm |

Fommm emeaao o +

Table 7-2. Address Paraneters
7.4 Segnentation Part
If the Segnentation Permitted Flag in the Fixed Part of the PDU Header

(Cctet 4, Bit 8) is set to one, the segnentation part of the header
illustrated bel ow, nust be present:

Cct et
I +
| Data Unit Identifier | n, n+1
|~ |
| Segnent O f set | n+2, n+3
R RCRREEEE |
| Total Length | n+4, n+5
T +

Figure 7-4. PDU Header--Segnentation Part

Where the "Segnentation Pernitted" flag is set to zero, the
nonsegnenti ng protocol subset is in use.

SO DI'S 8473 (May 1984) [Page 40]

RFC 926 Decenber 1984

7.4.1 Data Unit ldentifier

The Data Unit ldentifier identifies an Initial PDU (and hence, its
Derived PDUs) so that a segnmented data unit nmay be correctly
reassenbl ed by the destination network-entity. The Data Unit
Identifier size is two octets.

7.4.2 Segnent O fset

For each segnment the Segnent Ofset field specifies the relative
position of the segnent in the data part of the Initial PDU with
respect to the start of the data field. The offset is neasured in
units of octets. The offset of the first segnent is zero.

7.4.3 PDU Total Length

The Total Length field specifies the entire length of the Initia
PDU, including both the header and data. This field is not changed in
any segnent (Derived PDU) for the lifetine of the PDU

7.5 Options Part

7.5.1 Genera

The options part is used to convey optional paraneters. If the
options part is present, it contains one or nore paraneters. The
nunber of paraneters that nmay be contained in the options part is
i ndi cated by the length of the options part which is:

PDU Header Length - (length of fixed part +

| ength of address part +
| ength of segnentation part).

SO DI'S 8473 (May 1984) [Page 41]

RFC 926 Decenber 1984

The options part of the PDU header is illustrated bel ow
Cct et
e T I U ey +
| | n+6
| Opti ons |
| | p
e +

Figure 7-5. PDU Header--Options Part

Each paraneter contained within the options part of the PDU header is
encoded as foll ows:

o e e e oo +
| OCctets | |
| n | Paraneter Code |
| o |
| n+1 | Paraneter Length (e.g., 'm) |
R N REEEREEEEEE RS |
| n+2 | Paraneter Value |
| n+m+l | |
o m e m e e e e e e e e m e e e e e am o +

Table 7-3. Encoding of Paraneters

The paraneter code field is coded in binary and, w thout extensions,
provi des a nmaxi num nunber of 255 different paraneters. However, as
noted below, bits 8 and 7 cannot take every possible value, so the
practical maxi mum nunber of different parameters is |ess. A paraneter
code of 255 (binary 1111 1111) is reserved for possible extensions of
t he paraneter code

The paranmeter length field indicates the Iength, in octets, of the
paraneter value field. The length is indicated by a binary nunber,
"m, with a theoretical maxi numval ue of 255. The practical maxi num
value of 'm is lower. For exanple, in the case of a single paraneter
contained within the options part, two octets are required for the
paraneter code and the paranmeter |length indication itself. Thus, the
value of 'm is linmted to:

SO DI'S 8473 (May 1984) [Page 42]

RFC 926 Decenber 1984

253 - (length of fixed part +
| ength of address part +
| ength of segnentation part).

For each succeeding paraneter the maxi mrum value of 'ni decreases.

The paraneter value field contains the value of the paraneter
identified in the paraneter code field.

No paraneter codes use bits 8 and 7 with the val ue 00.

| mpl enent ati ons shall accept the paraneters defined in the options
part in any order. Duplication of options (where detected) is not
permtted. Receipt of a PDUw th an option duplicated should be
treated as a protocol error. The rules governing the treatnent of
protocol errors are described in Section 6.10, Error Reporting
Functi on.

The followi ng paraneters are pernmitted in the options part.
7.5.2 Paddi ng

The paddi ng paraneter is used to | engthen the PDU header to a
conveni ent size (See Section 6.12).

Par anet er Code: 1100 1100
Par anet er Lengt h: vari abl e
Par anet er Val ue: any value is all owed

7.5.3 Security

This parameter is user defined.
Par anet er Code: 1100 0101
Par anet er Lengt h: vari abl e

Par anet er Val ue:

Hi gh order bit of first octet is Security Domain bit, S, to be
interpreted as foll ows:

SO DI'S 8473 (May 1984) [Page 43]

RFC 926 Decenber 1984

=0

o e e e e e e e e e e e e e e e e e - =
| S| User Defined ----
e e e e e e e e e e e e — -

=1

o e e e e e e e e e e e e e e e e e - =
| S| CODE | ORGANI ZATION ----
e e e e e e e e e e e e — -
wher e

CODE = This field contains a geographic or non-geographic code to
whi ch the option applies.

ORGANI ZATION = This is a further subdivision of the CODE field
and is determ ned by an admi nistrator of the
geogr aphi ¢ or non-geographic donain identified by
t he val ue of CODE

7.5.4 Source Routing

The source routing paraneter specifies, either conpletely or

partially, the route to be taken from Source Network Address to
Desti nati on Networ k Address.

Par anet er Code: 1100 1000
Par anet er Lengt h: vari abl e
Par amet er Val ue: 2 octet control infornmation

succeeded by a concatenation
of ordered address fields
(ordered fromsource to destination)

| SO DI'S 8473 (May 1984) [Page 44]

RFC 926 Decenber 1984

The first octet of the paraneter value is the type code. This has the
foll owi ng significance

0000 0001 conpl ete source routing
0000 0000 partial source routing

<all other val ues reserved>

The second octet indicates the octet offset of the next address to be
processed in the list. A value of three (3) indicates that the next
address begins i mediately after this control octet. Successive
octets are indicated by correspondingly |arger values of this

i ndi cat or.

The third octet begins the internedi ate-system address list. The
address list consists of variable | ength address fields. The first
octet of each address field identifies the length of the address
whi ch conprises the renai nder of the address field.

7.5.5 Recording of Route

The recording of route paraneter identifies the route of internediate
systens traversed by the PDU

Par anet er Code: 1100 1011
Par anet er Length: vari abl e
Par anet er Val ue: two octets control information

succeeded by a concatenation of
ordered addresses

The first octet is used to indicate that the recording of route has
been term nated owing to |ack of space in the option. It has the
foll owi ng significance

0000 0000 Recording of Route still in progress
1111 1111 Recordi ng of Route term nated

<al |l other val ues reserved>

SO DI'S 8473 (May 1984) [Page 45]

RFC 926 Decenber 1984

The second octet identifies the next octet which may be used to
record an address. It is encoded relative to the start of the
paraneter, such that a value of three (3) indicates that the octet
after this one is the next to be used.

The third octet begins the address list. The address list consists of
variable Il ength address fields. The first octet of each address field
identifies the length of the address which conprises the renai nder of
the field. Address fields are always added to the begi nning of the
address list; i.e., the nost recently added field will begin in the
third octet of the paraneter val ue.

7.5.6 Quality of Service Mintenance

The Quality of Service paraneter conveys information about the
quality of service requested by the originating Network Service user
At internediate systens, Network Layer relay entities may (but are
not required to) make use of this information as an aid in selecting
a route when nore than one route satisfying other routing criteriais
avai l abl e and the available routes are known to differ with respect
to Quality of Service (see Section 6.16).

Par anet er Code: 1100 0011
Par anet er Lengt h: one octet
Par anet er Val ue: Bit 8 transit delay vs. cost

Bit 7. residual error probability vs.
transit del ay

Bit 6: residual error probability vs.
cost

Bits 5 thru O are not specified.

Bit 8 is set to one indicates that where possible, routing decision

should favor low transit delay over |ow cost. A value of 0 indicates
that routing decisions should favor | ow cost over low transit del ay.

SO DI'S 8473 (May 1984) [Page 46]

RFC 926 Decenber 1984

Bit 7 set to one indicates that where possible, routing decisions
shoul d favor |low residual error probability over lowtransit delay. A
val ue of zero indicates that routing decisions should favor | ow
transit delay over |ow residual error probability.

Bit 6 is set to one indicates that where possible, routing decisions
shoul d favor |ow residual error probability over | ow cost. A value of
0 indicates that routing decisions should favor | ow cost over | ow
residual error probability.

7.6 Priority

The priority parameter carries the relative priority of the protoco
data unit. Internedi ate systens that support this option should nake
use of this information in routing and in ordering PDUs for
transm ssi on.

Par anet er Code: 1100 1100

Par anet er Lengt h: one oct et

Par anet er Val ue: 0000 0000 - Normal (Default)
thru

0000 1111 - Highest

The val ues 0000 0001 through 0000 1111 are to be used for higher
priority protocol data units. If an internediate system does not
support this option then all PDUs shall be treated as if the field had
t he val ue 0000 0000.

7.7 Data Part
The Data part of the PDU is structured as an ordered nultiple of
octets, which is identical to the same ordered nultiple of octets

specified for the NS Userdata paraneter of the N _UN TDATA Request and
Indication primtives. The data field is illustrated bel ow

| SO DI'S 8473 (May 1984) [Page 47]

RFC 926 Decenber 1984

Cct et
S +
| | p+l
| Dat a |
| | z
B S +

Figure 7-6. PDU header--Data Field

SO DI'S 8473 (May 1984) [Page 48]

RFC 926 Decenber 1984

7.8 Data (DT) PDU
7.8.1 Structure

The DT PDU has the followi ng fornat:

Cct et
e +
| Network Layer Protocol Identifier | 1
T et g eator T L
| ersioni Protosel 1d Baension 1 3
T e T L
S ER e T s
oo seoment Length T 67
e heskoum T | &
| et nati on Address Lemaih Indiceter | 10
T eatimation Aadress T 11 through m1
| source Address Length indicator | m
T source radress T | 1 through n-1
T i it gemitier T et
| segmemt Oiset T | ez
R Total Lemgin T L ea e
oo Grions T | a6 through p
I""""""_""ID:&\;:&\ ----------------- I p+1 through z
I +

Figure 7-7. PDU Header For nmat

SO DI'S 8473 (May 1984) [Page 49]

RFC 926 Decenber 1984

7.8.1.1 Fi xed Part

1) Network Layer Protocol ldentifier See Section 7.2.2.
2) Length Indicator See Section 7.2.3.
3) Version/Protocol 1d Extension See Section 7.2.4.
4) Lifetime See Section 7.2.5.
5) SP, M5, R See Section 7.2.6.
6) Type Code See Section 7.2.7.
7) Segnent Length See Section 7.2.8.
8) Checksum See Section 7.2.9.

7.8.1.2 Addresses
See Section 7.3.
7.8.1.3 Segnentation
See Section 7.4.
7.8.1.4 Options
See Section 7.5.
7.8.1.5 Data

See Section 7.7.

SO DI'S 8473 (May 1984) [Page 50]

RFC 926 Decenber 1984

7.9 Inactive Network Layer Protoco

Cct et
o m e e e e e e aaa - +
| Network Layer Protocol Id | 1
R S GRREEEEEEEEEEEE |
| Dat a | 2 through n
o e e e e e e e e e e e e +
Figure 7-9. Inactive Network Layer Protoco

7.9.1 Network Layer Protocol Id

The val ue of the Network Layer Protocol Identifier field is binary
zero (0000 0000).

7.9.2 Data Field
See Section 7.7.
The I ength of the NS Userdata paraneter is constrained to be |ess

than or equal to the value of the length of the SN Userdata paraneter
nm nus one.

SO DI'S 8473 (May 1984) [Page 51]

RFC 926 Decenber 1984

7.10 Error Report PDU (ER

7.10.1 Structure

Cct et
S +
| Net wor k Layer Protocol Identifier | 1
T et i eater I)
T st o protosel 14 Bxtension | 5
T e T | 4
SmER e T I 5
I sooment Lemaih T 67
oo Geekeam T | s
| Destination Address Length indicator | 10
T et nation Address 10 through m1
T sour ee Address Lemgth Indicator | m
T source Addiess | 41 through n-1
T e it demtitier T T
o sooment dfeet T T
e Total Lengih T —
I ________________ QZ)tIOI’lS _______________ I n+6 through p-1
T nson Tor Dieeard T L through -1
T o mepert paia mielg | ,
I +

Figure 7-10. Error Report PDU

SO DI'S 8473 (May 1984) [Page 52]

RFC 926

7.10.1.1 Fi xed Part

The fixed part of the Error

Report Protocol

though this is a new (Initial) PDU. Thus,
preci ous sections describing the conposition of the fields

conprising the fixed

part:

1) Network Layer Protocol ldentifier

2) Length Indicator
3) Version/Protoco
4) Lifetine

5) SP, M5, E/R

6) Type Code

7) Segnent Length
8) Checksum

7.10.1. 2 Addresses

See Section 7.3.

The Destination Address specifies the origina

| d Extension

See
See
See
See
See
See
See
See

Decenber 1984

Data Unit is set as

Sect i
Sect i
Sect i
Secti
Secti
Secti
Sect i
Sect i

on
on
on
on
on
on
on
on

references are provided to

NNNNNNNN
CoNo~wWN

NNNNNNSNAN

source of the

di scarded PDU. The Source Address specifies the internediate system
or end system network-entity initiating the Error

7.10.1.3 Segnentation

See Section 7. 4.

SO DI'S 8473 (May 1984)

Report PDU

[Page 53]

RFC 926

7.10.1.4 Options
See Section 7.5.

7.10.1.5 Reason for Discard

This paranmeter is only valid for the Error

report on the discarded protoco
Par anet er Code:

1100 0001

Par anet er Length:

two octets

type of error encoded in binary:

data unit.

0000 0000: Reason not specified.
0000 0001: Protocol Procedure Error

ot her than bel ow

0000 0010: Incorrect checksum

Report PDU

0000 0011: PDU discarded due to congestion
0000 0100: Header syntax error (header cannot

be parsed).

0000 0101: Segnentation is needed but

permtted.

1000 xxxx: Addressing Error:

i's not

0000 0000: Desti nati on Address
Unr eachabl e.
1000 0001: Destination Address
Unknown.

1001 xxxx: Source Routing Error:
1001 0000: Unspecified Source
Routing error.

1001 0001: Syntax error

Routing field.
1001 0010: Unknown Address in

Source Routing field.
1001 0011: Path not acceptable.

SO DI'S 8473 (May 1984)

in Source

Decenber 1984

It provides a

[Page 54]

RFC 926 Decenber 1984

1010 xxxx: Lifetinme Expiration
1010 0000: Lifetime expired while
data unit in transit.
1010 0001: Lifetime expired
during reassenbly.

1011 xxxx: PDU di scarded due to unsupported

option:

1011 0000: unsupported option not
speci fi ed.

1011 0001: wunsupported paddi ng
option.

1011 0010: unsupported security
option.

1011 0011: unsupported source
routing option.

1011 0100: unsupported recordi ng
of route option.

1011 0101: unsupported QS
Mai nt enance option

The second octet contains a pointer to the field in the associated
di scarded PDU whi ch caused the error. If no one particular field
can be associated with the error, then this field contains the

val ue of zero

7.10.1.6 Error Report Data Field
This field provides all or a portion of the discarded PDU. The

octets conprising this field contain the rejected or discarded PDU
up to and including the octet which caused the rejection/discard.

SO DI'S 8473 (May 1984) [Page 55]

RFC 926 Decenber 1984

8 FORVAL DESCRI PTI ON

The operation of the protocol is nodelled as a finite state autonaton
governed by a state variable with three values. The behavi or of the
automaton is defined with respect to individual independent Protocol
Data Units. A transition of the automaton is pronpted by the occurrence
of an atom c event at one of three interfaces:

1) an interface to the Transport Layer, defined by the service
primtives of the Addendumto the Network Service Definition
Covering Connectionl ess-node Transmi ssion

2) an interface to the subnetwork service provider, defined by the
SN_UNI TDATA primtive of Section 5.5 of this Standard;

3) an interface to an inplenentation-dependent timer function defined
by the TIMER primitives described in Section 5.6 of this Standard.

In addition, a transition of the automaton may be pronpted by the
occurrence of a condition of the automaton.

The atonic events are defined in Section 8.2. The occurrence of an
atomic event is not in itself sufficient to cause a transition to take
pl ace; other conditions, called "enabling conditions" nmay al so have to
be met before a particular transition can take place. Enabling
conditions are bool ean expressions that depend on the val ues of
paraneters associated with the corresponding atomic event (that is, the
paraneters of some primitive), and on the values of locally naintained
vari abl es.

More than one enabling condition -- and therefore, nore than one
possible transition -- nay be associated with a single atonmic event. In
every such case, the enabling conditions are nmutual |y exclusive, so
that for any given conbination of atom c event and paraneter val ues,
only one state transition can take place.

Associated with each transition is an action, or "output." Actions
consi st of changes to the values of |ocal variables and the sequenti al
performance of zero or nore functions. The operation of the finite
state automaton is conpletely specified in Section 8.3 by defining the
action associated with every possible transition.

SO DI'S 8473 (May 1984) [Page 56]

RFC 926 Decenber 1984

8.1 Values of the State Variabl e

The protocol state variable has three val ues:

1) INTIAL The automaton is created in the INNTIAL state. No
transition may carry the automaton into the I N TIAL
state.

2) REASSEMBLI NG The automaton is in the REASSEMBLI NG state for the
period in which it is assenbling PDU segnents into a
conpl et e PDU.

3) CLOSED The final state of the automaton is the CLOSED
state. Wen the automaton enters the CLOSED state
it ceases to exist.

8.2 Atomc Events

An atonmic event is the transfer of a unit of information across an
interface. The description of an atonic event specifies a prinitive
(such as an N_UNI TDATA. Request), and the service boundary at which it
is invoked (such as the Network Service boundary). The direction of

i nformati on fl ow across the boundary is inplied by the definition of
each of the primtives.

8.2.1 N. UNI TDATA request and N. UNI TDATA i ndi cati on
The N. UNI TDATA request and N. UNI TDATA i ndi cation atomi c events occur
at the Network Service boundary. They are defined by the Addendumto

the Network Service Definition Covering Connectionless Data
Transm ssion (1 SO 8348/ DAD1) .

SO DI'S 8473 (May 1984) [Page 57]

RFC 926 Decenber 1984

N. UNI TDATA_r equest (NS Source_Address,
NS Destination_Address,
NS Quality of Service,
NS User dat a)

N. UNI TDATA i ndi cati on (NS_Source_Address,
NS Destinati on_Address,
NS Quality of Service, NS Userdata)

The par anet ers of t he N. UNI TDATA r equest and
N. UNI TDATA indication are collectively referred to as Network
Service Data Unit (NSDUs).

8.2.2 SN UNI TDATA request and SN. UNI TDATA i ndi cation

The SN. UNI TDATA request and SN. UNI TDATA i ndi cati on atomi c events
occur at the interface between the Protocol described herein and a
subnetwork service provider. They are defined in Section 5.5 of this
St andar d.

SN. UNI TDATA r equest (SN_Sour ce_Addr ess,
SN_Desti nati on_Addr ess,
SN _Qual i ty_of _Servi ce,
SN_User dat a)

SN. UNI TDATA i ndi cati on (SN _Source_Address,
SN Desti nati on_Address,
SN Qual ity _of Service,
SN_User dat a)

The paraneters of the SN _UN TDATA request and SN_UNI TDATA I ndication
are collectively referred to as Subnetwork Service Data Units
(SNSDUs) .

The val ue of the SN Userdata paraneter may represent an Initial PDU
or a Derived PDU.

SO DI'S 8473 (May 1984) [Page 58]

RFC 926 Decenber 1984

8.2.3 TIMER Atonmi ¢ Events

The TIMER atom c events occur at the interface between the Protoco
described herein and its |local environnent. They are defined in
Section 5.6 of this Standard.

S. TI MER request (Tine,
Name,
Subscri pt)

S. TI MER cancel (Namre
Subscri pt)

S. TI MER response (Nane,
Subscri pt)

8.3 Operation of the Finite State Automation

The operation of the automaton is defined by use of the formal
description technique and notation specified in | SO TC97/ SC16 N1347.
This technique is based on an extended finite state transition nodel
and t he Pascal programm ng | anguage. The techni que nakes use of strong
variable typing to reduce anbiguity in interpretation of the

speci fication.

This specification formally specifies an abstract nachi ne which
provides a single instance of the Connectionl ess- Mode Network Service
by use of the Protocol For Providing the Connectionl ess- Mode Network
Service. It should be enphasized that this fornal specification does
not in any way constrain the internal operation or design of any
actual inplenentation. For exanple, it is not required that the
program segnents contained in the state transitions will actually
appear as part of an actual inplenentation. A formal protoco
specification is useful in that it goes as far as possible to
elimnate any degree of anbiguity or vagueness in the specification of
a protocol standard.

The fornmal specification contained here specifies the behavior of a
single finite-state nachi ne, which provides the protoco

SO DI'S 8473 (May 1984) [Page 59]

RFC 926 Decenber 1984

behavi or corresponding to a single independent service request. It is
expected that any actual inplenentation will be able to handle
behavi or corresponding to many sinultaneous finite state nachines.

SO DI'S 8473 (May 1984) [Page 60]

RFC 926 Decenber 1984

8.3.1 Type and Constant Definitions
const

ZERO = 0;
max_user _data = 64512;

type
NSAP_addr _type = ...

{ NSAP_addr_type defines the data type for NSAP addresses, as
passed across the Network Service Boundary. }

NPAlI _addr _type = ...

{ NPAI _addr_type defines the data type for the addresses carried in
PDUs.

SN _addr _type = ...

{ SN addr _type defines the data type for addresses in the
underlying service used by this protocol. }

quality_of service_type = ...

{ Quality_of service type defines the data type for the QOS
paranet er passed across the Network Service boundary. }

SN_QOS type = ...

{ SN QCs type defines the data type for the QOS paraneter, if any,
passed to the underlying service used by this protocol. }

data_type = ...

{ Data_type defines the data type for user data. Conceptually this
is equivalent to a variable length binary string. }

buf fer _type = ...
{ Buffer_type defines the data type for the nmenory resources used

in sending and receiving of user data. This provides capabilities
required for segnentation and reassenbly. }

SO DI'S 8473 (May 1984) [Page 61]

RFC 926 Decenber 1984

timer_nane_type = (lifetime_timer);
tinmer_data type = ...;

network | ayer protocol id type = (1SO 8473 protocol _id);
version_id_ type = (versionl);
pdu_tp_type (DT, ER);

options_type = ...

{ Options_type defines the data type used to store the options part
of the PDU header. }

subnet _id_type = ...;

{ The subnet id type defines the data type used to locally identify
a particular underlying service used by this protocol. |n genera
there may be multiple underlying subnetwork (or data |ink)

services. }

error_type = (NO_ERROR,
TOO_MJUCH_USER _DATA,
PROTOCOL _ PROCEDURE_ERROR,
| NCORRECT_CHECKSUM CONGESTI ON,
SYNTAX_ERRCR,
SEG_NEEDED_AND_NOT_PERM TTED,
DESTI NATI ON_UNREACHABLE,
DESTI NATI ON_UNKNOWN,
UNSPEC! FI ED_SRC_ROUTI NG_ERROR,
SYNTAX_ERROR_|I N_SRC_ROUTI NG,
UNKNOWN_ADDRESS | N_SRC_ROUTI NG,
PATH_NOT_ACCEPTABLE_| N_SRC_ROUTI NG
LI FETI ME_EXPI RED_I N_TRANSI T,
LI FETI ME_EXPI RED_| N_REASSEMBLY,
UNSUPPORTED_OPTI ON_NOT_SPECI FI ED,
UNSUPPORTED_PADDI NG_OPTI ON,
UNSUPPORTED_SECURI TY_COPTI ON,
UNSUPPORTED_SRC_ROUTI NG_OPTI ON,
UNSUPPORTED_RECORDI NG_OF_ROUTE_OPTI ON,
UNSUPPORTED_QOS_MAI NTENANCE_CPTI ON) ;

SO DI'S 8473 (May 1984) [Page 62]

RFC 926
nsdu_type = reco
end;
pdu_type = recor
end;

Decenber 1984
rd
da NSAP_addr _type;
sa NSAP_addr _type;
gos qual ity of service_type;
data : data_type;
d
nlp_id networ k_| ayer _protocol id type;
hli i nteger;
vp_id version_id_type; lifetime : integer;
sp bool ean;
ns bool ean;
er _flag bool ean;
pdu_tp pdu_tp_type;
seg_len : integer;
checksum : integer;
da_len : integer;
da NPAI _addr _type;
sa_len i nteger;
sa NPAI _addr _type;
du_ id optional integer;
SO optional integer;
tot _len : optional integer;
{ du_id, so, and tot_l|len are present
only if sp has the value TRUE. }
options options_type;
dat a dat a_type;
[Page 63]

SO DI'S 8473 (May 1984)

RFC 926

route_result_type =

record
subnet _i d
sh_da
sn_sa

end;

SO DI'S 8473 (May 1984)

segment _si ze :

subnet i d_type;
SN_addr _t ype;
SN_addr _type;

i nteger;

Decenber 1984

[Page 64]

RFC 926
8.3.2 Interface Definitions
channel Network _access_poi nt (User,
by User:

UNI TDATA r equest

(NS_Desti nati on_address :

NS _Sour ce_address
NS Quality_of Service
NS Userdat a

by Provider:
UNI TDATA i ndi cati on

(NS _Destination_address :

NS _Sour ce_address
NS Quality of Service
NS _User dat a

channel Subnetwork_access_poi nt

by User:
UNI TDATA r equest

(SN _Desti nati on_address :

SN_Sour ce_addr ess
SN Quality_of Service
SN _Userdat a

by Provider:
UNI TDATA i ndi cati on

(SN _Desti nati on_address :

SN_Sour ce_addr ess

Decenber

Provi der);

NSAP_addr _type;

NSAP_addr _type;

qual ity _of service_type;
data_type);

NSAP_addr _type;
NSAP_addr _type;

qual ity_of _service_type;
data_type);

(User, Provider);

SN_addr _type;
SN_addr _type;
SN_QOS type;
pdu_type);

SN_addr _type;
SN_addr _type;

SN Quality_of Service SN_QCS type;
SN _User dat a pdu_type);
channel System access_point (User, Provider);
by User:
Tl MER_r equest
(Time i nt eger;
Nare ti mer_nane_type;
Subscri pt i nteger);

SO DI'S 8473 (May 1984)

[Page

1984

65]

RFC 926 Decenber 1984

Tl MER cancel
(Nanme © timer_nane_type;
Subscript : integer);
by Provider:
TI MER i ndi cati on
(Nane © timer_nane_type;
Subscript : integer);

SO DI'S 8473 (May 1984) [Page 66]

RFC 926 Decenber 1984

8.3.3 Fornmal Machine Definition

nmodul e Connecti onl ess_Networ k _Prot ocol _Machi ne
(N: Network_access_point (Provider) conmon queue;
SN: array [subnet _id_type] of Subnetwork_access_point
(User) comon queue;
S: System access_point (User) individual queue);

var
nsdu . nsdu_type;
pdu © pdu_type;
rcv_buf : buffer_type;

state : (INITIAL, REASSEMBLI NG CLOSED);

SO DI'S 8473 (May 1984)

[Page 67]

RFC 926

procedure send_error_report (error : error_type;

var

er_pdu :

begi n

pdu_t

pdu : pdu_type);

ype;

if (pdu.er_flag) then

begin

er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.
er _pdu.

er _pdu.

er _pdu.
if (er_

nlp_id
vp_id
lifetime :
sp

ns

er _flag
pdu_tp
da_len
da
sa_len
sa
options
hli
dat a
pdu. sp)

| SO 8473 protocol _id;
versionl;
get _er_lifetinme(pdu.sa);
get _er_seg_per (pdu);
FALSE;
FALSE;
ER;
pdu. sa_| en;
pdu. sa;
get | ocal _NPAI _addr _I en
get | ocal _NPAI _addr
get _er_options
(error,
er _pdu. da
pdu. opti ons);
:= get _header _length
(er _pdu.da_len, er_pdu.sa len
er _pdu. sp,
er _pdu. options);
= get_er_data_field(error, pdu);
t hen

begi n
er _pdu.du_id 1=
get _data unit_id(er_pdu.da);
er _pdu. so .= ZERO
er_pdu.tot _len := er_pdu.hl

si ze(er _pdu. data) ;
end;

SO DI'S 8473 (May 1984)

+

Decenber 1984

[Page 68]

RFC 926 Decenber 1984

i f (NPAI _addr_| ocal (er_pdu.da))

t hen
post _error_report(er_pdu)
el se
send_pdu(er_pdu);
end;
end;

SO DI'S 8473 (May 1984) [Page 69]

RFC 926 Decenber 1984

procedure send_pdu (pdu : pdu_type);

var
rte_result : route_result_type
error_code . error_type;
send_buf : buffer_type;
dat a_nmxsi ze : integer;
nore_seg . bool ean;
sn_qos : SN_QOS _type;
begi n
send_buf := nake_ buffer(pdu.data);
nore_seg := pdu. ns;
r epeat
begi n
error_code := check paraneters
(pdu. hli,
pdu. sp,
pdu. da,

pdu. opti ons,
si ze(pdu. data));

if (error_code = NO ERROR) then

begi n
rte_result := route(pdu.hli
pdu. sp,
pdu. da,
pdu. opti ons,
si ze(pdu. data));
data_nmxsize := rte_result.segnent_size -
pdu. hli;
pdu. dat a .= extract (send_buf,
dat a_nexsi ze) ;
pdu.seg_len := pdu.hli + size(pdu.data);
if (size(send_buf) = ZERO then
pdu. ns .= nore_seg
el se
pdu. ns .= TRUE

SO DI'S 8473 (May 1984) [Page 70]

RFC 926 Decenber 1984

pdu. checksum : = get _checksun(pdu) ;
sn_qos .= get_sn_qos
(rte_result.subnet id,

pdu. opti ons);
out SN[rte_result.subnet _id].UN TDATA request
(rte_result.sn_da,
rte_result.sn_sa,
sn_qos,
pdu) ;
pdu. so : = pdu.so + data_mnaxsize
end
else if (error_code = CONGESTI ON) then
begi n

if (send_er_on_congestion (pdu)) then
send_error _report (CONGESTI ON, pdu);

end
el se

send_error _report(error_code, pdu);
end;

until (size_buf(data_buf) = ZERO or
(error_code <> NO ERROR);

end;

SO DI'S 8473 (May 1984) [Page 71]

RFC 926 Decenber 1984

procedure all ocate_reassenbly_resources
(pdu_tot _len : integer);
primtive;

{ This procedure allocates resources required for reassenbly of a
PDU of the specified total Ilength. [If this requires discarding of a
PDU in which the ER flag is set, then an error report is returned to
the source of the discarded data unit. }

function check_paraneters

(hli . integer;

sp : bool ean;

da : NPAI _addr _type;

options : options_type;

datalen : integer) : error_type;
primtive;

{ This function exani nes various paraneters associated with a PDU
to determ ne whether forwarding of the PDU can continue. |If a
result of NOERROR is returned, then the prinitive route can be
called to specify the route and segnent size. Qherwi se this
function specifies the reason that an error has occurred. }

function data_unit_conplete
(buf : buffer_type) : bool ean
primtive;

{ This function returns a bool ean val ue specifyi ng whet her the PDU
stored in the specified buffer has been conpletely received. }

SO DI'S 8473 (May 1984) [Page 72]

RFC 926 Decenber 1984

function el apsed_tinme : integer
primtive;

{ This function returns an estimate of the tine elapsed, in 500

m crosecond increnments, since the PDU was transnitted by the

previ ous peer network entity. This estimate includes both tine
spent in transit, and any tinme to be spent in buffers within the

| ocal system Although this estimte need not be precise,
overestinmates are preferable to underesti nates, as underestinmating
the tine el apsed may defeat the intent of the lifetime function. }

procedure enpty_buffer
(buf : buffer_type);
primtive;
{ This procedure enpties the specified buffer. }

functi on extract

(buf : buffer_type;
anount : integer) : data_ type;
primtive;

{ This function renoves the specified anmount of data from
the specified buffer, and returns this data as the function
val ue. }

procedure free_reassenbly resources;
primtive;

{ This procedure rel eases the resources that had been previously
al l ocated by the procedure allocate_reassenbly_resources. }

function get checksum
(pdu : pdu_type) : integer
primtive;

{ This function returns the 16 bit integer value to be placed in the
checksum field of the PDU. If the checksumfacility is not being
used, then this function returns the value zero. The algorithmfor
producing a correct checksumvalue is specified in Annex A }

function get _data_unit_id
(da : NPAI _addr_type) : integer
primtive;
{ This function returns a data unit identifier which is unique for
the specified destination address. }

SO DI'S 8473 (May 1984) [Page 73]

RFC 926 Decenber 1984

function get_er _data field

(error : error_type;

pdu . pdu_type) : data_type;
primtive;

{ This function returns the correct data field for an error report,
based on the information that the specified PDU is being discarded
due to the specified error. The data field of an error report nust
i nclude the header of the discarded PDU, and nmay optionally contain
addi tional user data. }

function get_er_flag
(nsdu : nsdu_type) : bool ean
primtive;

{ This function returns a bool ean value to be used as the error
report flag in a PDU which transnits the specified nsdu. |f the PDU
nmust be di scarded at sone future time, an error report can be
returned only if this value is set to TRUE. }

function get _er lifetinme
(da : NPAI _addr_type) : integer
primtive;

{ This function returns the lifetine value to be used for an error
report being sent to the specified destination address. }

function get _er_options

(error > oerror_type;

da : NPAI _addr _type;

options : options_type) : options_type;
primtive;

{ This function returns the options field of an error report, based
on the reason for discard, and the destination address and options
field of the discarded PDU. The options field contains the reason
for discard option, and nay contain other optional fields. }

| SO DI'S 8473 (May 1984) [Page 74]

RFC 926 Decenber 1984

function get_er_seg_per

(pdu . pdu_type) : bool ean
primtive;
{ This function returns the bool ean value which will be used for the

segnentation permtted flag of an error report. }

function get header _|en

(da_len : integer;

sa_len : integer;

sp : bool ean;

options : options_type) : integer
primtive;

{ This function returns the header length, in octets. This depends
upon the lengths of the source and destination addresses, whether
the segnmentation part of the header is present, and the | ength of
the options part. }

function get lifetine

(da : NSAP_addr type

gos : quality of _service type) : lifetinme_type
primtive;

{ This function returns the lifetinme value to be used for a PDU
based upon the destination address and requested quality of service.

}

function get_ | ocal NPAl _addr : NPAI _addr_type;
primtive;

{ This functions returns the |ocal address as used in the protocol
header. }

function get | ocal _NPAl _addr_len : integer;
primtive;

{ This functions returns the length of the |ocal address as used in
t he protocol header. }

SO DI'S 8473 (May 1984) [Page 75]

RFC 926 Decenber 1984

function get NPAI
(addr : NSAP_addr _type) : NPAI _addr_type;
primtive;

{ This function returns the network address as used in the protoco
header, or "Network Protocol Addressing Information", corresponding
to the specified NSAP address. }

function get NPAlI Ien
(addr : NSAP_addr _type) : integer
primtive;

{ This function returns the length of the network address
corresponding to a specified NSAP address. }

function get NSAP_addr

(addr : NPAI _addr_type;

len : integer) : NSAP_addr_type;
primtive;

{ This function returns the NSAP address corresponding to the
networ k protocol addressing infornmation (as it appears in the
protocol header) of the specified length. }

function get_options

(da : NSAP_addr type

gos : quality of service type) : options_type;
primtive;

{ This function returns the options field for a PDU, based on the
requested destination address and quality of service. }

function get _seg_pernitted

(da : NSAP_addr _type

gos : quality_of_service_type) : bool ean
primtive;

{ This function returns the bool ean value to be used in the
segnmentation permitted field of a PDU. This value nay depend upon
the destinati on address, requested quality of service, and the

| ength of the user data. }

SO DI'S 8473 (May 1984) [Page 76]

RFC 926 Decenber 1984

function get_sn_qos
(subnet _id : subnet _id type;

options . options_type) : SN QOS type;
primtive;

{ This function returns the quality of service to be used on the
speci fied subnetwork, in order to obtain the quality of service (if
any) and other paraneters requested in the options part of the PDU

}

function get_qos
(options : options_type) : quality_of service_type;
primtive;

{ This function determ nes, to the extent possible, the quality of
service that was obtained for a particular PDU, based upon the
quality of service and other information contained in the options
part of the PDU header. }

function nmake_ buffer

(data : data type) : buffer _type
primtive;
{ This function places the specified data in a newy created buffer
The preci se manner of handling buffers is inplenentation specific.
This newmy created buffer is returned as the function value. }

procedure merge_seg

(buf : buffer_type;

SO : integer;

data : data_type);
primtive;

{ This procedure nerges the specified data into the specified
buffer, based on the specified segnent offset of the data. }

function NPAl _addr | oca
(addr : NPAI _addr_type) : bool ean
primtive;

{ This function returns the boolean value TRUE only if the specified
net wor k protocol addressing information specifies a | ocal address. }

| SO DI'S 8473 (May 1984) [Page 77]

RFC 926 Decenber 1984

function NSAP_addr | oca
(addr : NSAP_addr _type) : bool ean
primtive;

{ This function returns the boolean value TRUE only if the specified
NSAP address specifies a local address. }

procedure post_error_report
(er_pdu : pdu_type);
primtive;

{ This procedure posts the specified error report (ER) type PDU to
the appropriate local entity that handles error reports. }

function route

(hli . integer;

sp : bool ean;

da : NPAI _addr _type;

options : options_type;

datalen : integer) : route_result _type;
primtive;

{ This function deternmines the route to be followed by a PDU
segrment, as well as the segnent size. Note that in general, the
segnment size and route may be nutually dependent. This

determ nation is nade on the basis of the header length, the
segnmentation permitted flag, the destination address, severa
paraneters (such as source routing) contained in the options part of
the PDU header, and the length of data. This function returns a
structure that specifies the subnetwork on which the segnent shoul d
be transmtted, the source and destination addresses to be used on
the subnetwork, and the segnent size. This routine nmay only be
called if the prinitive function check paraneters has al ready
determined that an error will not occur. }

SO DI'S 8473 (May 1984) [Page 78]

RFC 926 Decenber 1984

function send_er_on_congestion
(pdu : pdu_type) : bool ean
primtive;

{ This function returns the boolean value true if an error report
shoul d be sent when the indicated data unit is discarded due to
congestion. Note that if the value true is returned, then the

er flag field of the discarded data unit nust still be checked
before an error report can be sent. }

function size
(data : data_type) : integer;
primtive;

{ This function returns the length, in octets, of the specified
data. }

function size_ buf
(buf : buffer_type) : integer
primtive;

{ This function returns the length, in octets, of the data contained
in the specified buffer. }

initialize
begi n

state to I NI TIAL;
end;

SO DI'S 8473 (May 1984) [Page 79]

RFC 926

trans

(* begin transitions *)

from I N Tl AL

to

CLOSED

when N. UNI TDATA r equest
provi ded not NSAP_addr | ocal (NS _Desti nati on_Address)
begi n
nsdu. da = NS _Destinati on_Address;
nsdu. sa = NS_Source_Address;
nsdu. qos = NS Quality o _Service
nsdu. data := NS_Userdat a;
pdu.nlp_id = 1 SO 8473 _protocol _id;
pdu.vp_id = versionl
pdu.lifetinme := get |ifetime(nsdu.da, nsdu.qos);
pdu. sp = get _seg_pernitted(nsdu. da, nsdu.qos);
pdu. ns = FALSE
pdu. er _flag = get _er_flag(nsdu);
pdu. pdu_tp = DT;
pdu. da_| en = get NPAI | en(nsdu. da);
pdu. da = get NPAI (nsdu. da) ;
pdu. sa_| en = get NPAI | en(nsdu. sa);
pdu. sa = get _NPAI (nsdu. sa);
pdu. opti ons = get _options(nsdu. da, nsdu.qos);
pdu. dat a = nsdu. dat a;
pdu. hli = get _header | en(pdu.da_l en
pdu. sa_| en,
pdu. sp,
pdu. opti ons);
i f (pdu.sp) then
begin
pdu.du_id = get _data_unit _id(pdu.da);
pdu. so = ZERQ
pdu.tot _I|en = pdu.hli + size(pdu.data);
end;

if (size(pdu.data) > nmax_user_data) then
send_error_report(TOO MJCH USER DATA, pdu)

el se

end;

send_pdu(pdu) ;

SO DI'S 8473 (May 1984)

Decenber 1984

[Page 80]

RFC 926 Decenber 1984

fromINITIAL to CLOSED
when N. UNI TDATA r equest
provi ded NSAP_addr | ocal (NS Desti nati on_Address)

begi n
nsdu. da = NS Desti nati on_Address;
nsdu. sa = NS_Sour ce_Address;
nsdu. qos = NS Quality_of Service;
nsdu. data := NS _Userdat a;

out N. UNI TDATA i ndi cati on
(nsdu. da, nsdu.sa, nsdu.gos, nsdu.data);

end;

fromINITIAL to CLOSED

when SN[subnet _i d] . UNI TDATA_i ndi cati on
provi ded NPAI _addr_| ocal (SN _Userdata.da) and
SN _Userdat a. so = ZERO and

not SN Userdata.ns

begi n
pdu := SN User dat a;

if (pdu.pdu_tp = DT) then
out N. UNI TDATA i ndi cati on
(get _NSAP_addr (pdu. da_l en, pdu.da),
get NSAP_addr (pdu. sa_l en, pdu.sa),
get _qos(pdu. opti ons),
pdu. dat a)

el se
post _error_report (pdu);

end;

SO DI'S 8473 (May 1984) [Page 81]

RFC 926 Decenber 1984

fromINITIAL to REASSEMBLI NG
when SN[subnet _i d] . UNI TDATA i ndi cati on
provi ded NPAI _addr | ocal (SN User dat a. da) and
((SN Userdata.so > ZERO) or (SN _Userdata.ns))

begi n
pdu : = SN User dat a;
al | ocate_reassenbly resources(pdu.tot | en);
enpty_buffer(rcv_buf);

ner ge_seg
(rcv_buf,
pdu. so,
pdu. dat a) ;

out S. TIMER request
(pdu.lifetine,
lifetime_ tiner,
ZERO) ;

end;

fromINITIAL to CLOSED

when SN[subnet _i d] . UNI TDATA i ndi cati on
provi ded not NPAI _addr_| ocal (SN _Userdat a. da)

begi n
pdu : = SN User dat a;

if (pdu.lifetime > elapsed_tine) then

begi n
pdu.lifetine := pdu.lifetinme - el apsed_tine;
send_pdu(pdu);
end
el se

send_error_report (LI FETI ME_EXPI RED, pdu);

end;

SO DI'S 8473 (May 1984) [Page 82]

RFC 926 Decenber 1984

from REASSEMBLI NG to REASSEMBLI NG

when SN[subnet _i d] . UNI TDATA i ndi cati on

provided (SN Userdata.du_id pdu. du_i d) and
(SN _Userdat a.da_| en pdu. da_l en) and

(SN_User dat a. da pdu. da) and
(SN _Userdat a. sa_l en pdu. sa_l en) and
(SN _Userdat a. sa pdu. sa)
begin
nmer ge_seg
(recv_buf,

SN _Userdat a. so,
SN_User dat a. dat a) ;

end;

from REASSEMBLI NG to CLOSED
provided data_unit_conpl ete(rcv_buf)
no del ay

begi n
if (pdu.pdu_tp = DT) then
out N. UNI TDATA i ndi cati on
(get _NSAP_addr (pdu. da_l en, pdu.da),
get _NSAP_addr (pdu. sa_l en, pdu.sa),
get _qos(pdu. opti ons),
extract (rcv_buf, size buf(rcv_buf)))
el se
post _error_report (pdu);
out S.TIMER cancel (lifetime_tiner, ZERO);
free_reassenbl y_resources;

end;

from REASSEMBLING to CLOSED
when S. TIMER i ndi cati on

begi n
send_error _report (LI FETI ME_EXPI RED, pdu);

end;

SO DI'S 8473 (May 1984) [Page 83]

RFC 926 Decenber 1984

9 CONFORMANCE

For conformance to this International Standard, the ability to
originate, manipulate, and receive PDUs in accordance with the ful
protocol (as opposed to the "non-segnenting"” or "lnactive Network Layer
Protocol " subsets) is required.

Additionally, the provision of the optional functions described in
Section 6.17 and enunerated in Table 9-1 nust neet the requirenents
descri bed therein.

Additionally, conformance to the Standard requires adherence to the
formal description of Section 8 and to the structure and encodi ng of
PDUs of Section 7.

If and only if the above requirenents are net is there conformance to
this International Standard.

9.1 Provision of Functions for Confornmance

The following table categorizes the functions in Section 6 with
respect to the type of system providing the function

SO DI'S 8473 (May 1984) [Page 84]

RFC 926 Decenber 1984

o e m e +
| Function | Send | Forward | Receive
RO e L R LR EEE R EEEEPEEE TR |
PDU Conposition	M	-	-
PDU Deconposition	M	-	M
Header Format Anal ysis	-	M	M
PDU Lifetime Control	-	M	I
Route PDU	-	M	-
Forward PDU	M	M	-
Segnent PDU	M	(note 1) -	
Reassenbl e PDU	-	I	M
Discard PDU	-	M	M
Error Reporting	-	M	M
PDU Header Error Detection	M	M	M
Paddi ng	(note 2)	(note 2)	(note 2)
Security	-	(note 3)	(note 3)
Conpl ete Source Routing	-	(note 3)	-
Partial Source Routing	-	(note 4)	-
Record Route	-	(note 4)	-
QoS Maint enance	-	(note 4)]	-
o m m ee e eea +			
Table 9-1. Categorization of Functions			
o e m e +			
KEY:			
M : Mandatory Function; nust be inpl enented			
- . Not applicable			
I : Inplenmentation option, as described in text			
Fom o m ema oo +
Not es

1) The Segnent PDU function is in general nandatory for an
i ntermedi ate system However, a systemwhich is to be connected
only to subnetworks all offering the same maxi num SNSDU si ze
(such as identical Local Area Networks) will not need to perform
this function and therefore does not need to inplenent it.

If this function is not inplenented, this shall be stated as part
of the specification of the inplenmentation

SO DI'S 8473 (May 1984) [Page 85]

RFC 926 Decenber 1984

2) The correct treatnent of the padding function requires no
processing. A conform ng inplenentation shall support the
function, to the extent of ignoring this paraneter wherever it
may appear.

3) This function may or may not be supported. |If an inplenentation
does not support this function, and the function is selected by a
PDU, then the PDU shall be discarded, and an ER PDU shall be
generated and forwarded to the originating network-entity if the
Error Report flag is set.

4) This function may or may not be supported. If an inplenentation
does not support this function, and the function is selected by a
PDU, then the function is not provided and the PDU is processed
exactly as though the function was not sel ected. The PDU shal
not be di scarded.

SO DI'S 8473 (May 1984) [Page 86]

RFC 926 Decenber 1984

ANNEXES

(These annexes are provided for information for inplenmentors and are
not an integral part of the body of the Standard.)

ANNEX A. SUPPORTI NG TECHNI CAL MATERI AL
A1l Data Unit Lifetine

There are two prinmary purposes of providing a PDU lifetime capability
in the | SO 8473 Protocol. One purpose is to ensure against unlinited
| oopi ng of protocol data units. Al though the routing algorithm should
ensure that it will be very rare for data to loop, the PDU lifetime
field provides additional assurance that loops will be limted in
extent.

The other inportant purpose of the lifetine capability is to provide
for a neans by which the originating network entity can linit the
Maxi mum NSDU |ifetime. |SO Transport Protocol Cass 4 assunes that
there is a particular Maxi mum NSDU Lifetine in order to protect
against certain error states in the connection establishnent and
term nation phases. If a TPDU does not arrive within this tinme, then
there is no chance that it will ever arrive. It is necessary to nake
this assunption, even if the Network Layer does not guarantee any
particul ar upper bound on NSDU lifetinme. It is much easier for
Transport Protocol Class 4 to deal with occasional |ost TPDUs than to
deal with occasional very late TPDUs. For this reason, it is
preferable to discard very late TPDUs than to deliver them Note that
NSDU lifetime is not directly associated with the retransm ssion of

| ost TPDUs, but relates to the problem of distinguishing old
(duplicate) TPDUs from new TPDUs.

Maxi mum NSDU Lifetime nust be provided to transport protocol entity in
units of tinme; a transport entity cannot count "hops". Thus NSDU
lifetime must be calculated in units of time in order to be useful in
determ ning Transport tinmer val ues.

In the absence of any guaranteed bound, it is common to sinply guess
sonme val ue which seens |ike a reasonable conpronise. In essence one is
simply assuming that "surely no TPDU woul d ever take nmore than 'x
seconds to traverse the network." This value is probably chosen by
observation of past performance, and may

SO DI'S 8473 (May 1984) [Page 87]

RFC 926 Decenber 1984

vary with source and destination.

Three possible ways to deal with the requirenent for a linmt on the
maxi mum NSDU lifetine are: (1) specify lifetime in units of tine,
thereby requiring internmedi ate systens to decrenent the lifetine field
by a value which is an upper bound on the tinme spent since the
previous internedi ate system and have the Network Layer discard
protocol data units whose lifetine has expired; (2) provide a
mechani smin the Transport Layer to recogni ze and di scard old TPDUs;
or (3) ignore the problem anticipating that the resulting
difficulties will be rare. Wich solution should be foll owed depends
in part upon how difficult it is to inplenent solutions (1) and (2),
and how strong the transport requirenment for a bounded tinme to live
really is.

There is a problemw th solution (2) above, in that transport entities
are inherently transient. In case of a conmputer system outage or other
error, or in the case where one of the two endpoints of a connection
closes without waiting for a sufficient period of tinme (approximtely
twi ce Maxi mum NSDU Lifetine), it is possible for the Transport Layer
to have no way to know whether a particular TPDU is old unless

gl obal Il y synchroni zed cl ocks are used (which is unlikely). On the
other hand, it is expected that internmediate systens will be
conmparatively stable. In addition, even if internediate systens do
fail and resume processing w thout nmenory of the recent past, it wll
still be possible (in nost instances) for the internediate systemto
easily conply with lifetine in units of tinme, as discussed bel ow.

It is not necessary for each internediate systemto subtract a precise
measure of the tinme that has passed since an NPDU (containing the TPDU
or a segnent thereof) has left the previous internediate system It is
sufficient to subtract an upper bound on the tine taken. In nost

cases, an internedi ate systemnay sinply subtract a constant val ue

whi ch depends upon the typical near-nmaxi num del ays that are
encountered in a specific subnetwork. It is only necessary to nake an
accurate estinmate on a per NPDU basis for those subnetworks whi ch have
both a relatively | arge maxi num del ay, and a relatively |arge
variation in del ay.

As an exanple, assune that a particular |ocal area network has short
average delays, with overall delays generally inthe 1 to 5

SO DI'S 8473 (May 1984) [Page 88]

RFC 926 Decenber 1984

mllisecond range and with occasional delays up to 20 mlliseconds. In
this case, although the relative range in delays nmight be large (a
factor of 20), it would still not be necessary to neasure the del ay
for actual NPDUs. A constant value of 20 nmilliseconds (or nore) can be
subtracted for all delays ranging from.5 seconds to .6 seconds (.5
seconds for the propagation delay, 0 to .1 seconds for queuei ng del ay)
then the constant value .6 seconds could be used.

If a third subnetwork had nornal delays ranging from.1 to 1 second,
but occasionally delivered an NPDU after a delay of 15 seconds, the

i nternedi ate system attached to this subnetwork m ght be required to
determine how long it has actually take the PDU to transit the
subnetwork. In this last exanple, it is likely to be nore useful to
have the internedi ate systens determ ne when the del ays are extrene ad
di scard very old NPDUs, as occasional |arge delays are precisely what
causes the Transport Protocol the nost trouble.

In addition to the tine delay within each subnetwork, it is inportant
to consider the tinme delay within internmedi ate systens. It should be
relatively sinple for those gateways which expect to hold on to sone
data-units for significant periods of tinme to decrenent the lifetine
appropriately.

Havi ng observed that (i) the Transport Protocol requires Maxi mum NSDU
to be calculated in units of time; (ii) in the great majority of

cases, it is not difficult for internediate systens to determne a

val id upper bound on subnetwork transit tine; and (iii) those few
cases where the gateways nust actually neasure the tine take by a NPDU
are precisely the cases where such neasurenent truly needs to be made
it can be concluded that NSDU lifetine should in fact be neasured in
units of time, and that intermedi ate systens should required to
decrenent the lifetinme field of the 1 SO 8473 Protocol by a val ue which
represents an upper bound on the tinme actually taken since the
lifetime field was | ast decrenent ed.

A.2 Reassenbly Lifetine Control
In order to ensure a bound on the lifetime of NSDUs, and to

ef fectively nanage reassenbly buffers in the Network Layer, the
Reassenbly Function described in Section 6 nust control the

SO DI'S 8473 (May 1984) [Page 89]

RFC 926 Decenber 1984

lifetime of segnents representing partially assenbled PDUs. This annex
di scusses net hods of boundi ng reassenbly lifetinme and suggests sone
i mpl enentati on guidelines for the reassenbly function

When segnents of a PDU arrive at a destination network-entity, they
are buffered until an entire PDU is received, assenbled, and passed to
the PDU Deconposition Function. The connectionl ess | nternetwork

Prot ocol does not guarantee the delivery of PDUs; hence, it is
possi bl e for sone segnments of a PDU to be | ost or delayed such that
the entire PDU cannot be assenbled in a reasonable length of time. In
the case of loss of a PDU "segnent", for exanple, this could be
forever. There are a nunber of possible schemes to prevent this:

a) Per-PDU reassenbly tiners

b) Extension of the PDU Lifetine control function, and

c) Coupling of the Transport Retransm ssion timers.

Each of these nmethods is discussed in the subsections which follow
A 2.1 Method (a)

assigns a "reassenbly lifetime" to each PDU received and identified
by its Data-unit Identifier. This is a local, real time which is
assigned by the reassenbly function and decrenented while sone, but
not all segnents of the PDU are being buffered by the destination
network-entity. If the tiner expires, all segnments of the PDU are
di scarded, thus freeing the reassenbly buffers and preventing a "very
ol d" PDU from being confused with a newer one bearing the sane
Data-unit Identifier. For this scheme to function properly, the
tinmers nust be assigned in such a fashion as to prevent the
phenonenon of Reassenbly Interference (di scussed below). In
particular, the follow ng guidelines should be foll owed:

1) The Reassenbly Lifetine nust be nuch | ess than the maxi rum PDU

lifetime of the network (to prevent the confusion of old and new
data-units).

SO DI'S 8473 (May 1984) [Page 90]

RFC 926 Decenber 1984

2) The lifetine should be | ess than the Transport protocol’s
retransm ssion tinmers mnus the average transit time of the
network. If this is not done, extra buffers are tied up holding
data which has already been retransnitted by the Transport
Protocol. (Note that an assunption has been nade that such
timers are integral to the Transport Protocol, which in sone
sense, dictates that retransm ssion functions nust exist in the
Transport Protocol enpl oyed).

A 2.2 Method (b)

is feasible if the PDU lifetime control function operates based on
real or virtual time rather than hop-count. In this schene, the
lifetine field of all PDU segnents of a Data-unit continues to be
decrenented by the reassenbly function of the destination
network-entity as if the PdU were still in transit (in a sense, it
still is). When the lifetine of any segnent of a partially
reassenbl ed PDU expires, all segnments of that PDU are discarded. This
schene is attractive since the delivery behavior of the | SO 8473

Prot ocol would be identical for segnmented and unsegnented PDUs.

A 2.3 Method (c)

couples the reassenbly lifetime directly to the Transport Protocol’s
retransm ssion tinmers, and requires that Transport Layer nmanagenent
make known to Network Layer Managenent (and hence, the Reassenbly
Function) the values of its retransm ssion tiners for each source
fromwhich it expects to be receiving traffic. Wen a PDU segnent is
received froma source, the retransmission tinme mnus the anticipated
transit time beconmes the reassenbly lifetine of that PDU. If this
timer expires before the entire PDU has been reassenbl ed, al

segnments of the PDU are discarded. This schene is attractive since it
has a | ow probability of holding PDU segnents that have al ready been
retransmtted by the source Transport-entity; it has, however, the

di sadvant age of depending on reliable operation of the Transport
Protocol to work effectively. If the retransm ssion timers are not
set correctly, it is possible that all PDUs would be discarded too
soon, and the Transport Protocol woul d nake no progress.

A.3 The Power of the Header Error Detection Function

SO DI'S 8473 (May 1984) [Page 91]

RFC 926 Decenber 1984

A.3.1 GCenera

The form of the checksum used for PDU header error detection is such
that it is easily calculated in software or firmvare using only two
additions per octet of header, yet it has an error detection power
approaching (but not quite equalling) that of techniques (such as
cyclic polynom al checks) which involve cal cul ations that are nuch
nore tinme- or space-consum ng. This annex di scusses the power of this
error detection function

The checksum consi sts of two octets, either of which can assune any
val ue except zero. That is, 255 distinct values for each octet are
possi bl e. The cal culation of the two octets is such that the val ue of
either is independent of the value of the other, so the checksum has
a total of 255 x 255 = 65025 values. |If one considers all ways in

whi ch the PDU header m ght be corrupted as equally likely, then there
is only one chance in 65025 that the checksumw || have the correct
val ue for any particular corruption. This corresponds to 0.0015 of
all possible errors.

The renai nder of this annex considers particular classes of errors
that are likely to be encountered. The hope is that the error
detection function will be found to be nore powerful, or at |east no
| ess powerful, against these classes as conpared to errors in
gener al

A 3.2 Bit Alteration Errors

First considered are classes of errors in which bits are altered, but
no bits are inserted nor deleted. This section does not consider the
case where the checksumitself is erroneously set to be all zero;
this case is discussed in section A 3.4.

A burst error of length b is a corruption of the header in which al

of the altered bits (no nore than b in nunber) are within a single
span of consecutively transmitted bits that is b bits Iong. Checksuns
are usually expected to do well against burst errors of a |length not
exceedi ng the nunber of bits in the header error detection paraneter
(16 for the PDU header). The PDU header error detection paranmeter in
fact fails to detect only 0.000019 of all such errors, each distinct
burst error of length 16 or | ess being considered to be equally
likely. In particular,

SO DI'S 8473 (May 1984) [Page 92]

RFC 926 Decenber 1984

it cannot detect an 8-bit burst in which an octet of zero is altered

to an octet of 255 (all bits = 1) or vice versa. Sinmlarly, it fails

to detect the swapping of two adjacent octets only if one is zero and
the other is 255.

The PDU header error detection, as should be expected, detects al
errors involving only a single altered bit.

Undetected errors involving only two altered bits should occur only
if the two bits are widely separated (and even then only rarely). The
PDU header error detection detects all double bit errors for which

t he spaci ng between the two altered bits is less than 2040 bits = 255
octets. Since this separation exceeds the maxi nrum header |ength, al
doubl e bit errors are detected.

The power to detect double bit errors is an advantage of the checksum
al gorithmused for the protocol, versus a sinple nodul o 65536
summati on of the header split into 16 bit fields. This sinple
summati on woul d not catch all such double bit errors. In fact, double
bit errors with a spacing as little as 16 bits apart could go
undet ect ed.

A.3.3 Bit Insertion/Deletion Errors

Al t hough errors involving the insertion or deletion of bits are in
general neither nore nor less likely to go undetected than are all
other kinds of general errors, at |east one class of such errors is
of special concern. If octets, all equal to either zero or 255, are
inserted at a point such that the sinple sum CO in the running

cal cul ation (described in Annex C) happens to equal zero, then the
error will go undetected. This is of concern primarily because there
are two points in the calculation for which this value for the sumis
not a rare happenstance, but is expected; nanely, at the beginning
and the end. That is, if the header is preceded or followed by
inserted octets all equal to zero or 255 then no error is detected.
Bot h cases are exam ned separately.

Insertion of erroneous octets at the begi nning of the header
completely misaligns the header fields, causing themto be
msinterpreted. In particular, the first inserted octet is
interpreted as the network |layer protocol identifier, probably
elimnating any know edge that the data unit is related to the

SO DI'S 8473 (May 1984) [Page 93]

RFC 926 Decenber 1984

| SO 8473 Protocol, and thereby elimnating any attenpt to performthe
checksum cal cul ation or invoking a different form of checksum
calculation. An initial octet of zero is reserved for the Inactive
Net wor k Layer Protocol. This is indeed a problembut not one which
can be ascribed to the formof checksum being used. Therefore, it is
not di scussed further here.

Insertion of erroneous octets at the end of the header, in the
absence of other errors, is inmpossible because the length field
unequi vocal Iy defines where the header ends. Insertion or deletion of
octets at the end of the header requires an alteration in the val ue
of the octet defining the header I ength. Such an alteration inplies
that the value of the calculated sumat the end of the header would
not be expected to have the dangerous val ue of zero and consequently
that the error is just as likely to be detected as is any error in
gener al

Insertion of an erroneous octet in the mddle of the header is
primarily of concern if the inserted octet has either the value zero
or 255, and if the variable CO happens to have the value zero at this
point. In nost cases, this error will conpletely destroy the parsing
of the header, which will cause the data unit to e discarded. In
addition, in the absence of any other error, the last octet of the
header will be thought to be data. This in turn will cause the header
to end in the wong place. In the case where the header otherw se can
parse correctly, the last field will be found to be nmissing. Even in
the case where necessary, the length field is the paddi ng option, and
t herefore not necessary, the length field for the padding function
will be inconsistent with the header length field, and therefore the
error can be detected.

A. 3.4 Checksum Non-cal cul ation Errors

Use of the header error detection function is optional. The choice of
not using it is indicated by a checksum paraneter value of zero. This
creates the possibility that the two octets of the checksum paraneter
(neither of which is generated as being zero) could both be altered
to zero. This would in effect be an error not detected by the
checksum since the check woul d not be nade. One of three
possibilities exists:

1) A burst error of length sixteen (16) which sets the entire

SO DI'S 8473 (May 1984) [Page 94]

RFC 926 Decenber 1984

checksumto zero. Such an error could not be detected; however, it
requires a particular positioning of the burst within the
header. [A calculation of its effect on overall detectability of
burst errors depends upon the |length of the header.]

2) Al single bit errors are detected. Since both octets of the
checksum field nmust be non-zero when the checksumis being used,
no single bit error can set the checksumto zero

3) \Where each of the two octets of the checksum paraneter has a
value that is a power of two, such that only one bit in each
equal s one (1), then a zeroing of the checksum paraneter could
result in an undetected double bit error. Furthernore, the two
altered bits have a separation of |ess than sixteen (16), and
could be consecutive. This is clearly a decline fromthe
conpl ete detectability previously described.

Where a particular admnistration is highly concerned about the
possibility of accidental zeroing of the checksum anong data units
within its domain, then the adninistration nmay inpose the restriction
that all data units whose source or destination lie within its donmain
must nake use of the header error detection function. Any data units
whi ch do not could be discarded, nor would they be all owed outside
the domain. This protects against errors that occur within the
domain, and would protect all data units whose source or destination
lies within the donmain, even where the data path between all such
pairs crosses other domains (errors outside the protected donain

not wi t hst andi ng) .

SO DI'S 8473 (May 1984) [Page 95]

RFC 926 Decenber 1984

ANNEX B. NETWORK MANAGEMENT

The followi ng topics are considered to be najor conponents of Network
Layer managenent :

A. Routing

Consi dered by many to be the nost crucial elenent of Network Layer
managenent, since nanagenent of the Routing algorithns for networking
seemto be an absolutely necessary prerequisite to a practica
net wor ki ng schene.

Rout i ng managenent consists of three parts; forwarding, decision, and
update. Managenent of forwarding is the process of interpreting the
Net wor k Layer address to properly forward NSDUs on its next network
hop on a route through the network. Managenment of decision is the
process of choosing routes for either connections or NSDUs, depending
on whether the network is operating a connection-oriented or
connectionl ess protocol. The decision conponent will be driven by a
nunmber of considerations, not the | east of which are those associated
with Quality of Service. Managenent of update is the nanagenent
protocol (s) used to exchange informati on anong

i nt er medi at e-systens/ network- entities which is used in the decision
conmponent to determ ne routes.

To what extent is it desirable and/or practical to pursue a single
OGSl network routing algorithmand associ at ed Managenent protocol (s)?
It is generally understood that it is inpractical to expect ISOto
adopt a single global routing algorithm On the other hand, it is
recogni zed that having no standard at all upon which to make routing
decisions effectively prevents an internetwork protocol from working
at all. One possible conpronmi se would be to define the principles for
t he behavior of an internetwork routing algorithm A possible next
step would be to specify the types of information that nust be
propagat ed anong the internedi ate-systens/ network-entities via their
updat e procedures. The details of the updating protocol mght then be
left to bilateral agreenents anong the cooperating adm nistrations.

SO DI'S 8473 (May 1984) [Page 96]

RFC 926 Decenber 1984

B. Statistical Analysis

These nanagenent functions relate to the gathering and reporting of

i nformati on about the real-tinme behavior of the global network. They
consi st of Data counts such as nunber of PDUs forwarded, entering
traffic, etc., and Event Counts such as topol ogy changes, quality of
servi ce changes, etc.

C. Network Control

These nanagenent functions are those related to the control of the

gl obal network, and possibly could be performed by a Network Contro
Center(s). The control functions needed are not al all clear. Neither
are the issues relating to what organi zation(s) is/are responsible
for the managenent of the environnment. Should there be a Network
Control Center distinct fromthose provided by the subnetwork

adm ni strations? Wat subnetwork managenent information is needed by
t he networ k managenent conponents to performtheir functions?

D. Directory Mapping Functions

Does the Network layer contain a Directory function as defined in the
Ref erence Model ? Current opinion is that the Network Layer restricts
itself to the function of mappi ng NSAP addresses to routes.

E. Congestion Contro

Does this cone under the unbrella of Network Layer managenent? How?

F. Configuration Contro

This is tightly associated with the concepts of Resource Managenent,
and is generally considered to be sonmehow concerned with the contro
of the resources used in the managenent of the gl obal network. The
resources which have to be managed are Bandwi dth (use of subnetwork
resources), Processor (CPU), and Menory (buffers). \Where is the
responsibility for resources assigned, and are they appropriate for
standardi zation? It appears that these

SO DI'S 8473 (May 1984) [Page 97]

RFC 926 Decenber 1984

functions are tightly related to how one signals changes in Quality
of Service

G Accounting

What entities, adm nistrations, etc., are responsible for network
accounti ng? How does this happen? Wiat accounting information, if
any, is required fromthe subnetworks in order to charge for network
resources? Wio is charged? To what degree is this to be standardi zed?

SO DI'S 8473 (May 1984) [Page 98]

RFC 926 Decenber 1984

ANNEX C. ALGORI THVS FOR PDU HEADER ERROR DETECTI ON FUNCTI ON

This Annex describes al gorithmwhich nay be used to conputer, check and
update the checksumfield of the PDU Header in order to provide the PDU
Header Error Detection function described in Section 6.11.

C.1 Synbols used in algorithns

CO, CL variables used in the algorithns

i nunmber (i.e., position) of an octet wi thin the header
nunmber (i.e., position) of the first octet of the checksum
par aneter (n=8)

I ength of the PDU header in octets

val ue of octet one of the checksum paraneter

val ue of octet two of the checksum paraneter

octet occupying position i of the PDU header

=}

D < XTI

C.2 Arithmetic Conventions
Addition is performed in one of the two foll owi ng nodes:
a) nodulo 255 arithnetic;
b) eight-bit one’s conplenent arithnetic in which, if any of the
vari abl es has the value mnus zero (i.e., 255) it shall be
regarded as though it was plus zero (i.e., 0).

C.3 Algorithmfor Generating Checksum Paraneters

A: Construct the conplete PDU header with the value of the checksum
paraneter field set to zero

B: Initialize CO and Cl to zero;
C. Process each octet of the PDU header sequentially fromi =1 to L
by

a) adding the value of the octet to CO; then
b) adding the value of CO to Ci;

D Calculate X = (L-8 Q) - CL (nmodulo 255) and Y = (L-7) (-Q0) + C1
(rmodul o 255)

SO DI'S 8473 (May 1984) [Page 99]

RFC 926 Decenber 1984

E. If X

0, set X = 255

F: IfY 0, set Y = 255

G Place the values X and Y in octets 8 and 9 respectively.
C.4 A gorithmfor Checking Checksum Paraneters

A If octets 8 and 9 of PDU header both contain 0 (all bits off),
t hen the checksum cal cul ati on has succeeded; otherwise initialize
Cl =0, C - 0 and proceed;

B: process each octet of the PDU header sequentially fromi =1 to L
by

a) adding the value of the octet to CO; then
b) adding the value of CO to CI;

C. If, when all the octets have been processed, CO = C1 = 0 (nodulo
255) then the checksum cal cul ati on has succeeded; otherw se, the
checksum cal cul ation has failed

C.5 Algorithmto adjust checksum paraneter when an octet is altered

This algorithm adjusts the checksum when an octet (such as the
lifetinme field) is altered. Suppose the value in octet k is changed by
Z = new_val ue - ol d_val ue.

If X and Y denote the checksum values held in octets n and n+1,
respectively, then adjust X and Y as foll ows:

If X =0 and Y = 0 do nothing, else;
X := (k-n-1)Z + X (nodul o 255) and
Y:=(n-k)Z +Y (nodulo 255).
If Xis equal to zero, then set it to 255; and
simlarly for Y.

For this Protocol, n = 8. If the octet being altered is the lifetine

field, k = 4. For the case where the lifetinme is decreased by 1 unit
(Z =-1), the results sinplify to

SO DI'S 8473 (May 1984) [Page 100]

RFC 926 Decenber 1984

X := X+ 5 (nodul o 255) and
Y :=Y - 4 (nodul o 255).
Not e:

To derive this result, assune that when octet k has the value Z
added to it then X and Y have val ues ZX and ZY added to them For
the checksum paranmeters to satisfy the conditions of Section 6.11
both before and after the values are added, the following is
required:

Z + ZX + ZY = 0 (nodul o 255) and
(L-k+1)Z + (L-n+1)ZX + (L-n)ZY = 0 (nodul o 255).

Sol vi ng these equations sinultaneously yields zZX = (k-n-1)Z and ZY +
(m k) Z.

SO DI'S 8473 (May 1984) [Page 101]

