
Network Working Group Deepinder P. Sidhu
Request for Comments: 963 Iowa State University
 November 1985

 SOME PROBLEMS WITH THE SPECIFICATION OF THE
 MILITARY STANDARD INTERNET PROTOCOL

STATUS OF THIS MEMO

 The purpose of this RFC is to provide helpful information on the
 Military Standard Internet Protocol (MIL-STD-1777) so that one can
 obtain a reliable implementation of this protocol standard.
 Distribution of this note is unlimited.

ABSTRACT

 This paper points out several significant problems in the
 specification of the Military Standard Internet Protocol
 (MIL-STD-1777, dated August 1983 [MILS83a]). These results are based
 on an initial investigation of this protocol standard. The problems
 are: (1) a failure to reassemble fragmented messages completely; (2)
 a missing state transition; (3) errors in testing for reassembly
 completion; (4) errors in computing fragment sizes; (5) minor errors
 in message reassembly; (6) incorrectly computed length for certain
 datagrams. This note also proposes solutions to these problems.

1. Introduction

 In recent years, much progress has been made in creating an
 integrated set of tools for developing reliable communication
 protocols. These tools provide assistance in the specification,
 verification, implementation and testing of protocols. Several
 protocols have been analyzed and developed using such tools.
 Examples of automated verification and implementation of several real
 world protocols are discussed in [BLUT82] [BLUT83] [SIDD83] [SIDD84].

 We are currently working on the automatic implementation of the
 Military Standard Internet Protocol (IP). This analysis will be
 based on the published specification [MILS83a] of IP dated 12 August
 1983.

 While studying the MIL Standard IP specification, we have noticed
 numerous errors in the specification of this protocol. One
 consequence of these errors is that the protocol will never deliver
 fragmented incoming datagrams; if this error is corrected, such
 datagrams will be missing some data and their lengths will be
 incorrectly reported. In addition, outgoing datagrams that are
 divided into fragments will be missing some data. The proof of these
 statements follows from the specification of IP [MILS83a] as
 discussed below.

Sidhu [Page 1]

RFC 963 November 1985
Some Problems with MIL-STD IP

2. Internet Protocol

 The Internet Protocol (IP) is a network layer protocol in the DoD
 protocol hierarchy which provides communication across interconnected
 packet-switched networks in an internetwork environment. IP provides
 a pure datagram service with no mechanism for reliability, flow
 control, sequencing, etc. Instead, these features are provided by a
 connection-oriented protocol, DoD Transmission Control Protocol (TCP)
 [MILS83b], which is implemented in the layer above IP. TCP is
 designed to operate successfully over channels that are inherently
 unreliable, i.e., which can lose, damage, duplicate, and reorder
 packets.

 Over the years, DARPA has supported specifications of several
 versions of IP; the last one appeared in [POSJ81]. A few years ago,
 the Defense Communications Agency decided to standardize IP for use
 in DoD networks. For this purpose, the DCA supported formal
 specification of this protocol, following the design discussed in
 [POSJ81] and the technique and organization defined in [SDC82]. A
 detailed specification of this protocol, given in [MILS83a], has been
 adopted as the DoD standard for the Internet Protocol.

 The specification of IP state transitions is organized into decision
 tables; the decision functions and action procedures are specified in
 a subset of Ada[1], and may employ a set of machine-specific data
 structures. Decision tables are supplied for the pairs <state name,
 interface event> as follows: <inactive, send from upper layer>,
 <inactive, receive from lower layer>, and <reassembling, receive from
 lower layer>. To provide an error indication in the case that some
 fragments of a datagram are received but some are missing, a decision
 table is also supplied for the pair <reassembling, reassembly time
 limit elapsed>. (The event names are English descriptions and not
 the names employed by [MILS83a].)

3. Problems with MIL Standard IP

 One of the major functions of IP is the fragmentation of datagrams
 that cannot be transmitted over a subnetwork in one piece, and their
 subsequent reassembly. The specification has several problems in
 this area. One of the most significant is the failure to insert the
 last fragment of an incoming datagram; this would cause datagrams to
 be delivered to the upper-level protocol (ULP) with some data
 missing. Another error in this area is that an incorrect value of the
 data length for reassembled datagrams is passed to the ULP, with
 unpredictable consequences.

 As the specification [MILS83a] is now written, these errors are of

Sidhu [Page 2]

RFC 963 November 1985
Some Problems with MIL-STD IP

 little consequence, since the test for reassembly completion will
 always fail, with the result that reassembled datagrams would never
 be delivered at all.

 In addition, a missing row in one of the decision tables creates the
 problem that network control (ICMP) messages that arrive in fragments
 will never be processed. Among the other errors are the possibility
 that a few bytes will be discarded from each fragment transmitted and
 certain statements that will create run-time exceptions instead of
 performing their intended functions.

 A general problem with this specification is that the program
 language and action table portions of the specification were clearly
 not checked by any automatic syntax checking process. Variable and
 procedure names are occasionally misspelled, and the syntax of the
 action statements is often incorrect. We have enumerated some of
 these problems below as a set of cautionary notes to implementors,
 but we do not claim to have listed them all. In particular, syntax
 errors are only discussed when they occur in conjunction with other
 problems.

 The following section discusses some of the serious errors that we
 have discovered with the MIL standard IP [MIL83a] during our initial
 study of this protocol. We also propose corrections to each of these
 problems.

4. Detailed Discussion of the Problems

 Problem 1: Failure to Insert Last Fragment

 This problem occurs in the decision table corresponding to the
 state reassembling and the input "receive from lower layer"
 [MILS83a, sec 9.4.6.1.3]. The problem occurs in the following row
 of this table:[2]

 __
 check- SNP TTL where a reass ICMP
 sum params valid to frag done check-
 valid? valid? ? ? ? ? sum?
 __
 YES YES YES ULP YES YES d reass_
 delivery;
 state :=
 INACTIVE
 __

 The reass_done function, as will be seen below, returns YES if the

Sidhu [Page 3]

RFC 963 November 1985
Some Problems with MIL-STD IP

 fragment just received is the last fragment needed to assemble a
 complete datagram and NO otherwise. The action procedure
 reass_delivery simply delivers a completely reassembled datagram
 to the upper-level protocol. It is the action procedure
 reassemble that inserts an incoming fragment into the datagram
 being assembled. Since this row does not call reassemble, the
 result will be that every incoming fragmented datagram will be
 delivered to the upper layer with one fragment missing. The
 solution is to rewrite this row of the table as follows:

 __
 check- SNP TTL where a reass ICMP
 sum params valid to frag done check-
 valid? valid? ? ? ? ? sum?
 __
 YES YES YES ULP YES YES d reassemble;
 reass_
 delivery;
 state :=
 INACTIVE
 __

 Incidentally, the mnemonic value of the name of the reass_done
 function is questionable, since at the moment this function is
 called datagram reassembly cannot possibly have been completed. A
 better name for this function might be last_fragment.

 Problem 2: Missing State Transition

 This problem is the omission of a row of the same decision table
 [MILS83a, sec 9.4.6.1.3]. Incoming packets may be directed to an
 upper-level protocol (ULP), or they may be network control
 messages, which are marked ICMP (Internet Control Message
 Protocol). When control messages have been completely assembled,
 they are processed by an IP procedure called analyze. The
 decision table contains the row

 __
 check- SNP TTL where a reass ICMP
 sum params valid to frag done check-
 valid? valid? ? ? ? ? sum?
 __
 YES YES YES ICMP YES NO d reassemble;
 __

Sidhu [Page 4]

RFC 963 November 1985
Some Problems with MIL-STD IP

 but makes no provision for the case in which where_to returns
 ICMP, a_frag returns YES, and reass_done returns YES. An
 additional row should be inserted, which reads as follows:

 __
 check- SNP TTL where a reass ICMP
 sum params valid to frag done check-
 valid? valid? ? ? ? ? sum?
 __
 YES YES YES ICMP YES YES d reassemble;
 analyze;
 state :=
 INACTIVE
 __

 Omitting this row means that incoming fragmented ICMP messages
 will never be analyzed, since the state machine does not have any
 action specified when the last fragment is received.

 Problem 3: Errors in reass_done

 The function reass_done, as can be seen from the above, determines
 whether the incoming subnetwork packet contains the last fragment
 needed to complete the reassembly of an IP datagram. In order to
 understand the errors in this function, we must first understand
 how it employs its data structures.

 The reassembly of incoming fragments is accomplished by means of a
 bit map maintained separately for each state machine. Since all
 fragments are not necessarily the same length, each bit in the map
 represents not a fragment, but a block, that is, a unit of eight
 octets. Each fragment, with the possible exception of the "tail"
 fragment (we shall define this term below), is an integral number
 of consecutive blocks. Each fragment’s offset from the beginning
 of the datagram is given, in units of blocks, by a field in the
 packet header of each incoming packet. The total length of each
 fragment, including the fragment’s header, is specified in the
 header field total_length; this length is given in octets. The
 length of the header is specified in the field header_length; this
 length is given in words, that is, units of four octets.

 In analyzing this subroutine, we must distinguish between the
 "tail" fragment and the "last" fragment. We define the last
 fragment as the one which is received last in time, that is, the
 fragment that permits reassembly to be completed. The tail
 fragment is the fragment that is spatially last, that is, the
 fragment that is spatially located after any other fragment. The

Sidhu [Page 5]

RFC 963 November 1985
Some Problems with MIL-STD IP

 length and offset of the tail fragment make it possible to compute
 the length of the entire datagram. This computation is actually
 done in the action procedure reassembly, and the result is saved
 in the state vector field total_data_length; if the tail fragment
 has not been received, this value is assumed to be zero.

 It is the task of the reass_done function [MILS83a, sec 9.4.6.2.6]
 to determine whether the incoming fragment is the last fragment.
 This determination is made as follows:

 1) If the tail fragment has not been received previously and
 the incoming fragment is not the tail fragment, then return NO.

 2) Otherwise, if the tail fragment has not been received, but
 the incoming fragment is the tail fragment, determine whether
 all fragments spatially preceding the tail fragment have also
 been received.

 3) Otherwise, if the tail fragment has been received earlier,
 determine whether the incoming fragment is the last one needed
 to complete reassembly.

 The evaluation of case (2) is accomplished by the following
 statment:

 if (state_vector.reassembly_map from 0 to
 (((from_SNP.dtgm.total_length -
 (from_SNP.dtgm.header_length * 4) + 7) / 8)
 + 7) / 8 is set)
 then return YES;

 The double occurrence of the subexpression " + 7) / 8" is
 apparently a misprint. The function f(x) = (x + 7) / 8 will
 convert x from octets to blocks, rounding any remainder upward.
 There is no need for this function to be performed twice. The
 second problem is that the fragment_offset field of the incoming
 packet is ignored. The tail fragment specifies only its own
 length, not the length of the entire datagram; to determine the
 latter, the tail fragment’s offset must be added to the tail
 fragment’s own length. The third problem hinges on the meaning of
 the English "... from ... to ..." phrase. If this phrase has the
 same meaning as the ".." range indication in Ada [ADA83, sec 3.6],
 that is, includes both the upper and lower bounds, then it is
 necessary to subtract 1 from the final expression.

 The expression following the word to, above, should thus be
 changed to read

Sidhu [Page 6]

RFC 963 November 1985
Some Problems with MIL-STD IP

 from_SNP.dtgm.fragment_offset +
 ((from_SNP.dtgm.total_length -
 (from_SNP.dtgm.header_length * 4) + 7) / 8) - 1

 Another serious problem with this routine occurs when evaluating
 case (3). In this case, the relevant statement is

 if (all reassembly map from 0 to
 (state_vector.total_data_length + 7)/8 is set
 then return YES

 If the tail fragment was received earlier, the code asks, in
 effect, whether all the bits in the reassembly map have been set.
 This, however, will not be the case even if the incoming fragment
 is the last fragment, since the routine reassembly, which actually
 sets these bits, has not yet been called for this fragment. This
 statement must therefore skip the bits corresponding to the
 incoming fragment. In specifying the range to be tested,
 allowance must be made for whether these bits fall at the
 beginning of the bit map or in the middle (the case where they
 fall at the end has already been tested). The statement must
 therefore be changed to read

 if from_SNP.dtgm.fragment_offset = 0 then
 if (all reassembly map from
 from_SNP.dtgm.fragment_offset +
 ((from_SNP.dtgm.total_length -
 from_SNP.dtgm.header_length * 4) + 7) / 8
 to ((state_vector.total_data_length + 7) / 8 - 1) is set)
 then return YES;
 else return NO;
 end if;

 else
 if (all reassembly map from 0 to
 (from_SNP.dtgm.fragment_offset - 1) is set)
 and (all reassembly map from
 from_SNP.dtgm.fragment_offset +
 ((from_SNP.dtgm.total_length -
 from_SNP.dtgm.header_length * 4) + 7) / 8
 to ((state_vector.total_data_length + 7) / 8 - 1) is set)
 then return YES;
 else return NO;
 end if;
 end if;

Sidhu [Page 7]

RFC 963 November 1985
Some Problems with MIL-STD IP

 Note that here again it is necessary to subtract 1 from the upper
 bound.

 Problem 4: Errors in fragment_and_send

 The action procedure fragment_and_send [MILS83a, sec 9.4.6.3.7] is
 used to break up datagrams that are too large to be sent through
 the subnetwork as a single packet. The specification requires
 [MILS83a sec 9.2.2, sec 9.4.6.3.7] each fragment, except possibly
 the "tail" fragment, to contain a whole number of 8-octet groups
 (called "blocks"); moreover, each fragment must begin at a block
 boundary.

 In the algorithm set forth in fragment_and_send, all fragments
 except the tail fragment are set to the same size; the procedure
 begins by calculating this size. This is done by the following
 statement:

 data_per_fragment := maximum subnet transmission unit
 - (20 + number of bytes of option data);

 Besides the failure to allow for header padding, which is
 discussed in the next section, this statement makes the serious
 error of not assuring that the result is an integral multiple of
 the block size, i.e., a multiple of eight octets. The consequence
 of this would be that as many as seven octets per fragment would
 never be sent at all. To correct this problem, and to allow for
 header padding, this statement must be changed to

 data_per_fragment := (maximum subnet transmission unit
 - (((20 + number of bytes of option data)+3)/4*4)/8*8;

 Another problem in this procedure is the failure to provide for
 the case in which the length of the data is an exact multiple of
 eight. The procedure contains the statements

 number_of fragments := (from_ULP.length +
 (data_per_fragment - 1)) / data_per_fragment;

 data_in_last_frag := from_ULP.length modulo data_per_fragment;

 (Note that in our terminology we would rename data_in_last_frag as
 data_in_tail_frag; notice, also, that the proper spelling of the
 Ada operator is mod [ADA83, sec 4.5.5].)

 If data_in_last_frag is zero, some serious difficulties arise.
 One result might be that the datagram will be broken into one more

Sidhu [Page 8]

RFC 963 November 1985
Some Problems with MIL-STD IP

 fragment than necessary, with the tail fragment containing no data
 bytes. The assignment of data into the tail fragment will succeed
 even though it will now take the form

 output_data [i..i-1] := input_data [j..j-1];

 because Ada makes provision for so-called "null slices" [ADA83,
 sec 4.1.2] and will treat this assignment as a no-op [ADA83, sec
 5.2.1].

 This does, however, cause the transmission of an unnecessary
 packet, and also creates difficulties for the reassembly
 procedure, which must now be prepared to handle empty packets, for
 which not even one bit of the reassembly map should be set.
 Moreover, as the procedure is now written, even this will not
 occur. This is because the calculation of the number of fragments
 is incorrect.

 A numerical example will clarify this point. Suppose that the
 total datagram length is 16 bytes and that the number of bytes per
 fragment is to be 8. Then the above statements will compute
 number_of_fragments = (16 + 7)/8 = 2 and data_in_last_frag = 16
 mod 8 = 0. The result of the inconsistency between
 number_of_fragments and data_in_last_frag will be that instead of
 sending three fragments, of lengths 8, 8, and 0, the procedure
 will send only two fragments, of lengths 8 and 0; the last eight
 octets will never be sent.

 To avoid these difficulties, the specification should add the
 following statement, immediately after computing
 data_in_last_frag:

 if data_in_last_frag = 0 then
 data_in_last_frag := data_per_fragment;
 end if;

 This procedure also contains several minor errors. In addition to
 failures to account for packet header padding, which are
 enumerated in the next section, there is a failure to convert the
 header length from words (four octets) to octets in one statement.
 This statement, which calculates the total length of the non-tail
 fragments, is

 to_SNP.dtgm.total_length := to_SNP.dtgm.header_length
 + data_per_fragment;

Sidhu [Page 9]

RFC 963 November 1985
Some Problems with MIL-STD IP

 Since header length is expressed in units of words, this
 statement should read

 to_SNP.dtgm.total_length := to_SNP.dtgm.header_length * 4
 + data_per_fragment;

 This is apparently no more than a misprint, since the
 corresponding calculation for the tail fragment is done correctly.

 Problem 5: Errors in reassembly

 The action procedure reassembly [MILS83a, sec 9.4.6.3.9], which is
 referred to as reassemble elsewhere in the specification [MILS83a,
 sec 9.4.6.1.2, sec 9.4.6.1.3], inserts an incoming fragment into a
 datagram being reassembled. This procedure contains several
 relatively minor errors.

 In two places in this procedure, a range is written to contain one
 more member than it ought to have. In the first, data from the
 fragment is to be inserted into the datagram being reassembled:

 state_vector.data [from_SNP.dtgm.fragment_offset*8 ..
 from_SNP.dtgm.fragment_offset*8 + data_in_frag] :=
 from_SNP.dtgm.data [0..data_in_frag-1];

 In this statement, the slice on the left contains one more byte
 than the slice on the right. This will cause a run-time exception
 to be raised [ADA83, sec 5.2.1]. The statement should read

 state_vector.data [from_SNP.dtgm.fragment_offset*8 ..
 from_SNP.dtgm.fragment_offset*8 + data_in_frag - 1] :=
 from_SNP.dtgm.data [0..data_in_frag-1];

 A similar problem occurs in the computation of the range of bits
 in the reassembly map that corresponds to the incoming fragment.
 This statement begins

 for j in (from_SNP.dtgm.fragment_offset) ..
 ((from_SNP.dtgm.fragment_offset +
 data_in_frag + 7)/8) loop

 Not only are the parentheses in this statement located incorrectly
 (because the function f(x) = (x + 7) / 8 should be executed only
 on the argument data_in_frag), but also this range contains one
 extra member. The statement should read

Sidhu [Page 10]

RFC 963 November 1985
Some Problems with MIL-STD IP

 for j in (from_SNP.dtgm.fragment_offset) ..
 (from_SNP.dtgm.fragment_offset +
 (data_in_frag + 7)/8) - 1 loop

 Note that if the statement is corrected in this manner it will
 also handle the case of a zero-length fragment, mentioned above,
 since the loop will not be executed even once [ADA83, sS 5.5].

 Another minor problem occurs when this procedure attempts to save
 the header of the leading fragment. The relevant statement is

 state_vector.header := from_SNP.dtgm;

 This statement attempts to transfer the entire incoming fragment
 into a record that is big enough to contain only the header. The
 result, in Ada, is not truncation, but a run-time exception
 [ADA83, sec 5.2]. The correction should be something like

 state_vector.header := from_SNP.dtgm.header;

 This correction cannot be made without also defining the header
 portion of the datagram as a subrecord in [MILS83a, sec 9.4.4.6];
 such a definition would also necessitate changing many other
 statements. For example, from_SNP.dtgm.fragment_offset would now
 have to be written as from_SNP.dtgm.header.fragment_offset.
 Another possible solution is to write the above statement as a
 series of assignments for each field in the header, in the
 following fashion:

 state_vector.header.version :=
 from_SNP.dtgm.version;
 state_vector.header.header_length :=
 from_SNP.dtgm.header_length;
 state_vector.header.type_of_service :=
 from_SNP.dtgm.type_of_service;

 -- etc.

 Note also that this procedure will fail if an incoming fragment,
 other than the tail fragment, does not contain a multiple of eight
 characters. Implementors must be careful to check for this in the
 decision function SNP_params_valid [MILS83a, sec 9.4.6.2.7].

Sidhu [Page 11]

RFC 963 November 1985
Some Problems with MIL-STD IP

 Problem 6: Incorrect Data Length for Fragmented Datagrams

 The procedure reassembled_delivery [MILS83a, sec 9.4.6.3.10] does
 not deliver the proper data length to the upper-level protocol.
 This is because the assignment is

 to_ULP.length := state_vector.header.total_length
 - state_vector.header.header_length * 4;

 The fields in state_vector.header have been filled in by the
 reassembly procedure, discussed above, by copying the header of
 the leading fragment. The field total_length in this fragment,
 however, refers only to this particular fragment, and not to the
 entire datagram (this is not entirely clear from it definition in
 [MILS83a, sec 9.3.4], but the fragment_and_send procedure
 [MILS83a, sec 9.4.6.3.7] insures that this is the case).

 The length of the entire datagram can only be computed from the
 length and offset of the tail fragment. This computation is
 actually done in the reassembly procedure [MILS83a, sec
 9.4.6.3.9], and the result saved in state_vector.total_data_length
 (see above). It is impossible, however, for reassembly to fill in
 state_vector.header.total_length at this time, because
 state_vector.header.header_length is filled in from the lead
 fragment, which may not yet have been received.

 Therefore, reassembled_delivery must replace the above statement
 with

 to_ULP.length := state_vector.total_data_length;

 The consequence of leaving this error uncorrected is that the
 upper-level protocol will be informed only of the delivery of as
 many octets as there are in the lead fragment.

5. Implementation Difficulties of MIL Standard IP

 In addition to the problems discussed above, there are several
 features of the MIL standard IP specification [MILS83a] which lead to
 difficulties for the implementor. These difficulties, while not
 actually errors in the specification, take the form of assumptions
 which are not explicitly stated, but of which implementors must be
 aware.

Sidhu [Page 12]

RFC 963 November 1985
Some Problems with MIL-STD IP

 5.1 Header Padding

 In several places, the specification makes a computation of the
 length of a packet header without explicitly allowing for padding.
 The padding is needed because the specification requires [MILS83a,
 sec 9.3.14] that each header end on a 32-bit boundary.

 One place this problem arises is in the need_to_frag decision
 function [MILS83a, sec 9.4.6.2.5]. This function is used to
 determine whether fragmentation is required for an outgoing
 datagram. It consists of the single statement

 if ((from_ULP.length + (number of bytes of option data)
 + 20) > maximum transmission unit of the local subnetwork
 then return YES
 else return NO;
 end if;

 (A minor syntax error results from not terminating the first
 return statement with a semicolon [ADA83, sec 5.1, sec 5.3, sec
 5.9].) In order to allow for padding, the expression for the
 length of the outgoing datagram should be

 (((from_ULP.length + (number of bytes of option data) + 20)
 + 3)/4 * 4)

 Another place that this problem arises is in the action procedure
 build_and_send [MILS83a, sec 9.4.6.3.2], which prepares
 unfragmented datagrams for transmission. To compute the header
 field header_length, which is expressed in words, i.e., units of
 four octets [MILS83a, sec 9.3.2], this procedure contains the
 statement

 to_SNP.dtgm.header_length := 5 +
 (number of bytes of option data)/4;

 In order to allow for padding, this statement should read

 to_SNP.dtgm.header_length :=
 5 + ((number of bytes of option data)+3)/4;

 The identical statement appears in the action procedure
 fragment_and_send [MILS83a, sec 9.4.6.3.7], which prepares
 datagram fragments for transmission, and requires the same
 correction.

Sidhu [Page 13]

RFC 963 November 1985
Some Problems with MIL-STD IP

 The procedure fragment_and_send also has this problem in two other
 places. In the first, the number of octets in each fragment is
 computed by

 data_per_fragment := maximum subnet transmission unit
 - (20 + number of bytes of option data);

 In order to allow for padding, this statement should read

 data_per_fragment := maximum subnet transmission unit
 - (((20 + number of bytes of option data)+3)/4*4);

 (Actually, this statement must be changed to

 data_per_fragment := (maximum subnet transmission unit
 - (((20 + number of bytes of option data)+3)/4*4)/8*8;

 in order to accomplish its intended purpose, for reasons which
 have been discussed above.)

 A similar problem occurs in the statement which computes the
 header length for individual fragments:

 to_SNP.dtgm.header_length := 5 +
 (number of copy options octets/4);

 To allow for padding, this should be changed to

 to_SNP.dtgm.header_length := 5 +
 (number of copy options octets+3/4);

 Notice that all of these errors can also be corrected if the
 English phrase "number of bytes of option data", and similar
 phrases, are always understood to include any necessary padding.

 5.2 Subnetworks with Small Transmission Sizes

 When an outgoing datagram is too large to be transmitted as a
 single packet, it must be fragmented. On certain subnetworks, the
 possibility exists that the maximum number of bytes that may be
 transmitted at a time is less than the size of an IP packet header
 for a given datagram. In this case, the datagram cannot be sent,
 even in fragmented form. Note that this does not necessarily mean
 that the subnetwork cannot send any datagrams at all, since the
 size of the header may be highly variable. When this problem
 arises, it should be detected by IP. The proper place to detect
 this situation is in the function can_frag.

Sidhu [Page 14]

RFC 963 November 1985
Some Problems with MIL-STD IP

 The can_frag decision function [MILS83a, sec 9.4.6.2.2] is used to
 determine whether a particular outgoing datagram, which is too
 long to be transmitted as a single fragment, is allowed to be
 fragmented. In the current specification, this function consists
 of the single statement

 if (from_ULP.dont_fragment = TRUE)
 then return NO
 else return YES
 end if;

 (A minor syntax error is that the return statements should be
 terminated by semicolons; see [ADA83, sec 5.1, sec 5.3, sec 5.9].)

 If the above problem occurs, the procedure fragment_and_send will
 obtain negative numbers for fragment sizes, with unpredictable
 results. This should be prevented by assuring that the subnetwork
 can send the datagram header and at least one block (eight octets)
 of data. The can_frag function should be recoded as

 if ((8 + ((number of bytes of option data)+3)/4*4 + 20)
 > maximum transmission unit of the local subnetwork)
 then return NO;
 elsif (from_ULP.dont_fragment = TRUE)
 then return NO
 else return YES
 end if;

 This is similar to the logic of the function need_to_frag,
 discussed above.

 5.3 Subnetwork Interface

 Provision is made for the subnetwork to report errors to IP
 [MILS83a, sec 6.3.6.2], but no provision is made for the IP entity
 to take any action when such errors occur.

 In addition, the specification [MILS83a, sec 8.2.1.1] calls for
 the subnetwork to accept type-of-service indicators (precedence,
 reliability, delay, and throughput), which may be difficult to
 implement on many local networks.

Sidhu [Page 15]

RFC 963 November 1985
Some Problems with MIL-STD IP

 5.4 ULP Errors

 The IP specification [MILS83a, sec 9.4.6.3.6] states

 The format of error reports to a ULP is implementation
 dependent. However, included in the report should be a value
 indicating the type of error, and some information to identify
 the associated data or datagram.

 The most natural way to provide the latter information would be to
 return the datagram identifier to the upper-level protocol, since
 this identifier is normally supplied by the sending ULP [MILS83a,
 sec 9.3.5]. However, the to_ULP data structure makes no provision
 for this information [MILS83a, sec 9.4.4.3], probably because this
 information is irrelevant for datagrams received from the
 subnetwork. Implementors may feel a need to add this field to the
 to_ULP data structure.

 5.5 Initialization of Data Structures

 The decision function reass_done [MILS83a, sec 9.4.6.2.6] makes
 the implicit assumption that data structures within each finite
 state machine are initialized to zero when the machine is created.
 In particular, this routine will not function properly unless
 state_vector.reassembly_map and state_vector.total_data_length are
 so initialized. Since this assumption is not stated explicitly,
 implementors should be aware of it. There may be other
 initialization assumptions that we have not discovered.

 5.6 Locally Defined Types

 The procedures error_to_source [MILS83a, sec 9.4.6.3.5] and
 error_to_ULP [MILS83a, sec 9.4.6.3.6] define enumeration types in
 comments. The former contains the comment

 error_param : (PARAM_PROBLEM, EXPIRED_TTL, PROTOCOL_UNREACH);

 and the latter

 error_param : (PARAM_PROBLEM, CAN’T_FRAGMENT, NET_UNREACH,
 PROTOCOL_UNREACH, PORT_UNREACH);

 These enumerated values are used before they are encountered
 [MILS83a, sec 9.4.6.1.1, sec 9.4.6.1.2, sec 9.4.6.1.3, et al.];
 implementors will probably wish to define some error type
 globally.

Sidhu [Page 16]

RFC 963 November 1985
Some Problems with MIL-STD IP

 5.7 Miscellaneous Difficulties

 The specification contains many Ada syntax errors, some of which
 have been shown above. We have only mentioned syntax errors
 above, however, when they occurred in conjunction with other
 problems. One of the main syntactic difficulties that we have not
 mentioned is that the specification frequently creates unnamed
 types, by declaring records within records; such declarations are
 legal in Pascal, but not in Ada [ADA83, sec 3.7].

 Another problem is that slice assignments frequently do not
 contain the same number of elements on the left and right sides,
 which will raise a run-time exception [ADA83, sec 5.2.1]. While
 we have mentioned some of these, there are others which are not
 enumerated above.

 In particular, the procedure error_to_source [MILS83a, sec
 9.4.6.3.5] contains the statement

 to_SNP.dtgm.data [8..N+3] := from_SNP.dtgm.data [0..N-1];

 We believe that N+3 is a misprint for N+8, but even so the left
 side contains one more byte than the right. Implementors should
 carefully check every slice assignment.

6. An Implementation of MIL Standard IP

 In our discussion above, we have pointed out several serious problems
 with the Military Standard IP [MILS83a] specification which must be
 corrected to produce a running implementation conforming to this
 standard. We have produced a running C implementation for the MIL
 Standard IP, after problems discussed above were fixed in the IP
 specification. An important feature of this implementation is that
 it was generated semi-automatically from the IP specification with
 the help of a protocol development system [BLUT82] [BLUT83] [SIDD83].
 Since this implementation was derived directly from the IP
 specification with the help of tools, it conforms to the IP standard
 better that any handed-coded IP implementation can do.

 The problems pointed out in this paper with the current specification
 of the MIL Standard IP [MILS83a] are based on an initial
 investigation of the protocol.

Sidhu [Page 17]

RFC 963 November 1985
Some Problems with MIL-STD IP

NOTES

 [1] Ada is a registered trademark of the U.S. Government - Ada Joint
 Program Office.

 [2] d indicates a "don’t care" condition.

ACKNOWLEDGEMENTS

 The author extends his gratitude to Tom Blumer Michael Breslin, Bob
 Pollack and Mark J. Vincenzes, for many helpful discussions. Thanks
 are also due to B. Simon and M. Bernstein for bringing to author’s
 attention a specification of the DoD Internet Protocol during 1981-82
 when a detailed study of this protocol began. The author is also
 grateful to Jon Postel and Carl Sunshine for several informative
 discussions about DoD IP/TCP during the last few years.

REFERENCES

 [ADA83] Military Standard Ada(R) Programming Language, United
 States Department of Defense, ANSI/MIL-STD-1815A-1983, 22
 January 1983

 [BLUT83] Blumer, T. P., and Sidhu, D. P., "Mechanical Verification
 and Automatic Implementation of Communication Protocols,"
 to appear in IEEE Trans. Softw. Eng.

 [BLUT82] Blumer, T. P., and Tenney, R. L., "A Formal Specification
 Technique and Implementation Method for Protocols,"
 Computer Networks, Vol. 6, No. 3, July 1982, pp. 201-217.

 [MILS83a] "Military Standard Internet Protocol," United States
 Department of Defense, MIL-STD-1777, 12 August 1983.

 [MILS83b] "Military Standard Transmission Control Protocol," United
 States Department of Defense, MIL-STD-1778, 12 August 1983.

 [POSJ81] Postel, J. (ed.), "DoD Standard Internet Protocol," Defense
 Advanced Research Projects Agency, Information Processing
 Techniques Office, RFC-791, September 1981.

 [SDC82] DCEC Protocol Standardization Program: Protocol
 Specification Report, System Development Corporation,
 TM-7172/301/00, 29 March 1982

 [SIDD83] Sidhu, D. P., and Blumer, T. P., "Verification of NBS Class
 4 Transport Protocol," to appear in IEEE Trans. Comm.

Sidhu [Page 18]

RFC 963 November 1985
Some Problems with MIL-STD IP

 [SIDD84] Sidhu, D. P., and Blumer, T. P., "Some Problems with the
 Specification of the Military Standard Transmission Control
 Protocol," in Protocol Specification, Testing and
 Verification IV, (ed.) Y. Yemini et al (1984).

Sidhu [Page 19]

