Net wor k Wor ki ng G oup Deepi nder P. Sidhu
Request for Conments: 963 lowa State University
Novenber 1985

SOME PROBLEMS W TH THE SPECI FI CATI ON OF THE
M LI TARY STANDARD | NTERNET PROTOCCL

STATUS OF TH'S MEMO

The purpose of this RFC is to provide hel pful information on the
Mlitary Standard Internet Protocol (ML-STD1777) so that one can
obtain a reliable inplementation of this protocol standard.
Distribution of this note is unlinited.

ABSTRACT

Thi s paper points out several significant problenms in the
specification of the MIlitary Standard Internet Protoco

(ML-STD- 1777, dated August 1983 [MLS83a]). These results are based
on an initial investigation of this protocol standard. The problens
are: (1) a failure to reassenble fragmented nessages conpletely; (2)
a mssing state transition; (3) errors in testing for reassenbly
conmpl etion; (4) errors in conputing fragnent sizes; (5) mnor errors
in message reassenbly; (6) incorrectly conputed length for certain
datagrans. This note al so proposes solutions to these problens.

1. Introduction

In recent years, much progress has been made in creating an
integrated set of tools for devel oping reliable comunication
protocols. These tools provide assistance in the specification
verification, inplenentation and testing of protocols. Severa
protocol s have been anal yzed and devel oped usi ng such tools.

Exanpl es of autonmated verification and inplenentation of several rea
worl d protocol s are discussed in [BLUT82] [BLUT83] [SIDD83] [SIDD84].

We are currently working on the autonmatic inplenentation of the
Mlitary Standard Internet Protocol (IP). This analysis will be
based on the published specification [MLS83a] of |IP dated 12 August
1983.

Whil e studying the ML Standard I P specification, we have noticed
nunerous errors in the specification of this protocol. One
consequence of these errors is that the protocol will never deliver
fragmented inconing datagrans; if this error is corrected, such
datagrans will be missing sone data and their lengths will be
incorrectly reported. In addition, outgoing datagrans that are
divided into fragnents will be m ssing some data. The proof of these
statenents follows fromthe specification of IP [MLS83a] as

di scussed bel ow

Si dhu [Page 1]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

2.

I nt er net Protocol

The Internet Protocol (IP) is a network |ayer protocol in the DoD
protocol hierarchy which provides conmnuni cati on across interconnected

packet -swi tched networks in an internetwork environment. |P provides
a pure datagram service with no nechanismfor reliability, flow
control, sequencing, etc. Instead, these features are provided by a

connection-oriented protocol, DoD Transm ssion Control Protocol (TCP)
[MLS83b], which is inplenented in the |ayer above IP. TCP is
designed to operate successfully over channels that are inherently
unreliable, i.e., which can | ose, danage, duplicate, and reorder
packets.

Over the years, DARPA has supported specifications of severa

versions of |IP;, the |ast one appeared in [P0OSJ81]. A few years ago,

t he Def ense Conmuni cati ons Agency decided to standardize |P for use
in DoD networks. For this purpose, the DCA supported fornal
specification of this protocol, follow ng the design discussed in

[PCSJ81] and the techni que and organi zation defined in [SDC82]. A
detail ed specification of this protocol, given in [MLS83a], has been
adopted as the DoD standard for the Internet Protocol

The specification of IP state transitions is organized into decision
tabl es; the decision functions and action procedures are specified in
a subset of Ada[1l], and may enploy a set of machine-specific data
structures. Decision tables are supplied for the pairs <state nane,
interface event> as follows: <inactive, send from upper |ayer>,
<inactive, receive fromlower |ayer> and <reassenbling, receive from
| ower layer> To provide an error indication in the case that sone
fragments of a datagram are received but some are nissing, a decision
table is also supplied for the pair <reassenbling, reassenbly tinme
limt elapsed> (The event nanes are English descriptions and not

t he nanes enpl oyed by [M LS83a].)

Problens with ML Standard |IP

One of the major functions of IPis the fragnmentati on of datagrans
that cannot be transmitted over a subnetwork in one piece, and their
subsequent reassenbly. The specification has several problens in
this area. One of the nost significant is the failure to insert the
| ast fragment of an inconing datagram this would cause datagrans to
be delivered to the upper-level protocol (ULP) with sone data

m ssing. Another error in this area is that an incorrect value of the
data length for reassenbl ed datagrans is passed to the ULP, with
unpr edi ct abl e consequences.

As the specification [MLS83a] is now witten, these errors are of

Si dhu [Page 2]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

little consequence, since the test for reassenbly conpletion will
always fail, with the result that reassenbl ed datagrans woul d never
be delivered at all.

In addition, a missing rowin one of the decision tables creates the
probl em that network control (ICMP) nessages that arrive in fragments
wi Il never be processed. Among the other errors are the possibility
that a few bytes will be discarded fromeach fragnent transnmtted and
certain statenents that will create run-tine exceptions instead of
performng their intended functions.

A general problemw th this specification is that the program

| anguage and action table portions of the specification were clearly
not checked by any automatic syntax checking process. Variable and
procedure nanes are occasionally msspelled, and the syntax of the
action statements is often incorrect. W have enunerated sone of

t hese problens bel ow as a set of cautionary notes to inplenentors,

but we do not claimto have listed themall. |In particular, syntax
errors are only discussed when they occur in conjunction wth other
pr obl ens.

The follow ng section discusses sone of the serious errors that we
have di scovered with the ML standard |P [ML83a] during our initial
study of this protocol. W also propose corrections to each of these
probl ens.

4. Detailed Discussion of the Problens
Problem 1. Failure to Insert Last Fragnent
This problem occurs in the decision table corresponding to the
state reassenbling and the input "receive fromlower |ayer"

[MLS83a, sec 9.4.6.1.3]. The problemoccurs in the follow ng row
of this table:[2]

check- SNP TTL wher e a reass | CvP
sum par ans valid to frag done check-
val i d? val i d? ? ? ? ? sunf
YES YES YES ULP YES YES d reass._
delivery;
state : =
I NACTI VE

The reass_done function, as will be seen below, returns YES if the

Si dhu [Page 3]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

fragment just received is the last fragment needed to assenble a
conmpl et e datagram and NO ot herwi se. The action procedure
reass_delivery sinply delivers a conpletely reassenbl ed dat agram
to the upper-level protocol. It is the action procedure
reassenbl e that inserts an inconming fragnent into the datagram
bei ng assenbled. Since this row does not call reassenble, the
result will be that every incom ng fragnmented datagramw || be
delivered to the upper layer with one fragnment m ssing. The
solution is to rewite this row of the table as foll ows:

check- SNP TTL wher e a reass | CvP

sum par ans valid to frag done check-

val i d? val i d? ? ? ? ? sunf?

YES YES YES ULP YES YES d reassenbl e;
reass._
delivery;
state : =

I NACTI VE

Incidentally, the menonic val ue of the name of the reass_done
function is questionable, since at the nmonent this function is
cal l ed datagram reassenbly cannot possibly have been conpleted. A
better name for this function m ght be | ast_fragnment.

Problem 2: Mssing State Transition

Si dhu

This problemis the onission of a row of the same decision table
[MLS83a, sec 9.4.6.1.3]. Inconing packets nmay be directed to an
upper-1level protocol (ULP), or they may be network contro
messages, which are marked | CVMP (Internet Control Message
Protocol). \Wien control nessages have been conpletely assenbl ed,
they are processed by an I P procedure called analyze. The

deci sion table contains the row

check- SNP TTL wher e a reass | CVMP
sum par ans valid to frag done check-
val i d? val i d? ? ? ? ? sunt?
YES YES YES | C\VP YES NO d reassenbl e;

[Page 4]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

but makes no provision for the case in which where_to returns
ICVMP, a frag returns YES, and reass_done returns YES. An
additional row should be inserted, which reads as foll ows:

check- SNP TTL wher e a reass | CvP

sum par ans valid to frag done check-

val i d? val i d? ? ? ? ? sunf?

YES YES YES | CvP YES YES d reassenbl e;
anal yze;
state : =

I NACTI VE

Onitting this row neans that inconing fragnented | CVP nessages
will never be analyzed, since the state machi ne does not have any
action specified when the last fragnment is received.

Problem 3: Errors in reass_done

Si dhu

The function reass_done, as can be seen fromthe above, deternines
whet her the incom ng subnetwork packet contains the |last fragnent
needed to conplete the reassenbly of an | P datagram In order to
understand the errors in this function, we nust first understand
how it enmploys its data structures.

The reassenbly of inconing fragnents is acconplished by neans of a
bit map maintai ned separately for each state nmachine. Since all
fragments are not necessarily the same length, each bit in the nmap
represents not a fragment, but a block, that is, a unit of eight
octets. Each fragment, with the possible exception of the "tail"
fragment (we shall define this termbelow), is an integral nunber
of consecutive blocks. Each fragnent’'s offset fromthe begi nning
of the datagramis given, in units of blocks, by a field in the
packet header of each inconing packet. The total |ength of each
fragment, including the fragment’s header, is specified in the
header field total length; this length is given in octets. The

| ength of the header is specified in the field header _length; this
length is given in words, that is, units of four octets.

In analyzing this subroutine, we nust distinguish between the
"tail" fragment and the "last" fragnent. W define the |ast
fragment as the one which is received last in time, that is, the
fragment that permts reassenbly to be conpleted. The tai
fragment is the fragnent that is spatially last, that is, the
fragment that is spatially located after any other fragnent. The

[Page 5]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Si dhu

I ength and of fset of the tail fragnment nake it possible to conpute
the length of the entire datagram This conputation is actually
done in the action procedure reassenbly, and the result is saved
in the state vector field total _data length; if the tail fragnent
has not been received, this value is assumed to be zero.

It is the task of the reass_done function [MLS83a, sec 9.4.6.2.6]
to determ ne whether the incomng fragment is the |ast fragment.
This determination is made as foll ows:

1) If the tail fragnent has not been received previously and
the incoming fragnent is not the tail fragnent, then return NO

2) Oherwise, if the tail fragnent has not been received, but
the incomng fragnment is the tail fragment, deterni ne whether
all fragnents spatially preceding the tail fragnent have al so
been received.

3) Oherwise, if the tail fragnent has been received earlier,
determ ne whether the incomng fragnent is the |ast one needed
to conplete reassenbly.

The eval uation of case (2) is acconplished by the foll ow ng
st at ment :

if (state_vector.reassenbly map fromO to
(((fromSNP.dtgmtotal length -
(from SNP. dt gm header _length * 4) + 7) / 8)
+ 7) | 8 is set)
then return YES;

The doubl e occurrence of the subexpression ™ + 7) [/ 8" is
apparently a misprint. The function f(x) = (x +7) / 8 will
convert x fromoctets to bl ocks, rounding any renai nder upward.
There is no need for this function to be performed twice. The
second problemis that the fragment_offset field of the inconing
packet is ignored. The tail fragnent specifies only its own

I ength, not the length of the entire datagram to determ ne the
latter, the tail fragment’'s offset nust be added to the tai
fragment’s own length. The third probl em hinges on the neani ng of
the English "... from... to ..." phrase. |If this phrase has the
same nmeaning as the ".." range indication in Ada [ADA83, sec 3.6],
that is, includes both the upper and | ower bounds, then it is
necessary to subtract 1 fromthe final expression

The expression following the word to, above, should thus be
changed to read

[Page 6]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Si dhu

from SNP. dt gm fragnment _of fset +
((fromSNP.dtgmtotal length -
(from SNP. dt gm header length * 4) +7) / 8) - 1

Anot her serious problemwth this routine occurs when eval uating
case (3). In this case, the relevant statenent is

if (all reassenbly map fromO to
(state_vector.total _data length + 7)/8 is set
then return YES

If the tail fragnent was received earlier, the code asks, in
effect, whether all the bits in the reassenbly map have been set.
This, however, will not be the case even if the incom ng fragnent
is the last fragnent, since the routine reassenbly, which actually
sets these bits, has not yet been called for this fragnent. This
statement nust therefore skip the bits corresponding to the
inconming fragment. In specifying the range to be tested,

al | owance must be made for whether these bits fall at the

begi nning of the bit map or in the mddle (the case where they
fall at the end has already been tested). The statenent nust

t heref ore be changed to read

if fromSNP.dtgmfragnment_offset = 0 then

if (all reassenbly map from

from SNP. dt gm fragnent _of fset +

((fromSNP.dtgmtotal length -
from SNP. dt gm header _length * 4) + 7) / 8

to ((state vector.total _data length + 7) / 8 - 1) is set)
then return YES;
el se return NQ
end if;

el se
if (all reassenbly map fromO to
(from SNP. dtgm fragnent _offset - 1) is set)
and (all reassenbly map from
from SNP. dt gm fragnent _of fset +
((fromSNP.dtgmtotal length -
from SNP. dt gm header _length * 4) + 7) / 8
to ((state vector.total _data length + 7) / 8 - 1) is set)
then return YES;
el se return NQ
end if;
end if;

[Page 7]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Note that here again it is necessary to subtract 1 fromthe upper
bound.

Problem 4: Errors in fragment_and_send

Si dhu

The action procedure fragment_and_send [M LS83a, sec 9.4.6.3.7] is
used to break up datagrans that are too large to be sent through
the subnetwork as a single packet. The specification requires
[MLS83a sec 9.2.2, sec 9.4.6.3.7] each fragnent, except possibly
the "tail" fragnent, to contain a whol e nunber of 8-octet groups
(called "blocks"); noreover, each fragnment nmust begin at a bl ock
boundary.

In the algorithmset forth in fragnent_and_send, all fragnments
except the tail fragnent are set to the sanme size; the procedure
begins by calculating this size. This is done by the follow ng
st at ement :

dat a_per_fragnment := maxi nrum subnet transm ssion unit
- (20 + nunber of bytes of option data);

Besides the failure to allow for header padding, which is
di scussed in the next section, this statement nakes the serious
error of not assuring that the result is an integral multiple of

the block size, i.e., a nultiple of eight octets. The consequence
of this would be that as nmany as seven octets per fragnent woul d
never be sent at all. To correct this problem and to allow for

header paddi ng, this statenment nust be changed to

dat a_per_fragnment := (nmaximum subnet transm ssion unit
- (((20 + nunber of bytes of option data)+3)/4*4)/8*8;

Anot her problemin this procedure is the failure to provide for
the case in which the Iength of the data is an exact nultiple of
eight. The procedure contains the statenents

nunber _of fragnments := (fromULP.length +
(data_per_fragnment - 1)) / data_per_fragnent;

data_in_ last frag := from ULP. | ength nodul o data_per_fragnent;
(Note that in our term nology we would renane data_in_last _frag as
data_in_tail _frag; notice, also, that the proper spelling of the
Ada operator is nod [ADA83, sec 4.5.5].)
If data_in last frag is zero, sone serious difficulties arise.
One result mght be that the datagramwi |l be broken into one nore

[Page 8]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Si dhu

fragment than necessary, with the tail fragnent containing no data
bytes. The assignnment of data into the tail fragnment will succeed
even though it will now take the form

output _data [i..i-1] := input_data [j..]-1];

because Ada nmakes provision for so-called "null slices" [ADA83,
sec 4.1.2] and will treat this assignment as a no-op [ADA83, sec
5.2.1].

Thi s does, however, cause the transnission of an unnecessary
packet, and also creates difficulties for the reassenbly
procedure, which nmust now be prepared to handl e enpty packets, for
whi ch not even one bit of the reassenbly map shoul d be set.
Moreover, as the procedure is now witten, even this will not
occur. This is because the calculation of the nunber of fragnents
is incorrect.

A nunerical exanple will clarify this point. Suppose that the
total datagramlength is 16 bytes and that the nunber of bytes per
fragment is to be 8. Then the above statenents will conpute
nunber _of fragnments = (16 + 7)/8 = 2 and data_in_last frag = 16
nod 8 = 0. The result of the inconsistency between
nunber _of fragments and data_in_last _frag will be that instead of
sending three fragnments, of lengths 8, 8, and 0, the procedure
will send only two fragnents, of lengths 8 and 0; the |ast eight
octets will never be sent.

To avoid these difficulties, the specification should add the
following statement, inmediately after conputing
data_in_last_frag:

if data_in_last frag = 0 then
data_in_last frag := data_per_fragnent;
end if;

This procedure al so contains several mnor errors. |In addition to
failures to account for packet header paddi ng, which are
enunerated in the next section, there is a failure to convert the
header | ength fromwords (four octets) to octets in one statenent.
This statenent, which calculates the total Iength of the non-tai
fragments, is

to_SNP.dtgmtotal length := to_SNP.dtgm header | ength
+ data_per _fragnent;

[Page 9]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Since header length is expressed in wunits of words, this
statement should read

to SNP.dtgmtotal length := to _SNP.dtgm header |length * 4
+ data_per _fragnent;

This is apparently no nore than a msprint, since the
correspondi ng cal culation for the tail fragnent is done correctly.

Problem 5: Errors in reassenbly

Si dhu

The action procedure reassenbly [MLS83a, sec 9.4.6.3.9], which is
referred to as reassenbl e el sewhere in the specification [MLS83a,
sec 9.4.6.1.2, sec 9.4.6.1.3], inserts an inconmng fragnment into a
dat agram bei ng reassenbl ed. This procedure contai ns severa
relatively minor errors

In two places in this procedure, a range is witten to contain one
nmore nmenber than it ought to have. In the first, data fromthe
fragment is to be inserted into the datagram bei ng reassenbl ed:

state_vector.data [from SNP.dtgm fragnment _offset*8 .
from SNP.dtgm fragnment _offset*8 + data_in frag] :=
from SNP.dtgmdata [0..data_in_frag-1];

In this statenent, the slice on the |left contains one nore byte
than the slice on the right. This will cause a run-tine exception
to be raised [ADAB3, sec 5.2.1]. The statenent should read

state_vector.data [from SNP.dtgm fragment_offset*8 .
from SNP.dtgm fragnment _offset*8 + data_in_frag - 1] :=
from SNP.dtgm data [0..data_in_frag-1];

A simlar problemoccurs in the conputation of the range of bits
in the reassenbly nap that corresponds to the incom ng fragnent.
Thi s statement begins

for j in (from SNP.dtgm fragment _of fset)
((from SNP.dtgm fragnent _offset +
data_in frag + 7)/8) |oop

Not only are the parentheses in this statenent |ocated incorrectly
(because the function f(x) = (x + 7) / 8 should be executed only
on the argunment data_in_frag), but also this range contains one
extra nenber. The statenent should read

[Page 10]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

Si dhu

for j in (from SNP.dtgm fragment _of fset)
(from SNP.dtgm fragnment _of fset +
(data_in frag + 7)/8) - 1 |loop

Note that if the statement is corrected in this manner it wll
al so handl e the case of a zero-length fragnment, nentioned above,
since the loop will not be executed even once [ADA83, sS 5.5].

Anot her m nor problem occurs when this procedure attenpts to save
the header of the leading fragment. The relevant statenent is

state_vector. header := from SNP.dtgm

This statenent attenpts to transfer the entire incom ng fragnment
into a record that is big enough to contain only the header. The
result, in Ada, is not truncation, but a run-tinme exception

[ADAB3, sec 5.2]. The correction should be something Iike

state_vector. header := from SNP. dt gm header;

This correction cannot be made wi thout al so defining the header
portion of the datagram as a subrecord in [MLS83a, sec 9.4.4.6];
such a definition would al so necessitate changi ng nany ot her
statements. For exanple, from SNP.dtgm fragnent _of f set woul d now
have to be witten as from SNP. dt gm header. fragment _of f set.

Anot her possible solutionis to wite the above statenent as a
series of assignments for each field in the header, in the

foll owi ng fashion:

state_vector. header.version : =
from SNP. dt gm ver si on;
state_vector. header. header _length : =
from SNP. dt gm header | ength
state_vector. header.type_of service : =
from SNP. dt gm t ype_of service

-- etc.
Note al so that this procedure will fail if an incom ng fragnent,
other than the tail fragment, does not contain a nultiple of eight
characters. |Inplenmentors nust be careful to check for this in the

deci sion function SNP_parans_valid [MLS83a, sec 9.4.6.2.7].

[Page 11]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

5.

Si dhu

Problem 6: Incorrect Data Length for Fragnented Datagrans

The procedure reassenbl ed delivery [MLS83a, sec 9.4.6.3.10] does
not deliver the proper data length to the upper-1Ievel protocol
This is because the assignnment is

to ULP.length := state_vector. header.total _| ength
- state_vector. header. header | ength * 4;

The fields in state_vector. header have been filled in by the
reassenbly procedure, discussed above, by copying the header of
the leading fragment. The field total _length in this fragment,
however, refers only to this particular fragnent, and not to the
entire datagram (this is not entirely clear fromit definition in
[MLS83a, sec 9.3.4], but the fragnment_and _send procedure
[MLS83a, sec 9.4.6.3.7] insures that this is the case).

The I ength of the entire datagram can only be conputed fromthe

I ength and of fset of the tail fragment. This conputation is
actually done in the reassenbly procedure [M LS83a, sec
9.4.6.3.9], and the result saved in state vector.total data | ength
(see above). It is inpossible, however, for reassenbly to fill in
state vector. header.total length at this tine, because
state_vector. header. header _length is filled in fromthe | ead
fragment, which may not yet have been received

Theref ore, reassenbl ed delivery nust replace the above statenent
with

to ULP.length := state_vector.total data_l ength;
The consequence of |leaving this error uncorrected is that the

upper-1level protocol will be infornmed only of the delivery of as
many octets as there are in the |lead fragnent.

I mpl ementation Difficulties of ML Standard IP

In addition to the problens discussed above, there are severa
features of the ML standard IP specification [MLS83a] which lead to
difficulties for the inplenentor. These difficulties, while not
actually errors in the specification, take the formof assunptions
which are not explicitly stated, but of which inplenmentors nust be
awar e.

[Page 12]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

5.1 Header Padding

Si dhu

In several places, the specification nakes a conputation of the

I ength of a packet header without explicitly allow ng for padding.
The padding i s needed because the specification requires [M LS83a,
sec 9.3.14] that each header end on a 32-bit boundary.

One place this problemarises is in the need_to _frag decision
function [MLS83a, sec 9.4.6.2.5]. This function is used to
det ermi ne whether fragnentation is required for an outgoi ng
datagram It consists of the single statenent

if ((fromULP.length + (nunber of bytes of option data)
+ 20) > maxi mum transm ssion unit of the | ocal subnetwork
then return YES
el se return NO
end if;

(A minor syntax error results fromnot terminating the first
return statenent with a senicol on [ADA83, sec 5.1, sec 5.3, sec
5.9].) In order to allow for padding, the expression for the

| ength of the outgoing datagram shoul d be

(((fromULP.length + (nunber of bytes of option data) + 20)
+ 3)/4 * 4)

Anot her place that this problemarises is in the action procedure
build and _send [M LS83a, sec 9.4.6.3.2], which prepares
unfragment ed datagranms for transnission. To conpute the header
field header_length, which is expressed in words, i.e., units of
four octets [MLSB3a, sec 9.3.2], this procedure contains the

st at enent

to_SNP.dtgm header length := 5 +
(nunber of bytes of option data)/4;

In order to allow for padding, this statenment should read

to_SNP. dt gm header | ength : =
5 + ((nunber of bytes of option data)+3)/4;

The identical statenent appears in the action procedure
fragment _and_send [M LS83a, sec 9.4.6.3.7], which prepares
dat agram fragnents for transm ssion, and requires the sane
correction.

[Page 13]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

The procedure fragment _and_send al so has this problemin two other

places. In the first, the nunber of octets in each fragnent is
conput ed by
data_per _fragnment := maxi nrum subnet transm ssion unit

- (20 + nunber of bytes of option data);
In order to allow for padding, this statenent should read

data_per_fragnent := maxi nrum subnet transm ssion unit
- (((20 + nunber of bytes of option data)+3)/4*4);

(Actually, this statement nust be changed to

data_per _fragnent := (nmaxi num subnet transm ssion unit
- (((20 + nunber of bytes of option data)+3)/4*4)/8*8;

in order to acconplish its intended purpose, for reasons which
have been di scussed above.)

A simlar problemoccurs in the statenent which conputes the
header |ength for individual fragnents:

to_SNP.dtgm header _length := 5 +
(number of copy options octets/4);

To allow for padding, this should be changed to

to_SNP.dtgm header length := 5 +
(nunber of copy options octets+3/4);

Notice that all of these errors can also be corrected if the
Engl i sh phrase "nunber of bytes of option data", and sinilar
phrases, are always understood to include any necessary paddi ng.

5.2 Subnetworks with Small Transmni ssion Sizes

Si dhu

When an outgoing datagramis too large to be transnmitted as a
singl e packet, it nust be fragnented. On certain subnetworks, the
possibility exists that the nmaxi rum nunber of bytes that nay be
transmitted at a tinme is less than the size of an | P packet header
for a given datagram In this case, the datagram cannot be sent,
even in fragnented form Note that this does not necessarily nean
that the subnetwork cannot send any datagrans at all, since the
size of the header may be highly variable. Wen this problem
arises, it should be detected by IP. The proper place to detect
this situation is in the function can_frag.

[Page 14]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

The can_frag decision function [MLS83a, sec 9.4.6.2.2] is used to
determ ne whether a particul ar outgoi ng datagram which is too
long to be transnmitted as a single fragnment, is allowed to be
fragmented. In the current specification, this function consists
of the single statenent

if (fromULP.dont_fragment = TRUE)
then return NO

el se return YES

end if;

(A minor syntax error is that the return statenments should be
term nated by sem col ons; see [ADA83, sec 5.1, sec 5.3, sec 5.9].)

If the above problem occurs, the procedure fragnent_and _send wil|l
obtai n negative nunbers for fragnent sizes, with unpredictable
results. This should be prevented by assuring that the subnetwork
can send the datagram header and at |east one bl ock (eight octets)
of data. The can_frag function should be recoded as

if ((8 + ((nunber of bytes of option data)+3)/4*4 + 20)
> maxi mum transmni ssion unit of the |ocal subnetwork)
then return NO
elsif (fromULP.dont_fragment = TRUE)
then return NO
el se return YES
end if;

This is simlar to the logic of the function need to frag,
di scussed above.

5.3 Subnetwork Interface

Si dhu

Provision is nade for the subnetwork to report errors to I P
[MLS83a, sec 6.3.6.2], but no provision is nade for the IP entity
to take any action when such errors occur

In addition, the specification [MLS83a, sec 8.2.1.1] calls for
the subnetwork to accept type-of-service indicators (precedence,
reliability, delay, and throughput), which may be difficult to

i mpl ement on many | ocal networKks.

[Page 15]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

5.4 ULP Errors

5.5

The I P specification [MLS83a, sec 9.4.6.3.6] states

The format of error reports to a ULP is inplenentation
dependent. However, included in the report should be a val ue
indicating the type of error, and sone information to identify
the associ ated data or datagram

The nost natural way to provide the latter infornmation would be to
return the datagramidentifier to the upper-Ilevel protocol, since
this identifier is normally supplied by the sending ULP [M LS83a,
sec 9.3.5]. However, the to_ULP data structure nmakes no provision
for this information [MLS83a, sec 9.4.4.3], probably because this
information is irrelevant for datagrans received fromthe
subnetwork. I nplenentors nay feel a need to add this field to the
to ULP data structure

Initialization of Data Structures

The decision function reass_done [MLS83a, sec 9.4.6.2.6] nakes
the inplicit assunption that data structures within each finite
state machine are initialized to zero when the nmachine is created
In particular, this routine will not function properly unless
state_vector.reassenbly map and state_vector.total _data | ength are
so initialized. Since this assunption is not stated explicitly,

i npl ementors should be aware of it. There may be other
initialization assunptions that we have not di scovered.

5.6 Locally Defined Types

Si dhu

The procedures error_to_source [MLS83a, sec 9.4.6.3.5] and
error_to ULP [MLS83a, sec 9.4.6.3.6] define enuneration types in
comments. The forner contains the coment

error_param : (PARAM PROBLEM EXPI RED_TTL, PROTOCOL_UNREACH)
and the latter

error_param : (PARAM PROBLEM CAN T_FRAGVENT, NET_UNREACH
PROTOCOL_UNREACH, PORT_UNREACH)

These enunerated val ues are used before they are encountered
[MLS83a, sec 9.4.6.1.1, sec 9.4.6.1.2, sec 9.4.6.1.3, et al.];
i mpl ementors will probably wish to define sone error type

gl obal |l y.

[Page 16]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

5.7 Mscellaneous Difficulties

The specification contains nany Ada syntax errors, sone of which
have been shown above. W have only nentioned syntax errors
above, however, when they occurred in conjunction with other
problems. One of the main syntactic difficulties that we have not
mentioned is that the specification frequently creates unnaned
types, by declaring records within records; such declarations are
I egal in Pascal, but not in Ada [ADA83, sec 3.7].

Anot her problemis that slice assignnments frequently do not
contain the sane nunber of elenents on the left and right sides,
which will raise a run-tinme exception [ADA83, sec 5.2.1]. Wile
we have nentioned sonme of these, there are others which are not
enuner at ed above.

In particular, the procedure error_to source [MLS83a, sec
9.4.6.3.5] contains the statenent

to_SNP.dtgmdata [8..N+3] := from SNP.dtgmdata [0..N-1];

We believe that N3 is a misprint for N+8, but even so the left
side contains one nore byte than the right. Inplenentors should
carefully check every slice assignnment.

6. An Inplenentation of ML Standard IP

In our discussion above, we have pointed out several serious problens
with the Mlitary Standard I P [M LS83a] specification which nmust be
corrected to produce a running inplenmentation conformng to this
standard. We have produced a running C inplenmentation for the ML
Standard I P, after problens discussed above were fixed in the IP
specification. An inportant feature of this inplenentation is that
it was generated semi-automatically fromthe | P specification with
the hel p of a protocol devel opment system [BLUT82] [BLUT83] [S| DD83].
Since this inplenmentation was derived directly fromthe IP
specification with the help of tools, it conforns to the I P standard
better that any handed-coded I P inplenentation can do.

The problens pointed out in this paper with the current specification

of the ML Standard IP [MLS83a] are based on an initial
i nvestigation of the protocol

Si dhu [Page 17]

RFC 963 Novenber 1985
Sone Problens with ML-STD I P

NOTES

[1] Ada is a registered trademark of the U S. Governnent - Ada Joint
Program O fi ce.

[2] d indicates a "don’t care" condition.
ACKNON.EDGEMENTS

The aut hor extends his gratitude to Tom Bl uner M chael Breslin, Bob
Pol l ack and Mark J. Vincenzes, for many hel pful discussions. Thanks
are also due to B. Sinon and M Bernstein for bringing to author’s
attention a specification of the DoD Internet Protocol during 1981-82
when a detailed study of this protocol began. The author is also
grateful to Jon Postel and Carl Sunshine for several informative

di scussi ons about DoD I P/ TCP during the |ast few years.

REFERENCES

[ADA83] Mlitary Standard Ada(R) Progranm ng Language, United
States Departnent of Defense, ANSI/M L-STD 1815A- 1983, 22
January 1983

[BLUT83] Blumer, T. P., and Sidhu, D. P., "Mechanical Verification
and Automatic | nplenentation of Communication Protocols,"
to appear in | EEE Trans. Softw. Eng.

[BLUT82] Blunmer, T. P., and Tenney, R L., "A Fornmal Specification
Techni que and | npl ementation Method for Protocols,"
Conputer Networks, Vol. 6, No. 3, July 1982, pp. 201-217.

[MLS83a] "MIlitary Standard Internet Protocol,” United States
Department of Defense, ML-STD 1777, 12 August 1983.

[MLS83b] "MIlitary Standard Transm ssion Control Protocol," United
States Department of Defense, ML-STD 1778, 12 August 1983.

[PCSJ81] Postel, J. (ed.), "DoD Standard Internet Protocol,"” Defense
Advanced Research Projects Agency, Information Processing
Techni ques O fice, RFC 791, Septenber 1981.

[SDC82] DCEC Protocol Standardizati on Program Protocol
Speci fication Report, System Devel opnent Corporati on,
TM 7172/ 301/ 00, 29 March 1982

[SIDD83] Sidhu, D. P., and Bluner, T. P., "Verification of NBS O ass
4 Transport Protocol," to appear in | EEE Trans. Conm

Si dhu [Page 18]

RFC 963

Novenber 1985

Sone Problens with ML-STD I P

[SI DDB4]

Si dhu

Sidhu, D. P., and Bluner, T. P., "Some Problens with the
Specification of the Mlitary Standard Transm ssion Control
Protocol ," in Protocol Specification, Testing and
Verification IV, (ed.) Y. Yenini et al (1984).

[Page 19]

