
Network Working Group David D. Clark
Request for Comments: 969 Mark L. Lambert
 Lixia Zhang
 M. I. T. Laboratory for Computer Science
 December 1985

 NETBLT: A Bulk Data Transfer Protocol

1. STATUS OF THIS MEMO

 This RFC suggests a proposed protocol for the ARPA-Internet
 community, and requests discussion and suggestions for improvements.
 This is a preliminary discussion of the NETBLT protocol. It is
 published for discussion and comment, and does not constitute a
 standard. As the proposal may change, implementation of this
 document is not advised. Distribution of this memo is unlimited.

2. INTRODUCTION

 NETBLT (Network Block Transfer) is a transport level protocol
 intended for the rapid transfer of a large quantity of data between
 computers. It provides a transfer that is reliable and flow
 controlled, and is structured to provide maximum throughput over a
 wide variety of networks.

 The protocol works by opening a connection between two clients the
 sender and the receiver), transferring the data in a series of large
 data aggregates called buffers, and then closing the connection.
 Because the amount of data to be transferred can be arbitrarily
 large, the client is not required to provide at once all the data to
 the protocol module. Instead, the data is provided by the client in
 buffers. The NETBLT layer transfers each buffer as a sequence of
 packets, but since each buffer is composed of a large number of
 packets, the per-buffer interaction between NETBLT and its client is
 far more efficient than a per-packet interaction would be.

 In its simplest form, a NETBLT transfer works as follows. The
 sending client loads a buffer of data and calls down to the NETBLT
 layer to transfer it. The NETBLT layer breaks the buffer up into
 packets and sends these packets across the network in Internet
 datagrams. The receiving NETBLT layer loads these packets into a
 matching buffer provided by the receiving client. When the last
 packet in the buffer has been transmitted, the receiving NETBLT
 checks to see that all packets in that buffer have arrived. If some
 packets are missing, the receiving NETBLT requests that they be
 resent. When the buffer has been completely transmitted, the
 receiving client is notified by its NETBLT layer. The receiving
 client disposes of the buffer and provides a new buffer to receive
 more data. The receiving NETBLT notifies the sender that the buffer
 arrived, and the sender prepares and sends the next buffer in the

Clark & Lambert & Zhang [Page 1]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 same manner. This continues until all buffers have been sent, at
 which time the sender notifies the receiver that the transmission has
 been completed. The connection is then closed.

 As described above, the NETBLT protocol is "lock-step"; action is
 halted after a buffer is transmitted, and begins again after
 confirmation is received from the receiver of data. NETBLT provides
 for multiple buffering, in which several buffers can be transmitted
 concurrently. Multiple buffering makes packet flow essentially
 continuous and can improve performance markedly.

 The remainder of this document describes NETBLT in detail. The next
 sections describe the philosophy behind a number of protocol
 features: packetization, flow control, reliability, and connection
 management. The final sections describe the protocol format.

3. BUFFERS AND PACKETS

 NETBLT is designed to permit transfer of an essentially arbitrary
 amount of data between two clients. During connection setup the
 sending NETBLT can optionally inform the receiving NETBLT of the
 transfer size; the maximum transfer length is imposed by the field
 width, and is 2**32 bytes. This limit should permit any practical
 application. The transfer size parameter is for the use of the
 receiving client; the receiving NETBLT makes no use of it. A NETBLT
 receiver accepts data until told by the sender that the transfer is
 complete.

 The data to be sent must be broken up into buffers by the client.
 Each buffer must be the same size, save for the last buffer. During
 connection setup, the sending and receiving NETBLTs negotiate the
 buffer size, based on limits provided by the clients. Buffer sizes
 are in bytes only; the client is responsible for breaking up data
 into buffers on byte boundaries.

 NETBLT has been designed and should be implemented to work with
 buffers of arbitrary size. The only fundamental limitation on buffer
 size should be the amount of memory available to the client. Buffers
 should be as large as possible since this minimizes the number of
 buffer transmissions and therefore improves performance.

 NETBLT is designed to require a minimum of its own memory, allowing
 the client to allocate as much memory as possible for buffer storage.
 In particular, NETBLT does not keep buffer copies for retransmission
 purposes. Instead, data to be retransmitted is recopied directly

Clark & Lambert & Zhang [Page 2]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 from the client buffer. This does mean that the client cannot
 release buffer storage piece by piece as the buffer is sent, but this
 has not proved a problem in preliminary NETBLT implementations.

 Buffers are broken down by the NETBLT layer into sequences of DATA
 packets. As with the buffer size, the packet size is negotiated
 between the sending and receiving NETBLTs during connection setup.
 Unlike buffer size, packet size is visible only to the NETBLT layer.

 All DATA packets save the last packet in a buffer must be the same
 size. Packets should be as large as possible, since in most cases
 (including the preliminary protocol implementation) performance is
 directly related to packet size. At the same time, the packets
 should not be so large as to cause Internet fragmentation, since this
 normally causes performance degrada- tion.

 All buffers save the last buffer must be the same size; obviously the
 last buffer can be any size required to complete the transfer. Since
 the receiving NETBLT does not know the transfer size in advance, it
 needs some way of identifying the last packet in each buffer. For
 this reason, the last packet of every buffer is not a DATA packet but
 rather an LDATA packet. DATA and LDATA packets are identical save
 for the packet type.

4. FLOW CONTROL

 NETBLT uses two strategies for flow control, one internal and one at
 the client level.

 The sending and receiving NETBLTs transmit data in buffers; client
 flow control is therefore at a buffer level. Before a buffer can be
 transmitted, NETBLT confirms that both clients have set up matching
 buffers, that one is ready to send data, and that the other is ready
 to receive data. Either client can therefore control the flow of
 data by not providing a new buffer. Clients cannot stop a buffer
 transfer while it is in progress.

 Since buffers can be quite large, there has to be another method for
 flow control that is used during a buffer transfer. The NETBLT layer
 provides this form of flow control.

 There are several flow control problems that could arise while a
 buffer is being transmitted. If the sending NETBLT is transferring
 data faster than the receiving NETBLT can process it, the receiver’s
 ability to buffer unprocessed packets could be overflowed, causing
 packets to be lost. Similarly, a slow gateway or intermediate
 network could cause packets to collect and overflow network packet

Clark & Lambert & Zhang [Page 3]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 buffer space. Packets will then be lost within the network,
 degrading performance. This problem is particularly acute for NETBLT
 because NETBLT buffers will generally be quite large, and therefore
 composed of many packets.

 A traditional solution to packet flow control is a window system, in
 which the sending end is permitted to send only a certain number of
 packets at a time. Unfortunately, flow control using windows tends
 to result in low throughput. Windows must be kept small in order to
 avoid overflowing hosts and gateways, and cannot easily be updated,
 since an end-to-end exchange is required for each change.

 To permit high throughput over a variety of networks and gateways of
 differing speeds, NETBLT uses a novel flow control ethod: rate
 control. The transmission rate is negotiated by the sending and
 receiving NETBLTs during connection setup and after each buffer
 transmission. The sender uses timers, rather than messages from the
 receiver, to maintain the negotiated rate.

 In its simplest form, rate control specifies a minimum time period
 per packet transmission. This can cause performance problems for
 several reasons: the transmission time for a single packet is very
 small, frequently smaller than the granularity of the timing
 mechanism. Also, the overhead required to maintain timing mechanisms
 on a per packet basis is relatively high, which degrades performance.

 The solution is to control the transmission rate of groups of
 packets, rather than single packets. The sender transmits a burst of
 packets over negotiated interval, then sends another burst. In this
 way, the overhead decreases by a factor of the burst size, and the
 per-burst transmission rate is large enough that timing mechanisms
 will work properly. The NETBLT’s rate control therefore has two
 parts, a burst size and a burst rate, with (burst size)/(burst rate)
 equal to the average transmission rate per packet.

 The burst size and burst rate should be based not only on the packet
 transmission and processing speed which each end can handle, but also
 on the capacities of those gateways and networks intermediate to the
 transfer. Following are some intuitive values for packet size,
 buffer size, burst size, and burst rate.

 Packet sizes can be as small as 128 bytes. Performance with packets
 this small is almost always bad, because of the high per-packet
 processing overhead. Even the default Internet Protocol packet size
 of 576 bytes is barely big enough for adequate performance. Most

Clark & Lambert & Zhang [Page 4]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 networks do not support packet sizes much larger than one or two
 thousand bytes, and packets of this size can also get fragmented when
 traveling over intermediate networks, degrading performance.

 The size of a NETBLT buffer is limited only by the amount of memory
 available to a client. Theoretically, buffers of 100K bytes or more
 are possible. This would mean the transmission of 50 to 100 packets
 per buffer.

 The burst size and burst rate are obviously very machine dependent.
 There is a certain amount of transmission overhead in the sending and
 receiving machines associated with maintaining timers and scheduling
 processes. This overhead can be minimized by sending packets in
 large bursts. There are also limitations imposed on the burst size
 by the number of available packet buffers. On most modern operating
 systems, a burst size of between five and ten packets should reduce
 the overhead to an acceptable level. In fact, a preliminary NETBLT
 implementation for the IBM PC/AT sends packets in bursts of five. It
 could send more, but is limited by available memory.

 The burst rate is in part determined by the granularity of the
 sender’s timing mechanism, and in part by the processing speed of the
 receiver and any intermediate gateways. It is also directly related
 to the burst size. Burst rates from 60 to 100 milliseconds have been
 tried on the preliminary NETBLT implementation with good results
 within a single local-area network. This value clearly depends on
 the network bandwidth and packet buffering available.

 All NETBLT flow control parameters (packet size, buffer size, burst
 size, and burst rate) are negotiated during connection setup. The
 negotiation process is the same for all parameters. The client
 initiating the connection (the active end) proposes and sends a set
 of values for each parameter with its open connection request. The
 other client (the passive end) compares these values with the
 highest-performance values it can support. The passive end can then
 modify any of the parameters only by making them more restrictive.
 The modified parameters are then sent back to the active end in the
 response message. In addition, the burst size and burst rate can be
 re-negotiated after each buffer transmission to adjust the transfer
 rate according to the performance observed from transferring the
 previous buffer. The receiving end sends a pair of burst size and
 burst rate values in the OK message. The sender compares these
 values with the values it can support. Again, it may then modify any
 of the parameters only by making them more restrictive. The modified
 parameters are then communicated to the receiver in a NULL-ACK
 packet, described later.

Clark & Lambert & Zhang [Page 5]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 Obviously each of the parameters depend on many factors-- gateway and
 host processing speeds, available memory, timer granularity--some of
 which cannot be checked by either client. Each client must therefore
 try to make as best a guess as it can, tuning for performance on
 subsequent transfers.

5. RELIABILITY

 Each NETBLT transfer has three stages, connection setup, data
 transfer, and connection close. Each stage must be completed
 reliably; methods for doing this are described below.

 5.1. Connection Setup

 A NETBLT connection is set up by an exchange of two packets
 between the active client and the passive client. Note that
 either client can send or receive data; the words "active" and
 "passive" are only used to differentiate the client initiating the
 connection process from the client responding to the connection
 request. The first packet sent is an OPEN packet; the passive end
 acknowledges the OPEN packet by sending a RESPONSE packet. After
 these two packets have been exchanged, the transfer can begin.

 As discussed in the previous section, the OPEN and RESPONSE
 packets are used to negotiate flow control parameters. Other
 parameters used in the transfer of data are also negotiated.
 These parameters are (1) the maximum number of buffers that can be
 sending at any one time (this permits multiple buffering and
 higher throughput) and (2) whether or not DATA/LDATA packet data
 will be checksummed. NETBLT automatically checksums all
 non-DATA/LDATA packets. If the negotiated checksum flag is set to
 TRUE (1), both the header and the data of a DATA/LDATA packet are
 checksummed; if set to FALSE (0), only the header is checksummed.
 NETBLT uses the same checksumming algorithm as TCP uses.

 Finally, each end transmits its death-timeout value in either the
 OPEN or the RESPONSE packet. The death-timeout value will be used
 to determine the frequency with which to send KEEPALIVE packets
 during idle periods of an opened connection (death timers and
 KEEPALIVE packets are described in the following section).

 The active end specifies a passive client through a
 client-specific "well-known" 16 bit port number on which the
 passive end listens. The active end identifies itself through a
 32 bit Internet address and a 16 bit port number.

 In order to allow the active and passive ends to communicate

Clark & Lambert & Zhang [Page 6]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 miscellaneous useful information, an unstructured, variable-
 length field is provided in OPEN and RESPONSE messages for an
 client-specific information that may be required.

 Recovery for lost OPEN and RESPONSE packets is provided by the use
 of timers. The active end sets a timer when it sends an OPEN
 packet. When the timer expires, another OPEN packet is sent, until
 some pre-determined maximum number of OPEN packets have been sent.
 A similar scheme is used for the passive end when it sends a
 RESPONSE packet. When a RESPONSE packet is received by the active
 end, it clears its timer. The passive end’s timer is cleared
 either by receipt of a GO or a DATA packet, as described in the
 section on data transfer.

 To prevent duplication of OPEN and RESPONSE packets, the OPEN
 packet contains a 32 bit connection unique ID that must be
 returned in the RESPONSE packet. This prevents the initiator from
 confusing the response to the current request with the response to
 an earlier connection request (there can only be one connection
 between any two ports). Any OPEN or RESPONSE packet with a
 destination port matching that of an open connection has its
 unique ID checked. A matching unique ID implies a duplicate
 packet, and the packet is ignored. A non-matching unique ID must
 be treated as an attempt to open a second connection between the
 same port pair and must be rejected by sending an ABORT message.

 5.2. Data Transfer

 The simplest model of data transfer proceeds as follows. The
 sending client sets up a buffer full of data. The receiving
 NETBLT sends a GO message inside a CONTROL packet to the sender,
 signifying that it too has set up a buffer and is ready to receive
 data into it. Once the GO message has been received, the sender
 transmits the buffer as a series of DATA packets followed by an
 LDATA packet. When the last packet in the buffer has been
 received, the receiver sends a RESEND message inside a CONTROL
 packet containing a list of packets that were not received. The
 sender resends these packets. This process continues until there
 are no missing packets, at which time the receiver sends an OK
 message inside a CONTROL packet to the sender, sets up another
 buffer to receive data and sends another GO message. The sender,
 having received the OK message, sets up another buffer, waits for
 the GO message, and repeats the process.

 There are several obvious flaws with this scheme. First, if the
 LDATA packet is lost, how does the receiver know when the buffer
 has been transmitted? Second, what if the GO, OK, or RESEND

Clark & Lambert & Zhang [Page 7]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 messages are lost? The sender cannot act on a packet it has not
 received, so the protocol will hang. Solutions for each of these
 problems are presented below, and are based on two kinds of
 timers, a data timer and a control timer.

 NETBLT solves the LDATA packet loss problem by using a data timer
 at the receiving end. When the first DATA packet in a buffer
 arrives, the receiving NETBLT sets its data timer; at the same
 time, it clears its control timer, described below. If the data
 timer expires, the receiving end assumes the buffer has been
 transmitted and all missing packets lost. It then sends a RESEND
 message containing a list of the missing packets.

 NETBLT solves the second problem, that of missing OK, GO, and
 RESEND messages, through use of a control timer. The receiver can
 send one or more control messages (OK, GO, or RESEND) within a
 single CONTROL packet. Whenever the receiver sends a control
 packet, it sets a control timer (at the same time it clears its
 data timer, if one has been set).

 The control timer is cleared as follows: Each control message
 includes a sequence number which starts at one and increases by
 one for each control message sent. The sending NETBLT checks the
 sequence number of every incoming control message against all
 other sequence numbers it has received. It stores the highest
 sequence number below which all other received sequence numbers
 are consecutive, and returns this number in every packet flowing
 back to the receiver. The receiver is permitted to clear the
 control timer of every packet with a sequence number equal to or
 lower than the sequence number returned by the sender.

 Ideally, a NETBLT implementation should be able to cope with
 out-of-sequence messages, perhaps collecting them for later
 processing, or even processing them immediately. If an incoming
 control message "fills" a "hole" in a group of message sequence
 numbers, the implementation could even be clever enough to detect
 this and adjust its outgoing sequence value accordingly.

 When the control timer expires, the receiving NETBLT resends the
 control message and resets the timer. After a predetermined
 number of resends, the receiving NETBLT can assume that the
 sending NETBLT has died, and can reset the connection.

 The sending NETBLT, upon receiving a control message, should act
 as quickly as possible on the packet; it either sets up a new
 buffer (upon receipt of an OK packet for a previous buffer),
 resends data (upon receipt of a RESEND packet), or sends data

Clark & Lambert & Zhang [Page 8]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 (upon receipt of a GO packet). If the sending NETBLT is not in a
 position to send data, it sends a NULL-ACK packet, which contains
 a
 high-received-sequence-number as described above (this permits the
 receiving NETBLT to clear the control timers of any packets which
 are outstanding), and waits until it can send more data. In all
 of these cases, the overhead for a response to the incoming
 control message should be small; the total time for a response to
 reach the receiving NETBLT should not be much more than the
 network round-trip transit time, plus a variance factor.

 The timer system can be summarized as follows: normally, the
 receiving NETBLT is working under one of two types of timers, a
 control timer or a data timer. There is one data timer per buffer
 transmission and one control timer per control packet. The data
 timer is active while its buffer is being transferred; a control
 timer is active while it is between buffer transfers.

 The above system still leaves a few problems. If the sending
 NETBLT is not ready to send, it sends a single NULL-ACK packet to
 clear any outstanding control timers at the receiving end. After
 this the receiver will wait. The sending NETBLT could die and the
 receiver, with all its control timers cleared, would hang. Also,
 the above system puts timers only on the receiving NETBLT. The
 sending NETBLT has no timers; if the receiving NETBLT dies, the
 sending NETBLT will just hang waiting for control messages.

 The solution to the above two problems is the use of a death timer
 and a keepalive packet for both the sending and receiving NETBLTs.
 As soon as the connection is opened, each end sets a death timer;
 this timer is reset every time a packet is received. When a
 NETBLT’s death timer at one end expires, it can assume the other
 end has died and can close the connection.

 It is quite possible that the sending or receiving NETBLTs will
 have to wait for long periods of time while their respective
 clients get buffer space and load their buffers with data. Since
 a NETBLT waiting for buffer space is in a perfectly valid state,
 the protocol must have some method for preventing the other end’s
 death timer from expiring. The solution is to use a KEEPALIVE
 packet, which is sent repeatedly at fixed intervals when a NETBLT
 is waiting for buffer space. Since the death timer is reset
 whenever a packet is received, it will never expire as long as the
 other end sends packets.

 The frequency with which KEEPALIVE packets are transmitted is
 computed as follows: At connection startup, each NETBLT chooses a

Clark & Lambert & Zhang [Page 9]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 death-timeout value and sends it to the other end in either the
 OPEN or the RESPONSE packet. The other end takes the
 death-timeout value and uses it to compute a frequency with which
 to send KEEPALIVE packets. The KEEPALIVE frequency should be high
 enough that several KEEPALIVE packets can be lost before the other
 end’s death timer expires.

 Both ends must have some way of estimating the values of the death
 timers, the control timers, and the data timers. The timer values
 obviously cannot be specified in a protocol document since they
 are very machine- and network-load-dependent. Instead they must
 be computed on a per-connection basis. The protocol has been
 designed to make such determination easy.

 The death timer value is relatively easy to estimate. Since it is
 continually reset, it need not be based on the transfer size.
 Instead, it should be based at least in part on the type of
 application using NETBLT. User applications should have smaller
 death timeout values to avoid forcing humans to wait long periods
 of time for a death timeout to occur. Machine applications can
 have longer timeout values.

 The control timer must be more carefully estimated. It can have
 as its initial value an arbitrary number; this number can be used
 to send the first control packet. Subsequent control packets can
 have their timer values based on the network round-trip transit
 time (i.e. the time between sending the control packet and
 receiving the acknowledgment of the corresponding sequence number)
 plus a variance factor. The timer value should be continually
 updated, based on a smoothed average of collected round-trip
 transit times.

 The data timer is dependent not on the network round-trip transit
 time, but on the amount of time required to transfer a buffer of
 data. The time value can be computed from the burst rate and the
 number of bursts per buffer, plus a variance value <1>. During the
 RESENDing phase, the data timer value should be set according to
 the number of missing packets.

 The timers have been designed to permit reasonable estimation. In
 particular, in other protocols, determination of round-trip delay
 has been a problem since the action performed by the other end on
 receipt of a particular packet can vary greatly depending on the
 packet type. In NETBLT, the action taken by the sender on receipt
 of a control message is by and large the same in all cases, making
 the round-trip delay relatively independent of the client.

Clark & Lambert & Zhang [Page 10]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 Timer value estimation is extremely important, especially in a
 high-performance protocol like NETBLT. If the estimates are too
 low, the protocol makes many unneeded retransmissions, degrading
 performance. A short control timer value causes the sending
 NETBLT to receive duplicate control messages (which it can reject,
 but which takes time). A short data timer value causes the
 receiving NETBLT to send unnecessary RESEND packets. This causes
 considerably greater performance degradation since the sending
 NETBLT does not merely throw away a duplicate packet, but instead
 has to send a number of DATA packets. Because data timers are set
 on each buffer transfer instead of on each DATA packet transfer,
 we afford to use a small variance value without worrying about
 performance degradation.

 5.3. Closing the Connection

 There are three ways to close a connection: a connection close, a
 "quit", or an "abort".

 The connection close occurs after a successful data transfer.
 When the sending NETBLT has received an OK packet for the last
 buffer in the transfer, it sends a DONE packet <2>. On receipt of
 the DONE packet, the receiving NETBLT can close its half of the
 connection. The sending NETBLT dallies for a predetermined amount
 of time after sending the DONE packet. This allows for the
 possibility of the DONE packet’s having been lost. If the DONE
 packet was lost, the receiving NETBLT will continue to send the
 final OK packet, which will cause the sending end to resend the
 DONE packet. After the dally period expires, the sending NETBLT
 closes its half of the connection.

 During the transfer, one client may send a QUIT packet to the
 other if it thinks that the other client is malfunctioning. Since
 the QUIT occurs at a client level, the QUIT transmission can only
 occur between buffer transmissions. The NETBLT receiving the QUIT
 packet can take no action other than to immediately notify its
 client and transmit a QUITACK packet. The QUIT sender must time
 out and retransmit until a QUITACK has been received or a
 predetermined number of resends have taken place. The sender of
 the QUITACK dallies in the manner described above.

 An ABORT takes place when a NETBLT layer thinks that it or its
 opposite is malfunctioning. Since the ABORT originates in the
 NETBLT layer, it can be sent at any time. Since the ABORT implies
 that the NETBLT layer is malfunctioning, no transmit reliability
 is expected, and the sender can immediately close it connection.

Clark & Lambert & Zhang [Page 11]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

6. MULTIPLE BUFFERING

 In order to increase performance, NETBLT has been designed in a
 manner that encourages a multiple buffering implementation. Multiple
 buffering is a technique in which the sender and receiver allocate
 and transmit buffers in a manner that allows error recovery of
 previous buffers to be concurrent with transmission of current
 buffer.

 During the connection setup phase, one of the negotiated parameters
 is the number of concurrent buffers permitted during the transfer.
 The simplest transfer allows for a maximum of one buffer to be
 transmitted at a time; this is effectively a lock-step protocol and
 causes time to be wasted while the sending NETBLT receives permission
 to send a new buffer. If there are more than one buffer available,
 transfer of the next buffer may start right after the current buffer
 finishes. For example, assume buffer A and B are allowed to transfer
 concurrently, with A preceding B. As soon as A finishes transferring
 its data and is waiting for either an OK or a RESEND message, B can
 start sending immediately, keeping data flowing at a stable rate. If
 A receives an OK, it is done; if it receives a RESEND, the missing
 packets specified in the RESEND message are retransmitted. All
 packets flow out through a priority pipe, with the priority equal to
 the buffer number, and with the transfer rate specified by the burst
 size and burst rate. Since buffer numbers increase monotonically,
 packets from an earlier buffer in the pipe will always precede those
 of the later ones. One necessary change to the timing algorithm is
 that when the receiving NETBLT set data timer for a new buffer, the
 timer value should also take into consideration of the transfer time
 for all missing packets from the previous buffers.

 Having several buffers transmitting concurrently is actually not that
 much more complicated than transmitting a single buffer at a time.
 The key is to visualize each buffer as a finite state machine;
 several buffers are merely a group of finite state machines, each in
 one of several states. The transfer process consists of moving
 buffers through various states until the entire transmission has
 completed.

 The state sequence of a send-receive buffer pair is as follows: the
 sending and receiving buffers are created independently. The
 receiving NETBLT sends a GO message, putting its buffer in a
 "receiving" state, and sets its control timer; the sending NETBLT
 receives the GO message, putting its buffer into a "sending" state.
 The sending NETBLT sends data until the buffer has been transmitted.
 If the receiving NETBLT’s data timer goes off before it received the
 last (LDATA) packet, or it receives the LDATA packet in the buffer

Clark & Lambert & Zhang [Page 12]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 and packets are missing, it sends a RESEND packet and moves the
 buffer into a "resending" state. Once all DATA packets in the buffer
 and the LDATA packet have been received, the receiving NETBLT enters
 its buffer into a "received" state and sends an OK packet. The
 sending NETBLT receives the OK packet and puts its buffer into a
 "sent" state.

7. PROTOCOL LAYERING STRUCTURE

 NETBLT is implemented directly on top of the Internet Protocol (IP).
 It has been assigned a temporary protocol number of 255. This number
 will change as soon as the final protocol specification has been
 determined.

8. PACKET FORMATS

 NETBLT packets are divided into three categories, each of which share
 a common packet header. First, there are those packets that travel
 only from sender to receiver; these contain the control message
 sequence numbers which the receiver uses for reliability. These
 packets are the NULL-ACK, DATA, and LDATA packets. Second, there is
 a packet that travels only from receiver to sender. This is the
 CONTROL packet; each CONTROL packet can contain an arbitrary number
 of control messages (GO, OK, or RESEND), each with its own sequence
 number. Finally, there are those packets which either have special
 ways of insuring reliability, or are not reliably transmitted. These
 are the QUIT, QUITACK, DONE, KEEPALIVE, and ABORT packets. Of these,
 all save the DONE packet can be sent by both sending and receiving
 NETBLTs.

 Packet type numbers:

 OPEN: 0
 RESPONSE: 1
 KEEPALIVE: 2
 DONE: 3
 QUIT: 4
 QUITACK: 5
 ABORT: 6
 DATA: 7
 LDATA: 8
 NULL-ACK: 9
 CONTROL: 10

Clark & Lambert & Zhang [Page 13]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 Standard header:

 local port: 2 bytes
 foreign port: 2 bytes
 checksum: 2 bytes
 version number: 1 byte
 packet type: 1 byte
 packet length: 2 bytes

 OPEN and RESPONSE packets:

 connection unique ID: 4 bytes
 standard buffer size: 4 bytes
 transfer size: 4 bytes
 DATA packet data segment size: 2 bytes
 burst size: 2 bytes
 burst rate: 2 bytes
 death timeout value in seconds: 2 bytes
 transfer mode (1 = SEND, 0 = RECEIVE): 1 byte
 maximum number of concurrent buffers: 1 byte
 checksum entire DATA packet / checksum
 DATA packet data only (1/0): 1 byte
 client-specific data: arbitrary

 DONE, QUITACK, KEEPALIVE:

 standard header only

 ABORT, QUIT:

 reason: arbitrary bytes

 CONTROL packet format:

 CONTROL packets consist of a standard NETBLT header of type
 CONTROL, followed by an arbitrary number of control messages with
 the following formats:

 Control message numbers:

 GO: 0
 OK: 1
 RESEND: 2

Clark & Lambert & Zhang [Page 14]

RFC 969 December 1985
NETBLT: A Bulk Data Transfer Protocol

 OK message:

 message type (OK): 1 byte
 buffer number: 4 bytes
 sequence number: 2 bytes
 new burst size: 2 bytes
 new burst interval: 2 bytes

 GO message:

 message type (GO): 1 byte
 buffer number: 4 bytes
 sequence number: 2 bytes

 RESEND message:

 message type (RESEND): 1 byte
 buffer number: 4 bytes
 sequence number: 2 bytes
 number of missing packets: 2 bytes
 packet numbers...: n * 2 bytes

 DATA, LDATA packet formats:

 buffer number: 4 bytes
 highest consecutive sequence number received: 2 bytes
 packet number within buffer: 2 bytes
 data: arbitrary bytes

 NULL-ACK packet format:

 highest consecutive sequence number received: 2 bytes
 acknowledged new burst size: 2 bytes
 acknowledged new burst interval: 2 bytes

NOTES:

 <1> When the buffer size is large, the variances in the round trip
 delays of many packets may cancel each other out; this means the
 variance value need not be very big. This expectation can be
 verified in further testing.

 <2> Since the receiving end may not know the transfer size in
 advance, it is possible that it may have allocated buffer space
 and sent GO messages for buffers beyond the actual last buffer
 sent by the sending end. Care must be taken on the sending
 end’s part to ignore these extra GO messages.

Clark & Lambert & Zhang [Page 15]

