
Network Working Group D. E. Cass (NRTC)
Request for Comments: 983 M. T. Rose (NRTC)
 April 1986

 ISO Transport Services on Top of the TCP

Status of This Memo

 This memo describes a proposed protocol standard for the ARPA
 Internet community. The intention is that hosts in the ARPA-Internet
 that choose to implement ISO TSAP services on top of the TCP be
 expected to adopt and implement this standard. Suggestions for
 improvement are encouraged. Distribution of this memo is unlimited.

1. Introduction and Philosophy

 The ARPA Internet community has a well-developed, mature set of
 transport and internetwork protocols (TCP/IP), which are quite
 successful in offering network and transport services to end-users.
 The CCITT and the ISO have defined various session, presentation, and
 application recommendations which have been adopted by the
 international community and numerous vendors. To the largest extent
 possible, it is desirable to offer these higher level services
 directly in the ARPA Internet, without disrupting existing
 facilities. This permits users to develop expertise with ISO and
 CCITT applications which previously were not available in the ARPA
 Internet. It also permits a more graceful transition strategy from
 TCP/IP-based networks to ISO-based networks in the medium- and
 long-term.

 There are two basic approaches which can be taken when "porting" an
 ISO or CCITT application to a TCP/IP environment. One approach is to
 port each individual application separately, developing local
 protocols on top of the TCP. Although this is useful in the
 short-term (since special-purpose interfaces to the TCP can be
 developed quickly), it lacks generality.

 A second approach is based on the observation that both the ARPA
 Internet protocol suite and the ISO protocol suite are both layered
 systems (though the former uses layering from a more pragmatic
 perspective). A key aspect of the layering principle is that of
 layer-independence. Although this section is redundant for most
 readers, a slight bit of background material is necessary to
 introduce this concept.

 Externally, a layer is defined by two definitions:

 a service-offered definition, which describes the services
 provided by the layer and the interfaces it provides to access
 those services; and,

Cass & Rose [Page 1]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 a service-required definitions, which describes the services used
 by the layer and the interfaces it uses to access those services.

 Collectively, all of the entities in the network which co-operate to
 provide the service are known as the service-provider. Individually,
 each of these entities is known as a service-peer.

 Internally, a layer is defined by one definition:

 a protocol definition, which describes the rules which each
 service-peer uses when communicating with other service-peers.

 Putting all this together, the service-provider uses the protocol and
 services from the layer below to offer the its service to the layer
 above. Protocol verification, for instance, deals with proving that
 this in fact happens (and is also a fertile field for many Ph.D.
 dissertations in computer science).

 The concept of layer-independence quite simply is:

 IF one preserves the services offered by the service-provider

 THEN the service-user is completely naive with respect to the
 protocol which the service-peers use

 For the purposes of this memo, we will use the layer-independence to
 define a Transport Service Access Point (TSAP) which appears to be
 identical to the services and interfaces offered by the ISO/CCITT
 TSAP (as defined in [ISO-8072]), but we will base the internals of
 this TSAP on TCP/IP (as defined in [RFC-793,RFC791]), not on the
 ISO/CCITT transport and network protocols. Hence, ISO/CCITT higher
 level layers (all session, presentation, and application entities)
 can operate fully without knowledge of the fact that they are running
 on a TCP/IP internetwork.

 The authors hope that the preceding paragraph will not come as a
 shock to most readers. However, an ALARMING number of people seem to
 think that layering is just a way of cutting up a large problem into
 smaller ones, *simply* for the sake of cutting it up. Although
 layering tends to introduce modularity into an architecture, and
 modularity tends to introduce sanity into implementations (both
 conceptual and physical implementations), modularity, per se, is not
 the end goal. Flexibility IS.

Cass & Rose [Page 2]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

2. Motivation

 In migrating from the use of TCP/IP to the ISO protocols, there are
 several strategies that one might undertake. This memo was written
 with one particular strategy in mind.

 The particular migration strategy which this memo uses is based on
 the notion of gatewaying between the TCP/IP and ISO protocol suites
 at the transport layer. There are two strong arguments for this
 approach:

 a. Experience teaches us that it takes just as long to get good
 implementations of the lower level protocols as it takes to get
 good implementations of the higher level ones. In particular, it
 has been observed that there is still a lot of work being done at
 the ISO network and transport layers. As a result,
 implementations of protocols above these layers are not being
 aggressively pursued. Thus, something must be done "now" to
 provide a medium in which the higher level protocols can be
 developed. Since TCP/IP is mature, and essentially provides
 identical functionality, it is an ideal medium to support this
 development.

 b. Implementation of gateways at the IP and ISO IP layers are
 probably not of general use in the long term. In effect, this
 would require each Internet host to support both TP4 and TCP. As
 such, a better strategy is to implement a graceful migration path
 from TCP/IP to ISO protocols for the ARPA Internet when the ISO
 protocols have matured sufficiently.

 Both of these arguments indicate that gatewaying should occur at or
 above the transport layer service access point. Further, the first
 argument suggests that the best approach is to perform the gatewaying
 exactly AT the transport service access point to maximize the number
 of ISO layers which can be developed.

 NOTE: This memo does not intend to act as a migration or
 intercept document. It is intended ONLY to meet the needs
 discussed above. However, it would not be unexpected that the
 protocol described in this memo might form part of an overall
 transition plan. The description of such a plan however is
 COMPLETELY beyond the scope of this memo.

 Finally, in general, building gateways between other layers in the
 TCP/IP and ISO protocol suites is problematic, at best.

 To summarize: the primary motivation for the standard described in

Cass & Rose [Page 3]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 this memo is to facilitate the process of gaining experience with
 higher-level ISO protocols (session, presentation, and application).
 The stability and maturity of TCP/IP are ideal for providing solid
 transport services independent of actual implementation.

3. The Model

 The [ISO-8072] standard describes the ISO transport service
 definition, henceforth called TP.

 ASIDE: This memo references the ISO specifications rather than
 the CCITT recommendations. The differences between these parallel
 standards are quite small, and can be ignored, with respect to
 this memo, without loss of generality. To provide the reader with
 the relationships:

 Transport service [ISO-8072] [X.214]
 Transport protocol [ISO-8073] [X.224]
 Session protocol [ISO-8327] [X.225]

 The ISO transport service definition describes the services offered
 by the TS-provider (transport service) and the interfaces used to
 access those services. This memo focuses on how the ARPA
 Transmission Control Protocol (TCP) [RFC-793] can be used to offer
 the services and provide the interfaces.

 +-------------+ +-------------+
 | TS-user | | TS-user |
 +-------------+ +-------------+
 | |
 | TSAP interface TSAP interface |
 | [ISO-8072] |
 | |
 +------------+ ISO Transport Services on the TCP +------------+
 | client |--| server |
 +------------+ (this memo) +------------+
 | |
 | TCP interface TCP interface |
 | [RFC-793] |
 | |

 For expository purposes, the following abbreviations are used:

 TS-peer a process which implements the protocol
 described by this memo

Cass & Rose [Page 4]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 TS-user a process talking using the services of a
 TS-peer

 TS-provider the black-box entity implementing the protocol
 described by this memo

 For the purposes of this memo, which describes version 1 of the TSAP
 protocol, all aspects of [ISO-8072] are supported with one exception:

 Quality of Service parameters

 In the spirit of CCITT, this is left "for further study". Version 2
 of the TSAP protocol will most likely support the QOS parameters for
 TP by mapping these onto various TCP parameters.

 Since TP supports the notion of a session port (termed a TSAP ID),
 but the list of reserved ISO TSAP IDs is not clearly defined at this
 time, this memo takes the philosophy of isolating the TCP port space
 from the TSAP ID space and uses a single TCP port. This memo
 reserves TCP port 102 for this purpose. This protocol manages its
 own TSAP ID space independent of the TCP. Appendix A of this memo
 lists reserved TSAP IDs for version 1 of this TSAP protocol. It is
 expected that future editions of the "Assigned Numbers" document
 [RFC-960] will contain updates to this list. (Interested readers are
 encouraged to read [ISO-8073] and try to figure out exactly what a
 TSAP ID is.)

 Finally, the ISO TSAP is fundamentally symmetric in behavior. There
 is no underlying client/server model. Instead of a server listening
 on a well-known port, when a connection is established, the
 TS-provider generates an INDICATION event which, presumably the
 TS-user catches and acts upon. Although this might be implemented by
 having a server "listen" by hanging on the INDICATION event, from the
 perspective of the ISO TSAP, all TS-users just sit around in the IDLE
 state until they either generate a REQUEST or accept an INDICATION.

Cass & Rose [Page 5]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

4. The Primitives

 The protocol assumes that the TCP [RFC-793] offers the following
 service primitives:

 Events

 connected - open succeeded (either ACTIVE or PASSIVE)

 connect fails - ACTIVE open failed

 data ready - data can be read from the connection

 errored - the connection has errored and is now closed

 closed - an orderly disconnection has started

 Actions

 listen on port - PASSIVE open on the given port

 open port - ACTIVE open to the given port

 read data - data is read from the connection

 send data - data is sent on the connection

 close - the connection is closed (pending data is sent)

 The protocol offers the following service primitives, as defined in
 [ISO-8072], to the TS-user:

 Events

 T-CONNECT.INDICATION

 - a TS-user (server) is notified that connection establishment
 is in progress

 T-DISCONNECT.INDICATION

 - a TS-user is notified that the connection is closed

 T-CONNECT.CONFIRMATION

 - a TS-user (client) is notified that the connection has been
 established

Cass & Rose [Page 6]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 T-DATA.INDICATION

 - a TS-user is notified that data can be read from the
 connection

 T-EXPEDITED DATA.INDICATION

 - a TS-user is notified that "expedited" data can be read from
 the connection

 Actions

 T-CONNECT.RESPONSE

 - a TS-user (server) indicates that it will honor the request

 T-DISCONNECT.REQUEST

 - a TS-user indicates that the connection is to be closed

 T-CONNECT.REQUEST

 - a TS-user (client) indicates that it wants to establish a
 connection

 T-DATA.REQUEST

 - a TS-user sends data

 T-EXPEDITED DATA.REQUEST

 - a TS-user sends "expedited" data

Cass & Rose [Page 7]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

5. The Protocol

 It is the goal of this memo to offer a TP interface on top of the
 TCP. Fortunately, the TCP does just about everything that
 TS-provider offers to the TS-user, so the hard parts of the transport
 layer (e.g., three-way handshakes, choice of ISS, windowing,
 multiplexing, ad infinitum) are all taken care of by the TCP.

 Despite the symmetry of TP, it is useful to consider the protocol
 with the perspective of a client/server model.

 The information exchanged between TSAP-peers is in the form of
 packets termed "TPKT"s. The format of these packets is described in
 the next section. For the purposes of the description below, a TPKT
 has a code which is one of:

 CR - request connection
 CC - confirm connection
 DR - request disconnection
 DT - data
 ED - expedited data

 A TSAP server begins by LISTENing on TCP port 102. When a TSAP
 client successfully connects to this port, the protocol begins.

 A client decides to connect to the port when a TS-user issues a
 T-CONNECT.REQUEST action. This action specifies the TSAP ID of the
 remote TS-user, whether expedited data is to be supported, and
 (optionally) some initial TS-user data. The client consults the TSAP
 ID given to ascertain the IP address of the server. If the expedited
 data option was requested, the client opens a passive TCP port, in
 non-blocking mode, noting the port number. This TCP port is termed
 the "expedited port". The client then tries to open a TCP connection
 to the server on port 102. If not successful, the client fires
 T-DISCONNECT.INDICATION for the TS-user specifying the reason for
 failure (and, closes the expedited port, if any). If successful, the
 client sends a TPKT with code CR containing:

 - the TSAP ID of the TS-user on the client’s host (the "caller")
 - the TSAP ID of the TS-user that the client wants to talk to
 (the "called")
 - if the expedited data option was requested, the TSAP ID of the
 expedited port for the client’s host
 - any TS-user data from the T-CONNECT.REQUEST

 The client now awaits a response.

Cass & Rose [Page 8]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 The server, upon receipt of the TPKT, validates the contents of the
 TPKT (checking the version number, verifying that the code is CR, and
 so forth). If the packet is invalid, the server sends a TPKT with
 code DR specifying "PROTOCOL ERROR", closes the TCP connection, and
 goes back to the LISTEN state.

 If the packet is valid, the server examines the TSAP ID that the
 remote TS-user wants to communicate with. If the TS-user specified
 can be located and started (e.g., the appropriate program which
 implements the indicated protocol is present), then the server starts
 this TS-user by firing T-CONNECT.INDICATION. Otherwise, the server
 sends a TPKT with code DR specifying "SESSION ENTITY NOT ATTACHED TO
 TSAP" or "REMOTE TRANSPORT ENTITY CONGESTED AT CONNECT REQUEST TIME"
 as appropriate, closes the TCP connection, and goes back to the
 LISTEN state.

 The server now waits for a T-CONNECT.RESPONSE or T-DISCONNECT.REQUEST
 from the TS-user it started. if the latter is given, the server
 sends a TPKT with code DR containing the reason for the disconnect as
 supplied by the TS-user.

 The server then closes the TCP connection and goes back to the LISTEN
 state.

 Instead, if T-CONNECT.RESPONSE is given, the server sees if an
 expedited port was specified in the connection request. If so, the
 server opens a second TCP connection and connects to the specified
 port. If the connection fails, the server sends a TPKT with code DR
 specifying "CONNECTION NEGOTIATION FAILED", closes the TCP
 connection, and goes back to the LISTEN state. If the connection
 succeeded, the server notes the local port number used to connect to
 the expedited port.

 If an expedited port was not specified in the TPKT with code CR, and
 the server’s TS-user indicates that it wants to use expedited data,
 then the server sends a TPKT with code DR specifying "CONNECTION
 NEGOTIATION FAILED", fires T-DISCONNECT.INDICATION with this error to
 the TS-user, closes the TCP connection, and goes back to the LISTEN
 state.

 The server now sends a TPKT with code CC containing:

 - the TSAP ID of the TS-user responding to the connection
 (usually the "called")
 - if an expedited port was specified in the TPKT with code CR,

Cass & Rose [Page 9]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 the TSAP ID of the port number on the server’s host that was
 used to connect to the expedited port
 - any TS-user data from the T-CONNECT.RESPONSE

 After sending the TPKT, the server enters the SYMMETRIC PEER state.

 The client, upon receipt of the TPKT, validates the contents of the
 TPKT (checking the version number, verifying that the code is CC or
 DR, and so forth). If the packet is invalid, the client sends a TPKT
 with code DR specifying "PROTOCOL ERROR", fires
 T-DISCONNECT.INDICATION with this error to the TS-user, and closes
 the TCP connection (and the expedited port, if any).

 If the packet’s code is DR, the client fires T-DISCONNECT.INDICATION
 with the reason given in the TPKT to the TS-user, and closes the TCP
 connection (and the expedited port, if any).

 If the packet’s code is CC, the client checks if an expedited port
 was specified and that a connection is waiting on the expedited port.
 If not, a protocol error has occurred, a TPKT with code DR is
 returned, T-DISCONNECT.INDICATION is fired, and so on. Otherwise,
 the client checks the remote address that connected to the expedited
 port. If it differs from the port listed in the TPKT with code CC, a
 protocol error has occurred. Otherwise, all is well, two TCP
 connections have been established, one for all TPKTs except expedited
 data, and the second for the exclusive use of expedited data.

 The client now fires T-CONNECT.CONFIRMATION, and enters the SYMMETRIC
 PEER state.

 Once both sides have reached the SYMMETRIC PEER state, the protocol
 is completely symmetric, the notion of client/server is lost. Both
 TS-peers act in the following fashion:

 If the TCP indicates that data can be read, the TS-peer, upon receipt
 of the TPKT, validates the contents. If the packet is invalid, the
 TS-peer sends a TPKT with code DR specifying "PROTOCOL ERROR", fires
 T-DISCONNECT.INDICATION with this error to the TS-user, and closes
 the TCP connection (and expedited data connection, if any). If the
 TS-peer was the server, it goes back to the LISTEN state.

 NOTE: If the expedited data option was requested, then there are
 two TCP connections that can supply data for reading. The
 dialogue below assumes that only ED TPKTs are read from the
 expedited data connection. For simplicity’s sake, when reading
 from TCP the relation between connections and TPKTs is unimportant
 and this memo URGES all implementations to be very lenient in this

Cass & Rose [Page 10]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 regard. When writing to TCP, implementations should use the
 expedited data connection only to send TPKTs with code ED.
 Section 7 of this memo discusses the handling of expedited data in
 greater detail.

 If the packet’s code is DR, the TS-peer fires T-DISCONNECT.INDICATION
 with the reason given in the TPKT to the TS-user, and closes the TCP
 connection (and expedited data connection, if any). If the TS-peer
 was the server, it goes back to the LISTEN state.

 If the packet’s code is ED or DT, the TS-peer fires T-DATA.INDICATION
 or T-EXPEDITED DATA.INDICATION as appropriate with the enclosed user
 data for the TS-user. It then goes back to the SYMMETRIC PEER state.

 If the packet is invalid, the TS-peer sends a TPKT with code DR
 specifying "PROTOCOL ERROR", fires T-DISCONNECT.INDICATION with this
 error to the TS-user, and closes the TCP connection (and expedited
 data connection, if any). If the TS-peer was the server, it goes
 back to the LISTEN state.

 If the TCP indicates that an error has occurred and the connection
 has closed, then the TS-peer fires T-DISCONNECT.INDICATION to the
 TS-user specifying the reason for the failure. If the expedited data
 connection, if any, is still open, it is closed. If the TS-peer was
 the server, it goes back to the LISTEN state.

 If the TS-user issues a T-DATA.REQUEST or T-EXPEDITED DATA.REQUEST
 action, the TS-peer sends a TPKT with code DT or ED containing the
 TS-user data. It then goes back to the SYMMETRIC PEER state.

 If the TS-user issues a T-DISCONNECT.REQUEST action, the TS-peer
 sends a TPKT with code DR containing the reason for the disconnect as
 supplied by the TS-user. The TS-peer then closes the TCP connection,
 (and expedited data connection, if any). If the TS-peer was the
 server, it goes back to the LISTEN state.

 In terms of (augmented) state tables, the protocol can be explained
 as follows. The server starts in state S0, the client starts in
 state C0. "TCP:" refers to an event or action from the TCP service,
 "SS:" refers to an event or action from the TS-user (e.g., the ISO
 session service [ISO-8327]).

Cass & Rose [Page 11]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 S E R V E R S T A T E S

 state event action goto
 ----- ----- ------ ----
 S0 TCP: listen on port 102 S1

 S1 TCP: connected TCP: read TPKT
 parse, on error
 TCP: send DR, close S0
 code is CR
 start session server
 SS: T-CONNECT S2
 .INDICATION
 otherwise,
 TCP: send DR, close S0

 S2 SS: T-CONNECT.RESPONSE if expedited option,
 TCP: open port EXPD
 TCP: send CC P0

 S2 SS: T-DISCONNECT TCP: send DR, close S0
 .REQUEST

 Any event occuring for a state not listed above is considered an
 error, and handled thusly:

 state event action goto
 ----- ----- ------ ----
 S* TCP: other if TCP is open, TCP: close S0
 otherwise ignore S0
 S* SS: other SS: T-DISCONNECT
 .INDICATION
 if TCP is open, close S0

Cass & Rose [Page 12]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 C L I E N T S T A T E S

 state event action goto
 ----- ----- ------ ----
 C0 SS: T-CONNECT.REQUEST if expedited option,
 TCP: non-blocking
 listen on port EXPD
 TCP: open port 102 C1

 C1 TCP: connected TCP: send CR C2

 C1 TCP: connect fails TCP: close
 SS: T-DISCONNECT C0
 .INDICATION

 C2 TCP: data ready TCP: read TPKT
 parse, on error
 TCP: send DR, close
 SS: T-DISCONNECT C0
 .INDICATION
 code is CC
 if expedited option,
 verify port EXPD
 connected correctly,
 if not, treat as error
 SS: T-CONNECT P0
 .CONFIRMATION
 code is DR
 TCP: close
 SS: T-DISCONNECT C0
 .INDICATION
 otherwise
 TCP: send DR, close
 SS: T-DISCONNECT C0
 .INDICATION

Cass & Rose [Page 13]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 Any event occuring for a state not listed above is considered an
 error, and handled thusly:

 state event action goto
 ----- ----- ------ ----
 C* TCP: other if TCP is open, close C0
 otherwise ignore C0

 C* SS: other SS: T-DISCONNECT
 .INDICATION
 if TCP is open, close C0

Cass & Rose [Page 14]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 P E E R S T A T E S

 state event action goto
 ----- ----- ------ ----
 P0 TCP: data ready TCP: read TPKT
 parse, on error
 TCP: send DR, close
 SS: T-DISCONNECT end
 .INDICATION
 code is DT
 SS: T-DATA.INDICATION P0
 code is ED
 SS: T-EXPEDITED DATA P0
 .INDICATION
 code is DR
 TCP: close
 SS: T-DISCONNECT end
 .INDICATION
 otherwise
 TCP: send DR, close
 SS: T-DISCONNECT end
 .INDICATION

 P0 TCP: other TCP: close
 SS: T-DISCONNECT end
 .INDICATION

 P0 SS: T-DATA.REQUEST TCP: send DT P0

 P0 SS: T-EXPEDITED DATA TCP: send ED P0
 .REQUEST

 P0 SS: T-DISCONNECT TCP: send DR, close end
 .REQUEST

 P0 SS: other TCP: send DR, close
 SS: T-DISCONNECT end
 .INDICATION

Cass & Rose [Page 15]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

6. Packet Format

 Two TS-peers exchange information over a TCP connection by
 encapsulating information in well-defined packets. A packet, denoted
 as "TPKT" in the previous sections, is viewed as an object composed
 of an integral number of octets, of variable length.

 NOTE: For the purposes of presentation, these objects are shown
 as being 4 octets (32 bits wide). This representation is an
 artifact of the style of this memo and should not be interpreted
 as requiring that a TPDU be a multiple of 4 octets in length.

 A packet consists of two parts: a packet-header and a pseudo-TPDU.
 The format of the header is constant regardless of the type of
 packet. The format of the pseudo-TPDU follows the [ISO-8073]
 recommendation very closely with the exceptions listed below. As per
 [ISO-8073], each TPDU consists of two parts: header and data.

 It is EXTREMELY important to observe that TPKTs represent
 "indivisible" units of data to the TS-user. That is, a
 T-DATA.REQUEST initiated by the TS-user at the sending end of a
 connection should result in exactly one T-DATA.INDICATION being
 generated (with exactly that data) for the TS-user at the receiving
 end. To ensure this behavior, it is critical that any INDICATION
 event resulting from a TPKT be initiated ONLY after the entire TPKT
 is fully received. Furthermore, exactly one such INDICATION event
 should be generated by the TS-peer. The packet length field, as
 described below, can accommodate on the order of 65K octets of user
 data. This should be well above the requirements of the size of any
 SPDU (Session Protocol Data Unit) for any real implementation. As a
 result, version 1 of this protocol has no need to either fragment or
 re-assemble TS-user data. If an application arises which requires an
 SPDU of size greater than 65K octets, this memo will be revised.

 The format of the packet-header is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | vrsn | reserved | packet length |
 +-+

 where:

 1. vrsn 8 bits

 This field is always 1 for this memo.

Cass & Rose [Page 16]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 2. packet length 16 bits (min=8, max=65535)

 The length of entire packet in octets, including packet-header.

 The format of the TPDU (to re-phrase from [ISO-8073]) depends on the
 type of a TPDU. All TPDUs start with a fixed-part header length and
 the code. The information following after the code varies, depending
 on the value of the code. In the context of this memo, the following
 codes are valid:

 CR: connect request
 CC: connect confirm
 DR: disconnect request
 DT: data
 ED: expedited data

 The format of a CR or CC TPDU is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | header length | code | credit| destination reference |
 +-+
 | source reference | class |options| variable data |
 +-+
 | ... | ... | ... | ... |
 | ... | ... | ... | ... |
 | ... | user data | ... | ... |
 | ... | ... | ... | ... |
 +-+

 where:

 3. header length 8 bits (min=6, max=min(254,packet
 length-6))

 The TPDU-header length in octets including parameters but
 excluding the header length field and user data (if any).

Cass & Rose [Page 17]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 4. code 4 bits

 The type of TPDU. Values, in the context of this memo, are:

 value meaning
 ----- -------
 14 CR: connection request (binary 1110)
 13 CC: connection confirm (binary 1101)
 8 DR: disconnect request (binary 1000)
 15 DT: data (binary 1111)
 1 ED: expedited data (binary 0001)
 all other reserved

 5. credit 4 bits

 This field is always ZERO on output and ignored on input.

 6. destination reference 16 bits

 This field is always ZERO on output and ignored on input.

 7. source reference 16 bits

 This field is always ZERO on output and ignored on input.

 8. class 4 bits

 This field is always 4 (binary 0100) on output and ignored on
 input. It is anticipated that future versions of this protocol
 will make use of this field.

 9. options 4 bits

 This field is always ZERO on output and ignored on input.

 10. variable data (header length - 6) octets

 This portion of the TPDU is of variable length. For most
 TPDUs, this portion is empty (the header length field of the
 TPDU is exactly 6). The contents of the variable data consist
 of zero or more "parameters". Each parameter has the following
 format:

 parameter code 1 octet in size
 parameter length 1 octet in size, value is the number
 of octets in parameter value
 parameter value parameter data

Cass & Rose [Page 18]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 Normally, the parameter length is 1 octet. Any implementation
 conforming to this version of the protocol must recognize all
 parameter types listed in [ISO-8073]. With the exception of
 the parameters listed below, these parameters are simply
 ignored.

 o Parameter name: Transport service access point
 identifier (TSAP-ID) of the client
 TSAP

 Parameter code: 193 (binary 1100 0001)
 Parameter length: variable
 Parameter value: TSAP-ID attributes

 Each TSAP-ID consists of 1 or more attributes. Each
 attribute has this format:

 Attribute code 1 octet in size
 Attribute length 1 octet in size, value is the number
 of octets in attribute value
 Attribute value attribute data

 In version 1 of this protocol, only two attributes are
 defined. All others are reserved.

 Attribute name: Internet Address

 Attribute code: 1
 Attribute length: 6
 Attribute value: IP address (4 octets)
 session port (2 octets, unsigned
 integer)

 This attribute is ALWAYS required. Values for session
 port can be found in Appendix A of this memo.

 Attribute name: Internet Address for Expedited Data

 Attribute code: 2
 Attribute length: 6
 Attribute value: IP address (4 octets)
 TCP port (2 octets, unsigned integer)

 This attribute is required ONLY if expedited data is
 to be exchanged. The attribute value is an <IP
 address, TCP port> pair designated by the TS-peer for
 use with expedited data.

Cass & Rose [Page 19]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 o Parameter name: TSAP-ID of the server TSAP

 Parameter code: 194 (binary 1100 0010)
 Parameter length: variable
 Parameter value: TSAP-ID attributes

 o Parameter name: Additional option selection

 Parameter code: 198 (binary 1100 0110)
 Parameter length: 1
 Parameter value: additional flags

 The additional flags octet consists of 8-bits of optional
 flags. Only one bit is of interest to this memo, the
 remaining bits should be ZERO on output and ignored on
 input. This bit indicates if the transport expedited data
 service is to be used. If this bit is set (bit mask 0000
 0001) or this parameter does not appear in the TPDU, then
 the expedited data service is requested. If this parameter
 appears in the TPDU and the bit is not set then the service
 is disabled. If the service is requested, then the TSAP-ID
 of the sender of the TPDU must include an attribute
 indicating the internet address to use for expedited data.

 o Parameter name: Alternative protocol classes

 Parameter code: 199 (binary 1100 0111)

 Parameter length: variable
 Parameter value: 64 (binary 0100 0000) in each octet

 This is used as a NOOP in the variable data. Its use is
 HIGHLY discouraged, but for those implementors who wish
 to align the user data portion of the TPDU on word (or
 page) boundaries, use of this parameter for filling is
 recommended.

 11. user data (packet length - header length - 5)
 octets

 This portion of the TPDU is actual user data, most probably one
 or more SPDUs (session protocol data units).

Cass & Rose [Page 20]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 The format of a DR TPDU is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | header length | code | credit| destination reference |
 +-+
 | source reference | reason | variable data |
 +-+
 | ... | ... | ... | ... |
 | ... | ... | ... | ... |
 | ... | user data | ... | ... |
 | ... | ... | ... | ... |
 +-+

 The format of the fields is identical to those of a CR or CC TPDU,
 with the following exceptions:

 where:

 8. reason 8 bits

 This replaces the class/option fields of the CR or CC TPDU. Any
 value, as specified in [ISO-8073], may be used in this field.
 This memo makes use of several:

 value meaning
 ----- -------
 1 Congestion at TSAP
 2 Session entity not attached to TSAP
 3 Address unknown (at TCP connect time)
 128+0 Normal disconnect initiated by the session
 entity
 128+1 Remote transport entity congestion at connect
 request time
 128+3 Connection negotiation failed
 128+5 Protocol Error
 128+8 Connection request refused on this network
 connection

Cass & Rose [Page 21]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 The format of a DT or ED TPDU is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-++-+-+-+
 | header length | code | credit| TPDU-NR and EOT |
 +-+
 | user data | ... | ... | ... |
 | ... | ... | ... | ... |
 | ... | ... | ... | ... |
 +-+

 where:

 After the credit field (which is always ZERO on output and ignored
 on input), there is one additional field prior to the user data:

 6. TPDU-NR and EOT 16 bits

 This field is always ZERO on output and ignored on input.

7. Expedited Data

 This memo utilizes a second TCP connection to handle expedited data
 and does not make use of the TCP URGENT mechanism. The primary
 disadvantage of this decision is that single-threaded implementations
 of TCP may have some difficulty in supporting two simultaneous
 connections. There are however several advantages to this approach:

 a. Use of a single connection to implement the semantics of
 expedited data implies that the TSAP peer manage a set of buffers
 independent from TCP. The peer would, upon indication of TCP
 urgent information, have to buffer all preceeding TPKTs until the
 TCP buffer was empty. Expedited data would then be given to the
 TS-user. When the expedited data was flushed, then the buffered
 (non-expedited) data could be passed up to the receiving user.

 b. It assumes that implementations support TCP urgency correctly.
 This is perhaps an untrue assumption, particular in the case of
 TCP urgency occuring when the send window is zero-sized. Further,
 it assumes that the implementations can signal this event to the
 TCP-user in a meaningful fashion. In a single-threaded
 implementation, this is not likely.

 Given a reasonable TCP implementation, the TS-peer need listen on two

Cass & Rose [Page 22]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 TCP sockets in either polling or interrupt mode. When the TS-peer is
 given data, the TCP must indicate which connection should be read
 from.

 The only tricky part of the protocol is that the client must be able
 to start a passive OPEN for the expedited port, and then wait to read
 from another connection. In between the passive OPEN and the other
 connection supplying data, the server will connect to the expedited
 port, prior to sending data on the other connection. To summarize
 from Section 5, the sequence of events, with respect to TCP, is:

 time client Server
 ---- ------ ------
 0. passive OPEN of port 102

 1. T-CONNECT.REQUEST from user
 passive OPEN of expedited
 port (non-blocking)

 2. active OPEN of port 102

 3. send CC TPKT

 4. port 102 connected

 5. receive CC TPKT
 T-CONNECT.INDICATION to
 user
 T-CONNECT.RESPONSE from
 user

 6. active OPEN to expedited
 port

 7. expedited port connected

 8. send CR TPKT

 9. receive CR TPKT
 verify expedited port
 connected correctly

 Multi-threaded implementations of TCP should be able to support this
 sequence of events without any great difficulty.

Cass & Rose [Page 23]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

8. Conclusions

 There are two design decisions which should be considered. The first
 deals with particular packet format used. It should be obvious to
 the reader that the TP packet format was adopted for use in this
 memo. Although this results in a few fields being ignored (e.g.,
 source reference), it does not introduce an unacceptable amount of
 overhead. For example, on a connection request packet (the worst
 case) there are 6 bytes of "zero on output, ignore on input" fields.
 Considering that the packet overhead processing is fixed, requiring
 that implementations allocate an additional 1.5 words is not
 unreasonable! Of course, it should be noted that some of these
 fields (i.e., class) may be used in future versions of the protocol
 as experience is gained.

 The second decision deals with how the TCP and TSAP port space is
 administered. It is probably a very bad idea to take any
 responsibility, whatsoever, for managing this addressing space, even
 after ISO has stabilized. There are two issues involved. First, at
 what level do the TCP and TSAP port spaces interact; second, who
 defines what this interaction looks like. With respect to the first,
 it wholly undesirable to require that each TSAP port map to a unique
 TCP port. The administrative problems for the TCP "numbers czar (and
 czarina)" would be non-trivial. Therefore, it is desirable to
 allocate a single TCP port, namely port 102, as the port where the
 "ISO Transport Services" live in the TCP domain. Second, the
 interaction defined in Appendix A of this memo is embryonic at best.
 It will no doubt be replaced as soon as the ISO world reaches
 convergence on how services are addressed in ISO TP. Therefore
 readers (and implementors) are asked to keep in mind that this aspect
 of the memo is guaranteed to change. Unfortunately, the authors are
 not permitted the luxury of waiting for a consensus in ISO. As a
 result, the minimal effort approach outlined in the appendix below
 was adopted.

 A prototype implementation of the protocol described by this memo is
 available for 4.2BSD UNIX. Interested parties should contact the
 authors for a copy. To briefly mention its implementation, a given
 ISO service is implemented as a separate program. A daemon listens
 on TCP port 102, consults a database when a connection request packet
 is received, and fires the appropriate program for the ISO service
 requested. Of course, given the nature of the BSD implementation of
 TCP, as the child fires, responsibility of that particular connection
 is delegated to the child; the daemon returns to listening for new
 connection requests. The prototype implementation consists of both
 the daemon program and subroutine libraries which are loaded with
 programs providing ISO services.

Cass & Rose [Page 24]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

9. References

 [ISO-8072] ISO.
 "International Standard 8072. Information Processing
 Systems -- Open Systems Interconnection: Transport
 Service Definition."
 (June, 1984)

 [ISO-8073] ISO.
 "International Standard 8073. Information Processing
 Systems -- Open Systems Interconnection: Transport
 Protocol Specification."
 (June, 1984)

 [ISO-8327] ISO.
 "International Standard 8327. Information Processing
 Systems -- Open Systems Interconnection: Session
 Protocol Specification."
 (June, 1984)

 [RFC-791] Internet Protocol.
 Request for Comments 791
 (September, 1981)
 (See also: MIL-STD-1777)

 [RFC-793] Transmission Control Protocol.
 Request for Comments 793
 (September, 1981)
 (See also: MIL-STD-1778)

 [RFC-960] Assigned Numbers.
 Request for Comments 960
 (December, 1985)

 [X.214] CCITT.
 "Recommendation X.214. Transport Service Definitions
 for Open Systems Interconnection (OSI) for CCITT
 Applications."
 (October, 1984)

 [X.224] CCITT.
 "Recommendation X.224. Transport Protocol Specification
 for Open Systems Interconnection (OSI) for CCITT
 Applications."
 (October, 1984)

Cass & Rose [Page 25]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 [X.225] CCITT.
 "Recommendation X.225. Session Protocol Specification
 for Open Systems Interconnection (OSI) for CCITT
 Applications."
 (October, 1984)

 [X.410] CCITT.
 "Recommendation X.410. Message Handling Systems: Remote
 Operations and Reliable Transfer Server."
 (October, 1984)

Appendix A: Reserved TSAP IDs

 Version 1 of this protocol uses a relatively simple encoding scheme
 for TSAP IDs. A TSAP ID is an attribute list containing two
 parameters, a 32-bit IP address, and a 16-bit port number. This is
 used to identify both the client TSAP and the server TSAP. When it
 appears in a TPKT with code CR or CC, the TSAP ID is encoded in the
 variable data part for the client TSAP as:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 193 | 8 | 1 | 6 |
 +-+
 | a | b | c | d |
 +-+
 | port | |
 +-+

 and for the server TSAP as:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 194 | 8 | 1 | 6 |
 +-+
 | a | b | c | d |
 +-+
 | port | |
 +-+

 (Neither of these examples include an attribute for a TCP connection
 for expedited data. If one were present, the length of the TSAP ID
 attribute would be 16 instead of 8, and the 8 bytes following the
 Internet address would be "2" for the attribute code, "6" for the

Cass & Rose [Page 26]

RFC 983 April 1986
ISO Transport Services on Top of the TCP

 attribute length, and then 6 octets for the Internet address to use
 for expedited data, 4 octets for IP address, and 2 octets for TCP
 port.)

 Where [a.b.c.d] is the IP address of the host where the respective
 TSAP peer resides, and port is a 16-bit unsigned integer describing
 where in the TSAP port space the TS-user lives.

 Port value Designation
 ---------- -----------
 0 illegal
 1-4096 privileged
 4097-65535 user

 The following table contains the list of the "official" TSAP ID port
 numbers as of the first release of this memo. It is expected that
 future editions of the "Assigned Numbers" document[RFC-960] will
 contain updates to this list.

 Port name ISO service
 ---- ---- -----------
 1 echo unofficial echo
 2 sink unofficial data sink
 3 FTAM File Transfer, Access, and Management
 4 VTS ISO-8571 Virtual Terminal Service
 5 MHS Message Handling System [X.411]
 CCITT X.400
 6 JTM Job Transfer and Manipulation
 ISO 8831/8832
 7 CASE Common Application Service Elements
 Kernel ISO-8650/2

 If anyone knows of a list of "official" ISO services, the authors
 would be very interested.

Cass & Rose [Page 27]

