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Abstract

This paper presents a design and imple-
mentation of a whole-program interprocedu-
ral optimizer built in the GCC framework.
Through the introduction of a new language-
independent intermediate representation, we
extend the current GCC architecture to include
a powerful mid-level optimizer and add link-
time interprocedural analysis and optimization
capabilities. This intermediate representation
is an SSA-based, low-level, strongly-typed,
representation which is designed to support
both efficient global optimizations and high-
level analyses. Because most of the program
is available at link-time, aggressive “whole-
program” optimizations and analyses are possi-
ble, improving the time and space requirements
of compiled programs. The final proposed or-
ganization of GCC retains the important fea-
tures which make it successful today, requires
almost no modification to either the front- or
back-ends of GCC, and is completely compat-
ible with user makefiles.

1 Introduction

The GNU Compiler Collection (GCC) [15] is
in many ways the centerpiece of the Free Soft-
ware movement. It supports several source lan-
guages and a plethora of back-ends for various
targets, providing a unified target for free soft-
ware. GCC has been successful because of its

extreme portability, stability, and because it is
able to compile and optimize several popular
source languages (C, C++, Java, etc) to each
target. Unfortunately, despite the success of
the GCC compiler suite as a whole, the opti-
mization infrastructure is still not competitive
with commercial compilers.

Over the years, the GCC optimizer has evolved
from compiling a statement at a time, to com-
piling and optimizing entire functions at a time,
to the (still very new) support for unit-at-a-time
compilation (compiling and optimizing all of
the functions in a translation unit together). As
the scope for analysis and optimizations in-
creases, the compiler is better able to reduce
the time and space requirements for the gener-
ated code.

This paper proposes the next logical step for
the GCC optimizer: extend it to be able to
analyze and optimizewhole programsat link-
time1, enabling new optimizations and making
existing analyses and optimizations more pow-
erful. For example:

• inlining across translation units

• whole-program alias analysis

• interprocedural register allocation

• interprocedural constant propagation

• data layout optimizations

• exception handling space optimizations
1This capability would be optional and could be en-

abled only when the program is compiled at the “-O4 ”
level of optimization, for example.
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• sorting initializer priorities at link-time

The key challenges to whole-program opti-
mization are to enable powerful transforma-
tions while keeping compile times reasonable,
and to keep the user-visible development pro-
cess unchanged (e.g. user makefiles).

The architecture that we propose is based on a
new language-independent low-level code rep-
resentation that preserves important type in-
formation from the source code. The use of
a low-level, SSA-based representation allows
the compiler to perform a variety of optimiza-
tions at compile time, off-loading work from
the link-time optimizer. However, the link-
time optimizer can only perform meaningful
optimizations on the program if it has enough
high-level information about the program to
prove that aggressive optimizations are safe.
Because of this, the low-level code represen-
tation is typed (using a language-independent
constructive type system) and directly exposes
information about structure and array accesses
to the optimizer.

The link-time optimizer is designed to combine
the translation units of a program together and
do the final whole-program optimization. Af-
ter the program is optimized, machine code is
generated at link-time for the entire program
at once, allowing a variety of interprocedural
low-level code optimizations to be performed.

The Low-Level Virtual Machine (LLVM) [10]
is an implementation of the architecture and
intermediate representation [11] described in
this paper, which allows us to be more con-
crete when describing aspects of the design.
This system has served as the host for sev-
eral research projects [7, 13, 12] which require
whole-program information as well as a host
for a variety of traditional compiler optimiza-
tions.

We hope that the lessons learned by the LLVM

project will be useful to the GCC community,
and are willing to contribute as much code to
the GNU project as there is interest in. We
are planning to have our first public release of
LLVM, with a liberal license, in the Summer of
2003. However, LLVM will only be discussed
when it helps clarify the ideas in the proposed
architecture, this paper is intended to be a GCC
paper, not an LLVM paper.

This paper is organized as follows: Section 2
describes the proposed high-level architecture
in detail, including modifications that would
need to be made to the GCC infrastructure.
Section 3 describes important aspects of the
proposed intermediate representation for the
system. Section 4 describes LLVM, our ex-
isting implementation of the proposed design.
Section 5 describes other work related to the
proposed design, and Section 6 wraps up the
paper.

2 High-Level Compiler Architec-
ture

The proposed high-level architecture is illus-
trated in Figure 1. The essential aspect of this
design is that it separates the currentcc1 pro-
gram into two components: a front-end com-
piler and an optimizing linker. The front-
end retains all of the responsibilities of current
GCC front-ends (preprocessing, lexical anal-
ysis, parsing, semantic analysis, etc..) and
should work unmodified in the new system.
After each function is parsed and checked
for semantic errors it is “expanded” from the
“tree” representation to the new language-
independent intermediate representation (de-
scribed in Section 3). Once the entire trans-
lation unit has been translated (and if no er-
rors have occurred), a standard set of mid-level
optimizations are performed on the translated
module. After these optimizations are finished,
a “.o ” file is emitted which contains IR assem-
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Figure 1: High-Level Compiler Architecture for Whole-Program Optimization

bly code for the representation.

When the optimizing linker is invoked, it reads
in all of the translated IR files and any li-
braries compiled to the intermediate represen-
tation. It links these files together into a single-
file representation of the program, on which it
can run whole-program analyses and optimiza-
tions. Finally, once these analyses and trans-
formations are complete, the GCC back-end is
invoked to expand the intermediate represen-
tation into RTL and use the configured target
description to produce a native.s file.

After the optimizing linker produces a na-
tive .s file, the compilation process proceeds
through the standard system assembler and
linker (to resolve any symbols in libraries that
were not available in the IR form), finally pro-
ducing a native executable.

2.1 Compatibility and Implementation

One of the key features of this design is that it
is compatible with the standard “compile and
link” models of compilation, and is thus fully
compatible with existing makefiles. In order
to provide this compatibility, the link phase
of the gcc compiler driver is extended to in-
voke the optimizing linker and system assem-
bler (if necessary) during the standard link step
of the compile process. In this way, any input
files that are in the IR format are automatically
linked together and optimized without interfer-
ing with the compilation and linking of stan-
dard translation units and libraries. If no files

in the IR format are present, the entire invoca-
tion of the optimizing linker is skipped.

Another important aspect of the design is how
the compiler works when whole-program opti-
mization is not enabled. If not enabled, each
translation unit is either compiled a function at
a time or a unit at a time (depending on the
setting of the-funit-at-a-time switch),
through the mid-level optimizer, RTL expan-
sion, and code generation phases of the com-
piler. This produces a native.s file, which can
be processed with the standard system assem-
bler and linker, as before.

For this approach to be feasible, a large amount
of code must be shared between the optimiz-
ing linker and the compiler front-ends. This
can either be accomplished through the use
of libraries that are shared between the two
(which would contain the existing GCC back-
end, and any shared optimizations on the IR),
or by making both logical pieces be part of the
same binary. In either case, the actual orga-
nization of the existing GCC code base would
not have to change in any substantial way.

2.2 Architectural Issues Affecting Perfor-
mance

In addition to providing the desired functional-
ity and compatibility with existing systems, it
is crucial that the compiler does not slow down
unacceptably — even if whole-program opti-
mization is only enabled at-O4 . In practical
terms, this design addresses the issue by per-
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forming as much optimization as possible at
compile time.

Any time a source file is changed, it must be re-
compiled and the application must be relinked.
In order to reduce the amount of work that must
be done, this design allows most traditional op-
timizations to be performed in the compiler
front-end stage, rather than requiring all opti-
mization to occur at the link stage (as is com-
mon for whole-program optimizers). Because
most aggressive scalar optimizations are per-
formed at compile-time, they would not need
to be rerun at link time, reducing the time for
compilation. Of course, the compiler perfor-
mance issue does not even arise unless the user
is modifying the program and recompiling at
-O4 .

Optionally with this design, the compiler could
try to minimize the amount of recompilation
necessary when a change occurs by keeping
track of which interprocedural information is
used to modify functions in other translation
units, building a dependence graph between
the modules [4]. In practice, however, this
would make the compiler much more compli-
cated and prone to subtle bugs that are hard to
reproduce. We feel that although the cost of re-
compilation is still fairly substantial in our sys-
tem (native code must be regenerated for the
entire application), that the extra complexity
introduced into the compiler must be weighed
against the recompilation time penalties, and
thus may be impractical.

3 Code Representation

The representation used to analyze and manip-
ulate the program determines what kinds of
transformations are possible and when in the
compilation process they must be performed to
be successful. As mentioned earlier, we pro-
pose using a language-independent, low-level,

SSA-based, strongly-typed representation as
the sole representation used for the mid-level
and link-time optimizers. This representation
is a first-class assembly language, which in-
cludes all of the information necessary to rep-
resent the program (and is in fact directly inter-
pretable). Concrete details of the representa-
tion used by LLVM are included in Section 3.2.

Using a low-level three-address code represen-
tation based on Static Single Assignment [6]
form enables the direct application of many
well-known and efficient global optimizations.
SSA form permitssparseoptimizations that
do not, in general, require bit-vector data-flow
analysis to compute results. Using a three-
address code representation (as opposed to
an tree structured representation) also makes
transformations easy to develop and reason
about.

Many transformations need information about
the high-level behavior of the program to be
effective. In order to preserve this informa-
tion, we propose that the representation main-
tain a strong (but language-neutral) type sys-
tem, which captures information about pointer,
structure, and array accesses in the program.
Working with the LLVM system we find that
this type information allows for a variety of
high-level analyses and transformations [7, 13,
12] while the nature of the low-level repre-
sentation makes it very easy to manipulate.
Another advantage of type information is that
it makes detecting and understanding bugs in
transformations much easier.

The goal of the program representation is to en-
able as many different types of optimizations
as possible. Because of this, it is important that
the representation be able to representall parts
of a program (including global variables, and
file scopeasm statements, for example) in a
form that allows transformations to modify it.
Another useful feature of the representation is
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a stable textual format (“assembly language”)
that can be read and written by the compiler.
Given this, it is trivial to write unit tests for
transformations and to debug transformations
in isolation from the rest of the compiler, and
the representation can be directly interpreted
for immediate feedback on a transformation.

3.1 Performance Aspects of the Representation

Once the optimizing linker brings together the
compiled program into one module, the in-
terprocedural analysis and optimization passes
are used to improve the program. Because
these passes operate on the entire program at
once, however, the efficiency of each analysis
or optimization is critical. For this reason, sev-
eral aspects of the representation are designed
to make these transformations as efficient as
possible.

In particular, the use of an SSA-based rep-
resentation allows for efficient, sparse, global
optimizations, and can make flow-sensitivity
much less important in many analyses (reduc-
ing cost substantially). In addition, the three-
address code representation has a small mem-
ory footprint and simple memory ownership
semantics (eliminating the need for it to live on
a garbage collected heap). In our experience
with LLVM, code optimizers for a sparse rep-
resentation can be several times faster than op-
timizations on a dense representation like RTL.

3.2 A Concrete LLVM Example

Figure 2 gives an example of a C function
and the corresponding LLVM module it com-
piles to. The example shows several important
aspects of the LLVM representation. In par-
ticular, it gives a simple example of the type
system, basic instruction flavor, and demon-
strates some instructions. More details about
the LLVM representation can be found in the
LLVM language reference [11].

LLVM uses a simple constructive type system
composed of primitive types, structures, ar-
rays, and pointers. Although this is a very sim-
ple type system, we believe that it contains the
key features necessary for a front-end to lower
any high-level type onto it. For example, the
LLVM C ++ front-end lowers classes with in-
heritance into nested structure types. Types are
very important in the LLVM system, and ev-
erything that can be used as an operand to an
instruction has a type.

Functions in LLVM contain a list of basic
blocks, and each basic block contains a list of
instructions. LLVM has only 29 instructions,
which include standard instructions likeload ,
xor , set cc, etc and aphi instruction for rep-
resenting SSA form2. Intraprocedural control
flow in LLVM is very simple (consisting of
conditional branches, unconditional branches,
and theswitch instruction).

Everything in LLVM is explicit: there are no
fall-through branches, all address arithmetic is
exposed (at the level of structures, pointers,
and arrays), and all references to memory use
theload andstore instructions. This makes
the language more uniform and simple to ana-
lyze and transform.

The getelementptr instruction in LLVM
provides the mechanism for structured address
arithmetic3. The getelementptr instruc-
tion is exactly analogous to sequences of ar-
ray subscript and structure index expressions,
returning the address of the last element in-
dexed4. For example, the%tmp.1 instruction
in Figure 2(b) first indexes into the0th element

2SSAφ-nodes are eliminated during the register al-
location phase of native code generation.

3LLVM code can also cast a pointer to an integer
type, add an arbitrary offset to it, then cast it back to a
pointer, if unstructured address arithmetic is necessary.

4The example in Figure 2(a) uses the strange syn-
tax ’T[0].x ’ instead of using the equivalent ’T->x ’ to
make the correspondence more clear.
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typedef struct QuadTree {

double Data;

struct QuadTree

∗Children[4];

} QT;

void Sum3rdChildren(QT ∗T,

double ∗Result) {

double Ret;

if (T == 0) { Ret = 0;

} else {

QT ∗Child3 =

T[0].Children[3];

double V;

Sum3rdChildren(Child3,

&V);

Ret = V + T[0].Data;

}

∗Result = Ret;

}

(a) Example function

%struct.QuadTree = type { double, [4 x %QT*] }
%QT = type %struct.QuadTree

void %Sum3rdChildren(%QT* %T, double* %Result) {
entry: %V = alloca double ;; %V is type ’double*’

%tmp.0 = seteq %QT* %T, null ;; type ’bool’
br bool %tmp.0, label %endif, label %else

else: ;;tmp.1 = &T[0].Children[3] ’Children’ = Field #1
%tmp.1 = getelementptr %QT* %T, long 0, ubyte 1, long 3
%Child3 = load %QT** %tmp.1
call void %Sum3rdChildren(%QT* %Child3, double* %V)
%tmp.2 = load double* %V
%tmp.3 = getelementptr %QT* %T, long 0, ubyte 0
%tmp.4 = load double* %tmp.3
%tmp.5 = add double %tmp.2, %tmp.4
br label %endif

endif: %Ret = phi double [ %tmp.5, %else ], [ 0.0, %entry ]
store double %Ret, double* %Result
ret void ;; Return with no value

}

(b) Corresponding LLVM code

Figure 2: C and LLVM code for a function

from the pointer, then into the1st structure ele-
ment (the “Children” member), then into the
3rd element of the array. Structured address
arithmetic exposes the necessary high-level in-
formation about structure and array accesses
directly to analyses and transformations which
need it.

One important aspect of the LLVM language
is that all references to memory happen with
load andstore instructions, and that there
is no “address-of” operation. In LLVM, all ob-
jects which live in memory (global variables,
functions, the heap, and the stack) are explic-
itly allocated and exposed by their address, not
their value. In Figure 2, for example, theV
variable is required to live in memory so that its
address may be passed into a recursive invoca-
tion of Sum3rdChildren . Because it is im-

possible to take the address of a virtual register,
stack memory must be explicitly allocated with
the alloca instruction5, and any references
to V must useload andstore instructions.
This dramatically simplified def-use chain con-
struction for virtual registers, which would oth-
erwise require some form of alias-analysis to
construct.

A final example illustrating how LLVM simpli-
fies the development of transformations is the
operators that it lacks. In particular, LLVM
does not have (or need) any unary operators
or a copy instruction. Instead of providing the
standard negate and bitwise complement unary
operators, LLVM represents these with stan-

5When the back-end is invoked, all fixed sized
alloca s in the entry block are treated the same as
address-exposed automatic variables.
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dard binary operators where one operand is a
constant (“neg x ” = “ sub 0, x ” and “not
x ” = “ xor x, -1 ”). This reduces the depen-
dence on a “canonical form” for the representa-
tion and simply reduces the number of instruc-
tions that need to be handled.

The lack of a copy instruction is possible
through the use of SSA form, and because def-
use chains are trivially computed and always
available. Any time a copy instruction would
be inserted (to replace a redundant computa-
tion for example) it is sufficient to replace any
uses of the destination with uses of the source
operand (by following the def-use chains), im-
plicitly performing copy propagation automat-
ically. This simple feature has actually avoided
several phase-ordering issues that would other-
wise require unnecessary passes over the repre-
sentation to do copy propagation between other
passes.

4 LLVM Compiler Infrastructure

The LLVM Compiler Infrastructure [10] cur-
rently consists of approximately 130,000 lines
of C++ code and a the front-end, which is
a patch against the mainline GCC CVS tree.
This code largely implements the design pre-
sented in this paper, although there are some
differences. This section describes these dif-
ferences, the implementation status of LLVM,
some other features of LLVM that make writ-
ing transformations simpler, and some insights
that we have had while working on LLVM.

4.1 Implementation Status

The LLVM C front-end is based on the main-
line GCC CVS repository. It generates code
by calling LLVM versions of functions that are
equivalent to the RTL-expansion routines (e.g.
llvm_expand_expr , llvm_expand_
function_start , make_decl_llvm ,

etc.) during compilation. These routines
build up an LLVM version of the translation
unit, which is then written to the “.s ” file
all at once (allowing “unit-at-a-time” style
transformations to be performed from within
GCC in the future).

Instead of modifying thecc1 binary to inter-
face directly to the LLVM optimizations writ-
ten in C++, cc1 directly emits the expanded
code without any optimization at all. When
the gcc compiler driver invokes the “assem-
bler”, we actually have it invoke a program
calledgccas which parses the LLVM assem-
bly file, runs a series of LLVM optimizers on
it, then emits a compressed bytecode file (the
.o file). The interface togccas is intention-
ally designed to be identical to the interface of
the standard systemas tool, to avoid having to
make changes to spec files.

When the user (or a makefile) links the pro-
gram using ourgcc compiler driver, it in-
vokes ourgccld tool. This tool reads the.o
files specified, links in the appropriate byte-
code files from any.a files, and then runs a
series of interprocedural optimizations on the
program. At this time, we directly emit an
LLVM bytecode file for the entire program, in-
stead of automatically invoking a native code
generator.

Once the program has been optimized and is
available in a single bytecode file, there are
several ways to execute the resultant program.
LLVM provides a very slow (but portable) ref-
erence interpreter for bytecode files, a Sparc
V9 native code generator, a C back-end, and
a Just-In-Time (JIT) compiler for the IA32 ar-
chitecture.

A large number of LLVM optimizations and
analyses are available, including passes for:

• Traditional SSA based optimizations:
ADCE, GCSE, LICM, PRE, SCCP, in-
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duction variable canonicalization, reasso-
ciation, value numbering, register promo-
tion, etc. . .

• Control Flow Graph based optimizations
and analyses: critical edge elimination,
loop canonicalization, various dominator,
post-dominator, and control dependence
graph related analyses, interval construc-
tion, natural loop construction, CFG sim-
plification, path profiling instrumentation,
etc. . .

• Interprocedural analyses and transforma-
tions: call graph construction, several in-
terprocedural alias analyses, global vari-
able merging, dead global elimination, in-
lining, Data Structure Analysis [13], auto-
matic pool allocation [12], interprocedu-
ral mod/ref, etc. . .

In addition to pure infrastructure, the LLVM
system also provides a large test suite. The
three main sections of the test suite are the
regression tests (which contain thousands of
tests for transformations and other tools), fea-
ture tests (which demonstrate how instructions
and idioms are used in LLVM), and program
tests (which compile benchmarks and other
programs with the various code generators, en-
suring that they produce code whose behavior
agrees with a native compiler). The LLVM
web site also hosts a variety of documentation
describing aspects of the infrastructure.

LLVM is also still under development. In par-
ticular, the C++ front-end is nearing comple-
tion (runtime library support for exception han-
dling is the major missing portion), Sparc V9
support for the JIT is in development, and a
system for runtime optimization of statically
compiled binaries is in the research phases.

4.2 Differences from the Proposal

The biggest difference between the proposal
and the LLVM implementation is the lack of
an LLVM to RTL conversion pass. For our re-
search purposes, we use a C back-end, which
provides much of the same functionality as a
full fledges RTL back-end, but is much slower.
We expect that this component can be added
upon demand.

Another big difference between the current im-
plementation and the proposal is the interface
between thecc1 program and the mid-level
optimizer. For expediency of implementation
we currently have the two tools as separate ex-
ecutables, although this obviously incurs more
overhead than linking the two components to-
gether. Once the subject of including C++ code
in GCC is better decided, we can look to re-
solve this issue.

4.3 Support for Developers

One of the strengths of the LLVM infrastruc-
ture is that it has some interesting utilities
for constructing passes, finding bugs in those
passes, and building a compiler around a se-
lection of these passes. This strength is im-
portant for two reasons: it allows new people
to get into the system and get productive rel-
atively fast, and it also allows experienced de-
velopers to be more productive than they other-
wise would. The most important features are: a
strong consistency checker, a “pass manager,”
and a tool we callbugpoint .

The LLVM infrastructure includes a stringent
checker for LLVM code, which ensures that
type relationships, SSA properties (e.g., all
definitions dominates their uses), and other
LLVM invariants haven’t been violated by a
transformation. This checker is automatically
run after passes when in development mode
to ensure that these passes are not corrupting
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the input for other passes that are run. Addi-
tionally, when in development mode, an auto-
mated memory leak detector is automatically
enabled, which detects violations of the LLVM
representation’s ownership model. This light-
weight checker is implemented using only a
few additions to constructors and destructors
for the classes which make up the representa-
tion, no garbage collector is necessary.

The LLVM “Pass Manager” provides a
structured environment for passes to ex-
ecute in. Transformations in LLVM
use a declarative syntax to indicate
which other passes are prerequisites (e.g.
break-critical-edges ), which analy-
ses are required (e.g. natural loop information,
alias analysis, value numbering, interprocedu-
ral mod/ref info, etc.), and which analyses are
preserved or destroyed by the transformation
being run. This structured pass model makes
it easier for developers to fit code into the
system, and it also makes construction of tools
(e.g. gccas and gccld ) a simple matter
of handling command-line arguments and
selecting a sequence of passes to run.

bugpoint , another useful tool, is best de-
scribed as an “automated test-case reducer.”
Given an LLVM program (or fragment) and a
list of passes to run, it attempts to reduce the
test-case (and list of passes) to the minimum
which still exposes a problem.bugpoint can
currently diagnose passes which crash/assert
during optimization and passes which misop-
timize the program (by executing the resultant
program with a code generator, assuming a de-
terministic program)6. If a test-case causes a
pass to crash,bugpoint is usually able to
reduce the test-case down to the few LLVM
instructions and basic block which cause the
problem. If a pass (or combination of passes)
miscompiles the test-case, it can isolate a sin-

6A third mode, for debugging back-end bugs, is
planned.

gle function which is being miscompiled. The
bugpoint tool is possible because of the
modularity of the pass manager and the abil-
ity to read, write, and modify a representation
of whole programs.

4.4 Surprises and Insights from LLVM

Through the experience of developing LLVM,
we have developed several insights which may
be useful to a broad audience. First, imple-
menting a type-safe linker for C is a non-
trivial exercise. C programs often rely on im-
plicit prototypes for called functions, or use
prototypes that are blatantly wrong. We have
also seen cases where global data is declared
to have different types in different translation
units (which, in practice, behaves similarly to
a COMMON block in FORTRAN). A normal
binary linker does not typically have problems
with these issues, but they must be handled ex-
plicitly with a type-safe linker. On the other
hand, this information is often useful to the
programmer, like the “lint ” tool.

When performing interprocedural analysis,
having as much of the program available as
possible increases the precision of the analy-
ses. For this reason, we have compiled several
libraries to LLVM form that allow them to be
analyzed and optimized with the program. This
has several interesting consequences: first, the
library code itself can be specialized and opti-
mized with the program (for example, optimiz-
ing qsort by inlining the comparison func-
tions, so indirect calls do not need to be used).
Second, this dramatically reduces the need
for ad-hoc annotations on functions indicating
properties such as “const ” and “pure ”. In-
stead, simple interprocedural analyses can be
used, which have the advantage of applying to
user code as well as the built-in functions.

Finally, we have found that investing in mak-
ing the system easier to develop for, and de-
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Source wc -l GCC LLVM Pass Times # LLVM Pass xforms
Filename LOC CSE 1 IC GER GCSE Sum IC GER GCSE
combine.c 11103 0.70s .431s .027s .141s .599s 16182 141 2734
expr.c 10747 0.52s .141s .009s .072s .222s 6540 41 2870
cse.c 8779 0.50s .187s .012s .061s .260s 10925 59 1894
reload1.c 7117 0.37s .058s .008s .034s .100s 5735 86 1830
c-decl.c 6968 0.42s .022s .005s .031s .058s 3299 3 2221
insn-recog.c 6957 0.34s .082s .004s .090s .176s 5238 0 654
loop.c 6648 0.33s .013s .001s .003s .017s 1671 7 264
c-typeck.c 6604 0.46s .028s .005s .026s .059s 4481 14 1993

Table 1: Transformation timings for source files from the SPEC CPU2000 176.gcc benchmark

bug in, has been worth it. In particular, the
bugpoint tool can narrow down a test-case
from thousands of lines of C code to a dozen
lines of LLVM code in a few seconds: doing
the same manually would takemuch longer.
Making the development environment detect
problems early is also extremely valuable to
developers, making them more productive and
making it easier to bring new people on. Hav-
ing a modular system also helps keep people
from getting overwhelmed when they first start
on the project.

4.5 Optimizer Performance

The LLVM representation allows for efficient
transformations and analyses, both for aggres-
sive interprocedural transformation and tradi-
tional optimizations. In order to quantify this
performance, we compared the performance of
the GCC “cse ” pass with the performance of
the LLVM transformations closest to it (see
Table 1). For these tests, we compiled the 8
largest single.c files in the SPEC CPU2000
176.gcc benchmark (which is based on the
GCC 2.7.2.2 source code). The numbers were
collected on a 1.7GHz AMD 2100+ Athlon
processor.

The timings for thecse pass were collected
when compiling with GCC 3.2 and the-O3 op-
tion. The actual timings were acquired as the

average of 5 runs with the-ftime-report
option and the compiler configured for a
i686-pc-linux-gnu target. Thecse 2
pass was ignored, the timings just include the
first invocation of thecse pass.

For the LLVM timings, we chose to use a
combination of theInstruction Combining,
Global ExpressionReassociation, andGlocal
Common SubexpressionElimination passes.
The combination of these three phases is be-
lieved to be strictly more powerful than the
cse pass. The Instruction Combining pass
supersumes value numbering, constant folding
and trivial dead code elimination phases, plus
it performs a variety of transformations similar
to the GCC “combine” pass (described below).
The reassociation pass transforms chained oc-
currences of commutative operations to pro-
mote better code motion. The GCSE pass is
a well known technique to remove common
subexpressions. The table shows the execu-
tion time for each pass as well as the sum of
the three. The table also shows the number
of transformations that each pass makes (in-
structions combined, instructions reassociated,
common subexpressions deleted).

From the table, we can see that the LLVM op-
timizations always run in less time than the
cse pass, and with the exception of the “com-
bine.c” case, took about half as much time. De-
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spite being faster overall, the LLVM transfor-
mations are more powerful than thecse pass,
which only operates on extended basic blocks.
The slowest individual transformation by far is
the instruction combination pass, which uses
a work-list driven approach to perform “peep-
hole” style optimization on the SSA graph
(giving it global transformation powers) for a
large collection of algebraic identities (such as
folding “(A − (A&B))” into “ (A& ∼ B)”),
that thecse pass does not perform. Together,
the three transformations are quite effective.

In addition to simple scalar optimizations,
LLVM is designed to support aggressive in-
terprocedural analyses and optimizations at
link-time. As an example, we consider the
Data Structure Analysis algorithm, a context-
sensitive flow-insensitive memory analysis
framework. On the same hardware as above
it is capable of analyzing entire programs
in seconds: 2.5s thepovray and 1.2s for
the255.vortex programs, which are about
136,000 and 67,000 lines of C code respec-
tively [13]. Other simpler algorithms may ob-
viously run much more quickly.

5 Related Work

There is a vast amount of related work on inter-
procedural optimization in research and com-
mercial compilers [1, 8, 2, 9, 3]. To avoid
major changes to the build process, all of
these compilers combine the program together
at link-time in a very high-level representa-
tion, before any substantial optimization is per-
formed. Most often, this representation takes
the form of the source language Abstract Syn-
tax Tree (AST) with source language-specific
nodes removed. Once the program is com-
bined at link-time, optimization for the entire
program commences, starting with interproce-
dural optimizations.

In contrast, the approach described here im-
mediately optimizes and translates the program
to a low-level, but strongly-typed, intermedi-
ate representation which is suitable for opti-
mization both at compile- and link-time. Be-
cause substantial optimization is performed at
compile-time, the interprocedural optimizers
have less work to perform at link-time, re-
ducing the amount of time a recompilation re-
quires. Previous work [13, 7, 10, 12] has shown
that a low-level representation with type infor-
mation can support aggressive high-level anal-
yses and transformations.

Another successful class of interprocedural op-
timizers target very low-level optimizations.
These “smart-linkers” typically operate at the
level of the machine code, performing opti-
mizations such as interprocedural register al-
location and code layout optimizations [16, 14,
5]. Although these tools have been success-
ful, and require little or no modification to the
source compiler, they are not capable of per-
forming high-level optimizations at all. Also,
these optimizations can all be performed in our
framework, because code generation occurs for
the entire program at a time, exposing the nec-
essary interprocedural information.

Within the GCC project, several projects in
development or recently merged onto the
mainline are relevant. In particular, the
ast-optimizer project and itstree-ssa
subproject aim to improve optimization in
GCC by migrating optimizations from the
target-specific RTL representation to a target-
independent AST representation. The rep-
resentation proposed in this paper is similar
to the tree-ssa GIMPLE representation in
some ways (both are language-independent,
SSA based, and do not allow nested expres-
sions), but they are different in many other
ways.

In particular, the GIMPLE representation is not
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capable of representing the entire translation
unit being compiled: a lot of information about
the program is stored only in global variables,
or are immediately emitted to the output as-
sembly file. Also, the GIMPLE representation
has operations which are closer to the source
level. For example, variable definitions can
have their address taken, which makes the def-
use chain representation much more complex
in the GIMPLE representation. On the other
hand, thetree-ssa project is much better
integrated into GCC, is written in the C lan-
guage, and does not require the introduction of
a completely new intermediate representation.

6 Conclusion

This paper presents the design for an aggres-
sive, but realistic, interprocedural optimiza-
tion component for the GNU Compiler Col-
lection. This design is capable of supporting
a broad range of whole-program optimization
techniques, is reasonable in terms of compila-
tion time, and has already been implemented.
We hope our efforts will accelerate the process
of making GCC produce code which is more
competitive with commercial compilers, and
perhaps LLVM can be directly adopted as an
optional part of the compiler itself. We encour-
age members of the community who are inter-
ested in the proposed architecture or LLVM it-
self to contact the authors with any feedback,
questions, or ideas.
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