
The finite state automaton based pipeline hazard
recognizer and instruction scheduler in GCC

Vladimir N. Makarov
Red Hat

vmakarov@redhat.com

Abstract

A new model to describe the pipeline charac-
teristics of processors is proposed in the ar-
ticle. The model is based on the usage of
regular expressions. The model is compared
to the one used in GNU C compiler (GCC)
for long time. The article also describes the
pipeline hazard recognizer generated from the
new model currently implemented in GCC and
instruction scheduler which uses the pipeline
hazard recognizer. The current implementation
of the pipeline hazard recognizer is based on
the usage ofdeterministicandnondeterminis-
tic finite state automata.

Examples of usage of the new model, the
pipeline hazard recognizer, and the instruction
scheduler based on it are given. Possible future
directions of developing them to use them for
different algorithms of instruction scheduling
and software pipelining are discussed.

Introduction

To increase the productivity of computer
systems the modern processors can execute
several instruction simultaneously. It is
achieved by using several functional units
and/or pipelined functional units. Of course the
instruction execution could start only if the in-
put data are ready and enough processor func-
tional units necessary for the instruction execu-

tion are available. If at least one of the two con-
ditions is not satisfied, a processor stall might
occur and the instruction execution might be
delayed. The delay because the first condition
is not satisfied is called data delay. The delay
because of the second condition is called re-
source delay.

A special component in an optimized compiler,
called the instruction scheduler, is responsi-
ble for decreasing the data and resource delays
and (as a consequence) to increase the paral-
lelism of instruction execution. It is achieved
mainly by changing the original order of in-
structions, although more powerful code trans-
formation (like instruction cloning, partial reg-
ister renaming and forward substitution, and
instruction mutation) could be used. An im-
portant component of the instruction scheduler
responsible to find the resource delays is called
the pipeline hazard recognizer.

There is big variety of processors even for one
architecture. Therefore writing the pipeline
hazard recognizer manually is not wise. This is
especially true for portable compilers. There-
fore many compilers have a model to describe
pipeline characteristics of the target processors
and usually a generator of pipeline hazard rec-
ognizers. The model language can be a subset
of the compiler implementation language (like
C used to describe the reservation tables) or a
special language designed for this task.

136 • GCC Developers Summit

GCC as a compiler ported to most platforms
had such a model and generator for long time.
This model has its drawbacks. It can not accu-
rately describe many modern processors. As a
consequence the generated code is worse than
it could be with the same instruction sched-
uler. The more pipeline irregularity the proces-
sor has, the more is the impact of an instruction
scheduling inaccuracy. Another drawback is
the inconvenience of description. The model is
oriented to describe which instructions a func-
tional unit executes instead of the more natu-
ral model in which the reservation of the func-
tional units by given instruction is described.

GCC pipeline hazard recognizer is a part of the
instruction scheduler itself. It is driven by ta-
bles generated from the description. The tables
are just a simple translation of the description.
The more complex the pipeline description is,
the slower the pipeline hazard recognizer is.
The modern processor becomes more complex
and the slow speed of the pipeline hazard rec-
ognizer becomes a problem.

To solve this drawback, the new model and im-
plementation of the pipeline hazard recognizer
have been proposed. The model is based on the
usage of regular expressions describing all the
reservations of functional units by instructions.
The corresponding implementation of pipeline
hazard recognizer is based on the usage of fi-
nite state automata.

Each state of the automaton encodes all current
and planned reservations of functional units.
If there is an arc from one state to another
state marked by an instruction, then the instruc-
tion can be issued in a given state and there
will be no conflicts on functional unit usage
with the instructions issued earlier. The des-
tination state encodes all current and planned
functional unit reservations after issuing the in-
struction. Each state also has an arc marked by
cycle advancing. The destination state in this

case is the state after increasing the simulated
processor cycle. Transitions by the arc finally
result in freeing functional units.

So the instruction scheduler should only check
the presence of the arcs marked by the instruc-
tion from given state to find a resource de-
lay. After issuing the instruction the instruc-
tion scheduler should change the current state
to the destination state. If no instruction can be
issued, the instruction scheduler should change
the current state to the destination state into
which an arc marked by ‘cycle advancing’ en-
ters and increase the simulated processor cycle.

This approach is not new. It has been de-
scribed in [Bala, Proebsting]. What is a re-
ally new thing in the approach described in the
article is usage ofalternativesin the reserva-
tions. The alternatives can be treateddetermin-
istically andnondeterministically.

The deterministic treatment of the alternative
is to try the first alternative reservation and, if
there is a conflict on any functional unit re-
served by previously issued instructions, try
the next alternative. The nondeterministic one
is to try all alternative reservations concur-
rently.

The first section of the article describes in
more detail the description model and the cor-
responding pipeline hazard recognizer used in
GCC for a long time. It also describes the
drawbacks of such an approach. In the sec-
ond section, the proposed model is described.
The third section describes the generation of
the pipeline hazard recognizer from the pro-
posed model and its interface to the instruction
scheduler. The fourth section contains exam-
ples of descriptions as deterministic and non-
deterministic ones. The fifth section describes
an algorithm, called the first cycle multipass in-
struction scheduling. The algorithm improves
instruction scheduling by evaluation of more
than one instruction schedule. Usage of the fast

GCC Developers Summit 2003 • 137

pipeline hazard recognizer makes it practical.
In the sixth section, the possible future direc-
tions of developing the proposed approach are
discussed.

1 The old GCC processor pipeline
description model

This section is based on the documenta-
tion of Gcc internals [Gcc]. Practically all
processor parallelism for GCC is described
with the aid of one type of constructions—
define_function_unit —in a Gcc ma-
chine description file. Each usage of a func-
tional unit by a class of instructions is spec-
ified with a define_function_unit ex-
pression (see Table 1).

(define_function_unit NAME MULTIPLICITY SIMULTANEITY

TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])

NAMEis a string giving
the name of the functional
unit.

MULTIPLICITY is an integer
specifying the number of identical
units in the processor. If more than
one unit is specified, they will be
scheduled independently.

SIMULTANEITY speci-
fies the maximum num-
ber of instruction that can
be executing in each in-
stance of the functional
unit simultaneously.

TEST is an attribute test that se-
lects the instructions we are de-
scribing in this definition. Note
that an instruction may use more
than one functional unit.

READY-DELAYis an in-
teger that specifies the
number of cycles after
which the result of the
instruction can be used
without introducing any
stall.

ISSUE-DELAY is an integer that
specifies the number of cycles after
the instruction matching theTEST
expression begins using this unit
until a subsequent instruction can
begin. A cost ofN indicates an
N-1 cycle delay.

CONFLICT-LIST is an
optional list giving in-
structions with which ad-
ditional conflicts occur.

Table 1:The old description model construction.

As an example, consider a classic RISC ma-
chine where the result of a load instruction
is not available for two cycles (a single "de-
lay" instruction is required) and where only
one load instruction can be executed simulta-
neously. This would be specified as:

(define_function_unit "memory" 1 1
(eq_attr "type" "load") 2 0)}

For the case of a floating point function unit
that can pipeline either single or double preci-
sion, but not both, the following could be spec-
ified:

(define_function_unit "fp" 1 0
(eq_attr "type" "sp_fp") 4 4
[(eq_attr "type" "dp_fp")])

(define_function_unit "fp" 1 0
(eq_attr "type" "dp_fp") 4 4
[(eq_attr "type" "sp_fp")])

A special utility in Gcc generates different ta-
bles of bit vectors, macros, and some functions
(mainly for dealing with conflict lists), which
are used by the pipeline hazard recognizer em-
bedded into the instruction scheduler.

The current GCC instruction level parallelism
description model has serious drawbacks. The
biggest one is that the description model is not
powerful enough. Each functional unit is be-
lieved to be reserved at the start of instruction’s
execution. The model also does not permit al-
ternatives in the reservations. This is a big con-
straint for accurate descriptions of modern pro-
cessors. As a consequence of inaccurate de-
scriptions, the machine dependent files of Gcc
contain a lot of code to fix it. For example,
the SPARC machine-dependent files contained
about one thousand lines of C code.

Another important drawback of the model is
the unnatural way of description when a devel-
oper should write a unit and condition which
selects instructions using the unit. My experi-
ence shows that writing all units reservation for

138 • GCC Developers Summit

an instruction (an instruction class) are more
natural.

The pipeline hazard recognizer of resource
delays has a slow implementation. The
Gcc schedulers support structures which de-
scribe the unit reservations. The more com-
plex the pipeline description, the slower the
pipeline hazard recognizer. Such implementa-
tion would become even slower when we en-
able to reserve functional units not only at the
instruction execution start. The slow imple-
mentation becomes critical for the modern pro-
cessor (especially VLIW and EPIC).

2 The proposed processor pipeline
description model and its imple-
mentation

As the old processor pipeline description, the
proposed pipeline description should be placed
in the machine description files of Gcc. There
are several constructions to describe the pro-
cessor. The order of all such constructions in
the machine description file is not important.
All constructions are Lisp like construction be-
cause the machine description file has Lisp like
syntax. Please don’t be confused—it is just an
implementation form of the description model.
The syntax of the major constructions is given
on Table 2.

To describe a processor, first we should
define an automaton with the construction
define_automaton . We can have more
than one automaton in a machine description
file. All the automata should have unique
names. The automaton name is used in the con-
structiondefine_cpu_unit .

It is good practice to use separate automaton
to describe a processor of a given architecture.
For example, the machine description file for

(define_automaton
AUTOMATON-NAME)

AUTOMATA-NAMEis a string giv-
ing the name of the automaton.

(define_cpu_unit
UNIT-NAMES
AUTOMATON-NAME)

UNIT-NAMES is a string giving
the names of the functional units.
AUTOMATON-NAMEis a string
giving the name of the automaton
to which the unit is bound.

(define_insn_reservation
INSN-NAME
DEFAULT-LATENCY
CONDITION REGEXP)

DEFAULT-LATENCYis a number
giving the latency time of the in-
struction.
INSN-NAME is a string giving an
internal name of the instruction. It
is good practice to use the instruc-
tion class names as described in the
processor manual.
CONDITION defines what RTL
instructions are described by this
construction.
REGEXPis a string describing the
reservation of the cpu’s functional
units by the instruction (the syntax
is given in table 3).

(define_reservation
RESERVATION-NAME
REGEXP)

RESERVATION-NAMEis a string
giving the name of REGEXP.

(exclusion_set
UNIT-NAMES UNIT-NAMES)

(presence_set
UNIT-NAMES PATTERNS)

(absence_set
UNIT-NAMES PATTERNS)

UNIT-NAMES is a string giving
names of functional units.
PATTERNSis a string giving pat-
terns of functional units separated
by a comma. Currently a pattern
is one unit or units separated by
white-spaces.

Table 2:The major constructions of the proposed
description model.

SPARC architecture could have one automa-
ton for UltraSparcII and another one for Ultra-
SparcIII.

We could also use more than one automaton
to describe a single processor. Sometimes the
generated finite state automaton used by the
pipeline hazard recognizer is large. If we use
more than one automaton and bind functional
units to the automata, the summary size of the
automata is usually less than the size of the sin-
gle automaton.

GCC Developers Summit 2003 • 139

Each functional unit used in the description of
instruction reservations should be described by
the constructiondefine_cpu_unit .

The constructiondefine_insn_reserva-

tion is the major construction to describe
pipeline characteristics of an instruction. The
reservations are described by regular expres-
sions according to the syntax on Table 3.

regexp = regexp "," oneof
| oneof

, is used for describing the start
of the next cycle in the reserva-
tion.

allof = allof "+" repeat
| repeat

+ is used for describing a reser-
vation described by the first reg-
ular expression and the second
regular expression etc.

oneof = oneof "|" allof
| allof

| is used for describing a reser-
vation described by the first reg-
ular expression or the second
regular expression etc.

repeat = element "*" number
| element

* is used for convenience and
simply means a sequence in
which the regular expression is
repeatedNUMBERtimes with
cycle advancing (see ‘, ’).

element = cpu_unit_name
| reservation_name
| result_name
| "nothing"
| "(" regexp ")"

cpu_unit_name denotes
reservation of the named cpu
functional unit. nothing
denotes no unit reservations.

Table 3:Syntax of the regular expressions.

As an example, consider a superscalar RISC
machine which can issue three instructions
(two integer instructions and one floating point
number instruction) on a cycle but can finish
only two instructions. To describe this, we de-
fine the following functional units.

(define_cpu_unit "i0_pipeline, i1_pipeline")
(define_cpu_unit "f_pipeline,port0, port1")

All simple integer instructions can be executed
in any integer pipeline and their result is ready
in two cycles. The simple integer instructions
are issued into the first pipeline unless it is
reserved, otherwise they are issued into the
second pipeline. Integer division and multi-
plication instructions can be executed only in
the second integer pipeline and their results
are ready correspondingly in 8 and 4 cycles.
The integer division is not pipelined, i.e. the
subsequent integer division instruction can not
be issued until the current division instruction
finished. Floating point instructions are fully
pipelined and their results are ready in 3 cy-
cles. To describe all of this we could specify

(define_cpu_unit "div")
(define_insn_reservation "simple" 2

(eq_attr "cpu" "int")
"(i0_pipeline|i1_pipeline), (port0|port1)")

(define_insn_reservation "mult" 4
(eq_attr "cpu" "mult")
"i1_pipeline, nothing*2, (port0|port1)")

(define_insn_reservation "div" 8
(eq_attr "cpu" "div")
"i1_pipeline, div*7, div + (port0|port1)")

(define_insn_reservation "float" 3
(eq_attr "cpu" "float")
"f_pipeline, nothing, (port0|port1))

In our example we see that the unit reserva-
tions for different instructions contain com-
mon parts. In such case, we can simplify the
pipeline description by defining an abbrevia-
tion by the constructiondefine_reserva-
tion . To simplify the description in our ex-
ample we could use a reservation as follows

(define_reservation "finish" "port0|port1")
(define_insn_reservation "simple" 2

(eq_attr "cpu" "int")
"(i0_pipeline | i1_pipeline), finish")

Some processors (especially VLIW ones)
have many constraints which are quite dif-
ficult to describe only by the constructions
mentioned above. The three constructions
exclusion_set , presence_set , and
absence_set make description easy.

140 • GCC Developers Summit

The first construction (exclusion_set)
means that each functional unit in the first
string can not be reserved simultaneously with
a unit whose name is in the second string and
vice versa. For example, the construction is
useful for describing processors (e.g. some
SPARC processors) with a fully pipelined
floating point functional unit which can exe-
cute simultaneously only single precision float-
ing point instructions or only double precision
floating point instructions.

The second construction (presence_set)
means that each functional unit in the first
string can not be reserved unless at least one
of the pattern in the second string has been re-
served. This is an asymmetric relation. For
example, it is useful to description that VLIW
slot1 is reserved after a reservationslot0
or slot1 is reserved only after aslot0 and
unit b0 reservation. We could describe it by
the following constructions:

(presence_set "slot1" "slot0")
(presence_set "slot1" "slot0 b0")

The third construction (absence_set)
means that each functional unit in the first
string can be reserved only if each pattern in
the second string is not reserved. This is an
asymmetric relation. For example, it is useful
for description that VLIWslot0 can not be
reserved after aslot1 or slot2 reservation
or thatslot2 can not be reserved ifslot0
and unitb0 are reserved orslot1 and unit
b1 are reserved. We could describe it by the
following constructions:

(absence_set "slot2" "slot0, slot1")
(absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should
belong to the same automaton.

There are other constructions to describe
pipeline characteristics of processors. But for

the sake of brevity they are not described in this
article.

A special utility (the generator) generates the
automaton based pipeline hazard recognizer in
a separate file. The instruction scheduler com-
municates with it through a procedural inter-
face. The major procedure gets an automata
state and an instruction as parameters and re-
turns information on whether the instruction
can be issued or not. If it can be issued then
the procedure changes the state to reflect the
instruction issue.

Each state of the automaton encodes all current
and planned reservations of functional units. If
there is an arc to another state marked by an
instruction, then the instruction can be issued
in the given state and there will be no con-
flicts on functional unit usage with the instruc-
tions issued earlier. The destination state en-
codes all current and planned functional unit
reservations after issuing the instruction. If
the instruction parameter is null, it means that
the simulated processor cycle should be ad-
vanced. Each state has an arc marked by
cycle advancing . The destination state
in this case is the state after incrementing the
simulated processor cycle. Transitions by such
arcs result in the freeing of all functional units.

The DFA pipeline hazard recognizer is be-
lieved to not be as flexible as the old Gcc rec-
ognizer. This is not true. It is easy to get in-
formation from the automata. For example,
the generator also generates many other pro-
cedures like querying the reservation of func-
tional units for a given automaton state, finding
the minimal reservation delay needed to issue
an instruction in a given state, checking that no
one instruction can be issued in given state and
so on.

The nondeterministic treatment of alterna-
tives means trying all alternatives concurrently.
Some of them may be rejected by reservations

GCC Developers Summit 2003 • 141

in the subsequent instructions. Actually, the
nondeterministic treatment of alternatives is
enough to describe deterministic alternatives.
For example, let us look at the following reser-
vation with deterministic treatment of alterna-
tives.

(define_reservation "deterministic" "u1|u2")

It means that we reserveu1 and, if it is not pos-
sible (becauseu1 has been already reserved),
we reserveu2 . We can describe it with the fol-
lowing constructions

(define_reservation "nondeterministic"
"u1|u2+u1_present")

(presence_set "u1_present" "u1")

Here we use a reservation with nondetermin-
istic treatment of the alternative. What vari-
ant of alternative should we use? The proces-
sors are deterministic devices, so alternatives
should usually be treated deterministicaly (this
is the default treatment). Let us look at a dual
instruction issue processor which has two in-
teger units. One integer unitIU1 can execute
any integer instruction and another one (IU2)
can execute any integer instruction except mul-
tiply. In the first example, the processor always
issues instructions intoIU1 if it is free. The
processor could be described by using deter-
ministic alternatives as follows

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "IU1 | IU2")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "IU1")

Actually the processor has a bad design be-
cause if an integer instruction is followed by
multiply instruction the two instructions can
not be issued simultaneously. The improved
processor should always issue an integer in-
struction intoIU2 if it is not busy. We could
describe this using deterministic alternatives as
follows

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "IU2 | IU1")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "IU1")

On the other hand we could use nondetermin-
istic treatment in the example too. The result
automaton would be the same. But nondeter-
ministic treatment could better reflect the pro-
cessor’s behaviour if the processor had an in-
struction look ahead buffer to find the best as-
signment of functional units to instructions in
the buffer. Another example of usage of the
nondeterministic treatment of alternatives for
Itanium and Itanium2 processors is described
in the next section.

Generally speaking, the same processor can be
described differently. I would distinguish two
kind of descriptions. One is thestructuralde-
scription which describes (almost) all proces-
sors functional units mentioned in processor’s
documentation. Another one (behavioural)
aims to describe only pipeline hazards (some-
times with the aid of non-existing functional
units). The first one is usually more verbose
and the resulting automata are bigger. The sec-
ond one is simpler and the resulting automata
are smaller. But it is better to follow the docu-
mentation (in other words to use a structural
description) because it makes understanding
the description easier for other people.

3 Generation of the pipeline haz-
ard recognizer

Here is a brief description of the phases of the
generator of pipeline hazard recognizers and
the more interesting tasks solved by the gener-
ator. First, the generator of pipeline hazard rec-
ognizer translates the pipeline description into
an internal representation.

Then it checks the correctness of the automa-
ton pipeline description. The most nontrivial

142 • GCC Developers Summit

task is to check the correctness of assignments
of functional units occurring in a reservation
to the automata. There is no such problem for
reservations without alternatives [Bala]. Let us
consider the following description:

(define_cpu_unit "div" "div")
(define_cpu_unit "decode" "rest")
(define_insn_reservation "div" 3

(eq_attr "cpu" "div") "decode + div*3")

The corresponding automata are given on Fig-
ure 1. The figure also contains the single au-
tomaton as if all units were assigned to one
automaton. They behave analogously to the
single automaton with the two functional units
decode and div . It means that transition
marked by an instruction exists in the single
automaton if and only if there are transitions
marked by the instruction between the corre-
sponding states of all two automata. Instead of
changing only one state for a single automa-
ton, the pipeline hazard recognizer changes the
states of the two automata simultaneously. Al-
though a number of the states is hidden in the
pipeline hazard interface and there is only one
state in the interface, in reality the interface
state is represented by two states and pipeline
hazard recognizer internally manipulates the
states of the two automata.

Let us consider a more advanced dual instruc-
tion issue processor with a faster division unit.

(define_cpu_unit "decode1" "a1")
(define_cpu_unit "div,decode2" "a2")
(define_insn_reservation "div" 2

(eq_attr "cpu" "div")
"(decode1|decode2) + div*2")

For automataa1 anda2 we have correspond-
ingly the following functional unit reservations
for the instructiondiv

decode1|nothing
nothing|decode2 + div*2

nothing next cycle

decode
+div*3

div

div*2

next cycle

div

next cycle

next cycle

nothing next cycle

div*3

div

div*2

next cycle

div

next cycle

next cycle

nothing next cycle

decode

div next cycle

Figure 1: The single automaton and the two au-
tomata of the single issue processor.

Figure 2 contains the single automaton (as if all
units were assigned to one automaton) and the
corresponding two automata.

nothing next cycle

decode1
+div*2

div

div

next cycle

next cycle

nothing next cycle

decode1

div next cycle

div nothing div next cycle

Figure 2:The single automaton and the two incor-
rect automata of the dual issue processor.

The two automata are not equivalent to the sin-
gle automata. For example, we could issue
any number of division instructions on one cy-
cle according to the two automata. The sim-
ple solution of this problem could be the us-
age of the requirement to assign all functional

GCC Developers Summit 2003 • 143

units occurring in the same reservation to the
same automaton. It is a very severe constraint
to assign functional units to automata which
results in the impossibility of decreasing au-
tomata size in many cases even if we have
reservations without alternatives. Instead of it,
the current implementation uses a less severe
requirement. If a functional unit reservation
(div in our example) is present on a partic-
ular cycle of an alternative for an instruction
reservation, then some unit from the same au-
tomaton must be present on the same cycle for
the other alternatives of the instruction reser-
vation. The requirement is not too complicated
to be understood and it still helps to consider-
ably decrease automata size in many cases. Let
us consider the following distributions of the
functional units (The corresponding automata
are given on Figure 3):

(define_cpu_unit "decode1,decode2" "a1")
(define_cpu_unit "div" "a2")
(define_insn_reservation "div" 2

(eq_attr "cpu" "div")
"(decode1|decode2) + div*2")

nothing next cycle

decode1

div

decode1
+decode2

div

next cycle

nothing next cycle

div*2

div

div

next cycle

next cycle

Figure 3: The two correct automata of the dual
issue processor.

We see that the automata on figure 3 behave
analogously to the single automaton.

After checking the description, the generator of
the pipeline hazard recognizer creates the au-
tomata and, if the alternatives are treated non-
deterministicaly, transforms nondeterministic
finite state automata into deterministic ones.

After creating the automata, the generator does
a minimization of the finite state automata
by merging automaton states (I should men-
tion that Gcc experience shows importance of
some preliminary minimization during build-
ing the automata because even if the minimized
is small the automata before the minimization
could be huge). The minimization task is a bit
complicated. If we have functional units in the
description whose reservation may be queried
for a given state. Let us consider a processor
with different functional units for multiply and
for the rest of the integer instructions

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "decode + int")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "decode + mult")

The corresponding automata before and the af-
ter the minimization are given on Figure 4. If
we want to know whether functional unitmult
is reserved in the second state of the minimized
automaton, we can not get this information
from just the state. The simplest solution of
the problem could be prohibiting the minimiza-
tion for automata with queried units. Unfor-
tunately such a solution is not reasonable be-
cause automaton minimization is an important
optimization which permits to considerably de-
crease the size of the automata in many cases.
Instead of the simplest approach we use mini-
mization with modified state equivalence. The
new state equivalence takes queried functional
units in the corresponding reservations into ac-
count. This approach still permits to consider-
ably decrease the automata size in many cases.

After the minimization, the generator forms ta-
bles, compresses them by different algorithms

144 • GCC Developers Summit

nothing next cycle

decode
+int

int

decode
+mult

multnext cycle next cycle

nothing next cycle

decode+int
|decode+mult

int mult next cycle

Figure 4:The automaton before and after the min-
imization.

(like a comb vector algorithm) and outputs
them (and functions accessing them (including
functions which are interface functions of the
pipeline hazard recognizer)) into a C file for
further compilation.

The biggest problem of the usage of the DFA
approach is the size of the automata. How big
can the automata be? For example, Gcc for In-
tel IA64 has four automata (two for Itanium
and two Itanium2) with 24K states and 170K
arcs. But this is an extreme case. Itanium and
Itanium2 have extremely complicated pipeline
characteristics. The IA64 automata are also
used for VLIW packaging (bundling instruc-
tions). Therefore the IA64 automata have
many queried units.

To solve the big automata size problem, it is
better to split an automata into several ones and
not to use queried units as it was mentioned
in above. Now automaton splitting should be
done manually by assigning functional units to
the automata. Automatic splitting of an au-
tomaton into several automata with total size
less than the size of the original automaton is a
challenging research work.

4 Usage of the proposed model and
the pipeline hazard recognizer

The first public usage of DFA based instruction
scheduling was for UltraSparc. The previous
implementation of the pipeline hazard recog-
nizer contained about 1000 lines of machine-
dependent C code for tuning the old pipeline
hazard recognizer generated from a non-DFA
pipeline description. The DFA description
of Sparc which resulted in all this code has
been gone and the instruction scheduling has
been improved. Table 4 contains a compari-
son of SPECfp95 run a 500 Mhz UltraSparcIIe
box. The average improvement of EEMBC
[EEMBC] for a 233 Mhz UltraSparcII box was
5.5%.

Benchmarks Ratio Ratio
101.tomcatv 12.6 13.4
102.swim 22.4 22.7
103.su2cor 5.95 6.04
104.hydro2d 6.04 6.05
107.mgrid 7.73 8.65
110.applu 7.52 7.65
125.turb3d 13.7 13.8
141.apsi 10.9 11.0
145.fpppp 11.0 11.4
146.wave5 14.7 15.0
SPECfp95 (Geom. Mean) 10.4 10.7

Table 4: Sparc GCC with non-DFA and DFA
pipeline hazard recognizers.

The usage of a DFA description for SH4 is an
example of the importance of accurate pipeline
descriptions for processors which have compli-
cated pipeline constraints: such as SH4. Im-
provement of instruction scheduling with the
DFA pipeline hazard recognizer for SLALOM
benchmark [Slalom] on a 200Mhz SH4 box
was about 12-13%.

A good example of usage ofnondeterministic
automata is the description of Itanium and Ita-

GCC Developers Summit 2003 • 145

nium2 processors. The IA64 architecture is an
extension of a typical VLIW architecture. In-
structions can only be placed in specific slots
(syllables in IA64 terminology) of a VLIW in-
struction (bundle in IA64 terminology). To
place an instruction in the current bundle or
the next bundle, sometimes one or twoNOPin-
structions should be issued first. Gcc already
had pipeline hazard recognizer for the Itanium
processor. It was written manually on C be-
cause the old description model was not pow-
erful enough. The code was big and compli-
cated. It was tuned very well to achieve good
instruction scheduling. The code tried to insert
suchNOPinstructions.

The nondeterministic automaton permits to
easily describe where to insert suchNOPin-
structions. The DFA descriptions have been
written for Itanium and Itanium2 processors.
Each processor has been described by two au-
tomata. The first (nondeterministic) automaton
described the instruction reservations with an
optional issue of one or twoNOPinstructions
before the instruction. So the pipeline hazard
recognizer followed all possibilities of insert-
ing NOPinstructions. This automaton is used
for the first and second instruction scheduling
in Gcc. The second automaton is determinis-
tic. It is used to bundle instructions on the final
phase of Gcc. Bundling instructions is to insert
NOPs andtemplate selectors. InsertingNOPs
was a dynamic programming algorithm which
tests all alternatives in insertingNOPs before
the instructions and choses the best ones. It
uses the second automaton and information
about new processor cycle start points prepared
by the previous instruction scheduling. Tem-
plates are defined by querying the functional
units of the second automaton.

Such implementation permitted to speed up all
Gcc run (with -O2) up to 45% for Itanium. The
code has been improved by 2% (see Table 5)
for SPECInt2000 benchmark on a 733 Mhz Ita-

Benchmarks Ratio Ratio
164.gzip 176 177
175.vpr 192 203
176.gcc 236 235
181.mcf 142 144
186.crafty 248 243
197.parser 168 171
252.eon 149 147
253.perlbmk 201 207
254.gap 163 167
255.vortex 232 233
256.bzip2 182 188
300.twolf 247 265
Est.SPECint2000 191 195

Table 5: Itanium Gcc with non-DFA and DFA
pipeline hazard recognizers.

Benchmarks Ratio Ratio
164.gzip 345 361
175.vpr 444 454
176.gcc 460 477
181.mcf 252 249
186.crafty 480 497
197.parser 366 368
252.eon 274 273
253.perlbmk 449 463
254.gap 326 331
255.vortex 509 512
256.bzip2 362 376
300.twolf 506 559
Est. SPECint2000 388 399

Table 6: Itanium Gcc with non-DFA pipeline
hazard recognizers vs. Itanium2 Gcc with DFA
pipeline hazard recognizer.

146 • GCC Developers Summit

nium box.

Unfortunately, there is no implementation of
Gcc for Itanium2 using a non-DFA pipeline
hazard recognizer. Therefore we could only
compare Itanium compiler using the non-DFA
pipeline hazard recognizer with the Itanium2
compiler using the DFA-pipeline hazard recog-
nizer. The compiler speed up is about 55% for
such a comparison. The SPECInt2000 bench-
mark results of Gcc (with usage -O2) on a
900Mhz Itanium2 box are given in Table 6.

5 The first cycle multipass instruc-
tion scheduling

The usage of the fast DFA pipeline hazard
recognizer permits to implement instruction
scheduling algorithms trying several schedules
and choosing the best one. The traditional in-
struction scheduling algorithms try only one
instruction schedule. The schedule is chosen
by a fixed set of heuristics. Usually the ma-
jor heuristic is a heuristic based on the critical
path length [Muchnick, Morgan]. This heuris-
tic works fine for classical RISC processors.
For super-scalar RISC or VLIW processors, a
greedy algorithm [Muchnick] trying to issue
the maximal number instructions on each pro-
cessor cycle might work better.

The first cycle multi-pass instruction schedul-
ing has been designed to integrate the best of
the both approaches. The idea of the algorithm
is to choose an instruction whose issue can re-
sult in the issue of a maximal number of in-
structions on the current simulated processor
cycle. The highest priority instruction should
be among these instructions. In other words,
the algorithm guarantees that the instruction
with the highest priority will be issued on the
current cycle (although necessarily not the first
in the cycle). On the other hand, it tries to max-
imize the number of issued instructions on the

cycle. The second highest priority instruction
might be not issued on the same cycle even if
it could be issued with the highest priority in-
struction. If it happens, the second highest pri-
ority instruction will be issued on the next cy-
cle.

function MaxIssues (ReadyArray, var ReadyTry,
State, var Index) : integer

begin
if no one instruction can be issued in State
then return 0; fi

Best := 0;

for i := 0 to length (ReadyArray) do
if not ReadyTry [i] then

Insn := i-th of ReadList;
TempState := State;
if Insn can be issued in TempState then

change TempState as if Insn were issued;
ReadyTry [i] = true;
n := MaxIssues (ReadyArray, TempState,

TempIndex);
if n > 0 || ReadyTry[0]
then n := n + 1; fi;
if Best < n then

Best := n;
Index := i;

fi;
ReadyTry [i] := false;

fi
fi

end
return Best;

end

function ChooseReady (ReadyArray, State) : Insn
begin

ReadyTry := array of length (ReadyArray)
initialized by false;

if MaxIssues (ReadyArray, ReadyTry,
State, i) == 0

then return the first instruction in
ReadyArray;

else return i-th instruction in ReadyArray;
fi

end

Figure 5: The first cycle multi-pass instruction
scheduling algorithm.

To find the instruction to issue, the algorithm
tries permutations of an array of ready instruc-
tions sorted by their priorities. The algorithm
might try too many permutations. Therefore
the speed of the pipeline hazard recognizer is
critical. The number of all permutations isn!,
wheren is number of the ready instructions.

GCC Developers Summit 2003 • 147

This number can be huge and some heuristics
are used to limit the processed permutations.
The recursive version of the algorithm (with-
out the heuristics) is given in Figure 5.

The algorithm is written on a Pascal/Modula
like language. The functionChooseReady
gets the array of the ready instructions sorted
by their priorities and a DFA state reflecting the
current and future functional unit reservations
and returns a ready instruction which should
be issued. The function calls another func-
tion MaxIssues to find the best instruction.
The recursive functionMaxIssues gets the
ready instruction array, the information about
already issued ready instructions as a boolean
array, and the current DFA state reflecting issu-
ing the ready instructions. The function returns
the maximal number of instructions which can
be issued in the given conditions and the index
of the instruction which should be issued first
to achieve this number. The function checks
only the instruction sequences which contain
the first ready instruction.

How much can the algorithm improve the
code? The improvement can be significant es-
pecially for VLIW processors. For example,
the test twolf from SpecInt2000 has been im-
proved by 12% for an Intel Itanium2 machine.
The overall SpecInt2000 has been improved by
2%. It should be mentioned that a modified al-
gorithm, limiting number of the permutations
being checked, was used. The modification
was necessary to make the algorithm fast (as
a small fraction of all the instruction scheduler
work time) so as to be practical for use in in-
dustrial compilers.

The algorithm tries all the possibilities to im-
prove the schedule in the scope of one proces-
sor cycle. It can be generalized to improve
code in scope of a basic block. So the algo-
rithm can be considered as an intermediate step
in the algorithm making an optimal or close to

optimal instruction schedule.

6 Future directions

The pipeline hazard recognizer based on the
proposed model of description and its DFA im-
plementation could be developed in the follow-
ing ways:

• The same approach in the implementa-
tion of the old pipeline hazard recognizer
could be used for an implementation of
the proposed model. It means a slower but
more compact pipeline hazard recognizer.
Such an implementation could be useful
for debugging and for complicated cases
when the automata are too big.

• Some optimization algorithms need to de-
fine a DFA state before issuing an in-
struction having a DFA state after issu-
ing the instruction. It is necessary for
trace scheduling [Fisher]. It could be use-
ful for VLIW slot assignment (instruction
bundling) too when we have a final DFA
state at the end of the basic block and
we move backward querying functional
unit reservations in order to place instruc-
tions into VLIW slots. This kind of algo-
rithm requires reversed automata genera-
tion [Bala].

• Some algorithms need a union of DFA
states. The union of two DFA states
is a DFA state which reflects the union
of functional unit reservations (in other
words, a simultaneous reservation of
functional units) from the both DFA
states. It is necessary when we need
to know the worst case in a joint point
of control flow graph. Perfect software
pipelining [Allan] and some interblock in-
struction scheduling are such kind of algo-
rithms.

148 • GCC Developers Summit

The union of states is also necessary for
the most widely used kind of software
pipelining - modulo scheduling [Allan].
To implement modulo scheduling we need
to make a union of the state after instruc-
tion issue and the states gotten from the it
by advancing the simulated processor cy-
cle by II * n , whereII is the initia-
tion interval andn is 1, 2, 3 and so on.N
could be constrained by a value which re-
sults in the state designating no functional
unit reservations.
Actually, we could implement the union
of states as simply a set of the states. But it
results in a slower implementation. On the
other hand, adding states to an automa-
ton which are the union of all automa-
ton states might result in the generation of
a huge automaton. So this approach re-
quires additional research.

The first cycle multipass instruction schedul-
ing tries all possibilities to improve the sched-
ule in the scope of one processor cycle. It
can be generalized to improve code in scope
of a whole basic block. It means an optimal or
close to optimal instruction scheduling. Opti-
mal instruction scheduling is aNP-hard task.
But we could decrease the number of all con-
sidered instruction schedules by heuristics and
by using dynamic programming to reuse the re-
sults of optimal instruction scheduling of a sub-
sequence of the instructions. The DFA pipeline
hazard recognizer would be important part of
the optimal instruction scheduling implemen-
tation because of its speed.

Regular expressions in the current implementa-
tion describes automata formingdirect acyclic
graphs(DAGs). It is not an adequate model
to accurately describeout-of-order speculative
executionprocessors. Usually they have reg-
ister renaming buffers, retire queues and so
on. Generic regular expressionsor context
free grammarscould be an accurate description

model for such processors. The single ques-
tion is “is it worth implementing?” From my
point of view, such an accurate description will
not give significant improvement of instruction
scheduling for the processors. But it could be
a good research work.

7 Acknowledgments

I would like to thank Robert Morgan and Nor-
man Rubin. Communication with them gave
me my original interest in automaton based
pipeline hazard recognizers.

I am grateful to my current and former col-
leagues at RedHat for their interest in and sup-
port of this project. Among them are Richard
Henderson who had the biggest impact on the
design of the description model, Jeff Law who
provided resources for this work through dif-
ferent contracts, Jason Eckhardt for the ex-
change of interesting ideas in this field, David
Miller who wrote the UltraSparc description
and had proven the advantages of the approach.

I should name many contributors to Gcc who
have affected this work. The full list could be
very long. So I only name Jim Wilson at Red-
Hat, Jan Hubicka at SUSE, David Edelhson
at IBM, Geoffrey Keating at Apple, Naveen
Sharma at HCL Technologies, Dan Nicolaescu
at University of California, Irvine. This is the
power of the open source community!

Last but not least, I would like to thank my son,
Serguei, for the help in editing the article.

References

[Bala] V. Bala and N. Rubin,Efficient Instruc-
tion Scheduling Using Finite State Au-
tomata, International Journal of Parallel
Programming (1995).

GCC Developers Summit 2003 • 149

[Proebsting] T. Proebsting and C. Fraser,
Detecting pipeline structural hazards
quickly, Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages (1994) p. 280–
286.

[Gcc] A Gcc Manual, Published by the Free
Software Foundation, 59 Temple Place
– Suite 330, Boston, MA 02111–1307
USA.

[EEMBC] EEMBC,
http://www.eembc.org

[Slalom] Slalom,
http://www.scl.ameslab.gov

/Publications/SLALOM

/FirstScalable.html

[Allan] V. Allan and others,Software pipelin-
ing, Computing Survey, Sept. (1995).

[Muchnick] Steven S. Muchnick,Advanced
compiler design implementation, Aca-
demic Press (1995), ISBN 1–55860–
320–4.

[Morgan] Robert Morgan,Building an Opti-
mizing Compiler, Digital Press, ISBN 1–
55558–179–X.

[Fisher] J. A. Fisher,Trace scheduling: A
technique for global microcode com-
paction, IEEE Trans. Computing 30
(1981) p. 478–490.

150 • GCC Developers Summit

