Optimizing for Space:
Measurements and Possibilities for Improvement

Arpad Beszédes, Tamas Gergely, Tibor Gyimothy, Gabor Loki, and Laszl6 Vidacs
Research Group on Atrtificial Intelligence

University of Szeged
Aradi vértanuk tere 1., H-6720 Szeged, Hungary, +36 62 544126
{beszedes,gertom,gyimi,alga,lac}@cc.u-szeged.hu , http://gcc.rgai.hu/
Abstract 1 Introduction

GCC is increasingly used as a cross-compiler
to produce programs for embedded systems.
Although performance in terms of speed is also
important, in many cases the amount of con-
sumed resources (memory, energy, etc.) plays
GCC'’s optimization for space seems to havean even greater role in the case of devices with
been often neglected, in favor of performancdimited resources. So, when GCC is used to
tuning. With this work we aim at determin- build these software, the code produced should
ing the weakpoints of GCC concerning its opti-be as small as possible. Indeed, GCC is able to
mization capability for space. We compare (1)optimize for space but, alas, it seems that this
GCC with two non-free ARM cross-compiler objective was often neglected when designing
toolchains, (2) how GCC evolved from releaseand implementing various code generation and
3.2.2 to version 3.3, and (3) two runtime li- optimization algorithms [1, 5]. We may con-
braries for the Linux kernel. All tests were per- clude the same when we consider the fact that
formed using the C front end and for the ARM beside the vital regression testing methods and
target both as standalone and as Linux executahe results of several benchmark suites avail-
bles. The test suite is comprised of applica-able on GCC web pages [9, 8, 3], no word is
tions from well-known benchmark suites suchspoken about benchmarkirgde sizeIn fact,
as SPEC and Mediabench. An optimal comawere unable to find any related publication at
bination of compiler (and linker) options with all which deals with the assessment of compil-
respect to minimal code size is elaborated agrs’ capabilities for space optimization.
well. We conclude that GCC 3.3 steadily im- _ _
proves with respect to version 3.2.2 and that itVith this work we attempted to determine the
is only about 11% behind a high-performanceVéakpoints of GCC concerning its optimiza-
non-free compiler. At the same time, we werelion capability for space. We present the results
able to document a number of issues that de@f Our assessments where we compared:
serve further investigation in order to improve
code generation for space. » GCC for standalone executable with two

8 ¢ GCC Developers Summit

non-free ARM cross-compiler toolchains, actual results for standalone executables and
Linux libraries, respectively. Finally, in Sec-

« How GCC evolved from release 3.2.2 totion 6 we summarize our conclusions and give
version 3.3, and our view on the possibilities for improving

GCC.
* Two runtime libraries for GNU/Linux,

glibc [2] and i Clibc [7]. _
2 Measurement Environment

All tests were performed using the C frontF Il th biecti ¢ . tioati
end and for the ARM target (both for stan- orafl Inree objectives ot ourinvestigation pre-
sented in the previous section, we have set up

dalone and Linux executables) as this combi- mon m rfement environment. It con
nation is one of the most frequently used nowa? COMMON measurement environment. 1t con-
ists of a collection of test programs that are

days for embedded applications. A testbed wagd"> . . :
utilized with applications from various well suitable for compiling and measuring code size

known benchmark suites. for a_LII C(_)mpilers and ponfigurat_ions under in-
vestigation. The environment is able to per-

We did our best to discover the optimal com-form these measurements and present the data
bination of compiler (and linker) options with in a simple form ready for further processing.
respect to minimal code size; we elaborate odn addition, it also facilitates the execution of
the relevant ones for GCC and propose a set ghe executable programs.
options to extend the default settings for code
size. With this option set an improvement of2.1 Compiler Toolchains
nearly 5% was achieved.

, o , In each experiment we employed C as the
In the investigation we included both the Ob'source language and the chosen target architec-

ject sizes produced by the compiler and theture was ARM (32-bit ARM instruction set).
linked executable sizes to see what effect therwo types of target code were used: stan-

runtime libraries had on the overall linked COdedanne programs (that run on the hardware

size. Comparing only object sizes, 0Ne NONyishq it an operating system) and Linux tar-

free compiler is about 11% better than GCC,get for the ARM architecture (for GCC com-
but in the case of executables this ratio rises t?)iler arm-elf and arm-linux machines

32%. respectively). The following toolchains were

We investigated the generated code by Gc¢iSed for the measurements:

more thoroughly and finally we document sev-

eral issues that deserve further investigation in * GCC 3.2.2 version with newlib version
order to improve code generation for space. 1.10.0 [6] for standalone target (with
These include the lack of interprocedural op- binutils version 2.13)

;ur?lzatlons, t.hcta :lc_aquwteﬁ ur(;llt. at atgme E[:ompl- * GCC 3.3 prerelease snapshot (2003-04-
ation, more intefligent handling 6Ls , €tc. 14) with the same newlib and binutils

Ir_1 Section 2 we describe our measurement en- | o version 3.2.2 with glibc version
vironment and methodology. Section 3 deals 2.2.5 [2] for Linux target

with GCC’s different compiler options and

there also we give our proposal for the best « GCC 3.3 prerelease snapshot (2003-04-
combination. Sections 4 and 5 present the 14) with glibc version 2.2.5

GCC Developers Summit 2003 * 9

« GCC version 3.2.2 with:Clibc version | Testproject] files | lines| bytes| exec.|
0.9.15 [7] bzip2 1| 4250 121,279 1
catdvi 6 770 24,332 1
flex 21| 19,571| 530,312 1
g721 8| 1,725| 46,980 2
gsm 29 | 5982 182,809 1
» Two non-free compilers for ARM archi- | jpeg 84 | 34,181 1,150,110 6
tecture configured as standalone targets| Mcf , gg 323;‘ 2?32%3 1

. . mpeg2enc ; '
These_ will l?e denoted b_Qompller 1§1nd osdemo 147 | 68434| 1.925 141 1
Compiler 2in the following dISCUSSIO!’IS. parser 18| 11,391| 356,526 1
The former useslf output format, while sed 20| 12,393| 365,886 1
the latter producesoff files. P3szogr 1 48 1,568 1
_3szog 1 48 1,419 1
abc 1 17 443 1
arg 1 25 390 1
datum 1 48 870 1
The switches that control optimization for | eltelt 1 32 939 1
space were turned on for all toolchains. In | €ndian L 18 258 1
dditi | furth . both geometry 1 435 11,869 1
a ition, severa urther options (_ oth com- | | voszt 1 50 1121 1
piler and linker) that enable or disable cer- | minimax 1 52 1,444 1
tain code optimization and/or generation algo- | static 1 35 460 1
rithms were also set that resulted the most com-_szinusz 1 52 1372 1

pact code size. The combination of these extra

options was determined by trial and error, andrhe first column shows the number of files that
for GCC toolchains we elaborate on these inconstitute the test project, the second one gives
Section 3. the total number of program lines, and the third

For each GCC toolchain the runtime IibrariesCOIumn gives the size of the source code in
bytes. In the last column the number of exe-

were compiled using thg same options as forcutables that are built from the test project is
the test programs. (Neither of the two non-

. : .) shown.
free compilers libraries were prepared in such

way.) The use of such libraries has an effec|| test programs were compiled to produce
where the executables are compared, becaugge object files and the given executable pro-
the overall code size incorporates library codeyrams were prepared by linking. These ob-

as well. jects and the linked executables for each of
the toolchain under investigation were used for
measurement.

2.2 Testbed

In the following for each measurement the
small programs (the last 12) are treated jointly

The testbed used in the experiments consists @Nd are denoted by “small.”

two parts: small example programs and real ap-

plications from several well-known benchmark2-3 Measurement Method

suites (GNU applications, SPEC CPU2000

[10], MediaBench [4]). In the following table The way to measure the size of the generated
some information is given about the sizes of thecode (i.e. its compactness) is not always trivial.
test programs: As obvious, we chose to investigate the final

10 ¢ GCC Developers Summit

binary machine code (instead of, for exampleyuntime libraries are used for the two cases (i.e.
the assembly code). in the case of GCC, newlib and glibc).

Objects and executables. The granularity of One would expect that with objects there
the code was a further aspect: should we meashould be no difference at all. However, some
sure the function sizes individually, the objectminor impact of the library is still noticeable.
code for a complete compilation unit, or inves-The library headers should contain the same
tigate the size of the linked executable? In thisstandard prototypes (e.g. standard functions),
paper we present the results for the latter twdout the difference comes from the different im-
because in certain environments both can be irplementation of some features. For example,
teresting. When we compare the object sizesome standard names can be implemented us-
the effectiveness of the compiler proper is acing macros and function calls as well.

tually compared,while in the second case the

whole compiler toolchain is assessed including='€ay, then, measuring the size of the exe-
the compiler, the linker and libraries as well. Cutables incorporates a much greater impact of

This is because the size of a linked progranjr'he library code. Itis apparently measurable on
depends on the size of the libraries and a|S§tandanne executables. However, the situation

how they are processed by the linker. HenceP&comes more complicated when we investi-

in this paper we mostly rely on comparing ob-gate _ex_ecutabl(_es built for Linux. The reason
jects which is more informative with regard to fOr this is that Linux executables do not embed
a compiler's optimization capability for space. the library code, but they maintain only ref-

erences to the so-called shared objects, which
In order to get the best possible results wherare linked at runtime. (Even if static linking
measuring executables, we also built the liis used some functionality will still be imple-
braries of GCC toolchains with the same flaganented in the operating system rather than the
as the test sources. With the libraries of the tweexecutable.) We present some results for Linux
non-free compilers we were not able to do theexecutables in Section 5.

same. _ o
Sections. Another problem was deciding

Standalone and Linux programs. Another which parts of the generated files we should
dimension of the categorization we investi-take into account (obviously the size of the
gated was both kinds of targets: standalone exsinary file is not relevant because of various
ecutables (i.e. for without an operating systemheaders, etc.). The generated program code
and executables built for a specific operatingconsists of many parts; instructions, data and
system (in our case GNU/Linux). Although the so on, which are generally separate in a binary
same compiler is used with the same settingdile (in the sectiony. However, in many cases
the resulted binaries generally contain severahese parts can be intermixed (e.g. executable
notable differences: a few in the case of ob-code can contain embedded data). In addi-
jects and a significant difference with executa-tion, several other sections are generally also
bles. These are mostly due to different exejput into the binary file, which are of no inter-
cutable production and to the fact that differentest with respect to the size of the code. These
include the debug sections, symbol tables, etc.

INote, that the library implementation still has a min-
imal impact on the object sizes because of the libraryThe different types of object fileself and

hgaders, which are also translated by the compller. Con-oﬁ) can have different kinds of sections
sider for example, that macros can be used to implemen

function-like behavior. and, what is more, the different compilers may

GCC Developers Summit 2003 « 11

use various strategies for laying out code angrogramcoffdump extracts the sizes of the
data into sections. More specifically, differ- sections frontoff files, but not in a summa-
ent compilers may split some code into sev+ized form. Fortunately, altoff files contain
eral sections, or put other things together in on@lmost the same sections and have the same
section. For exampleglf files contain one names. We examined what kind of data was
(or more) initialized read-write data section(s),contained in the sections, and counted the re-
while coff files contain program code that quired sizes by hand. (Fortunately, only one of
will initialize the data at runtime. So no com- the non-free compilers uses this format, with
mon handling could be used and the combinaall other toolchains including GCC we were
tion of the sections to be incorporated in theable to extract code sizes automatically.)

measurements needed to be determined sepa- _ _ _
rately for each toolchain. Execution. The measurement environment is

capable for executing the built programs us-
In each case we summarized the size of onlyng a simulator for standalone programs and
those sections that contains generated coden ARM-based hardware device with Linux
that is directly used by the program. Thesesystem for Linux binaries. We ran the pro-
are the sections that contain executable codgrams and checked their outputs for validating
and constant- or initialized read-write programthe compiler toolchain with components of dif-
data. Note, however, that executable code anfirent versions, and for verifying the correct-
constant data cannot always be clearly sepaiess of various compiler option combinations.
rated (there are constant data items which ar&éhroughout our measurements only those con-
“hidden” in the executable code) so we handldigurations were used that produced correct and
them together during the comparison. running programs.

We experimented with two kinds of section _ _ _
combinations: (1) the size of sections contain3 Compiler and Linker Options
ing program code or constant data (referred

to as “read-only sections”) and (2) the sizéyjith each toolchain investigated we sought to
of sections that contain any kind of programsing the pest possible combination of options
data, which also includes read-write data (re'vvith respect to code size. In general, compil-

ferred to as “all sections”). We decided to fol- o1 hrovide a special optimization option that
low the second approach because it seemed {Rtrcts them to optimize for space rather than

be the most reasonable because of the abovgs, speed. With GCC, this option is the switch
mentioned various types of handling of initial- .}ed-0Os . ’

ized read-write data.

Measurement tools. When assessing both the 3-1 Best Options for Space in GCC

object and executable sizes #lé andcoff

files needed to be investigated. To this end difCommonly, -Os is used internally in GCC

ferent methods for extracting the section size$o enable or disable certain optimization algo-

were employed because of the different binaryithms, but generally any part of the compiler

formats. The prograrsize (part ofbinutils) proper can depend on this option and perform

is a suitable tool for extracting the size of thedifferently when space is the concern. How-

mentioned sections froralf files. We were ever, there are a number of other compiler op-

unaware of any similar tool faroff files. The tions (mostly related to optimization) which
have a notable effect on the size of the gen-

12 « GCC Developers Summit

erated code. By experimenting with these op} Compiler Option 32133
tions we found thatOs alone does not pro- | ©° yes | yes
duce the minimal code for our testbed. Hence no-apes-irame yes| yes
uce X N ; i -fomit-frame-pointer yes | yes
we determined the combination of options on ffunction-sections yes | yes
top of-Os, which proved to be the best on our| -fdata-sections yes | yes
testbed -fno-force-mem yes | yes
-fno-force-addr yes | yes

The following table summarizes the final ']‘:”0"”“”9'f“”0t'°”5 yes | yes
choice of options, which we used in all our| V'@ no | yes
))) -fbranch-probabilities yes | yes
trials (except where menthned_ _otherW|se) finline-limit=1 yes | yes
(Note, that some of these are implicitly enabled -fno-schedule-insns yes | yes
or disabled by-Os,* therefore we supply the | -fno-optimize-sibling-calls yes| yes
options later in the command-line so that they -no-if-conversion no | yes
will be overridden.) -fno-thread-jumps yes | yes
) -fno-hosted yes | yes

Some options were not available in GCC 3.2

releases, evidently they were left out in the

cases when this release was measured. We will
20ne option belongs to this set if it produces an over-yse the notatiompt-1 for the best options for

all gain with respect to the defauds , so it may happen 3 5 o andpt-2for the best options for 3.3.
that in some cases it performs worse. It may also hap-

pen that one option combined with another one degradeﬂirhe option-mno-apcs-frame is specific to

the overall result, but of course, we could not try every
combination of the options available, the ARM target. We also used another ARM-

3This is the list taken from the GCC 3.3 sources: ~ SPecific option-mno-thumb-interwork
to tell the compiler that we were generating for

just 32-bit ARM instruction set.

-falign-functions -falign-jumps

-falign-labels -falign-loops Two interesting options areffunction-

-fbranch-probabilities -fcaller-saves sections and-fdata-sections which
-fcprop-registers -fcrossjumping . .
fese-follow-jumps -fese-skip-blocks generate only one function/data per section
-fdefer-pop and this helps the linker to omit the unused

-fdelete-null-pointer-checks
-fexpensive-optimizations -fforce-mem
-fgcse -fif-conversion

-fif-conversion2 -floop-optimize
-fno-merge-constants
-fno-reorder-blocks
-foptimize-sibling-calls -fpeephole2
-fregmove -freorder-blocks
-freorder-functions

functions/data from the executable. Generally
speaking, they do not influence the object sizes,
but the executables may become smaller.

Another notable option isfno-inline-
functions which disables the automatic in-
lining of GCC. In general, automatic inlining
performs very badly with respect to code size

-frerun-cse-after-loop

-frerun-loop-opt -fstrength-reduce
-fstrict-aliasing -fthread-jumps
options that depend on a define:
-fdelayed-branch -fomit-frame-pointer
-fschedule-insns
-fschedule-insns-after-reload

and it could be made more intelligent.

The linker also has a number of options that
were worth experimenting with. We deter-
mined the following combination which pro-
duced an overall smaller code than the default:

GCC Developers Summit 2003 « 13

Linker Option 3.2 Other Optimization Options

-0 2

-gcl-sectlons There are high number of optimization options
-relax . (starting in-f) in GCC that can be given on
-no-whole-archive

command-line (170+). Most of them have a bi-
nary state and so a correspondHfigo- XXX
is also normally present. We examined all

The options listed _above produc_ed, on OUL, ailable options in GCC 3.3 but of course,
testbed, an overall improvement in code size

of 4.78% with respect to using oris . Fig- We could not try all of the possible combina-

tions, so we followed a simple approach in that
ure 1 shows the results separately for each pro Pie app

gram. To obtain the relevant data we used th an option (both the enabling and disabling ver-

. ions) was added to the list of good options if

GCC 3.3 Snap.ShOt with onlyOs tu_rned_on it brought improvement over the defau®s .
and compared it to the same compiler with ad-, . ~. : .
An individual option was tried separately from

ditional options from the table above (averagethe others rather than by cumulating them. The

object sizes of test projects in standalone tarfinal result is given in the previous section.

get). The total sizes of the test projects is given

with the project's name in bytes. Many of the investigated options had some
problems or did not yield improvements and
hence they were ignored. In the following
we categorize these options rather than listing
them all (they can be found in the GCC man-
ual). Those options that are not mentioned here
did not improve the code (the correctness of the
output was not verified either).

120.00%
100.00% -

80.00% 4
60.00% -
40.00% A
20.00% 4

0.00% +—=%

S B (D
q;,;‘a% &

% SRR IR\ AN
6@(\\0\%&\&@(;&6;&@5’ $ &5&\& e®q}\ &qﬁ‘ ¢ 0&&
& & Combined use.The following options
[GCC-3.3 newlib (-Os) 8 GCC-3.3 newlib (opt-2)] separately produced certain im-
. . . provements, but their combined
Figure 1: The effect of additional compiler op-
9 P P effect was not better on average:

tions -ffast-math -ffreestanding

-fno-builtin -fno-inline

We can see from the above plot that every test
program has benefited from these options, es-
pecially the bigger ones (excefix , which

is probably due to the fact that it contains un-
commonly large amount of data).

-fno-sched-interblock
-fno-sched-spec
-fsched-spec-load
-fvolatile-static

In Section 5 we present some data which showEarameterized options. For this work we

that a marked improvement in library size can
also be achieved using this options set.

Due to the above results we propose to add
these to the default operation @ds in future
releases of GCC (at least for the ARM target).

were not able to include the investigation
of those options that accept some param-
eters (i.e. not a binary). This parameter
is generally a number but in some cases
it can be a string. We only investi-
gated -finline-limit= number

14 « GCC Developers Summit

which showed a minor improve-
ment. The following options were
settings:

default
number
number
number
number

left with their
-falign-functions=
-falign-labels=
-falign-loops=
-falign-jumps=
-fcall-used- number
-fcall-saved- number
-fdiagnostics-show-
location= string
-fmessage-length=
-fsched-verbose= number
-fstack-limit-register= number
-fstack-limit-symbol= string
-ftls-model= number .

-ffixed-
number

Invalid generated code. The options listed

number

-fno-dump-translation-unit
-fno-dump-tree -fno-fixed
-fno-function-sections
-fno-inline-limit
-fno-message-length
-fno-pretend-float
-fno-sched-verbose
-fno-stack-limit-register
-fno-stack-limit-symbol
-fno-tabstop
-fno-template-depth
-fpreprocessed -fpretend-float
-fprofile -fprofile-arcs
-fsched-verbose -fshort-enums
-fssa -fstack-limit
-fsyntax-only -ftabstop
-ftemplate-depth

here always produced smaller code, but
these codes could not be correctly exe-

cuted on GCC 3.3: -fshort-double
-fsingle-precision-constant
-funsafe-math-optimizations .

Compiler and Toolchain Com-
parisons

These should be investigated for possible

bugs in GCC.

Irrelevant option. Some options are ei-

ther not implemented in GCC

small code.
ing: -fallow-single-precision
-fcall-saved -fcall-used
-fconstant-string-class
-fdiagnostics-show-location
-fdump-tree -ffixed
-finline-functions

-finline-limit
-finstrument-functions
-fleading-underscore
-fmessage-length
-fno-allow-single-precision
-fno-call-saved -fno-call-used
-fno-constant-string-class
-fno-diagnostics-show-location
-fno-dump-class-hierarchy

In this section we present the results of a com-
parison of the sizes of objects and executa-
bles of GCC configured for a standalone target
with two non-free compilers. The two com-

or they did produce some extremely pilers shall remain anonymous, which will be

These are the follow-

referred to asCompiler 1and Compiler 2 In
both cases the best configuration of compiler
options was used for code size. In the diagrams
opt-1 denotes the best options for GCC 3.2.2
andopt-2the best options for 3.3.

A comparison of objects is more informative
with regard to a compiler’s optimization capa-
bility for space, because in this case no pre-
generated code of libraries or startup routines
are included.

All sizes comprise of the program section sizes
(as described in Section 2.3), and we present
these in a relative form: with respect to GCC
3.3 snapshot with our option-set (elaborated in
Section 3).

GCC Developers Summit 2003 « 15

120.00%
100.00% 4/ E
80.00% -

In Figure 2 the average achievement of the C %%

. 40.00% -
compilers is shown in terms of object size. The , .
values are computed as the sum of the sizes of ., -

all objects of the test programs, and are shown

4.1 Compiler Results on Objects

o A A A A
A A s s B
A
[
A I AL TSI I IS ILIIITIIIIS
[
AP I IS IIIIIIIIIIIITTT,
(LTI LTI IITIIILIIID
A A A A
VAL IVl TII A IV L AT TIID

(2727777777 77777774

§
§
AN

)

S & N
' N A »
& &

) D ©) A & A

133 i) 2\ & %) N \2)

H Al I RN G AN AN

as relative to GCC. CHRSERNEI SN SN N SF NP N
6Q)@o & \QQ,Q & &Qg & ©4>Q e<‘@ & € &
& &

120.00% N

\DGCC»&S newlib (opt-2) 8 Compiler 1 @ Compiler 2\

100.00% 1 100.00% 98.17%

Figure 3: Individual compiler results for ob-
jects

80.00% -

60.00% -

40.00% -

objects. We performed this comparison for
standalone executable images, which means
that apart from the application objects, the li-
[EGCC 3.3 newib (opt-2) S Compiler 1 & Compiler 2] brary code and the effectiveness of the linker is

) _ _ also incorporated in these number.
Figure 2. Average compiler results for objects

In Figure 4 the average result of executable

As can be seerCompiler 1provides the best sizes is shown. We computed the average val-
results andCompiler 2is still better than GCC. ues in the same way as for the objects, so they
The gain in size achieved bgompiler 1is are simple sums of the program section sizes in
11.48% and 1.83% bgZompiler 2relative to the executables. Relative values are shown as

the size of the objects compiled with GCC. ~ Well with respect to GCC.

20.00%

0.00%

The same measurement is shown in more de®*%*
tail in Figure 3. It shows the effect of the C 100.00% -
compilers separately for the different test pro- ..,
grams. The sizes of the objects are summarized

per test project (which is shown in parentheses**”*
after the project name at the bottom of the dia- 40.00% |
gram in bytes). 20.00%

100.00%

85.89%

The optimization capabilities of the compilers °%*
seems to be similar for each test projegam- [GGC-3.3 newllh {opt-2) W Gompler 1 8 Gompiler 2
piler 1 produces the smallest code; the sizes o
the result ofCompiler 2are between the sizes
of the output ofCompiler 1land GCC.

If:igure 4: Average toolchain results for exe-
cutables

We can observe that the ranking of the
4.2 Toolchain Results on Executables toolchains regarding code size in this compari-

son has not changed with respect to investigat-
We also investigated the difference in the gening only the compilers. The differences are, at
erated code size of the executable files usinghe same time, more significant than in the case
the same environment and options as for the@f objects comparison (about twice as much).

16 ¢ GCC Developers Summit

Apparently, the reason for this is twofold: the5 Results for Linux Libraries

tools use different implementations of standard

C runtime libraries and the linkers may also be- . .

have differently. It is an open question whethel’o‘pa_rt from using as a cross-c_ompller gen-

the difference in the libraries causes a biggeFratlng stgndalone executable images, GCC
difference or it is the linker that is responsible's also widely used to generate programs

(e.g. by performing different optimizations at for GITIdU/tI)_inux. I;e_r(;ce We_thought th?‘t
link time). Whatever the case, the comparisoﬂt_ wou € a good idea 1o Investigate the
zes of the generated objects and executa-

of the executables is not as a good measure | in thi I In th
the toolchains as a comparison of the objects i es in (IS cased as (\3N§CI n i ese ?X_
a measure of the compilers, because the implé2erlmen S we used a complier: contg-

mentation of the libraries is also an importantureOI for thearm-llnux-elf target Wlth
factor, which is included in the result, the same environment and compiler options

as for the standalone target (the only ex-
In Figure 5 the same measurement is showgeption being that we needed to omit the
in more detail individually for the various ex- -ffunction-sections option of GCC
ecutables. The sizes of the executables argecause it caused some problems when execut-
summarized per test project (which is showning the programs on a Linux system). In this
in parentheses after the executable name at tre@se we employed the commonly used GNU
bottom of the diagram in bytes). library glibc [2].

The Linux executables are not comparable with
a standalone configuration (namely, with the
GCCarm-unknown-elf target or with the
two non-free compilers). This is because Linux
uses shared objects that are linked at runtime
to the executable (see Section 2.3). Neverthe-
less, objects should be comparable. Our re-
MRNENNEN sults showed that the objects for Linux target
FLF T have a smaller code size than objects for stan-

140.00%
120.00%
100.00%
80.00%
60.00%
40.00%
20.00%
0.00% M

) = 5\ N 2 N o\)} N
S 5 B 5 9
FEFEEFFEFEELE LS
S ¢ S & P F S & P @ H
FEL ST FL TS TS dalone target (by 8.35% with GCC 3.2.2 on our
IS} & <

testbed). By examining the compiled objects
we found that the size differences were primar-

Figure 5: Individual toolchain results for exe- ily due to the different implementation of the
cutables library headers.

‘DGCC-S,B newlib (opt-2) 8 Compiler 1 £ Compiler 2\

5.1 (glibc vs.uClibc

As can be seen, the ranking of the three

toolchains does not always show the same orAlas we could not find any other compiler
der as in the average case, but we can see thtolchain (either free or non-free) that was able
Compiler 1lis still in all but one cases much to generate for Linux target. Only theClibc
better than GCGCompiler 2produced both the toolchain [7] could serve as a comparison ba-
worse and the best results: there are cases whers. However it also uses the GCC compiler, so
this tool had the largest code, but there are alsi really compares two implementations of the
cases where it seems to be the best tool. standard C runtime libraries.

GCC Developers Summit 2003 « 17

We performed all measurements on the testbefhctor: all tools work with their own implemen-
and investigated the sizes of the objects anthtion, and this difference is also included in
executables as well. We used GCC versiorthe result.

3.2.2 because the later versions (3.3 snapshots

and the active development 3.4) are not sup?/e managed to narrow the gap between a high-

ported by xClibc. With glibc- and ;Clibc- performance non-free compiler and GCC 3.3

based toolchains we used the same compildfSing our own set of compiler options from
options that we found to be best for size with1-71% t0 11.48% measured on objects for a

the standalone target (as described in Sectiopfandalone target. However, this number is
3). It is interesting to note that compiling nearly double when we consider executables.

the libraries using our combination of options 1 NiS suggests that not only GCC needs im-
brought a significant improvement in library provgment, but the associated libraries as well
size with respect to the default settings: 3.2204iN this case newlib).

for glibc and 2.04% fop.Clibc (computed for
shared object binaries and not for static li-
braries).

Things get more complicated if we wish to
compare toolchains configured for Linux target
and not for standalone. This is because Linux

An interesting observation was that th€libc ~ US€S shared objects that are linked at runtime.

toolchain generally produces a slightly larger!n this case the only reasonable thing is to mea-
code size (1 or 2% at most) than GCC withSure the size of the corresponding libraries.
glibc. We do not present the actual results herd-0r €xample, we found that the total size of
Rather it is more interesting to look at the dif- #Clibc,—an alternative library to glibc—is far
ference in the sizes of the actual libraries. €SS than glibc (only one fifth).

We measured the total code section sizes fotg_1
all the generated library files. On average
the pClibc library was smaller by 80.58%
(1.94MB vs. 0.38MB) for the shared object bi- In the previous sections we presented the re-
naries, and was smaller by 59.49% (1.59MBsults of measurements with the latest snapshot
vs. 0.64MB) for static libraries counting sim- of GCC 3.3 version. We performed the same
ply the sum of all sections in all of the library experiments with version 3.2.2 as well (which
files. is the last official release at the time of writ-
ing) and found that prerelease 3.3 has improved
_ slightly in terms of optimizing for space. In
6 Conclusion: Improvements and this section we summarize the results of our
Limitations measurements of what are the exact improve-
ments.

Improvement of Prerelease 3.3

Assessing a compiler’s effectiveness in opti-The average difference between object sizes
mizing for space poses a number of difficulties.generated by GCC 3.2.2 and the 3.3 snapshot
Based on our measurement results presented @onfigured for standalone (with newlib) is only

previous sections, we can say that the most re3.31%. With both configurations we used the

liable way is to compare the section sizes conbest compiler options, where some options are
taining program code and data in objects rathenew to 3.3 and therefore not present in mea-
than executables. This is because the implesurements with 3.2.2 (see Section 3). Figure 6
mentation of the libraries is also an importantshows the same separately for each program of

18 ¢ GCC Developers Summit

the testbed. We made some investigations to found out
what enhancements in GCC 3.3 caused this
improvement in code size. There are a num-
ber of minor issues that could probably ac-
count for this, like some smaller optimizer im-
provements and target specific optimizations.
However, we think that the major factor was

110.00%

105.00% -

100.00% -

S & P DS PP PP P DO the introduction of the new register allocation
&FE g’:ﬁ&@% eb\“:@\“‘b@@b ISP algorithm. In fact, by disablingfnew-ra
& O Qi&&e Tee et ¢ in GCC 3.3, the difference of 0.31% between
[GCC-3.2.2 newib (opt-1) S GCC-3.3 newib (opt-2)] 3.2.2 and 3.3 using the best options disappears
and GCC 3.3 becomes to produce larger code
Figure 6: Improvement of GCC 3.3 by 0.29% on average!

Overall, no extraordinary improvement can bes.2 Remaining Problems
seen from this diagram and, in fact, the biggest

program even shows that the older GCC gen- looki t th ted code |
erates smaller code. The difference is slightly)3y ooking at the generated code n more

larger in the case of executables; (itis 1.86% orgemth’ V\f’eGné?:n?r?id to I'g%nm;{nsfv\?rzl i\r’:’eai('
average measured under the same conditions Qints o at could be improve ©

for objects), which can also be attributed to the re(;ljo %?nizgtgsaanégissoen;pgg égdﬁr}ﬁ;gmr
library code which is incorporated into the ex- Jroup . . :
ecutable. that are due toits architecture and logic of com-

pilation. Some of them may not be solved or at
We also investigated the amount of improve-least with very high effort. In the following we
ment that can be achieved with Linux libraries.summarize the main issues for providing some
We prepared the glibc binaries using GCcCstarting point to future improvements.
3.2.2 and 3.3 snapshot using the best option
and found that with the new version the library .)
was 0.95% smaller, which is similar to what Wef[ran_slates one funct|on_at atime and_ therefore
t misses the opportunity of performing such

got for object sizes above. Figure 7 shows thig: MISses : :
improvement for each library component optimizations that rely on seeing all functions
' of a compilation unit at the same time. With

110.00% version 3.4 there was recently added the possi-
105.00% 1 bility for unit at a time compilation, but its uti-
lization in optimization has not yet been fully

100.00% -
95.00% | achieved. If this feature is fully implemented
oo NANNNANNARNANNARRA in GCC, it would enable, for example, the shar-

S . : I
Unit at a time compilation. GCC generally

S OLP PP PO DD D SRS D ing of global variables, the elimination of un-
S FEEETEFIELELL i i i
S 08 5 0 8 S P used static functions, and the sharing of com-
oV & P W @ TS S S 9 ; i
N sl TS NS mon data among functions (when the function-
&7 &S S NI o . . .
A ° & per-section option is not used).

[GCC-3.2.2 glibc (opt-1) MGCC-3.3 glibc (opt-2)]

_ More intelligent -Os. Generally, wherOs
Flgure 7. Improvement of GCC 3.3 measureqs turned on it meansO2 with some addi-

on glibc tional optimization algorithms being implicitly

GCC Developers Summit 2003 « 19

enabled. In addition, any part of GCC can optimal, especially when jump tables are
check for the state of this option. However, the used.

semantics of this option could be further im- _

proved. First, a more careful selection of algo- * RTL code generation from trees can be
rithms that need to be enabled could be imple- ~ Made more optimal than that for the cur-
mented, similar to those proposed in Section 3. fent naive preorder walk.

This could be further enhanced using the pos-
sibility for target-specific configuration of this
switch. Furthermore, ifOs could act as an
orthogonal option to other levels of optimiza-
tion, it would offer for an even more flexible
configuration.

» Automatic function inlining does not
seem to take into account when code size
is the objective rather than speed. In this
case only those functions should be in-
lined, which produce smaller code than
calling the function.

Interprocedural optimizations. Due to the
above-mentioned missing unit at a time com-
pilation, no interprocedural optimization algo-
rithms could be used. A number of existing
algorithms could be extended to interprocedu-
ral operation, which would undoubtedly pro- Library issues. Although the inadequacies of
duce significant improvement, e.g. interpro-library implementations are not the subject of
cedural dead-code elimination and redundanthis article, we would like to remind the reader
code elimination [1, 5]. Even some evidently of the fact that the library headers indeed have
redundant code constructs are currently genesome impact on the size of the generated code,
ated by GCC. Consider, for example, the fol-which we elaborate in Section 2.3. Another in-
lowing code and notice that the call to functionteresting observation of ours was that a lot of

* In ARM target, multiple variable load and
save instruction are generated only for
simple cases.

foo will be superfluously generated: space could be saved if some operators could
be implemented by a library function call. For
int a,b: example, if integer division and modulo opera-
int foo(int x) { return x; } tors (and% would have a corresponding li-
void bar() { brary function then for targets where these op-
a = 1 erations are not part of the instruction set, a
b = foo(a); simple call would be generated instead of the
} inline implementation of the division. Natu-

rally, this would require that all library imple-

. . . mentations provide such builtin functions for
Minor optimization issues. Here we list sev- .
certain commonly-used operators.

eral minor issues that are related to some opti-
mization algorithm (or are possibly specific for _
ARM target). 6.3 Conclusion

We have seen that GCC is getting better and
better with regard to code size. The latest
version 3.3 (using an optimal combination of
options) is only 11.48% worse than a high-
» The organization of the generated code foperformance non-free compiler. In Figure 8 we
theswitch statement can be made moresummarize the results of our measurements.

* The organization of loops is sometimes
too complicated with redundant condition
checking at higher optimization levels.

20 ¢ GCC Developers Summit

B GCC-3.2.2 (-Os) to
GCC-3.3 (-Os)

GCC-3.3 (-Os) to
GCC-3.3 (opt-1)

GCC-3.3 (opt-1) to
GCC-3.3 (opt-2)

82.15%

Figure 8: Summary of improvements

In this diagram we can observe (1) how much
improvement version 3.3 brings witls only
(0.3%), (2) the effect of a combination of op-
tions that we suggest ove©s measured on
GCC 3.3 (4.15%) and (3) the effect of some

References

[1] AV. Aho, R. Sethi, and J.D. Ullman.

[2]

[3]

[4]

Compilers: Principles, Techniques, and
Tools. Addison-Wesley Pub Co, 1985.

Homepage of glibc.
http://www.gnu.org/
software/libc/

Charles Leggett’s benchmarks.
http://annwm.Ibl.gov/bench/

Homepage of MediaBench.
http://www.cs.ucla.edu/
~leec/mediabench/

new algorithms in GCC 3.3 (0.61%). These [5] S.S. Muchnick. Advanced Compiler De-

three constitute the total difference of 5.06%
between GCC 3.2.2 withOs and GCC 3.3

with opt-2

Nevertheless there still are a number of

[6]

issues—which we summarized in the previous

section—that could make GCC's capabilities

of optimization for space even better and this [7]

way shift its mainly academic use nowdays to-

sign and Implementation. Morgan Kauf-
mann Publishers, 1997.

Homepage of newlib.
http://sources.redhat.com/
newlib/

Homepage of.Clibc.
http://www.uclibc.org/

wards industry environments to become a seri- [8] SPEC 2000 tests by Andreas Jaeger.

ous competition to non-free commercial com-

pilers.

7 Availability

[9]

The present document and related informa-

tion including complete measurement data ar¢10]

available at

http://gcc.rgai.hu/docs.php

The homepagehttp://gcc.rgai.hu/

aims to collect and maintain references to of-
ficial GCC pages in connection with the ARM

port.

http://www.suse.de/~aj/
SPEC/

SPEC 95 tests by Diego Novillo.
http://people.redhat.com/
dnovillo/spec95/

Standard Performance Evaluation Corpo-
ration — spec.
http://www.spec.org/

