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Abstract

GCC’s optimization for space seems to have
been often neglected, in favor of performance
tuning. With this work we aim at determin-
ing the weakpoints of GCC concerning its opti-
mization capability for space. We compare (1)
GCC with two non-free ARM cross-compiler
toolchains, (2) how GCC evolved from release
3.2.2 to version 3.3, and (3) two runtime li-
braries for the Linux kernel. All tests were per-
formed using the C front end and for the ARM
target both as standalone and as Linux executa-
bles. The test suite is comprised of applica-
tions from well-known benchmark suites such
as SPEC and Mediabench. An optimal com-
bination of compiler (and linker) options with
respect to minimal code size is elaborated as
well. We conclude that GCC 3.3 steadily im-
proves with respect to version 3.2.2 and that it
is only about 11% behind a high-performance
non-free compiler. At the same time, we were
able to document a number of issues that de-
serve further investigation in order to improve
code generation for space.

1 Introduction

GCC is increasingly used as a cross-compiler
to produce programs for embedded systems.
Although performance in terms of speed is also
important, in many cases the amount of con-
sumed resources (memory, energy, etc.) plays
an even greater role in the case of devices with
limited resources. So, when GCC is used to
build these software, the code produced should
be as small as possible. Indeed, GCC is able to
optimize for space but, alas, it seems that this
objective was often neglected when designing
and implementing various code generation and
optimization algorithms [1, 5]. We may con-
clude the same when we consider the fact that
beside the vital regression testing methods and
the results of several benchmark suites avail-
able on GCC web pages [9, 8, 3], no word is
spoken about benchmarkingcode size. In fact,
were unable to find any related publication at
all which deals with the assessment of compil-
ers’ capabilities for space optimization.

With this work we attempted to determine the
weakpoints of GCC concerning its optimiza-
tion capability for space. We present the results
of our assessments where we compared:

• GCC for standalone executable with two
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non-free ARM cross-compiler toolchains,

• How GCC evolved from release 3.2.2 to
version 3.3, and

• Two runtime libraries for GNU/Linux,
glibc [2] andµClibc [7].

All tests were performed using the C front
end and for the ARM target (both for stan-
dalone and Linux executables) as this combi-
nation is one of the most frequently used nowa-
days for embedded applications. A testbed was
utilized with applications from various well
known benchmark suites.

We did our best to discover the optimal com-
bination of compiler (and linker) options with
respect to minimal code size; we elaborate on
the relevant ones for GCC and propose a set of
options to extend the default settings for code
size. With this option set an improvement of
nearly 5% was achieved.

In the investigation we included both the ob-
ject sizes produced by the compiler and the
linked executable sizes to see what effect the
runtime libraries had on the overall linked code
size. Comparing only object sizes, one non-
free compiler is about 11% better than GCC,
but in the case of executables this ratio rises to
32%.

We investigated the generated code by GCC
more thoroughly and finally we document sev-
eral issues that deserve further investigation in
order to improve code generation for space.
These include the lack of interprocedural op-
timizations, the required unit at a time compi-
lation, more intelligent handling of-Os , etc.

In Section 2 we describe our measurement en-
vironment and methodology. Section 3 deals
with GCC’s different compiler options and
there also we give our proposal for the best
combination. Sections 4 and 5 present the

actual results for standalone executables and
Linux libraries, respectively. Finally, in Sec-
tion 6 we summarize our conclusions and give
our view on the possibilities for improving
GCC.

2 Measurement Environment

For all three objectives of our investigation pre-
sented in the previous section, we have set up
a common measurement environment. It con-
sists of a collection of test programs that are
suitable for compiling and measuring code size
for all compilers and configurations under in-
vestigation. The environment is able to per-
form these measurements and present the data
in a simple form ready for further processing.
In addition, it also facilitates the execution of
the executable programs.

2.1 Compiler Toolchains

In each experiment we employed C as the
source language and the chosen target architec-
ture was ARM (32-bit ARM instruction set).
Two types of target code were used: stan-
dalone programs (that run on the hardware
without an operating system) and Linux tar-
get for the ARM architecture (for GCC com-
piler arm-elf and arm-linux machines,
respectively). The following toolchains were
used for the measurements:

• GCC 3.2.2 version with newlib version
1.10.0 [6] for standalone target (with
binutils version 2.13)

• GCC 3.3 prerelease snapshot (2003-04-
14) with the same newlib and binutils

• GCC version 3.2.2 with glibc version
2.2.5 [2] for Linux target

• GCC 3.3 prerelease snapshot (2003-04-
14) with glibc version 2.2.5
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• GCC version 3.2.2 withµClibc version
0.9.15 [7]

• Two non-free compilers for ARM archi-
tecture configured as standalone targets.
These will be denoted byCompiler 1and
Compiler 2 in the following discussions.
The former useself output format, while
the latter producescoff files.

The switches that control optimization for
space were turned on for all toolchains. In
addition, several further options (both com-
piler and linker) that enable or disable cer-
tain code optimization and/or generation algo-
rithms were also set that resulted the most com-
pact code size. The combination of these extra
options was determined by trial and error, and
for GCC toolchains we elaborate on these in
Section 3.

For each GCC toolchain the runtime libraries
were compiled using the same options as for
the test programs. (Neither of the two non-
free compilers libraries were prepared in such
way.) The use of such libraries has an effect
where the executables are compared, because
the overall code size incorporates library code
as well.

2.2 Testbed

The testbed used in the experiments consists of
two parts: small example programs and real ap-
plications from several well-known benchmark
suites (GNU applications, SPEC CPU2000
[10], MediaBench [4]). In the following table
some information is given about the sizes of the
test programs:

Test project files lines bytes exec.

bzip2 1 4,250 121,279 1
catdvi 6 770 24,332 1
flex 21 19,571 530,312 1
g721 8 1,725 46,980 2
gsm 29 5,982 182,809 1
jpeg 84 34,181 1,150,110 6
mcf 25 2,414 53,310 1
mpeg2enc 22 7,608 217,864 1
osdemo 147 68,434 1,925,141 1
parser 18 11,391 356,526 1
sed 20 12,393 365,886 1
P3szogr 1 48 1,568 1
_3szog 1 48 1,419 1
abc 1 17 443 1
arg 1 25 390 1
datum 1 48 870 1
eltelt 1 32 939 1
endian 1 18 258 1
geometry 1 435 11,869 1
lnkoszt 1 52 1,121 1
minimax 1 52 1,444 1
static 1 35 460 1
szinusz 1 52 1,372 1

The first column shows the number of files that
constitute the test project, the second one gives
the total number of program lines, and the third
column gives the size of the source code in
bytes. In the last column the number of exe-
cutables that are built from the test project is
shown.

All test programs were compiled to produce
the object files and the given executable pro-
grams were prepared by linking. These ob-
jects and the linked executables for each of
the toolchain under investigation were used for
measurement.

In the following for each measurement the
small programs (the last 12) are treated jointly
and are denoted by “small.”

2.3 Measurement Method

The way to measure the size of the generated
code (i.e. its compactness) is not always trivial.
As obvious, we chose to investigate the final
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binary machine code (instead of, for example,
the assembly code).

Objects and executables.The granularity of
the code was a further aspect: should we mea-
sure the function sizes individually, the object
code for a complete compilation unit, or inves-
tigate the size of the linked executable? In this
paper we present the results for the latter two
because in certain environments both can be in-
teresting. When we compare the object sizes
the effectiveness of the compiler proper is ac-
tually compared,1 while in the second case the
whole compiler toolchain is assessed including
the compiler, the linker and libraries as well.
This is because the size of a linked program
depends on the size of the libraries and also
how they are processed by the linker. Hence,
in this paper we mostly rely on comparing ob-
jects which is more informative with regard to
a compiler’s optimization capability for space.

In order to get the best possible results when
measuring executables, we also built the li-
braries of GCC toolchains with the same flags
as the test sources. With the libraries of the two
non-free compilers we were not able to do the
same.

Standalone and Linux programs. Another
dimension of the categorization we investi-
gated was both kinds of targets: standalone ex-
ecutables (i.e. for without an operating system)
and executables built for a specific operating
system (in our case GNU/Linux). Although the
same compiler is used with the same settings,
the resulted binaries generally contain several
notable differences: a few in the case of ob-
jects and a significant difference with executa-
bles. These are mostly due to different exe-
cutable production and to the fact that different

1Note, that the library implementation still has a min-
imal impact on the object sizes because of the library
headers, which are also translated by the compiler. Con-
sider for example, that macros can be used to implement
function-like behavior.

runtime libraries are used for the two cases (i.e.
in the case of GCC, newlib and glibc).

One would expect that with objects there
should be no difference at all. However, some
minor impact of the library is still noticeable.
The library headers should contain the same
standard prototypes (e.g. standard functions),
but the difference comes from the different im-
plementation of some features. For example,
some standard names can be implemented us-
ing macros and function calls as well.

Clearly, then, measuring the size of the exe-
cutables incorporates a much greater impact of
the library code. It is apparently measurable on
standalone executables. However, the situation
becomes more complicated when we investi-
gate executables built for Linux. The reason
for this is that Linux executables do not embed
the library code, but they maintain only ref-
erences to the so-called shared objects, which
are linked at runtime. (Even if static linking
is used some functionality will still be imple-
mented in the operating system rather than the
executable.) We present some results for Linux
executables in Section 5.

Sections. Another problem was deciding
which parts of the generated files we should
take into account (obviously the size of the
binary file is not relevant because of various
headers, etc.). The generated program code
consists of many parts; instructions, data and
so on, which are generally separate in a binary
file (in the sections). However, in many cases
these parts can be intermixed (e.g. executable
code can contain embedded data). In addi-
tion, several other sections are generally also
put into the binary file, which are of no inter-
est with respect to the size of the code. These
include the debug sections, symbol tables, etc.

The different types of object files (elf and
coff ) can have different kinds of sections
and, what is more, the different compilers may
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use various strategies for laying out code and
data into sections. More specifically, differ-
ent compilers may split some code into sev-
eral sections, or put other things together in one
section. For example,elf files contain one
(or more) initialized read-write data section(s),
while coff files contain program code that
will initialize the data at runtime. So no com-
mon handling could be used and the combina-
tion of the sections to be incorporated in the
measurements needed to be determined sepa-
rately for each toolchain.

In each case we summarized the size of only
those sections that contains generated code
that is directly used by the program. These
are the sections that contain executable code
and constant- or initialized read-write program
data. Note, however, that executable code and
constant data cannot always be clearly sepa-
rated (there are constant data items which are
“hidden” in the executable code) so we handle
them together during the comparison.

We experimented with two kinds of section
combinations: (1) the size of sections contain-
ing program code or constant data (referred
to as “read-only sections”) and (2) the size
of sections that contain any kind of program
data, which also includes read-write data (re-
ferred to as “all sections”). We decided to fol-
low the second approach because it seemed to
be the most reasonable because of the above-
mentioned various types of handling of initial-
ized read-write data.

Measurement tools. When assessing both the
object and executable sizes theelf andcoff
files needed to be investigated. To this end dif-
ferent methods for extracting the section sizes
were employed because of the different binary
formats. The programsize (part ofbinutils)
is a suitable tool for extracting the size of the
mentioned sections fromelf files. We were
unaware of any similar tool forcoff files. The

programcoffdump extracts the sizes of the
sections fromcoff files, but not in a summa-
rized form. Fortunately, allcoff files contain
almost the same sections and have the same
names. We examined what kind of data was
contained in the sections, and counted the re-
quired sizes by hand. (Fortunately, only one of
the non-free compilers uses this format, with
all other toolchains including GCC we were
able to extract code sizes automatically.)

Execution. The measurement environment is
capable for executing the built programs us-
ing a simulator for standalone programs and
an ARM-based hardware device with Linux
system for Linux binaries. We ran the pro-
grams and checked their outputs for validating
the compiler toolchain with components of dif-
ferent versions, and for verifying the correct-
ness of various compiler option combinations.
Throughout our measurements only those con-
figurations were used that produced correct and
running programs.

3 Compiler and Linker Options

With each toolchain investigated we sought to
find the best possible combination of options
with respect to code size. In general, compil-
ers provide a special optimization option that
instructs them to optimize for space rather than
for speed. With GCC, this option is the switch
called-Os .

3.1 Best Options for Space in GCC

Commonly, -Os is used internally in GCC
to enable or disable certain optimization algo-
rithms, but generally any part of the compiler
proper can depend on this option and perform
differently when space is the concern. How-
ever, there are a number of other compiler op-
tions (mostly related to optimization) which
have a notable effect on the size of the gen-
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erated code. By experimenting with these op-
tions we found that-Os alone does not pro-
duce the minimal code for our testbed. Hence
we determined the combination of options on
top of -Os , which proved to be the best on our
testbed.2

The following table summarizes the final
choice of options, which we used in all our
trials (except where mentioned otherwise).
(Note, that some of these are implicitly enabled
or disabled by-Os ,3 therefore we supply the
options later in the command-line so that they
will be overridden.)

2One option belongs to this set if it produces an over-
all gain with respect to the default-Os , so it may happen
that in some cases it performs worse. It may also hap-
pen that one option combined with another one degrades
the overall result, but of course, we could not try every
combination of the options available.

3This is the list taken from the GCC 3.3 sources:

-falign-functions -falign-jumps
-falign-labels -falign-loops
-fbranch-probabilities -fcaller-saves
-fcprop-registers -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdefer-pop
-fdelete-null-pointer-checks
-fexpensive-optimizations -fforce-mem
-fgcse -fif-conversion
-fif-conversion2 -floop-optimize
-fno-merge-constants
-fno-reorder-blocks
-foptimize-sibling-calls -fpeephole2
-fregmove -freorder-blocks
-freorder-functions
-frerun-cse-after-loop
-frerun-loop-opt -fstrength-reduce
-fstrict-aliasing -fthread-jumps
options that depend on a define:
-fdelayed-branch -fomit-frame-pointer
-fschedule-insns
-fschedule-insns-after-reload .

Compiler Option 3.2 3.3
-Os yes yes
-mno-apcs-frame yes yes
-fomit-frame-pointer yes yes
-ffunction-sections yes yes
-fdata-sections yes yes
-fno-force-mem yes yes
-fno-force-addr yes yes
-fno-inline-functions yes yes
-fnew-ra no yes
-fbranch-probabilities yes yes
-finline-limit=1 yes yes
-fno-schedule-insns yes yes
-fno-optimize-sibling-calls yes yes
-fno-if-conversion no yes
-fno-thread-jumps yes yes
-fno-hosted yes yes

Some options were not available in GCC 3.2
releases, evidently they were left out in the
cases when this release was measured. We will
use the notationopt-1 for the best options for
3.2.2 andopt-2for the best options for 3.3.

The option-mno-apcs-frame is specific to
the ARM target. We also used another ARM-
specific option-mno-thumb-interwork
to tell the compiler that we were generating for
just 32-bit ARM instruction set.

Two interesting options are-ffunction-
sections and -fdata-sections which
generate only one function/data per section
and this helps the linker to omit the unused
functions/data from the executable. Generally
speaking, they do not influence the object sizes,
but the executables may become smaller.

Another notable option is-fno-inline-
functions which disables the automatic in-
lining of GCC. In general, automatic inlining
performs very badly with respect to code size
and it could be made more intelligent.

The linker also has a number of options that
were worth experimenting with. We deter-
mined the following combination which pro-
duced an overall smaller code than the default:
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Linker Option
-O 2
-gc-sections
-relax
-no-whole-archive

The options listed above produced, on our
testbed, an overall improvement in code size
of 4.78% with respect to using only-Os . Fig-
ure 1 shows the results separately for each pro-
gram. To obtain the relevant data we used the
GCC 3.3 snapshot with only-Os turned on
and compared it to the same compiler with ad-
ditional options from the table above (average
object sizes of test projects in standalone tar-
get). The total sizes of the test projects is given
with the project’s name in bytes.
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Figure 1: The effect of additional compiler op-
tions

We can see from the above plot that every test
program has benefited from these options, es-
pecially the bigger ones (exceptflex , which
is probably due to the fact that it contains un-
commonly large amount of data).

In Section 5 we present some data which shows
that a marked improvement in library size can
also be achieved using this options set.

Due to the above results we propose to add
these to the default operation of-Os in future
releases of GCC (at least for the ARM target).

3.2 Other Optimization Options

There are high number of optimization options
(starting in-f ) in GCC that can be given on
command-line (170+). Most of them have a bi-
nary state and so a corresponding-fno- XXX
is also normally present. We examined all
available options in GCC 3.3 but of course,
we could not try all of the possible combina-
tions, so we followed a simple approach in that
an option (both the enabling and disabling ver-
sions) was added to the list of good options if
it brought improvement over the default-Os .
An individual option was tried separately from
the others rather than by cumulating them. The
final result is given in the previous section.

Many of the investigated options had some
problems or did not yield improvements and
hence they were ignored. In the following
we categorize these options rather than listing
them all (they can be found in the GCC man-
ual). Those options that are not mentioned here
did not improve the code (the correctness of the
output was not verified either).

Combined use.The following options
separately produced certain im-
provements, but their combined
effect was not better on average:
-ffast-math -ffreestanding

-fno-builtin -fno-inline

-fno-sched-interblock

-fno-sched-spec

-fsched-spec-load

-fvolatile-static .

Parameterized options.For this work we
were not able to include the investigation
of those options that accept some param-
eters (i.e. not a binary). This parameter
is generally a number but in some cases
it can be a string. We only investi-
gated -finline-limit= number
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which showed a minor improve-
ment. The following options were
left with their default settings:
-falign-functions= number

-falign-labels= number

-falign-loops= number

-falign-jumps= number

-fcall-used- number

-fcall-saved- number

-fdiagnostics-show-

location= string -ffixed- number

-fmessage-length= number

-fsched-verbose= number

-fstack-limit-register= number

-fstack-limit-symbol= string

-ftls-model= number .

Invalid generated code.The options listed
here always produced smaller code, but
these codes could not be correctly exe-
cuted on GCC 3.3: -fshort-double

-fsingle-precision-constant

-funsafe-math-optimizations .
These should be investigated for possible
bugs in GCC.

Irrelevant option. Some options are ei-
ther not implemented in GCC 3.3
or they did produce some extremely
small code. These are the follow-
ing: -fallow-single-precision

-fcall-saved -fcall-used

-fconstant-string-class

-fdiagnostics-show-location

-fdump-tree -ffixed

-finline-functions

-finline-limit

-finstrument-functions

-fleading-underscore

-fmessage-length

-fno-allow-single-precision

-fno-call-saved -fno-call-used

-fno-constant-string-class

-fno-diagnostics-show-location

-fno-dump-class-hierarchy

-fno-dump-translation-unit

-fno-dump-tree -fno-fixed

-fno-function-sections

-fno-inline-limit

-fno-message-length

-fno-pretend-float

-fno-sched-verbose

-fno-stack-limit-register

-fno-stack-limit-symbol

-fno-tabstop

-fno-template-depth

-fpreprocessed -fpretend-float

-fprofile -fprofile-arcs

-fsched-verbose -fshort-enums

-fssa -fstack-limit

-fsyntax-only -ftabstop

-ftemplate-depth .

4 Compiler and Toolchain Com-
parisons

In this section we present the results of a com-
parison of the sizes of objects and executa-
bles of GCC configured for a standalone target
with two non-free compilers. The two com-
pilers shall remain anonymous, which will be
referred to asCompiler 1andCompiler 2. In
both cases the best configuration of compiler
options was used for code size. In the diagrams
opt-1 denotes the best options for GCC 3.2.2
andopt-2the best options for 3.3.

A comparison of objects is more informative
with regard to a compiler’s optimization capa-
bility for space, because in this case no pre-
generated code of libraries or startup routines
are included.

All sizes comprise of the program section sizes
(as described in Section 2.3), and we present
these in a relative form: with respect to GCC
3.3 snapshot with our option-set (elaborated in
Section 3).
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4.1 Compiler Results on Objects

In Figure 2 the average achievement of the C
compilers is shown in terms of object size. The
values are computed as the sum of the sizes of
all objects of the test programs, and are shown
as relative to GCC.
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Figure 2: Average compiler results for objects

As can be seen,Compiler 1provides the best
results andCompiler 2is still better than GCC.
The gain in size achieved byCompiler 1 is
11.48% and 1.83% byCompiler 2relative to
the size of the objects compiled with GCC.

The same measurement is shown in more de-
tail in Figure 3. It shows the effect of the C
compilers separately for the different test pro-
grams. The sizes of the objects are summarized
per test project (which is shown in parentheses
after the project name at the bottom of the dia-
gram in bytes).

The optimization capabilities of the compilers
seems to be similar for each test project:Com-
piler 1 produces the smallest code; the sizes of
the result ofCompiler 2are between the sizes
of the output ofCompiler 1and GCC.

4.2 Toolchain Results on Executables

We also investigated the difference in the gen-
erated code size of the executable files using
the same environment and options as for the
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Figure 3: Individual compiler results for ob-
jects

objects. We performed this comparison for
standalone executable images, which means
that apart from the application objects, the li-
brary code and the effectiveness of the linker is
also incorporated in these number.

In Figure 4 the average result of executable
sizes is shown. We computed the average val-
ues in the same way as for the objects, so they
are simple sums of the program section sizes in
the executables. Relative values are shown as
well with respect to GCC.
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Figure 4: Average toolchain results for exe-
cutables

We can observe that the ranking of the
toolchains regarding code size in this compari-
son has not changed with respect to investigat-
ing only the compilers. The differences are, at
the same time, more significant than in the case
of objects comparison (about twice as much).
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Apparently, the reason for this is twofold: the
tools use different implementations of standard
C runtime libraries and the linkers may also be-
have differently. It is an open question whether
the difference in the libraries causes a bigger
difference or it is the linker that is responsible
(e.g. by performing different optimizations at
link time). Whatever the case, the comparison
of the executables is not as a good measure of
the toolchains as a comparison of the objects is
a measure of the compilers, because the imple-
mentation of the libraries is also an important
factor, which is included in the result.

In Figure 5 the same measurement is shown
in more detail individually for the various ex-
ecutables. The sizes of the executables are
summarized per test project (which is shown
in parentheses after the executable name at the
bottom of the diagram in bytes).
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Figure 5: Individual toolchain results for exe-
cutables

As can be seen, the ranking of the three
toolchains does not always show the same or-
der as in the average case, but we can see that
Compiler 1 is still in all but one cases much
better than GCC.Compiler 2produced both the
worse and the best results: there are cases when
this tool had the largest code, but there are also
cases where it seems to be the best tool.

5 Results for Linux Libraries

Apart from using as a cross-compiler gen-
erating standalone executable images, GCC
is also widely used to generate programs
for GNU/Linux. Hence we thought that
it would be a good idea to investigate the
sizes of the generated objects and executa-
bles in this case as well. In these ex-
periments we used a GCC compiler config-
ured for the arm-linux-elf target with
the same environment and compiler options
as for the standalone target (the only ex-
ception being that we needed to omit the
-ffunction-sections option of GCC
because it caused some problems when execut-
ing the programs on a Linux system). In this
case we employed the commonly used GNU
library glibc [2].

The Linux executables are not comparable with
a standalone configuration (namely, with the
GCCarm-unknown-elf target or with the
two non-free compilers). This is because Linux
uses shared objects that are linked at runtime
to the executable (see Section 2.3). Neverthe-
less, objects should be comparable. Our re-
sults showed that the objects for Linux target
have a smaller code size than objects for stan-
dalone target (by 8.35% with GCC 3.2.2 on our
testbed). By examining the compiled objects
we found that the size differences were primar-
ily due to the different implementation of the
library headers.

5.1 glibc vs.µClibc

Alas we could not find any other compiler
toolchain (either free or non-free) that was able
to generate for Linux target. Only theµClibc
toolchain [7] could serve as a comparison ba-
sis. However it also uses the GCC compiler, so
it really compares two implementations of the
standard C runtime libraries.
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We performed all measurements on the testbed
and investigated the sizes of the objects and
executables as well. We used GCC version
3.2.2 because the later versions (3.3 snapshots
and the active development 3.4) are not sup-
ported byµClibc. With glibc- andµClibc-
based toolchains we used the same compiler
options that we found to be best for size with
the standalone target (as described in Section
3). It is interesting to note that compiling
the libraries using our combination of options
brought a significant improvement in library
size with respect to the default settings: 3.22%
for glibc and 2.04% forµClibc (computed for
shared object binaries and not for static li-
braries).

An interesting observation was that theµClibc
toolchain generally produces a slightly larger
code size (1 or 2% at most) than GCC with
glibc. We do not present the actual results here.
Rather it is more interesting to look at the dif-
ference in the sizes of the actual libraries.

We measured the total code section sizes for
all the generated library files. On average
the µClibc library was smaller by 80.58%
(1.94MB vs. 0.38MB) for the shared object bi-
naries, and was smaller by 59.49% (1.59MB
vs. 0.64MB) for static libraries counting sim-
ply the sum of all sections in all of the library
files.

6 Conclusion: Improvements and
Limitations

Assessing a compiler’s effectiveness in opti-
mizing for space poses a number of difficulties.
Based on our measurement results presented in
previous sections, we can say that the most re-
liable way is to compare the section sizes con-
taining program code and data in objects rather
than executables. This is because the imple-
mentation of the libraries is also an important

factor: all tools work with their own implemen-
tation, and this difference is also included in
the result.

We managed to narrow the gap between a high-
performance non-free compiler and GCC 3.3
using our own set of compiler options from
15.71% to 11.48% measured on objects for a
standalone target. However, this number is
nearly double when we consider executables.
This suggests that not only GCC needs im-
provement, but the associated libraries as well
(in this case newlib).

Things get more complicated if we wish to
compare toolchains configured for Linux target
and not for standalone. This is because Linux
uses shared objects that are linked at runtime.
In this case the only reasonable thing is to mea-
sure the size of the corresponding libraries.
For example, we found that the total size of
µClibc,—an alternative library to glibc—is far
less than glibc (only one fifth).

6.1 Improvement of Prerelease 3.3

In the previous sections we presented the re-
sults of measurements with the latest snapshot
of GCC 3.3 version. We performed the same
experiments with version 3.2.2 as well (which
is the last official release at the time of writ-
ing) and found that prerelease 3.3 has improved
slightly in terms of optimizing for space. In
this section we summarize the results of our
measurements of what are the exact improve-
ments.

The average difference between object sizes
generated by GCC 3.2.2 and the 3.3 snapshot
configured for standalone (with newlib) is only
0.31%. With both configurations we used the
best compiler options, where some options are
new to 3.3 and therefore not present in mea-
surements with 3.2.2 (see Section 3). Figure 6
shows the same separately for each program of
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the testbed.
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Figure 6: Improvement of GCC 3.3

Overall, no extraordinary improvement can be
seen from this diagram and, in fact, the biggest
program even shows that the older GCC gen-
erates smaller code. The difference is slightly
larger in the case of executables; (it is 1.86% on
average measured under the same conditions as
for objects), which can also be attributed to the
library code which is incorporated into the ex-
ecutable.

We also investigated the amount of improve-
ment that can be achieved with Linux libraries.
We prepared the glibc binaries using GCC
3.2.2 and 3.3 snapshot using the best options
and found that with the new version the library
was 0.95% smaller, which is similar to what we
got for object sizes above. Figure 7 shows this
improvement for each library component.
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Figure 7: Improvement of GCC 3.3 measured
on glibc

We made some investigations to found out
what enhancements in GCC 3.3 caused this
improvement in code size. There are a num-
ber of minor issues that could probably ac-
count for this, like some smaller optimizer im-
provements and target specific optimizations.
However, we think that the major factor was
the introduction of the new register allocation
algorithm. In fact, by disabling-fnew-ra
in GCC 3.3, the difference of 0.31% between
3.2.2 and 3.3 using the best options disappears
and GCC 3.3 becomes to produce larger code
by 0.29% on average!

6.2 Remaining Problems

By looking at the generated code in more
depth, we managed to identify several weak-
points of GCC that could be improved in or-
der to generate a more compact code. Another
group of issues addresses GCC’s limitations
that are due to its architecture and logic of com-
pilation. Some of them may not be solved or at
least with very high effort. In the following we
summarize the main issues for providing some
starting point to future improvements.

Unit at a time compilation. GCC generally
translates one function at a time and therefore
it misses the opportunity of performing such
optimizations that rely on seeing all functions
of a compilation unit at the same time. With
version 3.4 there was recently added the possi-
bility for unit at a time compilation, but its uti-
lization in optimization has not yet been fully
achieved. If this feature is fully implemented
in GCC, it would enable, for example, the shar-
ing of global variables, the elimination of un-
used static functions, and the sharing of com-
mon data among functions (when the function-
per-section option is not used).

More intelligent -Os . Generally, when-Os
is turned on it means-O2 with some addi-
tional optimization algorithms being implicitly
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enabled. In addition, any part of GCC can
check for the state of this option. However, the
semantics of this option could be further im-
proved. First, a more careful selection of algo-
rithms that need to be enabled could be imple-
mented, similar to those proposed in Section 3.
This could be further enhanced using the pos-
sibility for target-specific configuration of this
switch. Furthermore, if-Os could act as an
orthogonal option to other levels of optimiza-
tion, it would offer for an even more flexible
configuration.

Interprocedural optimizations. Due to the
above-mentioned missing unit at a time com-
pilation, no interprocedural optimization algo-
rithms could be used. A number of existing
algorithms could be extended to interprocedu-
ral operation, which would undoubtedly pro-
duce significant improvement, e.g. interpro-
cedural dead-code elimination and redundant
code elimination [1, 5]. Even some evidently
redundant code constructs are currently gener-
ated by GCC. Consider, for example, the fol-
lowing code and notice that the call to function
foo will be superfluously generated:

int a,b;
int foo(int x) { return x; }
void bar() {

a = 1;
b = foo(a);

}

Minor optimization issues. Here we list sev-
eral minor issues that are related to some opti-
mization algorithm (or are possibly specific for
ARM target).

• The organization of loops is sometimes
too complicated with redundant condition
checking at higher optimization levels.

• The organization of the generated code for
theswitch statement can be made more

optimal, especially when jump tables are
used.

• RTL code generation from trees can be
made more optimal than that for the cur-
rent naïve preorder walk.

• Automatic function inlining does not
seem to take into account when code size
is the objective rather than speed. In this
case only those functions should be in-
lined, which produce smaller code than
calling the function.

• In ARM target, multiple variable load and
save instruction are generated only for
simple cases.

Library issues. Although the inadequacies of
library implementations are not the subject of
this article, we would like to remind the reader
of the fact that the library headers indeed have
some impact on the size of the generated code,
which we elaborate in Section 2.3. Another in-
teresting observation of ours was that a lot of
space could be saved if some operators could
be implemented by a library function call. For
example, if integer division and modulo opera-
tors (/ and%) would have a corresponding li-
brary function then for targets where these op-
erations are not part of the instruction set, a
simple call would be generated instead of the
inline implementation of the division. Natu-
rally, this would require that all library imple-
mentations provide such builtin functions for
certain commonly-used operators.

6.3 Conclusion

We have seen that GCC is getting better and
better with regard to code size. The latest
version 3.3 (using an optimal combination of
options) is only 11.48% worse than a high-
performance non-free compiler. In Figure 8 we
summarize the results of our measurements.
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Figure 8: Summary of improvements

In this diagram we can observe (1) how much
improvement version 3.3 brings with-Os only
(0.3%), (2) the effect of a combination of op-
tions that we suggest over-Os measured on
GCC 3.3 (4.15%) and (3) the effect of some
new algorithms in GCC 3.3 (0.61%). These
three constitute the total difference of 5.06%
between GCC 3.2.2 with-Os and GCC 3.3
with opt-2.

Nevertheless there still are a number of
issues—which we summarized in the previous
section—that could make GCC’s capabilities
of optimization for space even better and this
way shift its mainly academic use nowdays to-
wards industry environments to become a seri-
ous competition to non-free commercial com-
pilers.

7 Availability

The present document and related informa-
tion including complete measurement data are
available at

http://gcc.rgai.hu/docs.php

The homepagehttp://gcc.rgai.hu/
aims to collect and maintain references to of-
ficial GCC pages in connection with the ARM
port.
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