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Abstract

IBM’s mainframe architecture S/390 is the
living architecture with the longest heritage,
defined in a time when assembler program-
ming was predominant and compilers were in
their childhood. Hence in porting GCC to
S/390 we had to cope with certain architec-
ture features that were difficult or impossible
to model in GCC’s architecture-independent
framework. These include 31-bit addressing
mode, instruction-dependent address formats,
limited availability of address displacements
and immediate literals, and the condition code
handling. These problems notwithstanding, the
S/390 back end matured over the last couple
of years to make GCC a stable and competi-
tive compiler for the S/390 platform. In this
paper we want to share how we managed to
handle most of the mentioned architecture fea-
tures. We also want to point out areas that
promise room for further improvement in the
back end itself and suggest middle-end modifi-
cations that would benefit our platform in par-
ticular.

1 Introduction

1.1 From System/360 to zSeries

In the early 1960s IBM defined the System/360
architecture. This architecture was designed to
serve for a whole family of systems. The dif-

ference the distinguished systems of that fam-
ily had was the way the instruction set was im-
plemented. The System/360 architecture de-
fined 16 32-bit general purpose registers, 4 64-
bit floating point register and a 24-bit address
space. Shortly afterwards, virtual address-
ing was added to the architecture. In 1970,
System/370 was introduced, providing an en-
hanced instruction set. Around 1982 370/XA
brought 31-bit addressing, in 1988 370/ESA
introduced support for multiple address spaces.
In the 1990s the ESA/390 architecture was
introduced; subsequent machines added over
time the relative branch instructions as well as
the IEEE floating-point instruction set.

In 2000 the first IBM eServer zSeries machine
came out, introducing a major architecture up-
date. The z/Architecture remained upward
compatible to ESA/390, but provided full 64-
bit support, extending the general purpose reg-
ister size to 64-bit and adding a 64-bit address-
ing mode in addition to the traditional 24-bit
and 31-bit modes. This means in particular that
both 64-bit and 31-bit applications can run un-
der a 64-bit operating system (if that provides
the required support). However, it is also pos-
sible to operate a zSeries machine in ESA/390
mode in order to run legacy 31-bit operating
systems.
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1.2 GCC S/390 port history

Within the S/390 firmware development we
were searching in 1997 for a C compiler fulfill-
ing specific requirements. We needed a com-
piler that could be link-compatible to the inter-
nally used pl.8 compiler, which was developed
at IBM Research a decade ago. Also it should
provide the ability to use embedded assembler
code. One of the authors was asked to look into
the then existing System/370 port of GCC, to
evalute whether this could be adapted for the
intended use. This port was not very stable
at this time, but it could easily be shown that
it could be used as a base. Since in firmware
development there is no reason for backward-
compatibility, we decided to set a certain level
of architecture as given, and started internally
with a S/390 port, producing only code for lat-
est CMOS based systems.

When work on the upcoming Linux for S/390
port started in 1998, the compiler port devel-
oped by the firmware team could be used for
the Linux port. The success of this new oper-
ating system proved to be beneficial for GCC
on S/390 as well, since the Linux develop-
ment team was then rapidly driving the efforts
to develop the GCC port further to use the
ELF linkage format and eventually to exploit
the 64-bit z/Architecture. In 2001, the S/390
GCC port was finally donated to the Free Soft-
ware Foundation, with the authors in charge as
maintainers, one of us (Hartmut Penner) repre-
senting the S/390 hardware, the other (Ulrich
Weigand) the Linux for S/390 constituency.

2 Architectural overview

Before going into details of the GCC back end
implementation, we will start by giving a short
overview of the relevant features of the zSeries
architecture as well as the ABI used by the
Linux for zSeries port.

2.1 zSeries instruction set

The zSeries architecture as a typical CISC
architecture provides an extensive instruction
set. It has a full set of I/O related instruc-
tions, dealing with a channel based I/O sub-
system. For system programming there exists
a full set of instructions which enables opera-
tion systems to retrieve all information about
the system running on and do communication
with a service element. TheSTART INTER-
PRETATIVE EXECUTION instruction pro-
vides efficient virtualization capabilities, with
the possibility to define very precisely which
instructions are to be intercepted. Many of
these architectural facilities were defined over
the last 40 years, putting all the experience
of the years before into the definition. How-
ever, even though the above mentioned fields
are very interesting, we want to concentrate in
this paper on the small subset of instructions a
compiler normally deals with. For a complete
reference of the ESA/390 or z/Architecture see
[1] or [2].

The zSeries architecture defines 16 general-
purpose registers and 16 floating-point regis-
ters. Depending on the architecture mode, the
general-purpose registers have a width of 32 or
64 bits. It is a classical 2-address architecture,
where for most instructions the first source
operand is also used as destination. Each in-
struction has a length of 2, 4, or 6 bytes, and
up to now more than 30 instruction formats are
defined. For most ALU operations there ex-
ist two instruction types, one using two register
operands (RR), the other a register and a mem-
ory operand (RX). Logical operations are also
available with two storage operands (SS) or a
storage and a immediate operand (SI).

More formally, the general instruction set of
the zSeries architecture usable by a compiler
can be divided into following classes of in-
structions:
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RR r1 = r1 op r2
RX r1 = r1 op [x+b+d]
RI r1 = r1 op ch
RS r1 = r1 op [b+d]
SI [b+d] = [b+d] opl cb
SS [b1+d1] = [b1+d1] opl [b2+d2]

where we use the following elements:

r General or floating-point register
x Index register (register%r1–%r15)
b Base register (register%r1–%r15)
d Displacement, 12-bit constant (0–4095)
cb 8-bit constant, unsigned
ch 16-bit constant, signed or unsigned
op Arithmetical or logical operation
opl Logical operation (including move)

[addr] Content addr is pointing to

If running in zSeries architecture mode, an ad-
dress is 24, 31, or 64 bits wide, depending
on the addressing mode a program operates in.
The S/390 architecture mode provided only the
24-bit and 31-bit addressing modes. Here, the
most significant bit of a 32-bit address is some-
times used to distinguish between 24-bit and
31-bit bit mode in ’mixed’ environments. The
displacement for address generation in the in-
struction itself is only 12 bits. Together with
the fact that this displacement is unsigned, this
causes some problems for defining a ABI and
implementing a efficient compiler, especially
when dealing with large stack frames, a down-
ward growing stack, large GOT tables, etc. The
impact of this for implementing the compiler
will be shown later.

In order to provide conditional execution,
zSeries uses a 2-bit condition code as part of its
program status word. Most non-move or non-
branch instructions, depending on the result of
their operation, set this condition code. The
actual value a specific instruction sets is de-
fined for each instruction individually, and only
to a certain extend a clear classification can
be made. The architecture has branch instruc-

tions that decide whether a branch is taken de-
pending on whether the current condition code
equals one of the values provided in the form
of a 4-bit branch condition mask as part of the
instruction.

2.2 Linux for zSeries ABI

The Linux port on S/390 and zSeries uses a
variant of the ELF ABI. For a full definition
of the architecture-dependent parts see [3] and
[4]; the following gives a short overview of the
most important features. While the processor
architecture does not define a stack, the ABI
chooses by convention the general purpose reg-
ister%r15 for use as stack pointer. The stack
grows downwards; the low 96 bytes (160 bytes
on 64-bit) are reserved as register save area
for use by called subroutines. Registers%r0–
%r5 are clobbered across function calls, while
%r6–%r15 are saved. Parameters are passed
in registers and a parameter area on the stack.

Apart from the stack pointer%r15, the follow-
ing general purpose registers may be used for
special purposes:%r14 holds the function call
return address,%r13 is used to point to a per-
function literal pool,%r12 points to the Global
Offset Table in position-independent code, and
%r11 is used as frame pointer in functions that
perform dynamic stack allocation (otherwise,
the stack pointer is used as frame pointer as
well).

The following short "hello world" example
shows a typical 31-bit routine. Comments un-
der each line give the semantics of the in-
struction, using the abbreviated syntax used by
GCC in its scheduling printouts.

stm %r6,%r15,24(%r15)
# {[%r15+24]=%r6;[%r15+28]=%r7;...}

bras %r13,.L2
# {%r13=.L1;pc=.L2}
.L1:
.LC0: .long .LC2
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.LC1: .long printf

.L2:
ahi %r15,-96

# {%r15=%r15-96;clobber %cc}
l %r2,.LC0-.L1(%r13)

# {%r2=[%r13+.LC0-.L1]}
l %r14,.LC1-.L1(%r13)

# {%r14=[%r13+.LC1-.L1]}
basr %r14,%r14

# {pc=%r14;%r14=pc+2}
lm %r6,%r15,120(%r15)

# {%r6=[%r15+120];%r7=[%r15+124];...}
br %r14

# {pc=%r14}

Note how the function prolog saves registers,
sets up the literal pool pointer and allocates
a new stack frame. The function proceeds to
load the address of theprintf routine as well
as the address of the string constant from the
literal pool and performs the call. The epilog
simply restores all saved registers (thereby re-
setting the stack pointer and removing the cur-
rent stack frame) and returns to the caller by
branching to the address provided in%r14.

3 GCC and the zSeries architec-
ture

While most of the features of the zSeries archi-
tecture can be easily modelled using the stan-
dard mechanisms available to a GCC back end,
we have found some that require extra effort
to implement correctly. This section describes
how we addressed these issues in the current
S/390 back end: literal handling, 31-bit ad-
dressing mode, and instruction-dependent ad-
dress formats.

3.1 Literal handling

Literals, i.e. values determined at compile
time, play an important role in most functions
generated by a compiler. They include con-
stant values of various types (e.g. integer, float-
ing point, or string constants) provided in the

source code as well as address constants gen-
erated by the compiler itself, used to reference
code or data labels.

However, the original S/390 architecture did
not provide instructions that could use literal
values as immediate operands. While it was
possible to load an immediate integer in the
range 0–4095 into a register using theLOAD
ADDRESSinstruction, all other literal values
required loading from memory.

On the other hand, accessing a memory loca-
tion to load a literal from requires to express
the address of that location first. Similarly,
branch instructions need to be able to refer-
ence the branch target address. Again, the orig-
inal S/390 architecture did not provide instruc-
tions that could use immediate address con-
stants, neither as absolute nor as pc-relative
values. The only way to specify an address, for
any purpose, was to use the standard effective
address generation mechanism that computes a
target address as the sum of the contents of a
base register, an index register, and an immedi-
ate displacement in the range 0–4095.

To overcome these restrictions, the usual cod-
ing conventions for S/390 applications re-
quired to reserve one general purpose regis-
ter to always hold the address of the start of
the routine currently executing. This way, tar-
gets for branches within the routine could be
expressed via immediate displacement relative
to that function base register, and by placing a
pool of literal constants immediately adjacent
to the routine’s code section, the same mecha-
nism could be used to load literals from mem-
ory.

The obvious disadvantage of this method is
that it requires the total size of a routine’s code
section plus its literal pool not to exceed a sin-
gle page (4 KB), to ensure every address within
both code and literal pool remains addressable
via the function base register. When these lim-



GCC Developers Summit 2003 • 199

its are exceeded, a function has to be split into
multiple fragments, each consisting of up to
4096 bytes of code and literals required by the
fragment. On every branch between two dif-
ferent fragments, the base register has to be
reloaded to point to the beginning of the cur-
rent fragment. This can incur significant run-
time overhead.

Fortunately, over time several extensions to
the S/390 architecture were implemented that
provide relief to those constraints. With the
second generation of S/390 machines, starting
from 1992, therelative and immediate instruc-
tion facility provided a set of instructions that
allow on the one hand the use of immediate in-
teger constants with several operations, and on
the other hand the use of pc-relative address-
ing modes for a number of branch instructions.
However, due to the requirement that the new
instructions fit within the overall scheme of
S/390 instruction types, these literals were lim-
ited in range. This means that only integer val-
ues in the range of -32768–32767 are allowed
as immediate operands, and pc-relative branch
targets can only specific a range of up to 64 KB
before or after the current instruction.

With the advent of the 64-bit z/Architecture in
2000, the latter restriction was once again loos-
ened: the newrelative longinstructions accept
pc-relative targets in a range of up to 4 GB be-
fore or after the current instruction. TheLOAD
ADDRESS RELATIVE LONGinstruction fi-
nally allows the use of pc-relative addressing
for other accesses besides branches.

Now, how does the GCC back end cope with
those restrictions? We have chosen to sup-
port in the S/390 back end only processors
that provide the relative and immediate in-
struction facility. This means that we can use
the pc-relative branch instructions for all intra-
function branches as long as the code section
of the routine does not exceed 64 KB. While

we also use immediate operands wherever pos-
sible, it is still necessary to maintain a lit-
eral pool for constants exceeding the allowed
range. This pool is addressed via a base regis-
ter (usually%r13) pointing to the start of the
literal pool. To set up the pool base register,
we use aBRANCH RELATIVE AND SAVE
instruction, followed by the literal pool itself.
Executing that instruction transfers control to
the instruction following the pool, while at the
same time loading the pool start address into
the base register.

Address literals whose use cannot be avoided
via pc-relative instructions are placed into the
literal pool. However, if we are generating
position-independent code for use in Linux
shared libraries, we do not want to place ab-
solute addresses into the literal pool, as those
would require relocations to be applied by the
dynamic loader to the text segment. This is
undesirable as it prevents that page from ac-
tually being shared across multiple processes
using the same library. To solve this issue, we
instead place theoffsetfrom the start of the lit-
eral pool to the required address into the pool.
Every user of that pool entry needs to add the
pool start address back to that offset, which can
usually be done implicitly as part of normal ad-
dress generation, using the offset loaded into
an index register together with the pool regis-
ter as base register.

This method works fine as long as the routine’s
code size does not exceed 64 KB and its literal
pool size does not exceed 4 KB. For the vast
majority of routines these conditions hold true,
which is why we have chosen to optimize for
this common case. However, the compiler cer-
tainly has to be able to cope with cases where
either or both of these limits are exceeded.

If a routine’s code section exceeds 64 KB, de-
termining whether the target of any particular
branch within the function is out of range or
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not is nontrivial, as this recursively depends
on the sizes of other branch instructions that
lie in between. Fortunately, this analysis is
performed by GCC’sbranch shorteningpass,
which we are able to use unmodified for our
target. We simply need to provide GCC com-
mon code with information about the length of
each instruction via thelength attribute.

Once the branch shortening pass has de-
termined which branches cannot be imple-
mented via a pc-relative branch instruction,
our machine-dependent reorganization pass re-
places each of those out-of-range branches by a
branch using a register as target, preceeded by
an instruction loading the branch target address
from the literal pool into that register:

l %r14,.LCtarget-.Lpool(%r13)
br %r14

As previously mentioned, when generating
position-independent code, we place an offset
to the branch target label into the literal pool
instead:

l %r14,.LCtarget-.Lpool(%r13)
b 0(%r14,%r13)

This replacement is simple and incurs only
relatively low overhead. However, if the lit-
eral pool overflows its maximum size of 4096
bytes, things get much more difficult. Fortu-
nately, this happens only extremely rarely; the
cases where we have seen this to occur typi-
cally involve extremely large routines, unlikely
to be found in source code written by hand, but
sometimes occurring as a result of automati-
cally generated code.

However, if literal pool overflow does occur,
we still need to handle it correctly. What we
do then is to partition the function into smaller

chunks, each requiring a partial literal pool
whose size does not exceed 4096 bytes.

At every transition between different chunks,
we insert instructions to reload the pool base
register with the start of the literal pool of the
current chunk. Those reload instructions thus
need to be inserted before the first instruction
of every chunk as well as after every code la-
bel that is being branched to from an instruc-
tion located outside the chunk. Unfortunately,
performing this reload operation is difficult,
as we cannot use a pc-relative instruction to
do so, we cannot use any arithmetical opera-
tions as those would clobber the condition code
register which might be live at the point the
reload is inserted, and we cannot even load
anything from the literal pool because we do
not know towhichpool chunk the base register
currently points—the same label might be the
target of instructions residing in multiple dif-
ferent chunks. We solve this problem by using
the following sequence of instructions:

basr %r13,0
la %r13,.Lchunk-.(%r13)

which resets the pool base register to the cur-
rent instruction address, and adds the offset
from there to the current pool chunk start ad-
dress using aLOAD ADDRESSinstruction to
avoid clobbering the condition code. This tech-
nique unfortunately imposes further require-
ments on the pool chunks: every pool chunk
must be placed within the function text section,
following the corresponding code chunk, and
the size of that code chunk must not exceed
4096 bytes to avoid overflowing the range of
the LA instruction.

Once we’ve succeeded in dividing the function
into chunks and inserting the pool base reg-
ister reload instructions, we can then proceed
to replace all references to the normal con-
stant pool by explicit references to the current
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pool chunk, assuming the base register is set
up properly. Position-independent code pro-
vides an additional challenge, however. Recall
that in this scenario we are using offsets rel-
ative to the pool start address instead of abso-
lute address literals. Now, when we’ve split the
pool into multiple chunks, which pool chunk
are those references supposed to be relative to?
We’ve initially tried to set up things so that ev-
ery offset is always relative to the chunk where
it resides. Unfortunately this does not work, as
due to constant propagation it is possible for
an offset to be loaded into a register in a com-
pletely different chunk from where that register
is finally used. Thus we’ve decided to keep the
master literal pool present, even it is empty af-
ter all constants have been distributed to pool
chunks, so that its start address can remain to
serve as anchor for address literal offsets. To
make this work, everyexplicituse of the literal
pool base register%r13 needs to be replaced
by another register holding the master anchor
address. That address can be computed on the
fly using the current pool chunk address and an
offset from the start of that chunk to the anchor;
this offset is by convention always stored at the
very start of each pool chunk:

l %r14,0(%r13)
la %r14,0(%r14,%r13)

Two final obstacles remain before literal pool
splitting can be considered a general solution.
The first is the fact that literal pool splitting
introduces additional instructions at various
points throughout the instruction stream. This
can cause branch splitting information to be-
come invalid, as some branches that were orig-
inally in-range can now exceed their allowed
ranges. On the other hand, branch splitting
works by placing branch target addresses into
the literal pool, which can cause the pool to
overflow. To solve this interdependency, we
iterate branch splitting and attempting to split

the literal pool until both operations succeed si-
multaneously. This is guaranteed to always ter-
minate, as every branch that we decided to split
at any one point will remain split forever, and
thus the number of unsplit branches is strictly
decreasing throughout this iterative process.

The final obstacle is that we require a tempo-
rary register for both branch splitting and literal
pool splitting (for the case of anchor reload-
ing). Fortunately, the live ranges introduced
are very short, and span just the newly added
instructions together with the immediately fol-
lowing instruction from the existing instruc-
tion stream. However, at this point in the code
generation process (after reload), all registers
might in fact be live at the point where we need
to insert additional code. Thus, we currently
reserve one register (%r14) for use for those
purposes. Note that the ABI defines%r14 to
hold the function return address, which means
it is always clobbered across function calls, but
apart from that restriction the register would be
free for arbitrary use inside a routine. We are
not doing that, however, in order to have this
register available for use in branch splitting and
literal pool splitting. The only problem with
that is that the decision whether we need to use
%r14—and thus need to save and restore the
register in the function prolog/epilog code—
can be made only during machine-dependent
reorg, long after the function prolog and epi-
log code was generated. Therefore, we al-
ways generate code to save and restore regis-
ters %r13 and %r14, and remove that code
during machine-dependent reorg once it has
proven to be unnecessary.

Up to now, we have exclusively discussed
code generation for S/390 machines in 31-
bit mode. On z/Architecture machines, many
of the problems described in this section dis-
appear due to the availability of therelative
long family of instructions. First of all, the
BRANCH RELATIVE LONGinstructions al-
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low pc-relative branches within the range of
4 GB. By restricting the maximum allowed
size of any single executable or shared object
to 4 GB, we can thus use those instructions
for nearly every branch. (The only occasion
where we still might need branch splitting is in
the case ofBRANCH ON COUNTinstructions,
which lack a relative-long variant.)

Also, the LOAD ADDRESS RELATIVE
LONGinstruction allows us to directly load
arbitrary address literals, without requiring
literal pool entry, in a position-independent
manner. This means that we never need to
handle offsets relative to the literal pool base,
and the whole issue of reloading the anchor
register after pool splitting disappears. Also,
as we can useLARL to load the literal pool
start address, literal pools no longer need to
reside in the text section, but can be moved to
the read-only data section. This also simplifies
inserting pool base reload instructions in the
case of literal pool splitting. However, the core
problem that the literal pool cannot exceed
4096 bytes remains.

The solution described in this section allows
GCC to correctly handle every valid source
code, even if it causes code or literal pool
sizes to exceed their optimum limits. However,
there is still a lot of room for improvement to
optimize the code that is generated once that
overflow happens. We are currently working
on some minor improvements. In particular,
we’ll remove the whole complex of pool an-
chor reloading for position-independent code
by representing address literals as offsets rel-
ative to the gobal offset table (like on other
platforms) instead of relative to the literal pool.
This requires some new relocation types to be
implemented in binutils first. Once this is done,
we can try to finally make register%r14 avail-
able for regular use. This would require that
every branch instruction reserves one register
to be used for branch splitting if necessary, but

even so overall register pressure should benefit.

The major problem with optimizing literal pool
overflow situations, however, is to determine
how to split the function into chunks. An op-
timal solution here would try to minimize the
frequency of inter-chunk branches at run time.
To try to tackle that problem will require con-
trol flow data including basic block boundaries
and branch probabilities; unfortunately GCC
currently no longer maintains that information
at the point in time where literal pool splitting
has to be performed (in machine-dependent re-
org).

3.2 31-bit addressing mode

For historical reasons, the S/390 architecture
does not have a 32-bit addressing mode, but
uses 31-bit addressing. This means that while
base and index registers used in address gener-
ation are regular 32-bit registers, the most sig-
nificant bit is ignored when computing the ef-
fective address. (Note that this does not apply
on zSeries in 64-bit addressing mode; most of
the problems discussed in this section disap-
pear in that environment.)

For the compiler, this causes two issues that
need to be considered. As for every 31-
bit address there are two equally valid 32-bit
pointer representations, one with the high bit
set and one with the high bit cleared, care must
be taken when comparing pointer values for
equality. To simplify this process, GCC tries to
always represent pointers using the representa-
tion with the high bit cleared. However, some
machine instructions store address values with
the high bit set; most importantly theBRANCH
AND SAVEfamily of instructions does so. A
BASinstruction transfers control to another ad-
dress, and at the same time stores the current
instruction address (with the high bit set) into
a register. GCC uses those instructions for two
purposes: to implement function calls, and to
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set up the literal pool. Since both the call return
address and the literal pool start address are
normally used only for compiler-internal pur-
poses, GCC does not bother to normalize these
values by clearing the high bit. However, in
some cases these values are visible externally,
and extra care needs to be taken:

• The call return address can be re-
trieved by doing a stack backtrace, e.g.
via the function__builtin_return_
address . This will yield values
with the high bit set, which the caller
needs to normalize; this is handled by
the __builtin_extract_return_
address function. However, as this
built-in does nothing on most platforms,
we have seen several cases where applica-
tions didn’t work on S/390 because they
forgot to use it.

• The literal pool start address is used as
anchor to compute the addresses of local
variables in position-independent code.
As these can be externally visible, the
compiler needs to make sure this address
computation will normalize the resulting
pointer. This is done by using anUNSPEC
operation that enforces the use ofLOAD
ADDRESS(instead of, say, a normal 32-
bit addition operation) to perform the cal-
culation. TheLA instruction will always
return a 31-bit value with the high bit
cleared.

The second main problem caused by the 31-
bit addressing mode is that address generation
is a distinctly different operation from regu-
lar addition. As mentioned above, theLOAD
ADDRESSinstruction performs a 31-bit addi-
tion operation, adding the values of base and
index register and an immediate displacement,
and returning a 31-bit value. TheADDinstruc-
tion, in contrast, performs a full 32-bit addition
operation. The decision whether to useADDor

LOAD ADDRESSneeds to take into account a
number of issues:

• Wemust notuseLOAD ADDRESSto per-
form integer addition, as the high bit of
the result is not computed.

• Where the result of an addition opera-
tion is used as address, we can useLOAD
ADDRESS, and it is in fact often the pre-
ferred method to minimize pipeline stalls.

• Some passes of the compiler (reload) in-
sert address computation operations into
the instruction stream, making the im-
plicit assumption that they do not clobber
the condition code. WemustuseLOAD
ADDRESSin these cases.

• In some cases, in particular when
computing local addresses in position-
independent code (see above), we rely on
the property thatLOAD ADDRESSclears
the high bit, so we must not use regular
addition instead.

This has been a problematic area during the
development of the S/390 back end; we have
tried various ways of simultaneously meeting
all these requirements, not always completely
successfully. As an example for the difficulties
involved, consider the question whether there
should be anLA pattern that accepts all RTL in-
structions of the form(set (reg) (plus
(reg) (reg))) . If this pattern exists, there
is the danger that it might be incorrectly used
to implement an integer addition. If it does
not exist, there is the danger of reload failures
as reload will create such instructions anyway.
The current S/390 back end tries to solve this
as follows:

• Theadd instruction patterns accept insns
that explicitly clobber the condition code.
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• The la instruction patterns accept insns
that do not clobber the condition code,
provided that it is safe to assume the result
is being used as an address. This assump-
tion can be made if one of the registers
involved is the literal pool base register,
the global offset table base register, or is
known to point into the stack frame (stack
register, frame register, argument pointer
register etc.). The instruction will also ac-
cept addresses using anUNSPECto en-
force clearing the high bit.

• A second set offorced_la patterns ac-
cept all syntactically valid load address in-
sns, without employing the sanity check
mentioned above. Those use a special pat-
tern that will never be accidentally gener-
ated by other parts of the compiler (e.g.
combine), so that those patterns will only
match in case they were explicitly gener-
ated by the S/390 back end.

• When reload tries to load aplus ex-
pression that would not be accepted by
a regularla pattern, this is handled via
the secondary input reload mechanism.
This means that thereload_insi ex-
pander is called, which in turn will com-
pute the address usingforced_la pat-
terns if necessary. That way, reload will
never fall back to generating add opera-
tions by itself.

• To optimize for usingLA where possible,
a set of peephole2 patterns tries to trans-
form add instructions intola instruc-
tions. This is only done when considered
profitable.

A completely different option to solve the 31-
bit addressing mode problems might be to em-
ploy the PSImode mechanism to explicitly
represent a 31-bit data type. However, we
have tried this solution and found that it typi-

cally generated less efficient code due to super-
fluousSImode <-> PSImode conversions
inserted at various points by the middle end.
Improving thePSImode support might make
this option viable at some point in the future,
though.

3.3 Instruction specific address formats

A fundamental assumption of GCC, in partic-
ular the reload pass, used to be that memory
addresses are represented in the same format
in all instructions. This means that if a partic-
ular RTL expression represents a valid address
for one instruction, it is supposed to be valid
for all other instructions as well. The most im-
portant place where this assumption is made is
the find_reloads routine. This routine is
supposed to check whether an RTL instruction
matches the constraints imposed by the insn
pattern, and if it doesn’t, determine the most ef-
ficient way to modify the instruction stream by
inserting additional reload insns to correct the
problem. In doing so,find_reloads first
tries to make sure that all memory addresses
mentioned in the instruction are valid. This
pass is performed in the same way for all in-
structions, and does not even look at the con-
straint string. This means there is no way to im-
pose different conditions as to whether a mem-
ory address is valid or not, depending on which
instruction is involved.

Unfortunately, the S/390 architecture uses two
different formats to specify memory addresses
in instructions. The most general address for-
mat allows to to specify a base register, an in-
dex register, and a displacement (in the range
of 0–4095). These are added up to compute
the effective address. Some other instructions,
however, do not allow the use of an index reg-
ister; instead, they compute the effective ad-
dress simply as the sum of a base register and
the displacement. (The two formats are com-
monly called X and S instruction operands, re-
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spectively.) However, the back end has only
two choices when asked to validate an address
RTX: either to never accept addresses with in-
dex register, or to always accept them. The first
option causes very inefficient code to be gener-
ated, while the second option can potentially
cause invalid operands for S-type instructions
to be produced.

We have tried various ways of coping with this
problem, but with limited success. It is possi-
ble to try to avoid invalid S-operands by check-
ing for their presence in the instruction pred-
icate of affected instruction patterns. How-
ever, this is not reliable, as an address operand
that initially does not use an index register can
be modified into one that does by the reload
pass, e.g. due to register elimination or dis-
placement overflow. While we could in ad-
dition to the predicate use a constraint letter
to check for valid S-operands, this does not
solve the problem: if a non-standard constraint
does not match, reload will not know how to
fix the problem, causing compilation to abort.
We were able to overcome this by relying
on undocumented—and arguably incorrect—
behaviour of reload when interpreting the ’o’
constraint; but this hack was not only fragile,
it also didn’t allow full flexibility in generating
efficient code.

We finally solved this issue by introducing two
new features to the reload pass, starting with
GCC version 3.3—the EXTRA_MEMORY_
CONSTRAINT and EXTRA_ADDRESS_
CONSTRAINT target macros. These were
inspired by the way reload was able to handle
offsettablememory constraints. A memory
operand is called offsettable, if it stays a valid
memory operand when a small additional
displacement is added to the address, so
that every byte of the object comprising the
operand can be addressed. As an example, the
RTX

(mem:DI (plus:SI (reg:SI 1 %r1)
(const_int 4092)))

is a valid memory operand on S/390, but
it is not an offsettable operand, because
only the initial four bytes of theDImode
operand are addressable before the displac-
ment exceeds the maximum value of 4095.
In some cases, instructions cannot accept
non-offsettable operands, and GCC allows to
specifc this using the ’o’ constraint letter. If,
after reload has performed all required mod-
ifications, a memory address marked with
that constraint turns out to be non-offsettable,
reload will generate a load-address operation
to reload the address into a single register; this
register can then be used as offsettable memory
operand.

The EXTRA_MEMORY_CONSTRAINTtarget
macro now allows the back end to specify
other classes of memory operands that require
similar treatment by reload. By declaring
that a constraint letter describes an extra
memory constraint, the back end promises that
EXTRA_CONSTRAINT, when called to verify
whether an expression satisfies this constraint,
will:

• accept only memory operands, and

• accept all memory operands whose ad-
dress consists of one single base register.

This allows the reload pass to handle such
operands correctly: if a memory operand
does not pass theEXTRA_CONSTRAINTcheck,
reload is able to fix the problem by loading
the address into a base register. Similarly, the
EXTRA_ADDRESS_CONSTRAINTtarget macro
allows the back end to define constraints that
work like the standard ’p’ constraint to denote
address operands, but accepts only a subset of
all valid addresses (again including all those
that consist of solely a base register so that
reload can fix the operand up if required).

The EXTRA_MEMORY_CONSTRAINTmacro is
used by the S/390 back end to define the ’Q’
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constraint to handle S-operand instructions;
this allows the use of these instructions with-
out abusing reload, and also provides flexibil-
ity to mix S-operand instructions with others
in the same instruction pattern, choosing the
best alternative depending on the specific sit-
uation. TheEXTRA_ADDRESS_CONSTRAINT

macro could be used by the S/390 back end to
implement the full range of options to specify
the count operand for shift instructions (this is
not currently implemented yet, however).

4 Performance considerations

The previous section described issues relating
to correctness of the generated code which re-
quired special handling. However, for GCC to
be a competitive compiler on the zSeries plat-
form, we need to not just generate correct, but
also efficient code. This section details two ar-
eas where we found we could achieve signif-
icant performance benefits by exploiting spe-
cific features of the zSeries architecture: condi-
tion code handling and instruction scheduling.

4.1 Condition code handling

The S/390 architecture uses acondition code
to implement conditional branches. The condi-
tion code consists of two bits stored in the pro-
gram status word. Various arithmetical, logi-
cal, and comparison instructions set the condi-
tion code, while branch instructions make use
of it to decide whether the branch is to be taken
or not. As opposed to many other platforms,
the S/390 condition code is not composed of
single bits with specific semantics. Instead, the
two bits of the condition code combine to rep-
resent a condition code value in the range 0–3.
Branch instructions use a 4-bit branch condi-
tion mask to decide whether branching is per-
formed. The current condition code selects one
of the four mask bits, and if this bit is one, the
branch is taken. The relationship between the

condition code value and the mask position is
given by the following table:

Condition Code Mask Position Value
0 8
1 4
2 2
3 1

For example, the instructionbcr 12,%r1
branches to the address given in register%r1
if the current condition code is either 0 or 1.
(The GNU assembler also accepts mnemonics
instead of explicit mask values; as this branch
typically represents aless-or-equaldecision, it
can equivalently be written asbler %r1 .)

However, the numerical values 0–3 the condi-
tion code can assume have no fixed meaning.
Instead, every instruction that sets the condi-
tion code is free to define the semantics of the
condition code values it may set. In early ver-
sions of the S/390 back end we therefore used
only the condition codes set by explicit com-
parison instructions (which are very regular),
and completely ignored that other instructions
may set the condition code as side effect of
some other operation. This works, but can ob-
viously cause code to be generated that is sig-
nificantly less efficient. In particular, some im-
portant instructions the S/390 architecture pro-
vides (e.g. TEST UNDER MASK) could not
be exploited at all.

To improve this situation, we have rewritten
the condition code handling parts of the S/390
back end to use an explicitCCmoderegister
to represent the condition code (instead of us-
ing cc0 ). The various different semantics that
instructions can impose on the condition code
values are represented via different machine
modes of that register. The following list tries
to give an overview of the typical uses of the
condition code:

• Comparison operations (signed)
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0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered (floating point)

This condition code semantics is rep-
resented by theCCSmode mode. It
is used by instructions likeCOMPARE;
some other instructions (e.g. LOAD
AND TEST, SHIFT RIGHT SINGLE)
set their condition code according to this
mode as well, assuming an implied com-
parison of their single operand against
zero.

• Logical comparison operations (un-
signed)

0 Operands equal
1 First operand low
2 First operand high
3 n/a

This condition code semantics is repre-
sented by theCCUmodemode. It is used
by the COMPARE LOGICALfamily of
instructions.

• Arithmetical operations

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

This is used by theADDandSUBTRACT
instructions. Unfortunately, due to the fact
that the case of signed arithmetic over-
flow is signalled via condition code 3, and
in that case no comparison of the result
against zero is performed, in most cases
we cannot use the condition code set by
those instructions. However, if one of
the operands is a compile-time immedi-
ate constant, we may be able to determine
at compile-time that if the operation over-
flows, the resultmustalways be greater or
less than zero, respectively. Those situa-
tions are represented by theCCAPmode

andCCANmodemodes. (Note that some
languages, like C, guarantee that arith-
metic on signed data types must not over-
flow. Unfortunately, this information is
lost at the RTL level. Having some means
to pass this fact to the back end would en-
able us to make use of theADDcondition
code in many more cases.)

• Logical operations

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

This is used byADD LOGICALand in
slightly modified form by SUBTRACT
LOGICAL; we represent these cases by
the CCL1modeand CCL2modemodes.
We use the logical variants of the add and
subtract operations in cases where the re-
sult of the operation is compared against
zero, and we are not sure whether over-
flow happens. They can also be used to
implement carry propagation for multi-
word additions.

• Zero test
0 Result zero
1 Result not zero
2 n/a
3 n/a

The logical operations (AND, OR,
EXCLUSIVE OR) use these condition
code semantics, which we represent by
CCTmode. What is important here is
that some of the condition code modes
mentioned above can also be used to
implement a test against zero (e.g.
CCSmode, CCUmode). We therefore
implement such tests using a virtual
condition code modeCCZmode that is
allowed to match against all such modes,
using a semantics of condition code 0 if
result equals zero, and condition code
nonzero if the result is nonzero.
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The condition codes described above are all
used by a number of different instructions, and
share a certain amount of regularity. How-
ever, other instructions use the condition code
in completely different ways. As an example
we describe here an important instruction of
the S/390 architecture,TEST UNDER MASK
LOW, and how we can make use of this in-
struction within the GCC framework.TEST
UNDER MASK LOWtakes the low 16 bits of a
register operand and compares them bit-for-bit
against a mask provided as immediate operand.
The sole effect of the instruction is to set
the condition code, depending on whether the
operand bits selected by the mask are ones or
zeros:

0 Selected bits all zeros; or mask bit all zeros
1 Selected bits mixed, and leftmost is zero
2 Selected bits mixed, and leftmost is one
3 Selected bits all ones

This instruction is very useful to generate eff-
cient code for a number of frequently used bit-
test operations. The followingif statement,
for example:

if ((flags & 0x80) &&
!(flags & 0x4))

can be translated into a singleTEST UNDER
MASK LOWoperation followed by a condi-
tional branch:

# Mask selects both 0x80 and
# 0x04 bits for testing
tml %r1,0x84
# Branch if leftmost bit is one,
# and the other zero
brc 2,.Lxxx

Starting with GCC 3.3, the S/390 back end is
in fact able to generate this optimal code se-
quence. This is made possible by the fact that
the combiner pass notices the two subexpres-
sions of theif clause can be combined into

if ((flags & 0x84) == 0x80)

The S/390 back end now uses the
SELECT_CC_MODEmacro to inform combine
that it is possible to implement this particular
comparison operation using theCCT2mode
mode, causing the following (simplified)
instruction sequence to be emitted:

(set (reg:CCT2 33 %cc)
(compare:CCT2

(and:SI (reg/v:SI 40)
(const_int 132 [0x84]))

(const_int 128 [0x80])))

(set (pc)
(if_then_else

(ne (reg:CCT2 33 %cc)
(const_int 0 [0x0]))

(label_ref 18)
(pc)))

These in turn later generate the assembler code
shown above. Note that the use ofCCT2mode
causes the branch instruction to use condition
code 2 for equality (and all other condition
codes for inequality); this is very different from
how most other branches are handled.

Overall, theCCmode facilities of the GCC
middle end allow to make use of the S/390
condition codes in many important cases; no
changes outside the S/390 back end were nec-
essary to exploit them. However, we have no-
ticed some areas where common code changes
would be required to further improve the gener-
ated code. One of these is to allow a condition
code computed by one instruction to be reused
across multiple branches; the sequence

if (x == 5)
...

else if (x < 5)
...

currently performs two distinct comparison op-
erations, although the optimal implementation
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would use a singleCOMPAREto set the condi-
tion code, followed by two branch instructions
evaluating it.

4.2 Instruction scheduling

The time required to run a certain program de-
pends on the number of instructions and the
time each specific instruction takes. Besides
that, in most modern implementations of com-
puter architectures, dealing with a pipelined
and/or superscalar processor implementation,
the cycles an instruction takes as part of an
instruction stream depends heavily on the is-
sue order. For some architectures (e.g. VLIW)
an inappropriate scheduling of instructions will
lead to a significant performance decrease.

Also on the recent z900 machines, some of the
single-cycle instructions will in fact take from
1 to 5 cycles, depending on the order this in-
struction is issued within an instruction stream.
The reason for this can easily be seen if we take
a close look at the single-issue pipeline all in-
structions are executed on. (See [5] for a more
detailed description of the z900 pipeline.)

After instruction fetching, the instruction
pipeline consists of 6 stages. This pipeline is
designed so as to ensure that register-memory
(RX) instructions perform the best way possi-
ble.

DC Decode instruction, latch registers for ad-
dress generation.

AA Address generation, by adding base, index
register and displacement from instruction
text.

C1 Cache access, TLB access.

C2 Send memory data to execution unit.

E1 Execute.

WR Writeback result to register file.

Regardless whether an instruction actually uses
a memory operand or not, latching of base and
index registers is done in the decode stage.
Likewise, the address generation stage as well
as the C1 and C2 stages are used for all instruc-
tions, even though they would be required for
memory operands only. Together with the fast
L1 data cache, this enables register-memory in-
structions to be as fast as register-register in-
structions.

Due to the single cycle E1 stage for most sim-
ple instruction, true data dependency does not
cause a pipeline stall. This leads to a theoret-
ical cpi of 1 for most compiler generated in-
structions, assuming an infinite cache. Also,
since this pipeline is short, the penalty for mis-
predicted branches is comparatively small.

The main instruction-issue related problem left
by this design is the address generation inter-
lock (AGI). If a register used in the AA stage
(e.g. base register) is changed in an instruction
shortly before, the pipeline will be stalled for
up to 4 cycles. This is due to the fact that the
AA stage needs to wait for the WR stage to up-
date the register needed.

(Please see Figure 1.)

This AGI lets most applications suffer a perfor-
mance degradation in the double-digit percent-
age range. If we look at code examples like the
PLT code generated for ELF shared libraries,
the impact is even bigger. Over the last gen-
erations of S/390 systems attempts to reduce
this impact led to building certain kinds of by-
passes into the pipeline. Especially theload
andload addresstype instructions, which gen-
erate all their side-effects in the early stages of
the pipeline and which are frequently used in
pointer intensive code, got those bypasses. The
result of aload addresstype instruction is gen-
erated in the AA stage and ready after C1, and
can be bypassed with a 1 cycle delay to the AA
stage of a directly following instruction.
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0 1 2 3 4 5 6 7 8 9 10 11
ar r2,r3 DC AA C1 C2 E1 WR
l r2,0(0,r2) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 1: Address Generation Interlock, first example

0 1 2 3 4 5 6 7 8 9 10 11
la r2,0(r2,r3) DC AA C1 C2 E1 WR
l r2,0(0,r2) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 2: Address Generation Interlock, second example

(Please see Figure 2.)

The result of aload type instruction is ready
after the C2 stage and can be bypassed with
a 2 cycle delay to the AA stage of a directly
following instruction.

(Please see Figure 3.)

All other instructions suffer a 4 cycle penalty
if setter and user are issued back to back. To
avoid this, we use in the recent GCC imple-
mentation the new DFA based scheduler.

To describe the behavior of the pipeline, we
only need to define the last two stages. Down
below we shortly show part of description of
the z900 pipeline.

(define_automaton "z_ipu")
(define_cpu_unit "z_e1" "z_ipu")
(define_cpu_unit "z_wr" "z_ipu")

(define_insn_reservation "z_la" 1
(and (eq_attr "cpu" "z900")

(eq_attr "type" "la"))
"z_e1,z_wr")

(define_insn_reservation "z_load" 1
(and (eq_attr "cpu" "z900")

(eq_attr "type" "load"))
"z_e1,z_wr")

(define_insn_reservation "z_int" 1
(and (eq_attr "cpu" "z900")

(eq_attr "atype" "reg"))
"z_e1,z_wr")

(define_insn_reservation "z_agen" 1
(and (eq_attr "cpu" "z900")

(eq_attr "atype" "agen"))
"z_e1,z_wr")

The 4-cycle hazard of the pipeline due to
AGI, the 1-cycle bypass for theload address
type instructions and the 2-cycle bypass for
load type instructions are described using the
define_bypass construct.

(define_bypass 5 "z_int,z_agen"
"z_agen,z_la,z_load" "s390_agen_dep_p")

(define_bypass 3 "z_load"
"z_agen,z_la,z_load" "s390_agen_dep_p")

(define_bypass 2 "z_la"
"z_agen,z_la,z_load" "s390_agen_dep_p")

With all this in place, GCC does a good job
scheduling within a basic block. The places
where we still see for certain code a non-
optimal scheduling are as follows:

At the beginning of a basic block, the state of
the DFA is reset. With GCC 3.4, the second
scheduling pass is placed after basic block re-
ordering. Since the reordering will lead to a
high probability that a basic block is entered
from the immediately preceding basic block,
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0 1 2 3 4 5 6 7 8 9 10 11
l r2,0(0,r3) DC AA C1 C2 E1 WR
l r2,0(0,r3) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 3: Address Generation Interlock, third example

this could be used to improve scheduling. In-
stead of resetting the state at the beginning of
the basic block, the state from the end of the
last basic block scheduled could be used as ini-
tial state.

This uncovers another problem with the
current way the DFA is defined. The
define_bypass mechanism only influ-
encesinsn_cost , which is used to set up
the priority a insn is scheduled with. Also
insn_cost is used to find out when a insn
is ready, depending on the instructions already
scheduled in the current basic block. However,
this information is not actually part of the state
of the DFA itself, and due to that the detection
of AGI hazards cannot be achieved solely by
looking at this state.

If GCC will use more and more of the DFA-
based algorithms for scheduling, like global
scheduling, the DFA should be built to model
all resources. In our specific case, in order to
detect AGIs, this needs to include the general
register file. To model the AGI behaviour, we
need to define a RR type instruction allocating
the source register in the E1 stage and allocat-
ing the destination register in the AA, C1, C2,
E1, WR stages. A RX type instruction allo-
cates the address registers in the AA stage, the
source register in the E1 stage and the destina-
tion register in the AA, C1, C2, E1, WR stages.
In case of aload type instruction the destina-
tion register is only allocated in the AA, C1 and
C2 stage, for aload addresstype instruction in
the AA and C1 stage. Having this in place, the
DFA would be sufficient for detecting the AGI
hazard.

This all would need some kind of new syn-
tax, in order to refer to the registers an in-
struction is using. Also, it would definitely not
work before register allocation, since the num-
ber of states and transition could not be han-
dled. Even after register allocation, it remains
to be seen whether the the number of states and
transisiton is managable. In our case, each in-
struction may use up to 16 registers, and will
use up to two for addressing.

5 Conclusion

GCC on the IBM mainframe is a mature com-
piler that is in widespread use as the system
compiler for all Linux on zSeries distributions.
The efficiency of the generated code is compet-
itive with other compilers for our platform.

However, there is still room for improvement.
We will continue to work on the S/390 back
end in order to fully exploit all features the
architecture provides. We also remain com-
mitted to add support for future generations of
the zSeries processor as soon as those become
available.
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