
Mudflap:
Pointer Use Checking for C/C++

Frank Ch. Eigler
Red Hat

fche@redhat.com

Abstract

Mudflap is a pointer use checking technol-
ogy based on compile-time instrumentation. It
transparently adds protective code to a variety
of potentially unsafe C/C++ constructs that de-
tect actual erroneous uses at run time. The
class of errors detected includes the most com-
mon and annoying types: NULL pointer deref-
erencing, running off the ends of buffers and
strings, leaking memory. Mudflap has heuris-
tics that allow some degree of checking even
if only a subset of a program’s object modules
are instrumented.

1 Motivation

C, and to a lesser extent C++, are sometimes
jovially referred to as a “portable assembly
language.” This means that they are portable
across platforms, but are low level enough
to comfortably deal with hardware and raw
bits in memory. This makes them particularly
suited for writing systems software such as op-
erating systems, databases, network servers,
and data/language processors. These types of
software are notorious for pointer-based data
structures and algorithms, which C/C++ make
easy to express. However, the runtime model
of C/C++ does not include any checking of
pointer use, so errors can easily creep in.

Several kinds of pointer use errors are widely

known by every C/C++ programmer. Access-
ing freed objects, going past buffer boundaries,
dereferencingNULLor other bad pointers, can
each result in a spectrum of effects, from
nothing, through random glitches and outright
crashes, to security breaches. Such bugs can
induce hard-to-debug delayed failures. Many
recent security vulnerabilities of operating sys-
tems result from simple stack-smashingbuffer
overrunerrors, where pointers go beyond their
bounds to corrupt memory, under the influence
of malevolent input.

There exist several technologies for catching
pointer use errors. They have distinct ap-
proaches and capability/performance tradeoffs.
For example, from a debugging point of view,
it is better to catch the memory corruption at
the moment it occurs, because context will be
fresh and available. On the other hand, for se-
curity protection of a deployed program, it may
be enough to catch an error just in time to pre-
vent a breach, which might be much later.

A large class of pointer use errors relates to
heap allocation. Writing past the end of a heap
object, or accessing a pointer after afree
can sometimes be detected with nothing more
than a library that replaces the standard li-
brary’s heap functions (malloc , free , etc.).
The Electric Fence1 package, for example, can
manage heap objects that carefully abut inac-

1ftp://ftp.perens.com/pub
/ElectricFence/

58 • GCC Developers Summit

cessible virtual memory pages. A buffer over-
run there causes an instant segmentation fault.
Some libraries provide a protected padding
area around buffers. This padding is filled
with code that can be periodically checked for
changes, so program errors can be detected at
a coarser granularity.

The bounded-pointers GCC extension2 ad-
dresses pointer errors by replacing simple
pointers with a three-word struct that also con-
tains the legal bounds for that pointer. This
changes the system ABI, making it neces-
sary to recompile the entire application. The
bounds are computed upon assignment from
the address-of operator, and constructed for
system calls within an instrumented version of
the standard library. Each use of the pointer is
quickly checked against its own bounds, and
the application aborts upon a violation. Be-
cause there is no database of live objects, an
instrumented program can offer no extra infor-
mation to help debug the problem.

The gcc-checker extension3 addresses pointer
errors by mapping all pointer manipulation
operations, and all variable lifetime scopes,
to calls into a runtime library. In this
scheme, the instrumentation is heavy-weight,
but the pointer representation in memory re-
mains ABI-compatible. It may be possible to
detect the moment a pointer becomes invalid
(say, through a bad assignment or increment),
before it is ever used to access memory.

The StackGuard GCC extension4 addresses
stack smashing attacks via buffer overruns. It
does this by instrumenting a function to rear-
range its stack frame, so that arrays are placed
away from vulnerable values like return ad-
dresses. Further guard padding is added around

2http://gcc.gnu.org/projects/bp
/main.html

3http://www-ala.doc.ic.ac.uk/˜phjk
/BoundsChecking.html

4http://immunix.org/stackguard.html

arrays and is checked before a function returns.
This is light-weight and reasonably effective,
but provides no general protection for pointer
errors or debugging assistance.

The valgrind package5 is a simulation-based
tool for detecting a broad class of pointer
use errors. It contains a virtual machine that
tracks processor operations, including mem-
ory loads and stores and even register arith-
metic, to check operations for validity. While
it works on unmodified executables, this simu-
lation process is quite slow.

The Purify package6 is a well-known propri-
etary package for detecting memory errors.
Purify works by batch instrumentation of ob-
ject files, reverse-engineering patterns in ob-
ject code that represent compiled pointer op-
erations, and replacing them with a mixture of
inline code and calls into a runtime library.

2 How Mudflap Works

Mudflap works by inserting a pass into GCC’s
normal processing sequence. It comes after
a language frontend, and before the optimiz-
ers, RTL expanders, and backend. It takes a
restricted form of GCCtrees, which are sim-
ilar to abstract syntax parse trees, as input.
It looks for tree nesting patterns that corre-
spond to the potentially unsafe source-level
pointer operations. These constructs are re-
placed with expressions that normally evaluate
to the same value, but include parts that refer
to libmudflap, the mudflap runtime. The com-
piler also adds instrumentation code associated
with some variable declarations.

The purpose of this instrumentation is to assert
a validity predicate at the use (dereferencing)
of a pointer. The predicate is simply whether

5http://developer.kde.org/˜sewardj/
6http://www.rational.com/products

/purify_unix/

GCC Developers Summit 2003 • 59

or not the memory region being referenced is
recognized by the runtime as legal. If not, a
violation is detected.

2.1 Object database

As a prerequisite for evaluating memory ac-
cesses, the runtime needs to maintain a
database of valid memory objects. This
database includes several bits of information
about each object, which may be retained for
some time even after it is deallocated.

• address range
• name, declaration source file, line number
• storage type (stack/heap/static/other)
• access statistics
• allocation timestamp and stack backtrace
• deallocation timestamp and stack back-

trace

In order to update and search the object
database, libmudflap exports a number of func-
tions to be called by the inserted instrumen-
tation. These basic ones include one to as-
sert that a given access is valid, and a pair
to add/remove a memory object to/from the
database. These functions are passed pointer
and size pairs plus some parameters to classify
or decorate accesses and objects. For exam-
ple, for a stack-based variable that may have
pointer-based accesses would have a “register”
call at the point of entry into its scope, and
a corresponding “unregister” call when con-
trol leaves the scope. For heap-based vari-
able, these calls would be performed within
hooked allocation and deallocation primitives.
For static variables, register calls are done early
during program startup, and the effort of an un-
register is not wasted during shutdown.

The database happens to be stored as a binary
tree, naturally ordered based on the addresses
of live objects. Its internal nodes are periodi-

cally rotated in order to move nodes for popu-
lar objects nearer to the root. There is a sepa-
rate fixed-size array listing recently deallocated
objects, used only during the performance-
insensitive processing of violation messages.

During program startup, some selected objects
are inserted into the database as specialno-
accessregions. These represent address ranges
that are certainly out-of-bounds for all instru-
mented programs, like theNULL area, and
some libmudflap internal variables. Violations
are always signaled when such objects are ac-
cessed by instrumented code.

2.2 Lookup cache

In order to hasten the database lookup, some-
thing which needs to be done many times, lib-
mudflap maintains alookup cache. This cache
is compact global direct-mapped array, indexed
using a simple hash function of the pointer
value. Each entry in the cache specifies a mem-
ory address range that is currently valid to ac-
cess. If an inline check of the cache for a given
access is successful, the application avoids the
call into libmudflap for the full-blown check-
ing routine. Though the code may look compli-
cated, it compiles down to a surprisingly small
number of instructions.

60 • GCC Developers Summit

/* uintptr_t: an integral type for
pointers */

struct __mf_cache { uintptr_t low,
high; };

struct __mf_cache
__mf_lookup_cache [];

uintptr_t __mf_lc_mask;
unsigned char __mf_lc_shift;

/* an approximation */
inline void
INLINE_CHECK (T* ptr, size_t sz, ...)
{

uintptr_t low = ptr;
uintptr_t high = low + sz - 1;
unsigned idx =

(low >> __mf_lc_shift) &
__mf_lc_mask;

struct __mf_cache *elem =
& __mf_lookup_cache [idx];

if (elem->low > low ||
elem->high < high)

__mf_check (ptr, sz, ...);
}

As with any caching scheme, choosing appro-
priate parameters (themaskandshiftvalues) is
a challenge. libmudflap has defaults suitable
for mixed sizes of objects, which can be over-
ridden by the user. In addition, when the run-
time detects excessive cache misses, it adap-
tively tunes the cache parameters to better fit
recent access patterns. For example, if ac-
cesses to small individual objects dominate, the
current heuristic tends to decrease shift val-
ues. That way, more of the lower-order bits of
the raw pointers remain to pick distinct cache
lines. Section 3.1.4 lists libmudflap options
that affect the lookup cache.

2.3 Instrumented expressions

Unsafe pointer expressions are easy to recog-
nize when looking at C/C++ code. Systemat-
ically, most*p , p->f , anda[n] expression
patterns need to be checked. Because mudflap
operates in the middle of the compiler, we can-
not look for such patterns in the source. In-
stead, we are given a representation of an en-

tire function that resembles an abstract syntax
tree. Expressions like the above are encoded in
a web of nodes of GCC’stree type structure.

Mudflap traverses a function tree in program
order, looking for certain pointer- or array-
related constructs. These tree nodes are modi-
fied in place, replacing the simple pointer ex-
pressions with a GCCstatement expression7

that evaluates to the same value, but includes
a call to the inline check routine outlined
above. Shown in GCC’s extended syntax,
the expressionp->f is changed roughly to
({check (p, ...); p;})->f .

This in-place modification scheme sup-
ports recursion for nested constructs like
ptr->array[i]->field . Here, two
separate checks would be emitted: one for
the elementptr->array[i] , and another
to follow that pointer. The checks are per-
formed in natural program order. Alternately,
such nested constructs might be presented to
mudflap already decomposed into an equiv-
alent sequence of simpler expressions by the
GIMPLE8 transformations.

Table 1 shows the primitive expression patterns
mudflap intercepts, and what address range is
checked for each. For indirect accesses into
larger compound objects, the checked range
typically begins at the address of the outer-
most compound object, and ends by including
the specific field or element being referenced.
This way, the checked base value for similar
accesses into the same structure or array can
be constant, and take more benefit from the
lookup cache. Notice that the checked range
doesnotextend to include the entire compound
object. This is because it is legal to allocate

7Statement expressions are a GCC extension that al-
lows a brace-enclosed block to be treated as an expres-
sion. The last statement in the block is used as the ex-
pression value.

8http://gcc.gnu.org/projects
/tree-ssa/

GCC Developers Summit 2003 • 61

slightly less memory for a variable-sized struc-
ture than the rawsizeof , as long as the unal-
located elements at the end are never accessed.
GCC’s own source code does this frequently.

2.4 Instrumented declarations

As discussed above, libmudflap’s object
database is kept up-to-date partly using instru-
mentation that tracks the lifetime of interest-
ing memory objects. Some of these objects
are variables declared asauto or static
and have their addresses taken (or are indexed-
into). For example, in the code segment be-
low, thearray variable needs to be registered
with libmudflap (so the[i] indexing can be
checked), but only for the duration of its scope
(so that the returned pointer is invalid to deref-
erence later).

char *foo (unsigned i) {
char array [10];
array [i] = ’a’;
return & array [i];

}

Tracking the lifetime of variables in a scope
is tricky because control can leave a scope
in several places. (Grossly, it might even
enter in several places usinggoto .) The
C++ constructor/destructor mechanism pro-
vides the right model for attaching code to
object scope boundaries. Luckily, GCC pro-
vides the necessary facilities even to trees that
come from the C frontend. There are sev-
eral variants: theCLEANUP_EXPRnode type,
and the more modernTRY_FINALLY_EXPR.
Both tree types take a block (a statement list)
and another statement (acleanup) as argu-
ments. The former is interpreted as a sequence
of statements such as any that follow a decla-
ration within a given scope/block. The latter
is a statement that should be evaluated when-
ever the scope is exited, whether that happens
by break , return , or just plain falling off

the end.9

We use this construct in mudflap by inserting
one of these special try/finally tree patterns be-
hind every declaration in need of lifetime in-
strumentation. The statement-list is the re-
mainder of the original function, past the dec-
laration in question, plus a register call for
the declared object. The cleanup statement is
an unregister call for the same object. The
above function becomes the following, render-
ing TRY_FINALLY_EXPRin a Java-like way:

char *foo (unsigned i) {
char array [10];
try {

__mf_register (array, 10, ...);
array [i] = ’a’;
return & array [i];

} finally {
__mf_unregister (array, 10, ...);

}
}

Mudflap also emits instrumentation to track the
lifetime of some objects in the global scope:
variables declared within file scope, or de-
claredstatic within a function. This is done
by intercepting assembler-related functions in
gcc/varasm.c . It turns out at some liter-
als like strings are like local static variables
in this respect, so they too are registered. In
each case, a list of declarations is accumu-
lated until the end of the compilation unit. At
that point a single dummyconstructorfunc-
tion is synthesized, containing a long list of
__mf_register calls. The linker arranges
to call this and all other constructor functions
early during the program startup.

2.5 Library interoperability

The above mechanisms are sufficient for
checking pointer operations that are within an
instrumented compilation unit. However, it is

9However, abrupt exit from a scope via alongjmp
is not specifically handled at this time.

62 • GCC Developers Summit

Sample declarations:

struct k {
int a; /* offset 0 size 4 */
char b; /* offset 4 size 1 */

}; /* size 8 */
int *iptr;
struct k *kptr;
char cbuf [];
short smtx [6][4];
int i, j;

expression tree structure check range
base size

*iptr INDIRECT_REF(iptr) iptr 4
*kptr INDIRECT_REF(kptr) kptr 8
kptr->a COMPONENT_REF(INDIRECT_REF(kptr),a) kptr 4
kptr->b COMPONENT_REF(INDIRECT_REF(kptr),b) kptr 5
cbuf[i] ARRAY_REF(cbuf,i) cbuf i+1
smtx[i][j] ARRAY_REF(ARRAY_REF(smtx,i),j) smtx 8*i+2*j+2

Table 1: Pointer expressions and their checked address ranges

often not possible to recompile an entire ap-
plication, including the system libraries, with
mudflap instrumentation. This means that sev-
eral aspects of interoperability need to be ad-
dressed.

Most C/C++ programs make use of standard
library functions (e.g.,strcpy) that manip-
ulate buffers given pointers. Typically, these
libraries are not instrumented by mudflap, so
they trust their arguments and don’t perform
pointer checking. An erroneous program can
pass invalid pointers to these libraries, and by-
pass mudflap protection. libmudflap contains
functions that interpose as a variety of such
system library routines (though many more are
yet to come). Each interposing function checks
given buffer/length arguments, then jumps to
the original system library. In this case, in-
terposition is performed by replacing system
library function names, viapreprocessor di-

rectivesimplied by mudflap, with libmudflap
names. This way, only instrumented object
files are affected. Figure 2.5 shows a sample
of this type of wrapper function in libmudflap.

In another scenario, an uninstrumented library
may return to an instrumented caller some
memory allocated from a shared heap. These
memory regions should be registered with lib-
mudflap, so that the instrumented code can
be allowed to use them. Intercepting calls
like malloc using preprocessor macros is
not possible, since we are dealing with pre-
compiled objects. We must intercept them
at link time. Suitable mechanisms are avail-
able: symbol wrapping(for static linking with
GNU ld) or symbol interposition(for shared
libraries). libmudflap contains a protection
mechanism to handle the case where a reen-
trant libmudflap⇒system-library⇒libmudflap
call chain might occur.

GCC Developers Summit 2003 • 63

void * WRAPPED_memmem (const void *haystack, size_t haystacklen,
const void *needle, size_t needlelen)

{
INLINE_CHECK (haystack, haystacklen, __MF_CHECK_READ, "memmem haystack");
INLINE_CHECK (needle, needlelen, __MF_CHECK_READ, "memmem needle");
return memmem (haystack, haystacklen, needle, needlelen);

}

size_t WRAPPED_fread (void *ptr, size_t size, size_t nmemb, FILE *stream)
{

INLINE_CHECK (ptr, size * nmemb, __MF_CHECK_WRITE, "fread buffer");
INLINE_CHECK (stream, 1, __MF_CHECK_READ, "fread stream");
return fread (ptr, size, nmemb, stream);

}

Figure 1: Sample libmudflap stdlib function wrappers

In yet another scenario, an uninstrumented li-
brary may return to an instrumented caller a
value that points to some valid static data in
the library. This could include objects as mun-
dane as string literals. In this case, no link-time
function interception can work, since these
addresses are taken without reference to sys-
tem functions. In order to tell automatically
whether such a pointer is valid or not, lib-
mudflap usesheuristics. These heuristics are
checked when an access check is initially de-
termined as a violation. They may look at other
auxiliary platform-dependent data like the pro-
gram’s segment boundaries, stack pointer, and
the like, to make a guess. Heuristics may be in-
dividually enabled or disabled at run time. See
section 3.1.3 for more details.

2.6 Performance

Mudflap instrumentation and runtime costs ex-
tra time and memory. At build time, the com-
piler needs to process the instrumentation code.
When running, it takes time to perform the
checks, and memory to represent the object
database. The behavior of the application has a
strong impact on the run-time slowdown, af-
fecting the lookup cache hit rate, the over-
all number of checks, and the number of ob-

factor description (+ polarity)
1 rare pointer manipulation
2 few large arrays
3 few addressed variables in scope
4 number cruncher
5 few tree/graph data structures
6 few objects in working set
7 non-changing access patterns

application factors in effect slowdown
+ − build run

BYTE nbench 3,4 1,2,5-7 3.5 3.5
spec2000 bzip2 2,5 1,3,4,6,7 4 5
spec2000 mcf 1-7 5 1.25

Table 2: Performance factors and overall mea-
sured slowdowns

jects tracked in the database, and their rates of
change. Table 2 lists some of these. A few
selected applications have been built with and
without mudflap instrumentation, then run to
estimate the slowdowns.10 Table 2 also lists
some applications, their performance factors,
and associated slowdowns for a default mud-
flap build and run.

10We used an x86 Linux host with ample memory, the
same mudflap-capable compiler, and same optimization
levels and linking modes.

64 • GCC Developers Summit

2.7 Future

Mudflap development is ongoing; we antici-
pate several improvements. Significant per-
formance benefits may arise from changing
the instrumentation code (mainly for pointer
checks), and functionality and performance
benefits from the runtime.

We currently instrument each occurrence of
a pointer dereference, even if that same
pointer/size pair has been “recently” checked.
Such checks could be eliminated if the com-
piler could prove that a subsequent check is
redundant with respect to an earlier one. Ex-
tending from this, it may be possible to ag-
gregate multiple checks based on the same
pointer or array - imagine sequences of state-
ments that accessptr->field1 through
ptr->field5 . The compiler could create a
single large check11 near the beginning of a ba-
sic block, and eliminate subsequent checks for
the same pointer/array. Some checks could be
moved out of loops. In exchange for signifi-
cantly better performance, such optimizations
could detect pointer use errors out of program
sequence.

Possible future libmudflap enhancements in-
clude support for multithreaded applications,
growing the list of hooked functions to include
more of the system libraries and system calls,
more libmudflap entry points for use in an em-
bedded system without a kernel, a better GDB
interface, and general tuning.

3 Using Mudflap

Using mudflap is intended to be easy. One
builds a mudflap-protected program by adding

11A large check would cover the maximal referenced
range, including the last referenced field for a pointer,
or the largest index for an array. This may require value
range propagation or similar analysis.

an extra compiler option (-fmudflap) to ob-
jects to be instrumented; one links with the
same option, plus perhaps-static . One
may run such a program by just starting it as
usual.

In the default configuration, a mudflap-
protected program will print detailed violation
messages tostderr . They are tricky to de-
code at first. Figure 5 in the Appendix contains
a sample message, and its explanation.

3.1 Runtime options

libmudflap observes an environment variable
MUDFLAP_OPTIONSat program startup, and
extracts a list of options. Include the string
-help in that variable, and libmudflap will
print out all the options and their default val-
ues. The display at the time of this writing is
shown in Figure 5 in the Appendix. The next
sections describe the options in groups.

3.1.1 Violation handling

The -viol- series of options control what
libmudflap should do when it determines a vi-
olation has occurred. The-mode- series con-
trols whether libmudflap should be active.

-viol-nop Do nothing. The program may
continue with the erroneous access. This
may corrupt its own state, or libmudflap’s.

-viol-abort Call abort() , requesting a
core dump and exit.

-viol-segv Generate aSIGSEGV, which a
program may opt to catch.

-viol-gdb Create a GNU debugger session
on this suspended program. The debugger
process may examine program data, but it
needs to quit in order for the program to
resume.

GCC Developers Summit 2003 • 65

-mode-nop Disable all main libmudflap
functions. Since these calls are still tab-
ulated if using-collect-stats , but
the lookup cache is disabled, this mode is
useful to count total number of checked
pointer accesses.

-mode-populate Act like every libmud-
flap check succeeds. This mode merely
populates the lookup cache but does not
actually track any objects. Performance
measured with this mode would be a
rough upper bound of an instrumented
program running an ideal libmudflap im-
plementation.

-mode-check Normal checking mode.
-mode-violate Trigger a violation for ev-

ery main libmudflap call. This is a dual of
-mode-populate , and is perhaps use-
ful as a debugging aid.

3.1.2 Extra checking and tracing

A variety of options add extra checking and
tracing.

-collect-stats Print a collection of
statistics at program shutdown. These
statistics include the number of calls to the
various main libmudflap functions, and an
assessment of lookup cache utilization.

-print-leaks At program shutdown, print
a list of memory objects on the heap that
have not been deallocated.

-check-initialization Check that
memory objects on the heap have been
written to before they are read. Figure 5
explains a violation message due to this
check.

-sigusr1-report Handle signal
SIGUSR1 by printing the same sort
of libmudflap report that will be printed
at shutdown. This is useful for moni-
toring the libmudflap interactions of a

long-running program.
-trace-calls Print a line of text to

stderr for each libmudflap function.
-verbose-trace Add even more tracing

of internal libmudflap events.
-verbose-violations Print details of

each violation, including nearby recently
valid objects.

-persistent-count=N Keep the de-
scriptions of N recently valid (but now
deallocated) objects around, in case a
later violation may occur near them. This
is useful to help debug use of buffers after
they are freed.

-abbreviate Abbreviate repeated detailed
printing of the same tracked memory ob-
ject.

-backtrace=N Save or print N levels of
stack backtrace information for each allo-
cation, deallocation, and violation.

-wipe-stack Clear each tracked stack ob-
ject when it goes out of scope. This can be
useful as a security or debugging measure.

-wipe-heap Do the same for heap objects
being deallocated.

-free-queue-length=N Defer an inter-
ceptedfree for N rounds, to make sure
that immediately followingmalloc calls
will return new memory. This is good for
finding bugs in routines manipulating list-
or tree-like structures.

-crumple-zone=N Create extra inaccessi-
ble regions of N bytes before and after
each allocated heap region. This is good
for finding buggy assumptions of contigu-
ous memory allocation.

-internal-checking Periodically tra-
verse libmudflap internal structures to
assert the absence of corruption.

66 • GCC Developers Summit

3.1.3 Heuristics

As discussed in Section 2.5, libmudflap con-
tains several heuristics that it may use when
it suspects a memory access violation. These
heuristics are only useful when running a hy-
brid program that has some uninstrumented
parts. Memory regions suspected valid by
heuristics are given the specialguessstorage
type in the object database, so they don’t in-
terfere with concrete object registrations in the
same area.

-heur-proc-map On Linux systems, the
special file/proc/self/map contains
a tabular description of all the virtual
memory areas mapped into the running
process. This heuristic looks for a match-
ing row that may contain the current ac-
cess. If this heuristic is enabled, then
(roughly speaking) libmudflap will permit
all accesses that the raw operating sys-
tem kernel would allow (i.e., not earn a
SIGSEGV).

-heur-start-end Permit accesses to the
statically linked text/data/bss areas of the
program.

-heur-stack-bound Permit accesses
within the current stack area. This is
useful if uninstrumented functions pass
local variable addresses to instrumented
functions they call.

-heur-argv-environ This option adds
the standard C startup areas that contain
theargv andenviron strings to the ob-
ject database.

3.1.4 Tuning

There are some other parameters available to
tune performance-sensitive behaviors of lib-
mudflap. Picking better parameters than de-
fault is a trial-and-error process and should be

undertaken only if-collect-stats sug-
gests unreasonably many cache misses, or the
application’s working set changes much faster
or slower than the defaults accommodate.

-age-tree=N For tracking a currentwork-
ing setof tracked memory objects in the
binary tree, libmudflap associates alive-
nessvalue with each object. This value is
increased whenever the object is used to
satisfy a lookup cache miss. This value is
decreased every N misses, in order to pe-
nalize objects only accessed long ago.

-lc-mask=N Set the lookup cache mask
value to N. It is best if N is2M − 1 for
0 < M ≤ 10.

-lc-shift=N Set the lookup cache shift
value to N. N should be just a little
smaller than the power-of-2 alignment of
the memory objects in the working set.

-lc-adapt=N Adapt the mask and shift pa-
rameters automatically after N lookup
cache misses. The adaptation algorithm
uses the working set as identified by tree
aging. Set this value to zero if hard-coding
them with the above options.

3.2 Introspection

libmudflap provides some additional services
to applications or developers trying to debug
them. Functions listed in themf-runtime.h
header may be called from an application, or
interactively from within a debugging session.

__mf_watch Given a pointer and a size, lib-
mudflap will specially mark all objects
overlapping this range. When accessed in
the future, a special violation is signaled.
This is similar to a GDB watchpoint.

__mf_unwatch Undo the above marking.
__mf_report Print a report just like the one

possibly shown at program shutdown or
upon receipt ofSIGUSR1.

GCC Developers Summit 2003 • 67

__mf_set_options Parse a given string
as if it were supplied at startup in the
MUDFLAP_OPTIONSenvironment vari-
able, to update libmudflap runtime op-
tions.

4 Acknowledgments

The author thanks Ben Elliston for sug-
gesting the mudflap name, Graydon Hoare
for prototyping several parts of libmudflap,
Diego Novillo for commiserating about GCC
internals (and doing something to improve it),
Red Hat (my employer) for funding mudflap’s
development, and future contributors for con-
tributing in the future.

5 Availability

The source code of GCC with mudflap ex-
tensions, and of libmudflap, are available
from the author, or by anonymous CVS.
See http://gcc.gnu.org/projects
/tree-ssa/ for instructions.

68 • GCC Developers Summit

mudflap violation 3 (check/read): time=1049824033.102085 ptr=080c0cc8 size=1

This is the third violation taken by this program. It was attempting to read a single-byte object with base pointer0x080c0cc8 . The timestamp
can be decoded as 102 ms afterTue Apr 8 13:47:13 2003 via ctime .

pc=08063299 location=‘nbench1.c:3077 (SetCompBit)’
nbench [0x8063299]
nbench [0x8062c59]
nbench(DoHuffman+0x4aa) [0x806124a]

The pointer access occurred at the given PC value in the instrumented program, which is associated with the filenbench1.c at line 3077, within
functionSetCompBit . (This does not require debugging data.) The following lines provide a few levels of stack backtrace information, including
PC values in square brackets, and sometimes module/function names.

Nearby object 1: checked region begins 8B into and ends 8B into

There was an object near the accessed region, and in fact the access is entirely within the region, referring to its byte #8.

mudflap object 080958b0: name=‘malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=1r/0w liveness=1

This object was created by themalloc wrapper on the heap, and has the given bounds, and size. Thecheck part indicates that it has been read
once (this current access), but never written. The liveness part relates to an assessment of how frequently this object has been accessed recently.

alloc time=1049824033.100726 pc=4004e482
libmudflap.so.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

The allocation moment of this object is described here, by time and stack backtrace. If this object was also deallocated, there would be a similar
dealloc clause. Its absence means that this object is still alive, or generally legal to access.

Nearby object 2: checked region begins 8B into and ends 8B into
mudflap object 080c2080: name=‘malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=306146r/1w liveness=4562
alloc time=1049824022.059740 pc=4004e482

libmudflap.so.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

Another nearby object was located by libmudflap. This one too was amalloc region, and happened to be placed at the exact same address. It
was frequently accessed.

dealloc time=1049824027.761129 pc=4004e568
libmudflap.so.0(__real_free+0x88) [0x4004e568]
nbench(FreeMemory+0xdd) [0x806a41d]
nbench(DoHuffman+0x654) [0x80613f4]
nbench [0x8051496]

This object was deallocated at the given time, so this object may not be legally accessed any more.
number of nearby objects: 2

No more nearby objects have been found.
The conclusion? Some code on line 3077 ofnbench1.c is reading a heap-allocated block that has not yet been initialized by being written into.
This is a situation detected by the-check-initialization libmudflap option, referred to in section 3.1.2.

Figure 2: Sample libmudflap violation message, dissected

GCC Developers Summit 2003 • 69

This is a GCC "mudflap" memory-checked binary.
Mudflap is Copyright (C) 2002-2003 Free Software Foundation, Inc.

The mudflap code can be controlled by an environment variable:

$ export MUDFLAP_OPTIONS=’<options>’
$ <mudflapped_program>

where <options> is a space-separated list of
any of the following options. Use ‘-no-OPTION’ to disable options.

-mode-nop mudflaps do nothing
-mode-populate mudflaps populate object tree
-mode-check mudflaps check for memory violations [default]
-mode-violate mudflaps always cause violations (diagnostic)
-viol-nop violations do not change program execution [default]
-viol-abort violations cause a call to abort()
-viol-segv violations are promoted to SIGSEGV signals
-viol-gdb violations fork a gdb process attached to current program
-trace-calls trace calls to mudflap runtime library
-verbose-trace trace internal events within mudflap runtime library
-collect-stats collect statistics on mudflap’s operation
-sigusr1-report print report upon SIGUSR1
-internal-checking perform more expensive internal checking
-age-tree=N age the object tree after N accesses for working set [13037]
-print-leaks print any memory leaks at program shutdown
-check-initialization detect uninitialized object reads
-verbose-violations print verbose messages when memory violations occur [default]
-abbreviate abbreviate repetitive listings [default]
-wipe-stack wipe stack objects at unwind
-wipe-heap wipe heap objects at free
-heur-proc-map support /proc/self/map heuristics
-heur-stack-bound enable a simple upper stack bound heuristic
-heur-start-end support _start.._end heuristics
-heur-argv-environ support argv/environ heuristics [default]
-free-queue-length=N queue N deferred free() calls before performing them [4]
-persistent-count=N keep a history of N unregistered regions [100]
-crumple-zone=N surround allocations with crumple zones of N bytes [32]
-lc-mask=N set lookup cache size mask to N (2**M - 1) [1023]
-lc-shift=N set lookup cache pointer shift [2]
-lc-adapt=N adapt mask/shift parameters after N cache misses [1000003]
-backtrace=N keep an N-level stack trace of each call context [4]

Figure 3: List of libmudflap runtime options.

70 • GCC Developers Summit

