
Gcj: the new ABI and its implications

Tom Tromey
Red Hat, Inc.

tromey@redhat.com

Andrew Haley
Red Hat, Inc.

aph@redhat.com

What is binary compatibility?

The Java Language Specification [2] has an
entire chapter, Chapter 13, dedicated to bi-
nary compatibility. This chapter lays out rules
for writing binary compatible programs: pro-
grams can be changed in these ways with-
out requiring the recompilation of dependent
modules. This covers some simple, obvious
things, such as the fact that adding or removing
thesynchronized keyword from a method
won’t affect binary compatibility. It also cov-
ers more complex rules, so for instance it is
possible to override an inherited method or re-
arrange fields in a class without affecting com-
patibility.

Note that binary compatibility and source com-
patibility differ. For instance, it is binary
compatible to change a field’s access from
protected to public . This is not source
compatible in some situations.

Binary Compatibility has a great promise: with
a few restrictions, you will never have to re-
compile libraries again.

1 Why we want it

Initially, the gcj project paid no attention to
Chapter 13. In practice we implemented a
more static language than Java, and it looked
as if it would be difficult to get good perfor-
mance from pre-compiled code that adhered to
the binary compatibility rules.

This led to one important restriction on gcj-
compiled code, namely that two classes with
the same name could not both be loaded at
once: this is PR 6819 [4]. Over time, this has
proved to be more and more difficult to work
around. For instance, in 2003 we split out some
libraries from libgcj because some programs
shipped their own copies; this in turn caused
other problems.

Another important problem we tried to solve in
2003 was the proper operation of class loaders.
As it turned out, class loading and binary com-
patibility are related, and we realized we could
solve both problems with the same implemen-
tation.

In particular, sophisticated applications such as
Eclipse rely on Java’s lazy loading and linking
capabilities to control class loading and visibil-
ity. It isn’t possible both to satisfy the proper
semantics of a class loader and to have ordinary
ELF-style linking.

The Java language gives programmers facili-
ties that go far beyond what is possible in more
conventional programming languages. For ex-
ample, you may define a class loader to load
your own classes into the virtual machine.
Your class loader will have its own name space
and it will inherit classes from the base Java
class loader but its own loaded classes will not
be externally visible. You can define your own
scheme for resolving symbols.

It is quite possible for the same Java class to be
loaded several times by several different class



170 • GCC Developers’ Summit

loaders, and in each case its references will be
resolved differently.

When a class is loaded, references it makes
to other classes are not immediately resolved.
This allows mutually dependent classes to
be loaded, and later fixed up by calling
resolveClass .

All of this is a very long way from what can be
achieved by using conventional ELF linkage.

2 Implementation

The implementation of a new binary compati-
bility ABI for gcj began several years ago with
the work of Bryce McKinlay, and the paper Yu
[1].

The basic idea behind our implementation ap-
proach is to put all references made by a class
into two special tables, called theatable and
theotable .

Theotable , or Offset Table, is a table of off-
sets from some base pointer. Theatable , or
Address Table, is a table of absolute addresses.
Every class has anatable and anotable .
Initially these tables are filled with symbolic
references. Later, when the class is linked,
these symbolic references are turned into off-
sets or addresses, as appropriate.

2.1 Class references

Class references are handled via the constant
pool, a table that already existed in the old ABI.
Entries in the constant pool are resolved when
a class is prepared; an operation likenew or
instanceof refers to an entry in the pool.

2.2 Static methods and fields

A static method or field is referred to via the
atable . Each symbolic entry in theatable

consists of three parts: a class name, a mem-
ber name, and a type signature. At class prepa-
ration time, the appropriate class and member
are found, access checks are done, and then
the address of the member is written into the
atable slot. So, code in Class A that refers
to a static member of Class B does so via an
index into theatable belonging to Class A.

If a static method is not found, we simply write
the address of a function which will throw the
appropriate exception.

If a static field is not found, we throw an
IncompatibleClassChangeError
at class preparation time. In Yu [1] this is
mentioned as a bug in the design; however,
we believe that this behavior is specifically
allowed by the linking rules in section 12.3 of
the Java Language Specification [2].

2.3 Instance methods

Instance methods are handled via theotable ,
not the atable . Like the atable , the
otable holds class names, member names,
and type signatures. However, instead of map-
ping these to addresses, it instead maps them to
offsets.

When computing the value of anotable slot
for an instance method, we load and lay out
the target class and all its superclasses as well.
As part of this process, we compute the tar-
get class’s vtable; from this we find the correct
value to put in theotable slot.

Old-ABI code calls virtual methods like:

(((vtable *) obj)[index]) (obj, ...)

With the new ABI, this is transformed to:

(((vtable *) obj)[otable[index]])
(obj, ...)



GCC Developers’ Summit 2004 • 171

If an instance method is not found, we
put a special value into theotable slot
which, when the vtable lookup is done, re-
sults in a call to a method that throws
IncompatibleClassChangeError .

2.4 Instance fields

Instance fields are handled similarly to instance
methods. Where old ABI code compiles a field
reference:

*((type *) (obj + offsetof (field)))

the new ABI produces the equivalent of:

*((type *) (obj +
otable[field_index]))

Although this is an extra memory reference,
it is less painful than might first appear: the
otable and atable have good locality,
typically being referred to many times in a
method.

Note that because all class layout is done dy-
namically, even references to one’s own private
fields must go through theotable , as one’s
superclass might add or remove fields and this
will change the offsets of all subclass fields.

2.5 Interfaces

Interface dispatch also requires an extra indi-
rection via theotable , and it requires us to
compute interface dispatch tables at runtime,
much as we compute the vtables and class lay-
out at runtime.

2.6 Exception handlers

For catch clauses we write a class name (in-
stead of a reference to a Class object) into the

DWARF-2 exception table. The class name
is suitably mangled so that the type matching
function for a catch block can distinguish be-
tween old and new ABI code.

When an exception is thrown, these class
names are looked up by the appropriate class
loader and turned into references to the corre-
sponding classes.

2.7 Versioning

gcj still statically generates an instance of Class
for each class that is compiled. In the fu-
ture we plan instead to generate a class de-
scriptor, which will be instantiated as a Class
at runtime. This will insulate compiled code
from changes to java.lang.Class, and it will
also make it slightly easier for us to handle
ABI versioning. We intend to add an ABI ver-
sion number to the class descriptor, and then
let the runtime library handle compatibility as
desired.

2.8 libgcj API

Compiled code must still make references to
symbols exported from libgcj. For instance,
operations such asnew or instanceof are
implemented by means of exported_Jv_
functions; the compiler generates direct calls
to these functions.

We have considered redirecting calls to these
functions via theatable as well, but as there
are only twenty or so it seems simpler to handle
these according to the usual versioning rules
for shared libraries.

Compiled code continues to know the layout of
array types. We don’t anticipate arrays chang-
ing incompatibly.

We plan to continue to compile parts of the
core library—in all likelihood at leastjava.
lang andjava.io —using the old ABI. Ap-



172 • GCC Developers’ Summit

plication code cannot portably replace these
classes, so there is no drawback to compiling
them old-style.

2.9 Bytecode Verification

One related problem is that of bytecode verifi-
cation with an ahead-of-time compiler.

In Java, the compile-time and runtime environ-
ments might be very different. In order to han-
dle this and still ensure runtime type safety, a
typical JVM will perform bytecode verification
in the runtime environment.

gcj includes a bytecode verifier as part of its
compilation, when compiling from bytecode to
object code. However, this is insufficient when
the bytecode can be loaded into an arbitrary
runtime environment. In particular it would be
possible to construct an environment where all
the requirements of the compiled code (names
of types and methods) are met, but where the
result allows subversion of the type system.

For example, a class f might be defined:

class f implements B
{

...

and a user could write an initializer

B thing = new f();

but if an incompatible change were made to f

class f
{

...

the variablething would now refer to an ob-
ject that did not implement B. This is a viola-
tion of the type system.

The solution to this is to perform bytecode
verification in two steps. The first step, still
in gcj, works much like an ordinary verifier.

All the “static” properties of bytecode, such as
whether the declared stack depth is sufficient,
can be verified once. Now, when the verifier is
asked to verify a fact about a type or method,
it always yieldstrue , and adds a “verification
assertion” to the generated code.

At runtime, these assertions are verified when
the class is linked. This process is much
quicker than ordinary bytecode verification,
which requires modeling the control flow of the
code. These assertions are of the form ‘A im-
plements B’ or ‘A extends B’, which are very
easy to check.

2.10 Type assertions for source code

A similar problem occurs when compiling
from Java source to native code. In this situ-
ation, there is no verification step to split. In-
stead, the assertion table is filled based on any
implicit upcasts that appear in the source; each
such cast represents a constraint on the type hi-
erarchy that must remain true at runtime.

2.11 CNI

CNI, the Compiled Native Interface, is a way to
write Javanative methods in C++ with zero
overhead. With CNI, Java classes are used to
generate C++ header files, which then enable
relatively ordinary C++ code to make calls on
Java objects.

CNI is also going to require some changes. In
essence this will involve duplicating some of
the atable and otable logic from gcj in
g++ and arranging for these references to be
resolved at runtime when appropriate. We an-
ticipate accomplishing this by emitting static
initializers which will register table contribu-
tions from the current compilation unit with the
libgcj runtime.

We plan to make several other CNI changes



GCC Developers’ Summit 2004 • 173

now, while we’re changing the ABI, in order
to postpone any other needed ABI changes. In
particular we plan to introduce smart pointers
to allow seamlessNULL-pointer checking on
all platforms, and we plan to tighten the rules
about what parts of memory can be assumed to
be scanned by the garbage collector.

3 Consequences

This approach to binary compatibility has
some very interesting consequences for gcj and
gcj-compiled code.

3.1 gcj as JIT

Due to the new runtime linkage model and
the new approach to bytecode verification, gcj
can now compile a single .class file in com-
plete isolation. That is, compiling a class file
doesn’t require gcj to read any other classes,
not evenjava.lang.Object . This works
because a class file has complete symbolic in-
formation about its dependencies—just what
the atable and otable require—and be-
cause verification will answer “yes” to any
type-related question without actually examin-
ing any other types until runtime.

This property in turn lets us use gcj
itself as a caching JIT. Conventionally,
ClassLoader.defineClass() takes an
array of bytes that is the binary code for a class
and loads it into memory. Instead, we compute
a cryptographic checksum of the bytes and use
it as a key into a cache of shared libraries. If
the class is found, we simplydlopen() it. If
not, we invoke gcj (which is possible and rela-
tively efficient because we only need the class
file in isolation) to put a new shared library in
the cache.

We’re also considering the possibility of mak-
ing it easy to prime the libgcj cache. To make

existing Java applications run with decent per-
formance, you would then only need to com-
pile each .jar file and copy the resulting .so
into the cache. No application changes would
be needed. Another approach we’re investigat-
ing is to changeURLClassLoader to trans-
parently find shared libraries corresponding to
.jar files on its class path.

3.2 VM independence

The code generated by gcj is also surprisingly
VM-independent. It refers to the various ta-
bles (otable , atable , assertion table), and
to the small number of libgcj builtin functions
known to gcj. This means that gcj-compiled
code could easily be loaded into any VM im-
plementing this interface; the biggest assump-
tion is that the runtime includes a conservative
garbage collector. Even that may not neces-
sarily be true in the future: a few garbage col-
lection hooks would remove even that require-
ment.

The generated code is also quite independent of
other aspects of the runtime environment, for
instance the kernel or libc. It should be possi-
ble to compile Java code once, and then simply
never recompile it even as the rest of the sys-
tem, including libgcj, is upgraded.

We’re hoping other free Java implementations
will adopt this same approach as the basis of a
“pluggable JIT” interface.

3.3 Performance and Size

It is too early to know the precise impact of the
new ABI. For some cases, we know that the
penalty will be small: for instance, the cost of
a static method invocation via theatable is
similar to the cost of indirection via the PLT.

On the other hand, we expect some costs to be
larger: for example, instance field references



174 • GCC Developers’ Summit

will be more expensive.

The Yu [1] paper quotes an average perfor-
mance penalty of less than 2%; however, their
implementation did not implement field indi-
rection.

4 Problems and gotchas

It is possible that important Java programs may
rely on the precise link-time behavior of ex-
isting VMs. In case it becomes necessary to
change our approach, we believe we can em-
ulate the more lazy behavior of other VMs in
one of two ways. On machines with the re-
quired support, we can map a special, unwrite-
able memory segment, and then fillatable
slots with pointers into this area. This approach
will let us differentiate betweenNULL pointer
traps and invalid field traps, and then throw the
appropriate exception. For other platforms, we
can add extra instrumentation to the compiled
code, at some performance cost.

5 Today and Tomorrow

As of this writing, Andrew is still finishing
the implementation of the core parts of the
new ABI. His work builds on some earlier
patches from Bryce, and is checked in on
gcj-abi-2-dev-branch . Tom hopes to
begin work on the verification problem soon.

Andrew has built a demo version of gcj-as-JIT
and posted some results to the gcj list; see his
post [3]. The results are surprisingly good—
a longer startup delay, as would be expected,
but performance falling between that of Sun’s
and IBM’s JITs on Linux. We anticipate some
useful performance gains from tree-ssa as well,
eventually—in particular smarter array bounds
checking.

Ideally we would like to see a supported, but

perhaps still preliminary, version of this ABI
in GCC 3.5, with real compatibility promised
starting with 3.6.

6 Acknowledgements

We would like to thank Bryce McKinlay for
his initial and ongoing work in this area, Jeff
Sturm for his contributions to the new ABI
project, and Sarah Woodall for editing.

References

[1] Zhong Shao Dachuan Yu and Valery
Trifonov. Supporting binary compatibility
with static compilation. In2nd USENIX
Java™ Virtual Machine Research and
Technology Symposium (JVM’02).
Usenix, August 2002.http://www.
usenix.org/publications/
library/proceedings/
javavm02/yu/yu_html/ .

[2] James Gosling, Bill Joy, Guy Steele, and
Gilad Bracha.The Java Language
Specification Second Edition.
Addison-Wesley, Boston, Mass., 2000.

[3] Andrew Haley. gcj-jit, 2003.
http://gcc.gnu.org/ml/java/
2003-01/msg00022.html .

[4] Oskar Liljeblad. Pr 6819, 2002.
http://gcc.gnu.org/PR6819 .


