
Swing Modulo Scheduling for GCC

Mostafa Hagog
IBM Research Lab in Haifa

mustafa@il.ibm.com

Ayal Zaks
IBM Research Lab in Haifa

zaks@il.ibm.com

Abstract

Software pipelining is a technique that im-
proves the scheduling of instructions in loops
by overlapping instructions from different it-
erations. Modulo scheduling is an approach
for constructing software pipelines that focuses
on minimizing the cycle count of the loops
and thereby optimize performance. In this pa-
per we describe our implementation of Swing
Modulo Scheduling in GCC, which is a Mod-
ulo Scheduling technique that also focuses on
reducing register pressure. Several key issues
are discussed, including the use and adaptation
of GCC’s machine-model infrastructure for
scheduling (DFA) and data-dependence graph
construction. We also present directions for fu-
ture enhancements.

1 Introduction

Software pipelining is an instruction schedul-
ing technique that exploits instruction level
parallelism found in loops by overlapping suc-
cessive iterations of the loop and executing
them in parallel. The key idea is to find a
pattern of operations (named the kernel code)
that when iterated repeatedly, produces the ef-
fect that an iteration is initiated before previ-
ous ones have completed [3]. Modulo schedul-
ing is a technique for implementing software
pipelining. It does so by first estimating a
lower bound on the number of cycles it takes to
execute the loop. This number is called theIni-

Figure 1: Example software pipelined loop of 4
instructions and the resulting kernel, prologue
and epilogue.

tiation Interval— II, and the bound is called a
Minimum II — MII (see example in Figure 1).
Then it tries to place the instructions of the
loop in II cycles, while taking into account the
machine resource constraints and the instruc-
tion dependencies. In case the loop couldn’t be
scheduled in II cycles it tries with larger II until
it succeeds.

Swing Modulo Scheduling (SMS) is a heuris-
tic approach that aims to reduce register pres-
sure [2]. It does so by first ordering the in-
structions in an alternating up-and-down order
according to the data dependencies, hence its
name (see section 2.2). Then the scheduling
algorithm (section 2.3) traverses the nodes in
the given order, trying to schedule dependent
instructions as close as possible and thus to

56 • GCC Developers’ Summit

shorten live ranges of registers.

2 Implementation in GCC

Swing Modulo Scheduling (SMS) [2, 3] was
implemented as a new pass in GCC that im-
mediately precedes the first scheduling pass.
An alternative is to perform SMS after reg-
ister allocation, but that would require regis-
ter renaming and spilling in order to remove
anti-dependencies and free additional registers
for the loop. The new pass traverses the cur-
rent function and performs SMS on loops. It
generates a new schedule for the instructions
of the loop according to the SMS algorithm,
which is “near optimal” in utilizing hardware
resources and register pressure. It also han-
dles long live ranges and generates prologue
and epilogue code as we describe in this sec-
tion.

The loops handled by SMS obey the following
constraints: (1) The number of iterations of the
loop is known before entering the loop (i.e. is
loop-invariant). This is required because when
we exit the kernel, the last few iterations are in-
flight and need to be completed in the epilogue.
Therefore we must exit the kernel a few itera-
tions before the last (or support speculative par-
tial execution of a few iterations past the last).
(2) A single basic block loop. For architectures
that support predicated instructions, multiple
basic block loops could be supported.

For each candidate loop the modulo scheduler
builds a data-dependence graph (DDG), whose
nodes represent the instructions and edges rep-
resent intra- and inter-loop dependences. The
modulo scheduler then performs the following
steps when handling a loop:

1. Calculate a MII.

2. Determine a node ordering.

3. Schedule the kernel.

4. Perform modulo variable expansion.

5. Generate prolog and epilog code.

6. Generate a loop precondition if required.

After a loop is successfully modulo-sceduled it
is marked to prevent subsequent rescheduling
by the standard instruction scheduling passes.
Only the kernel is marked; the prolog and epi-
log are subject to subsequent scheduling.

Subsection 3.1 describes the DDG. In the re-
mainder of this section we elaborate each of
the above steps.

2.1 Calculating a MII

The minimum initiation interval (“MII”) is a
lower-bound on the number of cycles required
by any feasible schedule of the kernel of a loop.
A schedule is feasible if it meets all depen-
dence constraints with their associated laten-
cies, and avoids all potential resource conflicts.
Two separate bounds are usually computed—
one based on recurrence dependence cycles
(“recMII”) and the other based on the resources
available in the machine and the resources re-
quired by each instruction (“resMII”) [6]:

MII = max{recMII, resMII}.

In general, if the computed MII is not an in-
teger, loop unrolling can be applied to possi-
bly improve the scheduling of the loop. The
purpose of computing MII is to avoid trying
II’s that are too small, thereby speeding-up the
modulo scheduling process. It is not a correct-
ness issue, and being a lower bound does not
affect the resulting schedule.

The “recMII” lower bound is defined as the
maximum, taken over all cyclesC in the de-
pendence graph, of the sum of latencies along

GCC Developers’ Summit 2004 • 57

C divided by the sum of distances alongC:

recMII = max
C∈DDG

∑
e∈C latency(e)∑
e∈C distance(e)

.

Computing the maximum above can be done
in Θ(N3) (worst and best) time, whereN is
the number of nodes in the dependence graph
[6]. We chose to implement a less accurate
yet generally more efficient computation of a
dependence-recurrence based lower bound, fo-
cusing on simple cyclesS that contain a sin-
gle back-arcb(S) (more complicated cycles are
ignored, resulting in a possibly smaller lower
bound):

recMII’ = max
S∈DDG

∑
e∈S latency(e)

distance(b(S))
.

(Note that for such simple cyclesS,
distance(e) = 0 for all edgese ∈ S ex-
cept b(S).) This maximum is computed by
finding for each back-arcb(S) = (h, t) the
longest path (in terms of total latency) from
t to h, excluding back-arcs (i.e. in a DAG).
This scheme should be more efficient because
the number of back-arcs is anticipated to be
relatively small, and is expected to suffice
because we anticipate most recurrence cycles
to be simple.

The “resMII” is currently computed by consid-
ering issue constraints only: the total number
of instructions is divided by theISSUE_RATE

parameter. This bound should be improved by
considering additional resources utilized by the
instructions.

In addition to the MII lower-bound, we also
compute an upper-bound on the II, called
MaxII. This upper-bound is used to limit the
search for an II to effective values only, and
also to reduce compile-time. We set MaxII=∑

e∈DDG latency(e) (the standard instruction
scheduler should achieve such an II), and pro-
vide a factor for tuning it (see Section 5).

2.2 Determining a Node Ordering

The goal of the “swinging” order is to schedule
an instruction after scheduling its predecessor
or successor instructions and as close to them
as possible in order to shorten live ranges and
thereby reduce register pressure. Alternative
ordering heuristics could be supported in the
future. (See figure 7 [1] for the swing ordering
algorithm).

The node ordering algorithm takes as input a
data dependence graph, and produces as out-
put a sorted list of the nodes of the graph,
specifying the order in which to list-schedule
the instructions. The algorithm works in two
steps. First, we construct a partial order of
the nodes by partitioning the DDG into subsets
S1, S2, . . . (each subset will later be ordered in-
ternally) as follows:

1. Find the SCC (Strongly Connected
Component)/Recurrence of the data-
dependence graph having the largest
recMII—this is the first set of nodesS1.

2. Find the SCC with the next largest recMII,
put its nodes into the next setS2.

3. Find all nodes that are on directed paths
from any previous set to the next setS2

and add them to the next setS2.

4. If there are additional SCCs in the depen-
dence graph goto step 2. If there are no
additional SCCs, create a new (last) set of
all the remaining nodes.

The second step orders the nodes within each
Si set using a directed-acyclic subgraph of the
DDG obtained by disregarding back-arcs ofSi:

1. Calculate several timing bounds and prop-
erties for each node in the dependence

58 • GCC Developers’ Summit

graph (earliest/latest times for scheduling
according to predecessors/successors—
see subsection 4.1 [1]).

2. Calculate the order in which the instruc-
tions will be processed by the scheduling
algorithm using the above bounds.

2.3 Scheduling the Kernel

The nodes are scheduled for the kernel of the
loop according to the precomputed order. Fig-
ure 2 shows the pseudo code of the scheduling
algorithm, and works as follows. For each node
we calculate a scheduling window—a range
of cycles in which we can schedule the node
according to already scheduled nodes. Previ-
ously scheduled predecessors (PSP) increase
the lower bound of the scheduling window,
while previously scheduled successors (PSS)
decrease the upper bound of the scheduling
window. The cycles within the scheduling win-
dow are not bounded a-priori, and can be pos-
itive or negative. The scheduling window it-
self contains a range of at-most II cycles. Af-
ter computing the scheduling window, we try
to schedule the node at some cycle within the
window, while avoiding resource conflicts. If
we succeed we mark the node and its (abso-
lute) schedule time. If we could not schedule
the given node within the scheduling window
we increment II, and start over again. If II
reaches an upper bound we quit, and leave the
loop without transforming it.

If we succeed in scheduling all nodes in II cy-
cles, the register pressure should be checked
to determine if registers will be spilled (due to
overly aggressive overlap of instructions), and
if so increment II and start over again. This
step has not been implemented yet.

During the process of scheduling the kernel
we maintain apartial schedule, that holds the
scheduled instructions in IIrows, as follows:

when scheduling an instruction in cycleT (in-
side its scheduling window), it is inserted into
row (T mod II) of the partial schedule. Once
all instructions are scheduled successfully, the
partial schedule supplies the order of instruc-
tions in the kernel.

A modulo scheduler (targeting e.g. a super-
scalar machine) has to consider the order of
instructions within a row, when dealing with
the start and end cycles of the scheduling win-
dow. When calculating the start cycle for in-
struction i, one or more predecessor instruc-
tionsp will have a tight boundSchedT imep +
Latencyp,i − distancep,i × ii = start (see Fig-
ure 2). Ifp was itself scheduled in the start row,
i has to appear afteri in order to comply with
the direction of the dependence. An analogous
argument holds for successor instructions that
have a tight bound on the end cycle. Notice
that there are no restrictions on rows strictly
between start and end. In most cases (e.g. tar-
gets with hardware interlocks) the scheduler is
allowed to relax such tight bounds that involve
positive latencies, and the above restriction can
be limited to zero latency dependences only.

2.4 Modulo Variable Expansion

After all instructions have been scheduled in
the kernel, some values defined in one iter-
ation and used in some future iteration must
be stored in order not to be overwritten. This
happens when a life range exceeds II cycles—
the defining instruction will execute more than
once before the using instruction accesses the
value. This problem can be solved using mod-
ulo variable expansion, which can be imple-
mented by generating register copy instruc-
tions as follows (certain platforms provide such
support in hardware, using rotating-register ca-
pabilities):

1. Calculate the number of copies needed for
a given register defined at cycleT_def and

GCC Developers’ Summit 2004 • 59

ii = MII; bump_ii = true;
ps = create_ps (ii, G, DFA_HISTORY);
while (bump_ii && ii < maxii){

bump_ii = false; sched_nodes = φ;
step = 1;

for (i=0, u=order[i];
i<|G|; u=order[++i]) do {

/*Compute sched window for u.*/
PSP = u_preds ∩ sched_nodes;
PSS = u_succs ∩ sched_nodes;
if (PSP 6= φ ∧ PSS = φ){

start= max(SchedT imev + Latencyv,u

−distancev,u × ii)∀v ∈ PSP
end = start + ii;

}
else if (PSP = φ ∧ PSS 6= φ){

start= min(SchedT imev − Latencyu,v

+distanceu,v × ii)∀v ∈ PSS
end = start - ii; step = -1;

}
else if (PSP 6= φ ∧ PSS 6= φ){

estart= max(SchedT imev + Latencyv,u

−distancev,u × ii)∀v ∈ PSP
lstart= min(SchedT imev − Latencyu,v

+distanceu,v × ii)∀v ∈ PSS
start = max(start, estart);
end = min(estart+ii, lstart+1);

}
else /* PSP = φ ∧ PSS = φ */

start = ASAPu; end = start + ii;

/* Try scheduling u in window. */
for (c = start; c != end; c += step)

if (ps_add_node (ps, u, c)){
SchedT imeu = c;
sched_nodes = sched_nodes ∪ {u};
success = 1;

}
if (!success){

ii++; bump_ii = true;
reset_partial_schedule (ps, ii);

}
}/* Continue with next node. */
if (!bump_ii

&&check_register_pressure(ps)){
ii++; bump_ii = true;
reset_partial_schedule (ps, ii);

}
}/* While bump_ii. */
where: ASAPu is the earliest time u

could be scheduled in[2]

Figure 2: Algorithm for Scheduling the Kernel

used at cycleT_use, according to the fol-
lowing equation:

⌊
Tuse− Tdef

II

⌋
+ adjustment (1)

where “adjustment” = -1 if the use appears
before the def on the same row in the par-
tial schedule, and zero otherwise. The to-
tal number of copies needed for a given
register def is given by the last use.

2. Generate the register copy instructions
needed, in reverse order preceeding the
def:

rn ← rn−1; rn−1 ← rn−2; . . . r1 ← rdef

and attach each use to the appropriaterm

copy.

2.5 Generating Prolog and Epilog

The kernel of a modulo-scheduled loop con-
tains instances of instructions from different it-
erations. Thus a prolog and an epilog (unless
all moves are speculative) are needed to keep
the code correct.

When generating the prolog and epilog, spe-
cial care should be taken if the loop bound is
not known. One possibility is to add an exit
branch out of each iteration of the prolog, tar-
geting a different epilog. This is complicated
and increases the code size (see [1]. Another
approach is to keep an original copy of the loop
to be executed if the loop-count is too small
to reach the kernel, and otherwise execute a
branch-less prolog followed by the kernel and
a single epilog. We implemented the latter be-
cause it is simpler and has smaller impact on
code size.

60 • GCC Developers’ Summit

3 Infrastructure Requirements for
Implementing SMS in GCC

The modulo scheduler, being a scheduling op-
timization, needs to work with a low level rep-
resentation close to the final machine code. In
GCC that is RTL. The SMS algorithm requires
several building blocks from the RTL represen-
tation:

1. Identifying and representing RTL level
loops—we use the CFG representation.

2. Building data dependence graph (for
loops) with loop carried dependencies—
we implemented a Data Dependence
Graph (DDG).

3. An ordered linked list of instructions (ex-
ists in the RTL). Union, intersection,
and subtraction operations on sets of
instructions—we use thesbitmap rep-
resentation.

4. Machine resource model support, mainly
for checking if a given instruction will
cause resource conflicts if scheduled at a
given cycle/slot of a partial schedule.

5. Instruction latency model—we use the
insn_cost function.

We now describe the DDG and Machine model
support.

3.1 Data Dependence Graph (DDG) Genera-
tion

The current representation of data dependen-
cies in GCC does not meet the requirements
for implementing modulo scheduling; it lacks
inter-loop dependencies and it is not easy to
use. We decided to implement a DDG, which
provides additional capabilities (i.e. loop car-
ried dependencies) and modulo-scheduling ori-
ented API.

The data dependence graph is built in
several steps. First, we construct the
intra-loop dependencies using the stan-
dard LOG_LINKS /INSN_DEPEND structures
by calling the sched_analyze function of
haifa-sched.c module; a dependence arc with
distance zero is then added to the DDG for
each INSN_DEPEND link. We then calculate
inter-loop register dependencies of distance 1
using the df.c module as follows:

1. The latency between two nodes is calcu-
lated using theinsn_cost function of
the scheduler.

2. For each downwards reaching definition,
if there is an upwards reaching use of the
same register (this information is supplied
by the df analysis) aTRUE dependence arc
is added between the def and the use.

3. For each downwards reaching definition
find its first definition and connect them
by an OUTPUT dependence, if they are
distinct. Avoid creating selfOUTPUT de-
pendence arcs.

4. For each downwards reaching use find
its first def, if this is not the def feed-
ing it (intra-loop) add anANTI inter-loop
dependence. Avoid creating inter-loop
ANTI register dependences—modulo vari-
able expansion will handle such cases
(see 2.4).FLOW dependence exists in the
opposite direction;

Finally, we calculate the inter-loop memory de-
pendencies. Currently, we are over conserva-
tive due to limitation of alias analysis. This
issue is expected to be addressed in the future.
The current implementation adds the following
dependence arcs, all with distance 1 (unless the
nodes are already connected with a dependence
arc of distance 0):

GCC Developers’ Summit 2004 • 61

1. For every two memory writes add an inter-
loop OUTPUT dependence.

2. For every memory write followed by a
memory read (across the back-arc) add a
TRUE memory dependence.

3. For every memory read followed by a
memory write across the back-arc add an
ANTI memory dependence.

The following general functionality is provided
by the DDG to support the node-ordering algo-
rithm of SMS:

• Identify cycles (strongly connected com-
ponents) in the data dependence graph,
and sort them according to their recMII.

• Find the set of all predecessor/successor
nodes for a given set of nodes in the data
dependence graph.

• Find all nodes that lie on some directed
path between two strongly connected sub-
graphs.

3.2 Machine Resource Model Support

During the process of modulo scheduling, we
need to check if a given instruction will cause
resource conflicts if scheduled at a given cy-
cle/slot of a partial schedule. The DFA-based
resource model in GCC [4] works by check-
ing a sequence of instructions, in order. This
approach is suitable for cycle scheduling al-
gorithms, in which instructions are always ap-
pended at end of the current schedule. In or-
der for SMS to use this linear approach, we
generate a trace of instructions cycle by cycle,
centered at the candidate instruction, and feed-
ing it to the DFA [5]. Figure 3 describes the
algorithm that checks if there are conflicts in
a given partial schedule around a given cycle.

Several functions are made available to manip-
ulate the partial schedule, the most important
one isps_add_node_check_conflictsdescribed
in Figure 4; it updates the partial schedule (ten-
tatively) with a new instruction at a given cycle,
and feeds the new partial schedule to the DFA.
If it succeeds it updates the partial schedule and
returns success, if not it resets the partial sched-
ule and returns failure. The major drawback of
the above mechanism is the increase in compile
time; there are plans to address this concern in
the future.

/* Checks if PS has resource
conflicts according to DFA,
from FROM cycle to TO cycle. */

ps_has_conflicts (ps, from, to){
state_reset (state);
for (c = from; c <= to; c++) {

/* Holds the remaining issue
slots in the current row. */

issue_more = issue_rate;
/* Walk DFA through CYCLE C. */
for (I = ps->rows[c % ps->ii)];

I; I = I->next) {
/* Check if there is room for the

current insn I.*/
if (! issue_more

|| state_dead_lock_p (state))
return true;

/* Check conflicts in DFA.*/
if (state_transition (state, I))

return true;
if (DFA.variable_issue)

issue_more=DFAissue(state, I);
else issue_more--;

}
advance_one_cycle ();

}
return false;

}

Figure 3: Feeding a partial schedule to DFA.

4 Current status and future en-
hancements

An example of a loop and its generated code,
when compiled with gcc and SMS enabled
(-fmodulo-sched) is shown in Figure 5.
The kernel combines the fmadds of the cur-
rent iteration with the two lfsx’s of the next it-
eration. As a result, the two lfsx’s appear in

62 • GCC Developers’ Summit

/* Checks if a given node causes
resource conflicts when added to
PS at cycle C. If not add it. */

ps_add_node_check_conflicts (ps, n, c)
{

ps_n = add_node_to_ps (ps, n, c);
from = c - ps->history;
to = c + ps->history
has_conflicts

= ps_has_conflicts(ps, from, to);

/* Try different slots in row. */
while (has_conflicts)

if (!ps_insn_advance_column(ps,
ps_n))

break;
else has_conflicts

= ps_has_conflicts(ps,
from, to);

if (! has_conflicts)
return ps_n;

remove_node_from_ps(ps, ps_n);
return NULL;

}

Figure 4: Add new node to partial schedule

the prolog and the fmadds appears in the epi-
log. This could help hide the latencies of the
loads. The count of the loop is decreased to
99, and no register-copies are needed because
every life range is smaller than II,

Following are milestones for implementing
SMS in GCC.

First stage (Approved for mainline)

1. Implement the required infrastruc-
ture: DDG (section 3.1), special in-
terface with DFA (section 3.2).

2. Implement the SMS scheduling al-
gorithm as described in [3, 2].

3. Support only distance 1 and register
carried dependences (including ac-
cumulation).

float dot_product (float *a,
float *b){

int i; float c=0;
for (i=0; i < 100; i++)

c += a[i]*b[i];
return c;

}
(a)

L5:
slwi r0,r2,2
addi r2,r2,1
lfsx f13,r4,r0
lfsx f0,r3,r0
fmadds f1,f0,f13,f1
bdnz L5
blr

(b)

Prolog: addi r2,r2,1
lfsx f0,r3,r0
lfsx f13,r4,r0
li r0,99
mtctr r0

L5:
slwi r0,r2,2
addi r2,r2,1
fmadds f1,f0,f13,f1
lfsx f13,r4,r0
lfsx f0,r3,r0
bdnz L5

Epilog: fmadds f1,f0,f13,f1
blr

(c)

Figure 5: (a) An example C loop, (b) As-
sembly code without SMS, (c) Assembly code
with SMS (-fmodulo-sched), on a Pow-
erPC G5.

4. Support for live ranges that exceed II
cycles by register copies.

5. Support unknown loop bound using
loop preconditioning.

6. Prolog and epilog code generation as
described in Section 2.5.

7. Preliminary register pressure
measurements—gathering statistics.

Second stage

GCC Developers’ Summit 2004 • 63

1. Support dependences with distances
greater than 1.

2. Improve the interface to DFA to de-
crease compile time.

3. Support for live ranges that exceed II
cycles by unroll & rename.

4. Improve register pressure heuris-
tics/measurements.

5. Improve computation of resMII and
possibly recMII lower bounds.

6. Unroll the loop if tight MII bound is
a fraction.

Future enhancements [tentative list]

1. Consider changes to DFA to make
SMS less time consuming when
checking resource conflicts.

2. Consider spilling during SMS if reg-
ister pressure rises too much.

3. Support speculative moves.

4. Support predicated instructions and
if-conversion.

5. Support for live ranges that exceed II
cycles by rotating registers (for ap-
propriate architectures).

5 Compilation Flags for Tuning

We added the following four options for tuning
SMS:

sms-max-ii-factor. This parameter is used to
tune theSMS_MAX _II threshold, which
affects the upper bound for II (maxII).
The default value for this parameter is
100. Decreasing this value will allow
modulo scheduling to transform only the
loops where a relatively small II can be
achieved.

sms-dfa-history. The number of cycles con-
sidered when checking conflicts using the
DFA interface. The default value is
0, which means that only potential con-
flicts between instructions scheduled in
the same cycle are considered. Increasing
this value may result in higher II (possi-
bly less loops will be modulo scheduled),
longer compile-time, but potentially less
hazards.

sms-loop-average-count-threshold. A thresh-
old on the average loop count considered
by the modulo scheduler; defaults to 0. In-
creasing this value will result in applying
modulo scheduling to additional loops,
that iterate on average fewer times.

max-sms-loop-number. Maximum number
of loops to perform modulo scheduling,
mainly for debugging (search for first
faulty loop). The default is -1 which
means to consider all relevant loops.

6 Conclusions

In this paper we described our implementa-
tion of Swing Modulo Scheduling in GCC. An
example of its effects is given in Section 4.
The major challanges involved using the DFA-
based machine model of GCC, and building
a data-dependence graph for loops including
inter-loop dependences. The current straight-
forward usage of the machine model is time-
consuming and should be improved, which in-
volves changes to the machine model. The
inter-loop dependencies of the DDG should be
built more accurately, in-order to allow more
aggressive movements by the modulo sched-
uler. The DDG is general and can be used by
other optimizations as well. Additional oppor-
tunities for improving and tuning the modulo
scheduler exist, including register pressure and
loop unrolling considerations.

64 • GCC Developers’ Summit

7 Acknowledgments

One of the key issues in implementing SMS in
GCC is the ability to use DFA resource model-
ing. We would like to thank Vladimir Makarov
for helping us understand the DFA interface,
the fruitful discussions that led to extending the
DFA interface, and his assistance in discussing
and reviewing the implementation of SMS in
GCC.

References

[1] Josep Llosa Stefan M. Freudenberger. Re-
duced code size modulo scheduling in
the absence of hardware support. In
Proceedings of the 35th Annual Inter-
national Symposium on Microarchitecture
(MICRO-35), November 2002.

[2] J. Llosa, A. Gonzalez, E. Ayguade, and
M. Valero. Swing modulo scheduling: A
lifetime sensitive approach. InProceed-
ings of the 1996 Conference on Parallel
Architectures and Compilation Techniques
(PACT ’96), pages 80–87, Boston, Mas-
sachusetts, USA, October 1996.

[3] J. Llosa, A. Gonzalez, E. Ayguade,
M. Valero, and J. Eckhardt. Lifetime-
sensitive modulo scheduling in a produc-
tion environment.IEEE Trans. on Comps.,
50:3, March 2001.

[4] Vladimir N. Makarov. The finite state au-
tomaton based pipeline hazard recognizer
and instruction scheduler in gcc. InPro-
ceedings of the GCC Developers Summit,
May 2003.

[5] Vladimir N. Makarov. Personal communi-
cation. 2004.

[6] B.R. Rau. Iterative modulo scheduling: An
algorithm for software pipelining loops.

In Proceedings of the 27th Annual Inter-
national Symposium on Microarchitecture
(MICRO-27), November 1994.

