
Porting Guide MatrixSSL 1.2

Page 1 of 2 Copyright ©2002-2004 PeerSec Networks, LLC

MatrixSSL Porting Guide
This document discusses porting MatrixSSL to additional operating systems and
platforms.

External APIs
Memory Allocation

malloc()
realloc()
free()
calloc()

Memory allocation is done with pre-determined buffer sizes in
most cases. The RSA code uses various memory sizes
however, so arbitrary block allocation must be supported in a
custom implementation of these routines. Any suitable library
replacement for standard memory allocation semantics can be
used with MatrixSSL. Example implementations of these
functions are included in matrixssl/src/os/malloc.c

Memory Operations

memcmp()
memcpy()
memset()
strstr()
strlen()

These functions can easily be replaced with custom
implementations, should they not be present in the standard
platform library.

File Access

stat()
fopen()
fclose()
fgets()

File access functions are used only to read certificate and
private key files. If a filesystem is not supported, the
matrixSslReadKeysMem() API, defined in matrixInternal.h can
be used to parse certificates and keys from memory buffers,
allowing operation without a filesystem. Disable the
USE_FILE_SYSTEM define in matrixConfig.h to disable the
file system calls on systems that do not support them.

Time

time() The time() routine is used to check expiration of the session
cache, and to provide the first four bytes of the ServerRandom
value. Any known-scale time value such as clock ticks since
startup can be used for the first value. The ServerRandom
value should have a monotonically increasing value that is
preserved across machine restarts to help prevent replay based
attacks. Intel platforms use a processor dependant high
resolution timer rather than the time() system call.

Debugging

printf()
abort()

These functions are used only for debugging and can easily be
replaced by other mechanisms of error reporting.

Porting Guide MatrixSSL 1.2

Page 2 of 2 Copyright ©2002-2004 PeerSec Networks, LLC

Multithreading

Mutex APIs Mutex locks are used only to protect the session cache if
multiple threads have simultaneous sessions open. Systems
without mutex support typically also lack threading support so
these functions should not need to be ported. Disabling the
USE_MULTITHREADING define in matrixConfig.h will
disable all mutex code. The abstraction layer for thread
synchronization is in the OS specific directories under
matrixssl/src/os.

Forked Processing

 Applications using fork() to handle new connections are
common on Unix based platforms. Because the MatrixSSL
session cache is located in the process data space, a forked
process will not be able to update the master session cache,
thereby preventing future sessions from being able to take
advantage of this speed improvement. In order to support
session resumption in forked servers, a file or shared memory
based session cache must be implemented.

Networking

Sockets APIs MatrixSSL operates independently from the network layer.
Existing socket code tuned to your platform can continue to
send and receive data that is encoded and decoded by
MatrixSSL inline.

Entropy Gathering

Random Data In order to create a secure SSL connection, it is critical to
have a source of good random data on each platform. Ports
of MatrixSSL to any platform must support the gathering of
cryptographically random entropy bytes. Operating systems
typically provide this data through kernel level timers, random
keyboard events, etc. Embedded systems are much more
predictable in terms of user and kernel timings, so drivers for
hardware based entropy are usually used in this case. The built
in entropy gathering API, sslGetEntropy() is implemented in
the OS specific directories under matrixssl/src/os.

