
1
DBD::Pg

Version
Version 0.91.

Author and Contact Details
The driver author is Edmund Mergl. He can be contacted via thedbi-usersmailing list.

Supported Database Versions and Options
The DBD-Pg-0.91 module supports Postgresql 6.4.

Connect Syntax
TheDBI->connect() Data Source Name, orDSN, can be one of the following:

dbi:Pg:dbname=$dbname
dbi:Pg:dbname=$dbname;host=$host;port=$port;options=$options;tty=$tty

All parameters, including the userid and password parameter of the connect command,
have a hard-coded default which can be overridden by setting appropriate environment
variables:

Parameter Environment Variable Default
--------- -------------------- --------------
dbname PGDATABASE current userid
host PGHOST localhost
port PGPORT 5432
options PGOPTIONS ""
tty PGTTY ""
username PGUSER current userid
password PGPASSWORD ""

1

19 May 1999

2 DBD::Pg

There are no driver specific attributes for theDBI-connect()> method.

Numeric Data Handling
Postgresql supports the following numeric types:

Postgresql Range
---------- --------------------------
int2 -32768 to +32767
int4 -2147483648 to +2147483647
float4 6 decimal places
float8 15 decimal places

Some platforms also support the int8 type.DBD::Pg always returns all numbers as strings.

String Data Handling
Postgresql supports the following string data types:

CHAR single character
CHAR(size) fixed length blank-padded
VARCHAR(size) variable length with limit
TEXT variable length

All string data types have a limit of 4096 bytes. The CHAR type is fixed length and blank
padded.

There is no special handling for data with the 8th bit set. They are stored unchanged in
the database. None of the character types can store embedded nulls and Unicode is not
formally supported.

Strings can be concatenated using the|| operator.

Date Data Handling
Postgresql supports the following date time data types:

Type Storage Recommendation Description
--------- -------- -------------------------- ----------------------------
abstime 4 bytes original date and time limited range
date 4 bytes SQL92 type wide range
datetime 8 bytes best general date and time wide range, high precision
interval 12 bytes SQL92 type equivalent to timespan
reltime 4 bytes original time interval limited range, low precision
time 4 bytes SQL92 type wide range
timespan 12 bytes best general time interval wide range, high precision
timestamp 4 bytes SQL92 type limited range

Data Type Range Resolution
---------- ---------------------------------- -----------
abstime 1901-12-14 2038-01-19 1 sec
timestamp 1901-12-14 2038-01-19 1 sec

19 May 1999

reltime -68 years +68 years 1 sec
tinterval -178000000 years +178000000 years 1 microsec
timespan -178000000 years 178000000 years 1 microsec
date 4713 BC 32767 AD 1 day
datetime 4713 BC 1465001 AD 1 microsec
time 00:00:00:00 23:59:59:99 1 microsec

Postgresql supports a range of date formats:

Name Example
----------- ----------------------
ISO 1997-12-17 0:37:16-08
SQL 12/17/1997 07:37:16.00 PST
Postgres Wed Dec 17 07:37:16 1997 PST
European 17/12/1997 15:37:16.00 MET
NonEuropean 12/17/1997 15:37:16.00 MET
US 12/17/1997 07:37:16.00 MET

The default output format does not depend on the client/server locale. It depends on, in
increasing priority: the PGDATESTYLE environment variable at the server, the
PGDATESTYLE environment variable at the client, and theSET DATESTYLESQL com-
mand.

All of the formats described above can be used for input. A great many others can also be
used. There is no specific default input format. If the format of a date input is ambiguous
then the current DATESTYLE is used to help disambiguate.

If you specify a date/time value without a time component, the default time is 00:00:00
(midnight). To specify a date/time value without a date is not allowed. If a date with a two
digit year is input then if the year was less than 70, add 2000; otherwise, add 1900.

The currect date/time is returned by the keyword’now’ or ’current’ , which has to be
casted to a valid data type. For example:

SELECT ’now’::datetime

Postgresql supports a range of date time functions for converting between types, extract-
ing parts of a date time value, truncating to a given unit, etc. The usual arithmetic can be
performed on date and interval values, e.g., date-date=interval, etc.

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

DATETIME(unixtime_field)

and to do the reverse:

DATE_PART(’epoch’, datetime_field)

The server stores all dates internally in GMT. Times are converted to local time on the
database server before being sent to the client frontend, hence by default are in the server

DBD::Pg 3

19 May 1999

4 DBD::Pg

time zone.

The TZ environment variable is used by the server as default time zone. The PGTZ envi-
ronment variable on the client side is used to send the time zone information to the back-
end upon connection. The SQLSET TIME ZONE command can set the time zone for the
current session.

LONG/BLOB Data Handling
Postgresql handles BLOBS using a so called ‘‘large objects’’ type. The handling of this
type differs from all other data types. The data are broken into chunks, which are stored
in tuples in the database. Access to large objects is given by an interface which is mod-
elled closely after the UNIX file system. The maximum size is limited by the file size of
the operating system.

If you just select the field, you get a ‘‘large object identifier’’ and not the data itself. The
LongReadLenandLongTruncOkattributes are not implemented because they don’t make
sense in this case. The only method implemented by the driver is the undocumented DBI
methodblob_read() .

Other Data Handling issues
TheDBD::Pg driver supports thetype_info() method.

Postgresql supports automatic conversions between data types wherever it’s reasonable.

Transactions, Isolation and Locking
Postgresql supports transactions. The current default isolation transaction level is ‘‘Serial-
izable’’ and is currently implemented using table level locks. Both may change. No other
isolation levels for transactions are supported.

With AutoCommit on, a query never places a lock on a table. Readers never block writers
and writers never block readers. This behavior changes whenever a transaction is started
(AutoCommit off). Then a query induces a shared lock on a table and blocks anyone else
until the transaction has been finished.

TheLOCK TABLE table_name statement can be used to apply an explicit lock on a table.
This only works inside a transaction (AutoCommit off).

To ensure that a table being selected does not change before you make an update later in
the transaction, you must explicitly lock it with aLOCK TABLEstatement before executing
the select.

19 May 1999

No-Table Expression Select Syntax
To select a constant expression, that is, an expression that doesn’t inv olve data from a
database table or view, just omit the ‘‘from’’ clause. Here’s an example that selects the
current time as a datetime:

SELECT ’now’::datetime;

Table Join Syntax
Outer joins are not supported. Inner joins use the traditional syntax.

Table and Column Names
The max size of table and column names cannot exceed 31 charaters in length. Only
alphanumeric characters can be used; the first character must be a letter.

If an identifier is enclosed by double quotation marks ("), it can contain any combination
of characters except double quotation marks.

Postgresql converts all identifiers to lower-case unless enclosed in double quotation
marks. National character set characters can be used, if enclosed in quotation marks.

Case Sensitivity of LIKE Operator
Postgresql has the following string matching operators:

Glyph Description Example
----- -- -----------------------------
˜̃ Same as SQL "LIKE" operator ’scrappy,marc’ ̃ ̃’%scrappy%’
!̃ ̃ Same as SQL "NOT LIKE" operator ’bruce’ !̃ ̃’%al%’
˜ Match (regex), case sensitive ’thomas’ ̃ ’.*thomas.*’
*̃ Match (regex), case insensitive ’thomas’ ̃ * ’.*Thomas.*’
!̃ Does not match (regex), case sensitive ’thomas’ !̃ ’.*Thomas.*’
!̃ * Does not match (regex), case insensitive ’thomas’ !̃ ’.*vadim.*’

Row ID
The Postgresql ‘‘row id’’ pseudocolumn is calledoid, object identifier. It can be treated as
a string and used to rapidly (re)select rows.

Automatic Key or Sequence Generation

DBD::Pg 5

19 May 1999

6 DBD::Pg

Postgresql does not support automatic key generation such as ‘‘auto increment’’ or ‘‘sys-
tem generated’’ keys.

However, Postgresql does support ‘‘sequence generators’’. Any number of named
sequence generators can be created in a database. Sequences are used via functions called
NEXTVALandCURRVAL. Typical usage:

INSERT INTO table (k, v) VALUES (nextval(’seq_name’), ?);

To get the value just inserted, you can use the correspondingcurrval() SQL function in
the same session, or

SELECT last_value FROM seq_name

Automatic Row Numbering and Row Count Limiting
Postgresql does not support any way of automatically numbering returned rows.

Parameter Binding
Parameter binding is emulated by the driver. Both the? and:1 style of placeholders are
supported.

The TYPE attribute of thebind_param() method may be used to influence how parame-
ters are treated. These SQL types are bound as VARCHAR: SQL_NUMERIC,
SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT , SQL_REAL,
SQL_DOUBLE, SQL_VARCHAR.

The SQL_CHAR type is bound as a CHAR thus enabling fixed-width blank padded com-
parison semantics.

Unsupported values of the TYPE attribute generate a warning.

Stored Procedures
DBD::Pg does not support stored procedures.

Table Metadata
DBD::Pg supports thetable_info() method.

Thepg_attributetable contains detailed information about all columns of all the tables in
the database, one row per table.

The pg_indextable contains detailed information about all indexes in the database, one
row per index.

19 May 1999

Primary keys are implemented as unique indexes. Seepg_indexabove.

Driver-specific Attributes and Methods
There are no significantDBD::Pg driver-specific database handle attributes.

DBD::Pg has the following driver-specific statement handle attributes:

pg_size

Returns a reference to an array of integer values for each column. The integer shows
the storage (not display) size of the column in bytes. Variable length columns are
indicated by -1.

pg_type

Returns a reference to an array of strings for each column. The string shows the
name of the data type.

pg_oid_status

Returns the OID of the last INSERT command.

pg_cmd_status

Returns the name of the last command type. Possible types are: INSERT, DELETE,
UPDATE, SELECT.

DBD::Pg has no private methods.

Positioned updates and deletes
Postgresql does not support positioned updates or deletes.

Differences from the DBI Specification
DBD::Pg has no significant differences in behavior from the current DBI specification.

Note thatDBD::Pg does not fully parse the statement until it’s executed. Thus attributes
like $sth->{NUM_OF_FIELDS}are not available until after$sth->execute has been
called. This is valid behaviour but is important to note when porting applications origi-
nally written for other drivers.

URLs to More Database/Driver Specific Information

DBD::Pg 7

19 May 1999

8 DBD::Pg

http://www.postgresql.org

Concurrent use of Multiple Handles
DBD::Pg supports an unlimited number of concurrent database connections to one or more
databases.

It also supports the preparation and execution of a new statement handle while still fetch-
ing data from another statement handle, provided it is associated with the same database
handle.

Other Significant Database or Driver Features
Postgres offers substantial additional power by incorporating the following four addi-
tional basic concepts in such a way that users can easily extend the system: classes, inher-
itance, types, and functions.

Other features provide additional power and flexibility: constraints, triggers, rules, trans-
action integrity, procedural languages, and large objects.

It’s also free Open Source Software with an active community of developers.

19 May 1999

