
1

Effective Synchronization on
Linux/NUMA Systems

by

Christoph Lameter
Revision: May 20th, 2005

© 2005 Silicon Graphics, Inc. All rights reserved.
This presentation and the corresponding paper may be found at

http://oss.sgi.com/projects/page_fault_performance/gelato

Effective locking is necessary for satisfactory performance on
large Itanium based NUMA systems. Synchronization of parallel
executing streams on NUMA machines is currently realized in the
Linux kernel through a variety of mechanisms which include
atomic operations, locking and ordering of memory accesses.
Various synchronization methods may also be combined in order
to increase performance.

2

Introduction

● Limits on processor clock rate
– Future: Multi-Core and NUMA everywhere
– Parallelism Itanium / Multi-Core

● Synchronization Methods
– Critical Component for concurrency
– Determines viable hardware scaling

● Outline
– Existing synchronization on Linux / Itanium
– Reasons for issues with lock contention arises
– Hierachical Backoff Locks on large NUMA

systems.

3

Basic Atomicity

● NUMA Multiprocessor
Systems
– NUMA interconnect
– Hardware consistency

protocol
● Node

– Processor/ Memory
● Cache Line
● MESI type

– Coherent view of mem-
ory

– In Hardware

CPU 1 Local Memory

CPU 2 Cachelines

N
U

M
A

In
te

rc
on

ne
ct

CPU 1 Local Memory

CPU 2 Cachelines

Node 2

Node 1

4

Cache Lines

● Modes of Cachelines
– Shared
– Exclusive

● Cache Lines
– Efficiency
– Optimization
– Bouncing

● Special Operations
– Read Modify Write

CPU 1

Memory organized in
128 byte cachelines

CPU 2

CPU 3

Shared (Read Only)

Exclusive

Atomic Operations can
be performed on a
cacheline if a cpu has
exclusive ownership of
a cache line

5

Atomic Loads and Stores

● 64 bit atomic operations
– Alignment issues

● RCU functions in the Linux kernel
● A lockless insertion of a list element

Entry EntryPointer to
start of list

New Entry

New pointer value

6

Barriers and Acquire/Release

● Itanium Memory accesses
– Unordered by nature
– Necessity of ordering memory accesses
– Memory Fence
– Instructions with acquire / release semantics
– Write and Read barriers

● Semaphore instructions
– Necessity
– Efficiency vs. atomic loads / stores

7

Linux RCU Lockless List
Manipulation

● In include/linux/list.h
– list_add_rcu(struct

list_head *new, *head)
– list_del_rcu(struct

list_head *entry)
– list_for_each_entry_rcu(..)

● Single writer/ multiple
readers
– Deferral of freeing objects

● rcu_read_lock
● rcu_read_unlock

void __list_add_rcu(struct list_head * new,
 struct list_head * prev, struct list_head * next)
{
 new->next = next;
 new->prev = prev;
 smp_wmb();
 next->prev = new;
 prev->next = new;
}

void list_add_rcu(struct list_head *new,
struct list_head *head)

{
 __list_add_rcu(new, head, head->next);
}

● Write exclusive
requires a regular
lock

8

Itanium Semaphore
Instructions

● Read Modify Write cycles
– exclusive cacheline
– Non-speculative
– Pipeline stalls
– Acquire or release semantics

● Single processor effects a certain state
change
– Compare and Exchange CMPXCHG
– Fetch and add FETCHADD
– Exchange XCHG

9

The Spinlock Implementation
● Protected Data
● Critical Sections
● Locking
● Unlocking
● Exclusive Cache line use

vs. Shared Cache line
● Bouncing Cachelines
● Spinlocks under

contention

Crit. Section
accessing

data protected
by Spinlock

Write Barrier
Lockval = 0

Atomic
Operation

lockval 0 -> 1
Read Barrier

Wait while
lockval != 0

The atomic state transi-
tion of the lockval from
0 to 1 is realized
through a CMPXCHG.
If it fails then the pro-
cessor waits in the blue
area for lock release.

Green areas require ex-
clusive cache lines
The blue area requires
only a shared cache
line.

Data structure
protected by the Spinlock

10

Spinlock Examples

● Spinlock Functions ● Sample Use
spin_lock(spinlock_t *lock);
spin_unlock(spinlock_t *lock);

spin_lock(&mmlist_lock);
list_add(&dst_mm->mmlist, &src_mm->mmlist);
spin_unlock(&mmlist_lock);

11

Time in the Page Fault Handler

1 2 4 8 16
0.00000
0.01000
0.02000
0.03000
0.04000
0.05000
0.06000
0.07000
0.08000
0.09000
0.10000
0.11000
0.12000
0.13000
0.14000
0.15000
0.16000

Zero
Alloc
Fault

12

Reader/Writer Spinlocks

● Lock value
– >0 -> nr readers
– <0 writer
– 0 free

● Needs
– 2x Cmpxchg
– 2x Fetchadd
– Clear Bit 31 (byte

store instead?)
● Performance

worse than
regular spinlock

Critical
Section

lockval clear bit 31

lockval
 0 -> 0x8000

Writer

Wait

Critical
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

Readers

Critical
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

13

Sequence locks

● Most scalable lock
– Is this a “lock”?
– no write for readers

● Effort
– Writer

● 2xCmpxchg
2xFetchadd

– Reader
● 2x barrier

● Critical section
● Time access

Critical
Section

Count++
spinunlock

spinlock
Count++

Writer

Critical
Section

count != prior
or count odd

Read Count

Readers

Critical
Section

count != prior
or count odd

Read Count

14

Atomic Variables and Usage
Counters

● Use of “atomic_t”
● Explicit use of

memory barriers
● Usage counters and

atomic_dec_and_test
● Risk of cache line

bouncing due to
counter increments
and decrements

● Effort
– High

● Increment
● Decrement
● Add

– Low
● Assignment
● Store
● Loads

– Very high
● Bit Operations

15

Example of
atomic_dec_and_test

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
 if (atomic_dec_and_test(&mm->mm_users)) {
 exit_aio(mm);
 exit_mmap(mm);
 if (!list_empty(&mm->mmlist)) {
 spin_lock(&mmlist_lock);
 list_del(&mm->mmlist);
 spin_unlock(&mmlist_lock);
 }
 put_swap_token(mm);
 mmdrop(mm);
 }
}
EXPORT_SYMBOL_GPL(mmput);

16

Per CPU “Atomicity”

● Guaranteed if one processor is accessing
variables reserved for its own use.

● Disabling interrupts, preemption to
guaranteed non interference by interrupts or
the process being moved to another
processor.

● Splitting of counters per cpu to avoid atomic
operations

● Counter coherency issues

17

Combining Techniques

● Earlier example of rcu
locks and spinlocks

● Page Fault Patches
– Page table spinlock
– Mmap_sem
– Limited atomic operations

● Redefining a spinlock
– Do not modify only populate

● Severity of changing lock
semantics

1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Standard
Atomic
Ops

18

Other Locking Approaches

● Backoff Algorithms
– Obvious choice
– Simple Backoff
– Ethernet style exponential backoff

● Queue locks
– Access ordering
– Slow typical combined with simple spinlock
– Fairness addressed
– MCS

● John Stultz MCS Queue implementation for Linux
● Locking based on Hardware features

– Bypass cache coherency protocol

19

Hierarchical BackOff Locks
● HBO

– NUMA aware backoff
– Limit off node

contention
– Starvation and Anger

Levels
● Disadvantages

– Additional load
operation

– Complexity of
contention handling

1 2 4 8 16 32 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Linux
HBO

20

HBO Details

● Contention handling
– Backoff

● On node -> 4
microsecond backoff

● Off node -> 7
microseconds

● 50% backoff increase
on failure

– Off node
● Set blockaddress

– Anger Level
● After 50 retries set

remote blockaddress

Lockaddress =
Node Blockaddress

 ?

Cmpxchg
0 -> Node ID +1

Wait
Local Spin

Lock Contention
Handling.

Node dependent
backoff.

Anger Logic.

Critical
Section

