
The State of Kernel
Debugging Technology

Jason Wessel
- Product Architect for WR Linux Core Runtime
- Kernel.org KDB/KGDB Maintainer

August 12th, 2010

2

© 2010 Wind River

Agenda

Brief history of kernel.org kernel debuggers

“crash” course in KDB

Ideas for the future of the kernel debugger

*** Presentation/code found at: http://kgdb.wiki.kernel.org ***

http://kgdb.wiki.kernel.org/

3

© 2010 Wind River

Is there anything better than KGDB?

Good
KGDB / KDB

Better
QEMU/KVM OR Virtual box OR vmware backend debugger

kdump/kexec

Best
ICE / JTAG (usb or ethernet)

Simics - www.simics.com (because it has backward stepping)

In a class by itself
printk() / trace_printk()

The challenge is knowing what to use when...

http://www.simics.com/

4

© 2010 Wind River

Brief History of kernel debugger

2008-2009
2.6.26 – KGDB “light” merged (just x86 and ARM)

2.6.27 – MIPS and PowerPC

Added KGDB support for sparc, blackfin and sh

2010
2.6.35

KDB merged to mainline

Early debug with EHCI debug port or keyboard + vga console

2.6.36

microblaze arch support

ftrace dump support via KDB/KGDB

Atomic KMS (Kernel Mode Setting) API merged

5

© 2010 Wind River

EHCI Debug Port

Great for when you do not have rs232

Higher speed than rs232

Works with KGDB
kgdbdbgp=0

Use it as a Linux Console
console=ttyUSB0 AND/OR earlyprintk=kdbgp0

Read more in your kernel source tree:

Documentation/x86/earlyprintk.txt

You can buy one at

http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=12083

6

© 2010 Wind River

KDB – kernel debug shell History

The goal of the merge KDB and KGDB was simple:
Unify the fragmented kernel debugger communities

KDB was a derived from from the 10 year old project:
ftp://oss.sgi.com/projects/kdb/download/v4.4/

The merge work started in 2009 with many prototypes
Originally KDB was > 64,000 lines of changes for just x86

After some significant gutting of anything that was common, the result was
a platform independent KDB hooked up to the same infrastructure
(debug_core) that is used by KGDB.

The final KDB patch set was < 8500 lines of changes

For more information about differences in SGI KDB vs mainline KDB
https://kgdb.wiki.kernel.org/index.php/KDB_FAQ

ftp://oss.sgi.com/projects/kdb/download/v4.4/

7

© 2010 Wind River

KDB – The in-kernel debug shell

To use KDB you must meet one of following constraints
Use a non usb keyboard + vga text console

Use a serial port console

Use a USB EHCI debug port and debug dongle

KDB is not a source debugger
However you can use it in conjunction with gdb and an

external symbol file

Maybe you don't need a kernel debugger, but you at
least want a chance to see ftrace logs, dmesg, poke a
stack trace or do one final sysrq.

 KDB might still be the tool you are looking for

8

© 2010 Wind River

Loading KDB

Having KDB loaded allows you to trap the panic handler.
For a serial port:

echo ttyS0 > /sys/module/kgdboc/kernel/kgdboc

For the keyboard + vga text console

echo kbd > /sys/module/kgdboc/kernel/kgdboc

Enter KDB with sysrq-g
echo g > /proc/sysrq-trigger

Remember KDB is a stop mode debugger
Entering KDB means all the other processors skid to a stop

You can run some things like: lsmod, ps, kill, dmesg, bt

ftdump to dump ftrace logs (not merged to mainline yet)

You can also use hw breakpoints or modify memory

9

© 2010 Wind River

KDB “crash” course

Simply loading KDB gives you the opportunity to stop
and look at faults perhaps using external tools

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

echo 1 > /proc/test_panic/panic

After the panic collect dmesg, ftdump, bt, and lsmod

Use gdb to load the symbol file and kernel module
gdb ./vmlinux

add-symbol-file test_panic.ko ADDR_FROM_LSMOD

info line *0xADDR_FROM_BT

10

© 2010 Wind River

Pre-recorded Demonstration 1

Example of a useless call to panic()
http://www.youtube.com/watch?v=V6Qc8ppJ_jc

Example of finding the useless call to panic()
http://www.youtube.com/watch?v=LqAhY8K3XzI

http://www.youtube.com/watch?v=V6Qc8ppJ_jc
http://www.youtube.com/watch?v=LqAhY8K3XzI

11

© 2010 Wind River

KDB Demonstration 2 - breakpoints

Load KDB and use a data write breakpoint
insmod test_panic.ko

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

echo g > /proc/sysrq-trigger

bph tp_address_ref dataw

go

Cause the problem and collect the data
echo 1 > /proc/test_panic/bad_access

bt

rd

lsmod

Statically look at the source with gdb + module address

12

© 2010 Wind River

Pre-recorded Demonstration 2

Example of a kernel bad paging request
http://www.youtube.com/watch?v=bBEh_UduX04

Example of using HW breakpoint in kdb
http://www.youtube.com/watch?v=MfJU2E0aJwg

http://www.youtube.com/watch?v=bBEh_UduX04
http://www.youtube.com/watch?v=MfJU2E0aJwg

13

© 2010 Wind River

Remember KDB is KGDB too!

If you only have a single serial port, it just got easier to
use KGDB if you want to use it.

Try the agent-proxy

The agent-proxy is nothing more then a tty → tcp
connection mux that can allow you to connect more
than one client application to a tty

You can even use the agent-proxy with the EHCI debug
port device.

14

© 2010 Wind River

Sharing the console - kgdboc

agent-proxy

Target System
With serial port

For console access

telnet localhost 2223

gdb

target remote localhost:2222

15

© 2010 Wind River

KGDB demonstration setup

Use a connection multiplexer

– By default you can only connect one application at a time to the console

– In the case of kgdboc you want an interactive console & a debug port

agent-proxy CONSOLE_PORT^DEBUG_PORT IP_ADDR PORT

More or less turns your local serial port into a terminal server
agent-proxy 2223^2222 0 /dev/ttyS0,115200

Use it to multiplex a remote terminal server or simulator connection
agent-proxy 2223^2222 128.224.50.38 8181

The agent-proxy is now available:

 git clone git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

 cd agent-proxy ; make

16

© 2010 Wind River

KGDB demonstration

On the target system
echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

In gdb
tar remote localhost:2222

break sys_sync

c

On the target
sync

In gdb
awatch tp_address_ref

inf br

c

On the target
echo 1 > /proc/test_panic/bad_access

Back to gdb where we can pass along the exception

signal 9

17

© 2010 Wind River

Pre-recorded Demonstration 3

Start up the agent-proxy and connect and hit a
breakpoint a sys_sync

http://www.youtube.com/watch?v=sWiHV5mt8_k

Data Access breakpoint on tp_address_ref
http://www.youtube.com/watch?v=nnopzcwvLTs

http://www.youtube.com/watch?v=sWiHV5mt8_k
http://www.youtube.com/watch?v=nnopzcwvLTs

18

© 2010 Wind River

Future plans

More drivers and bug fixes for atomic kernel mode setting

Continue to improve the non ehci debug usb console

Improve keyboard panic handler

Further integration with kprobes and hw assisted debugging

netconsole / kgdboe v2 – Use dedicated HW queues

...wild, far off ideas...
source stepping in KDB

user space backtrace

Individual thread and cpu run control

19

© 2010 Wind River

References

KGDB/KDB Website
http://kgdb.wiki.kernel.org

KGDB/KDB Mailing list
kgdb-bugreport@lists.sourceforge.net

https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport

Source code used in this presentation

The 2.6.36 kernel was used

The kernel module code can be found at:

http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

http://kgdb.wiki.kernel.org/
mailto:kgdb-bugreport@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

20

© 2010 Wind River

KGDB facts

KGDB and KDB use the same debug backend

kgdboe (KGDB over ethernet) is not always reliable
kgdboe in the current form WILL NOT BE MAINLINED

Linux IRQs can get preempted and hold locks making it unsafe or
impossible for the polled ethernet driver to run

Some ethernet drivers are so complex with separate kernel thread that
the polled mode ethernet can hang due to locking or unsafe HW
resource access

If you really want to attempt use kgdboe successfully, use a dedicated
interface if you have one and do not use kernel soft or hard IRQ
preemption.

kgdboc is slow but the most reliable

The EHCI debug port is currently the fastest KGDB connection

21

© 2010 Wind River

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

