[P

The State of Kernel
Debugging Technology

Jason Wessel

- Product Architect for WR Linux Core Runtime
- Kernel.org KDB/KGDB Maintainer

August 12" 2010

WIND RIVER

= Brief history of kernel.org kernel debuggers
s “crash” course in KDB

|deas for the future of the kernel debugger

*** Presentation/code found at: http://kgdb.wiki.kernel.org ***

2 WIND RIVER

© 2010 Wind River

http://kgdb.wiki.kernel.org/

¢/ 9 Is there anything better than KGDB?

s (Good
+ KGDB /KDB

= Better
+ QEMU/KVM OR Virtual box OR vmware backend debugger
* kdump/kexec

Best
* ICE / JTAG (usb or ethernet)
+ Simics - www.simics.com (because it has backward stepping)

*» |n a class by itself
+ printk() / trace_printk()

The challenge is knowing what to use when...

3 WIND RIVER

© 2010 Wind River

http://www.simics.com/

(/ Brief History of kernel debugger

s 2008-2009
* 2.6.26 — KGDB “light” merged (just x86 and ARM)
* 2.6.27 — MIPS and PowerPC
+ Added KGDB support for sparc, blackfin and sh

= 2010

+ 2.6.35
-+ KDB merged to mainline
= Early debug with EHCI debug port or keyboard + vga console

+ 2.6.36
= microblaze arch support
= ftrace dump support via KDB/KGDB
<+ Atomic KMS (Kernel Mode Setting) APl merged

4 WIND RIVER

© 2010 Wind River

. EHCI Debug Port

wwwww

s Great for when you do not have rs232
s Higher speed than rs232

s Works with KGDB
kgdbdbgp=0

8 Use it as a Linux Console
console=ttyUSB0 AND/OR earlyprintk=kdbgp0

s Read more in your kernel source tree:
Documentation/x86/earlyprintk.txt

s You can buy one at
http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=12083

5 WIND RIVER

© 2010 Wind River

¢/) KDB - kernel debug shell History

s The goal of the merge KDB and KGDB was simple:

+ Unify the fragmented kernel debugger communities

s KDB was a derived from from the 10 year old project:
+ ftp://oss.sgi.com/projects/kdb/download/v4.4/

» The merge work started in 2009 with many prototypes
+ Originally KDB was > 64,000 lines of changes for just x86

+ After some significant gutting of anything that was common, the result was
a platform independent KDB hooked up to the same infrastructure
(debug_core) that is used by KGDB.

+ The final KDB patch set was < 8500 lines of changes

s For more information about differences in SGI KDB vs mainline KDB
+ https://kgdb.wiki.kernel.org/index.php/KDB_FAQ

6 WIND RIVER

© 2010 Wind River

ftp://oss.sgi.com/projects/kdb/download/v4.4/

(/) KDB - The in-kernel debug shell

*» To use KDB you must meet one of following constraints
* Use a non usb keyboard + vga text console

+ Use a serial port console
+ Use a USB EHCI debug port and debug dongle

KDB is not a source debugger

* However you can use it in conjunction with gdb and an
external symbol file

*» Maybe you don't need a kernel debugger, but you at
least want a chance to see ftrace logs, dmesg, poke a
stack trace or do one final sysrq.

% KDB might still be the tool you are looking for

7 WIND RIVER

© 2010 Wind River

¢/ 1 Loading KDB

Having KDB loaded allows you to trap the panic handler.

+ For a serial port:
echo ttyS0 > /sys/module/kgdboc/kernel/kgdboc

+ For the keyboard + vga text console
echo kbd > /sys/module/kgdboc/kernel/kgdboc

s Enter KDB with sysrg-g
echo g > /proc/sysrg-trigger
s Remember KDB is a stop mode debugger
+ Entering KDB means all the other processors skid to a stop
You can run some things like: Ismod, ps, Kill, dmesg, bt

+ ftdump to dump ftrace logs (not merged to mainline yet)
+ You can also use hw breakpoints or modify memory

8 WIND RIVER

© 2010 Wind River

¢/) KDB “crash” course

* Simply loading KDB gives you the opportunity to stop
and look at faults perhaps using external tools

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
insmod test_panic.ko
echo 1 > /proc/test_panic/panic

= After the panic collect dmesg, ftdump, bt, and Ismod

* Use gdb to load the symbol file and kernel module

gdb ./vmlinux
add-symbol-file test_panic.ko ADDR_FROM_ LSMOD
info line *OXADDR_FROM_BT

g WIND RIVER

© 2010 Wind River

<
-

¢/ 1) Pre-recorded Demonstration 1

*» Example of a useless call to panic()
+ http://www.youtube.com/watch?v=V6Qc8ppdJ jc

» Example of finding the useless call to panic()
* http://'www.youtube.com/watch?v=LgAhY8K3 Xzl

10 WIND RIVER

© 2010 Wind River

http://www.youtube.com/watch?v=V6Qc8ppJ_jc
http://www.youtube.com/watch?v=LqAhY8K3XzI

¢/) KDB Demonstration 2 - breakpoints

s | oad KDB and use a data write breakpoint
insmod test_panic.ko
echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
echo g > /proc/sysrg-trigger
bph tp_address_ref dataw
go

s Cause the problem and collect the data
echo 1 > /proc/test_panic/bad_access
bt
rd
Ismod

s Statically look at the source with gdb + module address

11 WIND RIVER

© 2010 Wind River

(' 1) Pre-recorded Demonstration 2

<
-

*» Example of a kernel bad paging request
+ http://www.youtube.com/watch?v=bBEh_UduX04

= Example of using HW breakpoint in kdb
* http://'www.youtube.com/watch?v=MfJU2EOaJwg

12 WIND RIVER

http://www.youtube.com/watch?v=bBEh_UduX04
http://www.youtube.com/watch?v=MfJU2E0aJwg

¢ Remember KDB is KGDB too! IH

* |f you only have a single serial port, it just got easier to
use KGDB if you want to use it.

Try the agent-proxy

* The agent-proxy is nothing more then a tty — tcp
connection mux that can allow you to connect more
than one client application to a tty

* You can even use the agent-proxy with the EHCI debug
port device.

13 WIND RIVER

0 Sharing the console - kgdboc '

Target System
With serial port

/

For console access

telnet localhost 2223

14 WIND RIVER

© 2010 Wind River

¢) KGDB demonstration setup

s Use a connection multiplexer
— By default you can only connect one application at a time to the console
— In the case of kgdboc you want an interactive console & a debug port

agent-proxy CONSOLE PORT* IP_ADDR PORT

s More or less turns your local serial port into a terminal server
agent-proxy 2223”2222 0 /dev/ttyS0,115200

s Use it to multiplex a remote terminal server or simulator connection
agent-proxy 222322222 128.224.50.38 8181

s The agent-proxy is now available:

git clone git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git
cd agent-proxy ; make

15 WIND RIVER

© 2010 Wind River

KGDB demonstration

On the target system
echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
insmod test_panic.ko
|ngdb
tar remote localhost:2222
break sys_sync
c
On the target
sync
& |ngdb
awatch tp_address_ref
inf br
c
On the target
echo 1 > /proc/test_panic/bad_access

Back to gdb where we can pass along the exception
4 signal 9

16 WIND RIVER

© 2010 Wind River

(' 1) Pre-recorded Demonstration 3

= Start up the agent-proxy and connect and hit a
breakpoint a sys_sync
* http://www.youtube.com/watch?v=sWiHV5mt8 k
s Data Access breakpoint on tp_address_ref
+ http://www.youtube.com/watch?v=nnopzcwvLTs

17 WIND RIVER

http://www.youtube.com/watch?v=sWiHV5mt8_k
http://www.youtube.com/watch?v=nnopzcwvLTs

¢/ 1 Future plans

* More drivers and bug fixes for atomic kernel mode setting

s Continue to improve the non ehci debug usb console

* |Improve keyboard panic handler

» Further integration with kprobes and hw assisted debugging
*» netconsole / kgdboe v2 — Use dedicated HW queues

...wild, far off ideas...
* source stepping in KDB
+ user space backtrace
+ [ndividual thread and cpu run control

18 WIND RIVER

© 2010 Wind River

¢) References

« KGDB/KDB Website
http://kgdb.wiki.kernel.org

« KGDB/KDB Mailing list

+ kgdb-bugreport@lists.sourceforge.net

* https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
s Source code used in this presentation

*+ The 2.6.36 kernel was used

* The kernel module code can be found at:

http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

19 WIND RIVER

© 2010 Wind River

http://kgdb.wiki.kernel.org/
mailto:kgdb-bugreport@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

(;\., KGDB facts

<
-

s KGDB and KDB use the same debug backend

s kgdboe (KGDB over ethernet) is not always reliable
kgdboe in the current form WILL NOT BE MAINLINED

+ Linux IRQs can get preempted and hold locks making it unsafe or
impossible for the polled ethernet driver to run

<

Some ethernet drivers are so complex with separate kernel thread that
the polled mode ethernet can hang due to locking or unsafe HW
resource access

%

If you really want to attempt use kgdboe successfully, use a dedicated
interface if you have one and do not use kernel soft or hard IRQ
preemption.

s kgdboc is slow but the most reliable
s The EHCI debug port is currently the fastest KGDB connection

20 WIND RIVER

© 2010 Wind River

WIND RIVER

WIND RIVER

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

