
Linux Kernel Debugging Tools

Jason Wessel
- Product Architect for WR Linux Core Runtime
- Kernel.org KGDB Maintainer

June 23th, 2010

2

© 2010 Wind River

Agenda

• Talk about a number of common kernel debugging tools

• Describe high level tactics for using kernel debugging tools

• Demonstrate using several tools

The harsh reality is you could spend a whole day or more
talking about each tool.

*** Later find slides/code at: http://kgdb.wiki.kernel.org ***

http://kgdb.wiki.kernel.org/

3

© 2010 Wind River

Exciting news

• For 2.6.35-rc1
– kdb (the kernel debug shell) merged to mainline!

– Ability to debug before console_init()

– You can use the EHCI debug port with kgdb

• There are thoughts about next few years of kgdb/kdb
– Implement complete atomic kernel mode setting

– Continue to improve the non ehci debug usb console

– Improve keyboard panic handler

– Further integration with kprobes and hw assisted debugging

– netconsole / kgdboe v2 – Use dedicated HW queues

• The only bad news is it takes a long time to get there.

4

© 2010 Wind River

Is there anything better than kgdb?

• Good

– kgdb / kdb

• Better

– QEMU/KVM backend debugger

– Virtual box backend debugger

– vmware backend debugger

– kdump/kexec

• Best

– ICE (usb or ethernet)

– Simics (because it has backward stepping)

• In a class by itself

– printk() / trace_printk()

The challenge is knowing what to use when... Working tools rock!

5

© 2010 Wind River

A bit about printk() and timing

• printk is probably the #1 most reliable debug

• Any seasoned kernel developer has surely experienced:
– Add a printk and the bug goes away!

– Timing in the kernel is complex and printk can be quite
expensive particularly if you are writing to a serial console
because it synchronously pauses the kernel

• This leads some folks to try some other tools or use
printk() in conjunction with the tools

– kprobes / perf / ftrace / kgdb where you toggle

– Some folks still like to get more creative with printk and
counters

6

© 2010 Wind River

What about faster printk vs timing?

• Use something faster than serial
– USB EHCI debug port

– netconsole (not robust to printk in IRQs)

• Use console log levels and run dmesg
– echo 0 > /proc/sys/kernel/printk

• Consider trace_printk() (CONFIG_FTRACE)
– This uses a per cpu ring buffer so as to be lighter weight than printk

– ftrace has a lot you can do with it

• Read more at: Documentation/trace/ftrace.txt

• Read about trace-cmd: http://lwn.net/Articles/341902/

• Good for irq_off, preempt_off, scheduler debugging and much more

http://lwn.net/Articles/341902/

7

© 2010 Wind River

trace_printk() demo

• I have a kernel module with extended logging using
trace_printk()

– This is nothing more than putting some code in such as:
• trace_printk(“arbitrary_keywords: Some Message\n”);

• Get at the logs by mounting the debugfs
mount -t debugfs nodev /sys/kernel/debug

cat /sys/kernel/debug/tracing/trace

• Also consider dumping on oops:
echo 1 > /proc/sys/kernel/ftrace_dump_on_oops

8

© 2010 Wind River

EHCI Debug Port

• Great for when you do not have rs232

• Higher speed than rs232

• Works with KGDB
kgdbdbgp=0

• Use it as a Linux Console
console=ttyUSB0 AND/OR earlyprintk=kdbgp0

• Read more in your kernel source tree:
Documentation/x86/earlyprintk.txt

• You can buy one at

http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=12083

9

© 2010 Wind River

KDB – The in-kernel debug shell

• To use kdb you must meet one of following constraints
– Use a non usb keyboard + vga text console

– Serial port OR EHCI debug port and dongle

• kdb is not a source debugger
– However you can use it in conjunction with gdb and an

external symbol file

• Maybe you don't need a kernel debugger, but you at
least want a chance to see ftrace logs, dmesg, poke a
stack trace or do one final sysrq.

– kdb might be the tool you are looking for

10

© 2010 Wind River

Loading KDB

Having kdb loaded allows you to trap the panic handler.
– For a serial port:

echo ttyS0 > /sys/module/kgdboc/kernel/kgdboc

– For the keyboard + vga text console

echo kbd > /sys/module/kgdboc/kernel/kgdboc

• Enter kdb with sysrq-g
echo g > /proc/sysrq-trigger

• Remember kdb is a stop mode debugger
– Entering kdb means all the other processors skid to a stop

– You can run some things like: lsmod, ps, kill, dmesg, bt

– ftdump to dump ftrace logs (not merged to mainline yet)

– You can also use hw breakpoints or modify memory

11

© 2010 Wind River

KDB Demonstration 1

• Simply loading kdb gives you the opportunity to stop an
look at faults perhaps using external tools

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

echo 1 > /proc/test_panic/panic

• After the panic collect dmesg, ftdump, bt, and lsmod

• Use gdb to load the symbol file and kernel module
gdb ./vmlinux

add-symbol-file test_panic.ko ADDR_FROM_LSMOD

info line *0xADDR_FROM_BT

12

© 2010 Wind River

KDB Demonstration 2 - breakpoints

• Load kdb and use a data write breakpoint
insmod test_panic.ko

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

echo g > /proc/sysrq-trigger

bph tp_address_ref dataw

go

• Cause the problem and collect the data
echo 1 > /proc/test_panic/bad_access

bt

rd

lsmod

• Statically look at the source with gdb + module address

13

© 2010 Wind River

KDB (totally experimental demo)

• Eventually for KDB to expand to the desktop / netbook / small
embedded device we need KMS (Kernel Mode Setting)
integration

• A proof of concept version of the code exists and we can
watch a short video of what it looks like and you can
determine if it would be useful to you in the long run

– Think of a panic you just don't get to see on a small device

– Think of a crash bad enough there are no logs synced to disk

– No kdump available because you do not have any persistent
storage

– You have no serial, ethernet, just the small production device

14

© 2010 Wind River

KGDB facts

• kgdb and kdb use the same debug backend

• kgdboe (kgdb over ethernet) is not always reliable
– kgdboe in the current form WILL NOT BE MAINLINED

– Linux IRQs can get preempted and hold locks making it unsafe or
impossible for the polled ethernet driver to run

– Some ethernet drivers are so complex with separate kernel thread
that the polled mode ethernet can hang due to locking or
unsafe HW resource access

– If you really want to attempt use kgdboe successfully, use a
dedicated interface if you have one and do not use kernel soft
or hard IRQ preemption.

• kgdboc is slow but the most reliable

• The EHCI debug port is currently the fastest kgdb connection

15

© 2010 Wind River

KGDB

What does a block digram of what kgdb looked like?

Debug
Core

kdb_main and kdb_io

Polled
I/O Driver
KGDBOC

Arch
Specific
KGDB

GDB Stub

KDB Polled Keyboard driver

16

© 2010 Wind River

Sharing the console - kgdboc

agent-proxy

Target System
With serial port

For console access

telnet localhost 2223

gdb

target remote localhost:2222

17

© 2010 Wind River

KGDB demonstration setup

• Use a connection multiplexer
– By default you can only connect one application at a time to the console

– In the case of kgdboc you want an interactive console & a debug port

agent-proxy CONSOLE_PORT^DEBUG_PORT IP_ADDR PORT

• More or less turns your local serial port into a terminal server
agent-proxy 2223^2222 0 /dev/ttyS0,115200

• Use it to multiplex a remote terminal server or simulator connection
agent-proxy 2223^2222 128.224.50.38 8181

• The agent-proxy will be available on kgdb.wiki.kernel.org later
before LinuxCon 2010.

18

© 2010 Wind River

KGDB demonstration

• On the target system
echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

• In gdb
tar remote localhost:2222

break sys_sync

c

• On the target
sync

• In gdb
awatch tp_address_ref

inf br

c

• On the target
echo 1 > /proc/test_panic/bad_access

• Back to gdb where we can pass along the exception

• signal 9

19

© 2010 Wind River

GDB and unoptimizing

• Unoptimizing files for understanding (Source stepping)

– If you have a single file you are interested in, un-optimize it by editing the Makefile

Exmaple: un-optimize kernel/fork.c – Edit kernel/Makefile

• Insert the line at the top:

 CFLAGS_fork.o += -O0

• For an entire directory of files, insert at the top of the Makefile

 EXTRA_CFLAGS += -O0

• Don't UNOPTIMZE the whole kernel – Some specific IP routines require the kernel
to be optimized or the kernel stack can overflow, or in the case of ARM v5, NFS
will not work reliably. This is due to compiler/linux specific hacks.

• You can make use of this to get stack traces which include static functions that are
typically squashed by the compiler or make the debugger stop jumping around

20

© 2010 Wind River

GDB and module debugging

• Use a gdb that supports kernel modules
– Link all your modules to the same directory as the vmlinux

file such that gdb will automatically load the symbolic
version correctly

cd linux-2.6-dir

for e in `find . -name *.ko `; do ln -s $e . ; done

• Without a kernel module aware gdb, use kgdb+kdb:
monitor lsmod

add-symbol-file kernel_module.ko 0xaddress

21

© 2010 Wind River

Still have a timing problem?

Remember the kernel debugger can easily modify memory

• Try Read/Write additional counters
… got_here1++ … got_here2++ ...

• Use a conditional variable to control a printk()
If (global_doit) { printk(“state info ...”); }

• Use a conditional to execute a variable++
If (global_doit) { got_here1++; }

NOTE: Any new code you insert is also a place you can
set a breakpoint or conditional breakpoint

22

© 2010 Wind River

Internal KGDB variables

• Q: What processor am I on? A: value of counter in kgdb_active
(gdb) p kgdb_active

$1 = {counter = 0}

• kgdb_info contains all the individual cpu state of the master and slave cpus
(gdb) ptype kgdb_info

type = struct debuggerinfo_struct {

 void *debuggerinfo;

 struct task_struct *task;

} [8]

(gdb) p kgdb_info[0]

$2 = {debuggerinfo = 0xc7829f04, task = 0xc7824000}

(gdb) p kgdb_info[1]

$3 = {debuggerinfo = 0xc7843f6c, task = 0xc7825c00}

(gdb) print kgdb_info[0].task.comm

$4 = "sh\000t\000er\000\000\000\000\000\000\000\000"

23

© 2010 Wind River

kgdbwait

• kgdbwait as a kernel argument will stop as early as the
I/O driver supports

• kgdbwait is useful for attaching early and setting early
breakpoints for kernel initialization, even for kernel
module loading

• You must have a built in kgdb I/O module which you also
configure via the kernel boot argument

Example: kgdboc=ttyS0,115200 kgdbwait

24

© 2010 Wind River

The sys_sync breakpoint

• A “nice” place to put a break point is sys_sync

• This allows you to easily enter the debugger by typing
“sync” on the command line

• You can use this if you have trouble with sysrq

• Of course you could always execute from a root shell:
echo g > /proc/sysrq-trigger

25

© 2010 Wind River

X86 has hardware / data breakpoints

• A quick example of gdb and a data write breakpoint
– Boot with kgdbwait

– watch system_state!=SYSTEM_BOOTING

– disas /m $pc-32 $pc+32

• You can also use rwatch (read) and awatch (access
read/write)

• “info watchpoints” tells you what you set

• hbreak is the gdb HW equivelent of break

• Remember you have only 4 HW breakpoints on x86

26

© 2010 Wind River

Simulators

• Today 90% of kgdb / kdb development uses simulators

• Simulators are better than kgdb / kdb
– you can debug things like the exception vectors

– If the simulator cannot simulate your proprietary hardware it
is probably of little value.

• QEMU/KVM, VMware, Virtual Box, and Simics all have a
connector for gdb

• Quick demo of stepping through kgdb
target remote localhost:1234

break kgdb_handle_exception

27

© 2010 Wind River

Simics

• Sometimes the most tricky part of a problem is
reproducing the problem (1 of 100 runs for example)

• Duplicate it 1 time in simics and run forward and
backward until you find the problem!

• Demonstration of rewinding time after a crash
target remote localhost:9123

monitor enable-reverse-execution

break at_crash_address

reverse-continue

reverse-finish

step

28

© 2010 Wind River

References

• KGDB/KDB Website
http://kgdb.wiki.kernel.org

• KGDB/KDB Mailing list
– kgdb-bugreport@lists.sourceforge.net

– https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport

• If you contact Wind River in regard to one of the tools in
this presentation please be sure to mention you
watched the kernel debugging webinar.

http://kgdb.wiki.kernel.org/
mailto:kgdb-bugreport@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport

29

© 2010 Wind River

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

