
Reprinted from the

Proceedings of the
Linux Symposium

Volume One

July 21th–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Linux on NUMA Systems

Martin J. Bligh
mbligh@aracnet.com

Matt Dobson
colpatch@us.ibm.com

Darren Hart
dvhltc@us.ibm.com

Gerrit Huizenga
gh@us.ibm.com

Abstract

NUMA is becoming more widespread in the
marketplace, used on many systems, small or
large, particularly with the advent of AMD
Opteron systems. This paper will cover a sum-
mary of the current state of NUMA, and future
developments, encompassing the VM subsys-
tem, scheduler, topology (CPU, memory, I/O
layouts including complex non-uniform lay-
outs), userspace interface APIs, and network
and disk I/O locality. It will take a broad-based
approach, focusing on the challenges of creat-
ing subsystems that work for all machines (in-
cluding AMD64, PPC64, IA-32, IA-64, etc.),
rather than just one architecture.

1 What is a NUMA machine?

NUMA stands for non-uniform memory archi-
tecture. Typically this means that not all mem-
ory is the same “distance” from each CPU in
the system, but also applies to other features
such as I/O buses. The word “distance” in this
context is generally used to refer to both la-
tency and bandwidth. Typically, NUMA ma-
chines can access any resource in the system,
just at different speeds.

NUMA systems are sometimes measured with
a simple “NUMA factor” ratio of N:1—
meaning that the latency for a cache miss mem-
ory read from remote memory isN times the la-
tency for that from local memory (for NUMA
machines,N > 1). Whilst such a simple de-
scriptor is attractive, it can also be highly mis-
leading, as it describes latency only, not band-
width, on an uncontended bus (which is not
particularly relevant or interesting), and takes
no account of inter-node caches.

The termnodeis normally used to describe a
grouping of resources—e.g., CPUs, memory,
and I/O. On some systems, a node may con-
tain only some types of resources (e.g., only
memory, or only CPUs, or only I/O); on oth-
ers it may contain all of them. The intercon-
nect between nodes may take many different
forms, but can be expected to be higher latency
than the connection within a node, and typi-
cally lower bandwidth.

Programming for NUMA machines generally
implies focusing onlocality—the use of re-
sources close to the device in question, and
trying to reduce traffic between nodes; this
type of programming generally results in bet-
ter application throughput. On some machines
with high-speed cross-node interconnects, bet-



90 • Linux Symposium 2004 • Volume One

ter performance may be derived under certain
workloads by “striping” accesses across mul-
tiple nodes, rather than just using local re-
sources, in order to increase bandwidth. Whilst
it is easy to demonstrate a benchmark that
shows improvement via this method, it is dif-
ficult to be sure that the concept is generally
benefical (i.e., with the machine under full
load).

2 Why use a NUMA architecture to
build a machine?

The intuitive approach to building a large ma-
chine, with many processors and banks of
memory, would be simply to scale up the typ-
ical 2–4 processor machine with all resources
attached to a shared system bus. However, re-
strictions of electronics and physics dictate that
accesses slow as the length of the bus grows,
and the bus is shared amongst more devices.

Rather than accept this global slowdown for a
larger machine, designers have chosen to in-
stead give fast access to a limited set of local
resources, and reserve the slower access times
for remote resources.

Historically, NUMA architectures have only
been used for larger machines (more than 4
CPUs), but the advantages of NUMA have
been brought into the commodity marketplace
with the advent of AMD’s x86-64, which has
one CPU per node, and local memory for each
processor. Linux supports NUMA machines
of every size from 2 CPUs upwards (e.g., SGI
have machines with 512 processors).

It might help to envision the machine as a
group of standard SMP machines, connected
by a very fast interconnect somewhat like a net-
work connection, except that the transfers over
that bus are transparent to the operating sys-
tem. Indeed, some earlier systems were built

exactly like that; the older Sequent NUMA-
Q hardware uses a standard 450NX 4 proces-
sor chipset, with an SCI interconnect plugged
into the system bus of each node to unify them,
and pass traffic between them. The complex
part of the implementation is to ensure cache-
coherency across the interconnect, and such
machines are often referred to asCC-NUMA
(cache coherent NUMA). As accesses over the
interconnect are transparent, it is possible to
program such machines as if they were stan-
dard SMP machines (though the performance
will be poor). Indeed, this is exactly how the
NUMA-Q machines were first bootstrapped.

Often, we are asked why people do not use
clusters of smaller machines, instead of a large
NUMA machine, as clusters are cheaper, sim-
pler, and have a better price:performance ra-
tio. Unfortunately, it makes the programming
of applications much harder; all of the inter-
communication and load balancing now has to
be more explicit. Some large applications (e.g.,
database servers) do not split up across mul-
tiple cluster nodes easily—in those situations,
people often use NUMA machines. In addi-
tion, the interconnect for NUMA boxes is nor-
mally very low latency, and very high band-
width, yielding excellent performance. The
management of a single NUMA machine is
also simpler than that of a whole cluster with
multiple copies of the OS.

We could either have the operating system
make decisions about how to deal with the ar-
chitecture of the machine on behalf of the user
processes, or give the userspace application an
API to specify how such decisions are to be
made. It might seem, at first, that the userspace
application is in a better position to make such
decisions, but this has two major disadvan-
tages:

1. Every application must be changed to sup-
port NUMA machines, and may need to



Linux Symposium 2004 • Volume One • 91

be revised when a new hardware platform
is released.

2. Applications are not in a good position
to make global holistic decisions about
machine resources, coordinate themselves
with other applications, and balance deci-
sions between them.

Thus decisions on process, memory and I/O
placement are normally best left to the oper-
ating system, perhaps with some hints from
userspace about which applications group to-
gether, or will use particular resources heavily.
Details of hardware layout are put in one place,
in the operating system, and tuning and modi-
fication of the necessary algorithms are done
once in that central location, instead of in ev-
ery application. In some circumstances, the
application or system administrator will want
to override these decisions with explicit APIs,
but this should be the exception, rather than the
norm.

3 Linux NUMA Memory Support

In order to manage memory, Linux requires
a page descriptor structure (struct page )
for each physical page of memory present in
the system. This consumes approximately 1%
of the memory managed (assuming 4K page
size), and the structures are grouped into an ar-
ray calledmem_map. For NUMA machines,
there is a separate array for each node, called
lmem_map. The mem_mapand lmem_map
arrays are simple contiguous data structures ac-
cessed in a linear fashion by their offset from
the beginning of the node. This means that the
memory controlled by them is assumed to be
physically contiguous.

NUMA memory support is enabled by
CONFIG_DISCONTIGMEMand CONFIG_
NUMA. A node descriptor called astruct

pgdata_t is created for each node. Cur-
rently we do not support discontiguous mem-
ory within a node (though large gaps in the
physical address space are acceptable between
nodes). Thus we must still create page descrip-
tor structures for “holes” in memory within a
node (and then mark them invalid), which will
waste memory (potentially a problem for large
holes).

Dave McCracken has picked up Daniel
Phillips’ earlier work on a better data struc-
ture for holding the page descriptors, called
CONFIG_NONLINEAR. This will allow the
mapping of discontigous memory ranges in-
side each node, and greatly simplify the ex-
isting code for discontiguous memory on non-
NUMA machines.

CONFIG_NONLINEARsolves the problem by
creating an artificial layer of linear addresses.
It does this by dividing the physical address
space into fixed size sections (akin to very
large pages), then allocating an array to allow
translations from linear physical address to true
physical address. This added level of indirec-
tion allows memory with widely differing true
physical addresses to appear adjacent to the
page allocator and to be in the same zone, with
a single struct page array to describe them. It
also provides support for memory hotplug by
allowing new physical memory to be added to
an existing zone and struct page array.

Linux normally allocates memory for a process
on the local node, i.e., the node that the pro-
cess is currently running on.alloc_pages
will call alloc_pages_node for the cur-
rent processor’s node, which will pass the rele-
vant zonelist (pgdat->node_zonelists )
to the core allocator (__alloc_pages ). The
zonelists are built bybuild_zonelists ,
and are set up to allocate memory in a round-
robin fashion, starting from the local node (this
creates a roughly even distribution of memory



92 • Linux Symposium 2004 • Volume One

pressure).

In the interest of reducing cross-node traffic,
and reducing memory access latency for fre-
quently accessed data and text, it is desirable
to replicate any such memory that is read-only
to each node, and use the local copy on any ac-
cesses, rather than a remote copy. The obvious
candidates for such replication are the kernel
text itself, and the text of shared libraries such
as libc. Of course, this faster access comes
at the price of increased memory usage, but
this is rarely a problem on large NUMA ma-
chines. Whilst it might be technically possible
to replicate read/write mappings, this is com-
plex, of dubious utility, and is unlikely to be
implemented.

Kernel text is assumed by the kernel itself to
appear at a fixed virtual address, and to change
this would be problematic. Hence the easiest
way to replicate it is to change the virtual to
physical mappings for each node to point at a
different address. On IA-64, this is easy, since
the CPU provides hardware assistance in the
form of a pinned TLB entry.

On other architectures this proves more diffi-
cult, and would depend on the structure of the
pagetables. On IA-32 with PAE enabled, as
long as the user-kernel split is aligned on a
PMD boundary, we can have a separate ker-
nel PMD for each node, and point the vmalloc
area (which uses small page mappings) back to
a globally shared set of PTE pages. The PMD
entries for theZONE_NORMALareas normally
never change, so this is not an issue, though
there is an issue withioremap_nocache
that can change them (GART trips over this)
and speculative execution means that we will
have to deal with that (this can be a slow-path
that updates all copies of the PMDs though).

Dave Hansen has created a patch to replicate
read only pagecache data, by adding a per-node
data structure to each node of the pagecache

radix tree. As soon as any mapping is opened
for write, the replication is collapsed, making
it safe. The patch gives a 5%–40% increase in
performance, depending on the workload.

In the 2.6 Linux kernel, we have a per-node
LRU for page management and a per-node
LRU lock, in place of the global structures
and locks of 2.4. Not only does this reduce
contention through finer grained locking, it
also means we do not have to search other
nodes’ page lists to free up pages on one node
which is under memory pressure. Moreover,
we get much better locality, as only the lo-
cal kswapd process is accessing that node’s
pages. Before splitting the LRU into per-node
lists, we were spending 50% of the system time
during a kernel compile just spinning wait-
ing for pagemap_lru_lock (which was the
biggest global VM lock at the time). Con-
tention for thepagemap_lru_lock is now
so small it is not measurable.

4 Sched Domains—a Topology-
aware Scheduler

The previous Linux scheduler, the O(1) sched-
uler, provided some needed improvements to
the 2.4 scheduler, but shows its age as more
complex system topologies become more and
more common. With technologies such as
NUMA, Symmetric Multi-Threading (SMT),
and variations and combinations of these, the
need for a more flexible mechanism to model
system topology is evident.

4.1 Overview

In answer to this concern, the mainline 2.6
tree (linux-2.6.7-rc1 at the time of this writing)
contains an updated scheduler with support for
generic CPU topologies with a data structure,
struct sched_domain , that models the
architecture and defines scheduling policies.



Linux Symposium 2004 • Volume One • 93

Simply speaking, sched domains group CPUs
together in a hierarchy that mimics that of the
physical hardware. Since CPUs at the bot-
tom of the hierarchy are most closely related
(in terms of memory access), the new sched-
uler performs load balancing most often at the
lower domains, with decreasing frequency at
each higher level.

Consider the case of a machine with two SMT
CPUs. Each CPU contains a pair of virtual
CPU siblings which share a cache and the core
processor. The machine itself has two physi-
cal CPUs which share main memory. In such
a situation, treating each of the four effective
CPUs the same would not result in the best
possible performance. With only two tasks,
for example, the scheduler should place one
on CPU0 and one on CPU2, and not on the
two virtual CPUs of the same physical CPU.
When running several tasks it seems natural to
try to place newly ready tasks on the CPU they
last ran on (hoping to take advantage of cache
warmth). However, virtual CPU siblings share
a cache; a task that was running on CPU0,
then blocked, and became ready when CPU0
was running another task and CPU1 was idle,
would ideally be placed on CPU1. Sched do-
mains provide the structures needed to realize
these sorts of policies. With sched domains,
each physical CPU represents a domain con-
taining the pair of virtual siblings, each repre-
sented in asched_group structure. These
two domains both point to a parent domain
which contains all four effective processors in
two sched_group structures, each contain-
ing a pair of virtual siblings. Figure 1 illus-
trates this hierarchy.

Next consider a two-node NUMA machine
with two processors per node. In this example
there are no virtual sibling CPUs, and there-
fore no shared caches. When a task becomes
ready and the processor it last ran on is busy,
the scheduler needs to consider waiting un-

Figure 1: SMT Domains

til that CPU is available to take advantage of
cache warmth. If the only available CPU is
on another node, the scheduler must carefully
weigh the costs of migrating that task to an-
other node, where access to its memory will
be slower. The lowest level sched domains in
a machine like this will contain the two pro-
cessors of each node. These two CPU level
domains each point to a parent domain which
contains the two nodes. Figure 2 illustrates this
hierarchy.

Figure 2: NUMA Domains

The next logical step is to consider an SMT
NUMA machine. By combining the previous
two examples, the resulting sched domain hier-
archy has three levels, sibling domains, physi-
cal CPU domains, and the node domain. Fig-
ure 3 illustrates this hierarchy.

The unique AMD Opteron architecture war-
rants mentioning here as it creates a NUMA
system on a single physical board. In this case,
however, each NUMA node contains only one



94 • Linux Symposium 2004 • Volume One

Figure 3: SMT NUMA Domains

physical CPU. Without careful consideration
of this property, a typical NUMA sched do-
mains hierarchy would perform badly, trying
to load balance single CPU nodes often (an ob-
vious waste of cycles) and between node do-
mains only rarely (also bad since these actually
represent the physical CPUs).

4.2 Sched Domains Implementation

4.2.1 Structure

The sched_domain structure stores pol-
icy parameters and flags and, along with
the sched_group structure, is the primary
building block in the domain hierarchy. Fig-
ure 4 describes these structures. Thesched_
domain structure is constructed into an up-
wardly traversable tree via the parent pointer,
the top level domain setting parent to NULL.
The groups list is a circular list of ofsched_
group structures which essentially define the
CPUs in each child domain and the relative
power of that group of CPUs (two physical
CPUs are more powerful than one SMT CPU).
The span member is simply a bit vector with a
1 for every CPU encompassed by that domain
and is always the union of the bit vector stored

in each element of the groups list. The remain-
ing fields define the scheduling policy to be fol-
lowed while dealing with that domain, see Sec-
tion 4.2.2.

While the hierarchy may seem simple, the de-
tails of its construction and resulting tree struc-
tures are not. For performance reasons, the
domain hierarchy is built on a per-CPU basis,
meaning each CPU has a unique instance of
each domain in the path from the base domain
to the highest level domain. These duplicate
structures do share thesched_group struc-
tures however. The resulting tree is difficult to
diagram, but resembles Figure 5 for the ma-
chine with two SMT CPUs discussed earlier.

In accordance with common practice, each
architecture may specify the construction of
the sched domains hierarchy and the pa-
rameters and flags defining the various poli-
cies. At the time of this writing, only i386
and ppc64 defined custom construction rou-
tines. Both architectures provide for SMT
processors and NUMA configurations. With-
out an architecture-specific routine, the kernel
uses the default implementations insched.c ,
which do take NUMA into account.



Linux Symposium 2004 • Volume One • 95

struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */
unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
int flags; /* See SD_* */

/* Runtime fields. */
unsigned long last_balance; /* init to jiffies. units in jiffies */
unsigned int balance_interval; /* initialise to 1. units in ms. */
unsigned int nr_balance_failed; /* initialise to 0 */

};

struct sched_group {
struct sched_group *next; /* Must be a circular list */
cpumask_t cpumask;
unsigned long cpu_power;

};

Figure 4: Sched Domains Structures

4.2.2 Policy

The new scheduler attempts to keep the sys-
tem load as balanced as possible by running re-
balance code when tasks change state or make
specific system calls, we will call thisevent
balancing, and at specified intervals measured
in jiffies, calledactive balancing. Tasks must
do something for event balancing to take place,
while active balancing occurs independent of
any task.

Event balance policy is defined in each
sched_domain structure by setting a com-
bination of the #defines of figure 6 in the flags
member.

To define the policy outlined for the dual SMT
processor machine in Section 4.1, the low-
est level domains would setSD_BALANCE_
NEWIDLEand SD_WAKE_IDLE(as there is
no cache penalty for running on a differ-
ent sibling within the same physical CPU),
SD_SHARE_CPUPOWERto indicate to the
scheduler that this is an SMT processor (the

scheduler will give full physical CPU ac-
cess to a high priority task by idling the
virtual sibling CPU), and a few common
flags SD_BALANCE_EXEC, SD_BALANCE_
CLONE, and SD_WAKE_AFFINE. The next
level domain represents the physical CPUs
and will not setSD_WAKE_IDLEsince cache
warmth is a concern when balancing across
physical CPUs, norSD_SHARE_CPUPOWER.
This domain adds theSD_WAKE_BALANCE
flag to compensate for the removal ofSD_
WAKE_IDLE. As discussed earlier, an SMT
NUMA system will have these two domains
and another node-level domain. This do-
main removes theSD_BALANCE_NEWIDLE
and SD_WAKE_AFFINEflags, resulting in
far fewer balancing across nodes than within
nodes. When one of these events occurs, the
scheduler search up the domain hierarchy and
performs the load balancing at the highest level
domain with the corresponding flag set.

Active balancing is fairly straightforward and
aids in preventing CPU-hungry tasks from hog-
ging a processor, since these tasks may only



96 • Linux Symposium 2004 • Volume One

#define SD_BALANCE_NEWIDLE 1 /* Balance when about to become idle */
#define SD_BALANCE_EXEC 2 /* Balance on exec */
#define SD_BALANCE_CLONE 4 /* Balance on clone */
#define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */
#define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */

Figure 6: Sched Domains Policies

Figure 5: Per CPU Domains

rarely trigger event balancing. At each re-
balance tick, the scheduler starts at the low-
est level domain and works its way up, check-
ing the balance_interval and last_
balance fields to determine if that domain
should be balanced. If the domain is already
busy, thebalance_interval is adjusted
using thebusy_factor field. Other fields
define how out of balance a node must be be-
fore rebalancing can occur, as well as some
sane limits on cache hot time and min and max
balancing intervals. As with the flags for event
balancing, the active balancing parameters are
defined to perform less balancing at higher do-
mains in the hierarchy.

4.3 Conclusions and Future Work

Figure 7: Kernbench Results

To compare the O(1) scheduler of mainline
with the sched domains implementation in the
mm tree, we ran kernbench (with the-j option
to make set to 8, 16, and 32) on a 16 CPU SMT
machine (32 virtual CPUs) on linux-2.6.6 and
linux-2.6.6-mm3 (the latest tree with sched do-
mains at the time of the benchmark) with and
without CONFIG_SCHED_SMTenabled. The
results are displayed in Figure 7. The O(1)
scheduler evenly distributed compile tasks ac-
cross virtual CPUs, forcing tasks to share cache
and computational units between virtual sib-
ling CPUs. The sched domains implementa-
tion with CONFIG_SCHED_SMTenabled bal-
anced the load accross physical CPUs, making
far better use of CPU resources when running
fewer tasks than CPUs (as in the j8 case) since
each compile task would have exclusive access
to the physical CPU. Surprisingly, sched do-
mains (which would seem to have more over-
head than the mainline scheduler) even showed
improvement for the j32 case, where it doesn’t



Linux Symposium 2004 • Volume One • 97

benefit from balancing across physical CPUs
before virtual CPUs as there are more tasks
than virtual CPUs. Considering the sched do-
mains implementation has not been heavily
tested or tweaked for performance, some fine
tuning is sure to further improve performance.

The sched domains structures replace the ex-
panding set of#ifdefs of the O(1) sched-
uler, which should improve readability and
maintainability. Unfortunately, the per CPU
nature of the domain construction results in a
non-intuitive structure that is difficult to work
with. For example, it is natural to discuss the
policy defined at “the” top level domain; un-
fortunately there areNR_CPUStop level do-
mains and, since they are self-adjusting, each
one could conceivably have a different set of
flags and parameters. Depending on which
CPU the scheduler was running on, it could be-
have radically differently. As an extension of
this research, an effort to analyze the impact of
a unified sched domains hierarchy is needed,
one which only creates one instance of each
domain.

Sched domains provides a needed structural
change to the way the Linux scheduler views
modern architectures, and provides the pa-
rameters needed to create complex scheduling
policies that cater to the strengths and weak-
nesses of these systems. Currently only i386
and ppc64 machines benefit from arch specific
construction routines; others must now step
forward and fill in the construction and param-
eter setting routines for their architecture of
choice. There is still plenty of fine tuning and
performance tweaking to be done.

5 NUMA API

5.1 Introduction

One of the biggest impediments to the ac-
ceptance of a NUMA API for Linux was a
lack of understanding of what its potential uses
and users would be. There are two schools
of thought when it comes to writing NUMA
code. One says that the OS should take care
of all the NUMA details, hide the NUMA-
ness of the underlying hardware in the ker-
nel and allow userspace applications to pre-
tend that it’s a regular SMP machine. Linux
does this by having a process scheduler and
a VMM that make intelligent decisions based
on the hardware topology presented by arch-
specific code. The other way to handle NUMA
programming is to provide as much detail as
possible about the system to userspace and
allow applications to exploit the hardware to
the fullest by giving scheduling hints, mem-
ory placement directives, etc., and the NUMA
API for Linux handles this. Many applications,
particularly larger applications with many con-
current threads of execution, cannot fully uti-
lize a NUMA machine with the default sched-
uler and VM behavior. Take, for example, a
database application that uses a large region of
shared memory and many threads. This appli-
cation may have a startup thread that initializes
the environment, sets up the shared memory
region, and forks off the worker threads. The
default behavior of Linux’s VM for NUMA is
to bring pages into memory on the node that
faulted them in. This behavior for our hy-
pothetical app would mean that many pages
would get faulted in by the startup thread on
the node it is executing on, not necessarily on
the node containing the processes that will ac-
tually use these pages. Also, the forked worker
threads would get spread around by the sched-
uler to be balanced across all the nodes and
their CPUs, but with no guarantees as to which



98 • Linux Symposium 2004 • Volume One

threads would be associated with which nodes.
The NUMA API and scheduler affinity syscalls
allow this application to specify that its threads
be pinned to particular CPUs and that its mem-
ory be placed on particular nodes. The appli-
cation knows which threads will be working
with which regions of memory, and is better
equipped than the kernel to make those deci-
sions.

The Linux NUMA API allows applications
to give regions of their own virtual memory
space specific allocation behaviors, called poli-
cies. Currently there are four supported poli-
cies: PREFERRED, BIND, INTERLEAVE,
and DEFAULT. The DEFAULT policy is the
simplest, and tells the VMM to do what it
would normally do (ie: pre-NUMA API) for
pages in the policied region, and fault them
in from the local node. This policy applies
to all regions, but is overridden if an appli-
cation requests a different policy. The PRE-
FERRED policy allows an application to spec-
ify one node that all pages in the policied re-
gion should come from. However, if the spec-
ified node has no available pages, the PRE-
FERRED policy allows allocation to fall back
to any other node in the system. The BIND
policy allows applications to pass in a node-
mask, a bitmap of nodes, that the VM is re-
quired to use when faulting in pages from a re-
gion. The fourth policy type, INTERLEAVE,
again requires applications to pass in a node-
mask, but with the INTERLEAVE policy, the
nodemask is used to ensure pages are faulted
in in a round-robin fashion from the nodes
in the nodemask. As with the PREFERRED
policy, the INTERLEAVE policy allows page
allocation to fall back to other nodes if nec-
essary. In addition to allowing a process to
policy a specific region of its VM space, the
NUMA API also allows a process to policy
its entire VM space with a process-wide pol-
icy, which is set with a different syscall:set_
mempolicy() . Note that process-wide poli-

cies are not persistent over swapping, however
per-VMA policies are. Please also note that
none of the policies will migrate existing (al-
ready allocated) pages to match the binding.

The actual implementation of the in-kernel
policies uses astruct mempolicy that is
hung off the struct vm_area_struct .
This choice involves some tradeoffs. The first
is that, previous to the NUMA API, the per-
VMA structure was exactly 32 bytes on 32-
bit architectures, meaning that multiplevm_
area_struct s would fit conveniently in a
single cacheline. The structure is now a lit-
tle larger, but this allowed us to achieve a per-
VMA granularity to policied regions. This is
important in that it is flexible enough to bind
a single page, a whole library, or a whole pro-
cess’ memory. This choice did lead to a sec-
ond obstacle, however, which was for shared
memory regions. For shared memory regions,
we really want the policy to be shared amongst
all processes sharing the memory, but VMAs
are not shared across separate tasks. The solu-
tion that was implemented to work around this
was to create a red-black tree of “shared pol-
icy nodes” for shared memory regions. Due
to this, calls were added to thevm_ops struc-
ture which allow the kernel to check if a shared
region has any policies and to easily retrieve
these shared policies.

5.2 Syscall Entry Points

1. sys_mbind(unsigned long start, unsigned
long len, unsigned long mode, unsigned
long *nmask, unsigned long maxnode,
unsigned flags);

Bind the region of memory[start,
start+len) according tomode and
flags on the nodes enumerated in
nmask and having a maximum possible
node number ofmaxnode .

2. sys_set_mempolicy(int mode, unsigned



Linux Symposium 2004 • Volume One • 99

long *nmask, unsigned long maxnode);

Bind the entire address space of the cur-
rent process according tomode on the
nodes enumerated innmask and hav-
ing a maximum possible node number of
maxnode .

3. sys_get_mempolicy(int *policy, unsigned
long *nmask, unsigned long maxnode,
unsigned long addr, unsigned long flags);

Return the current binding’s mode in
policy and node enumeration in
nmask based on themaxnode , addr ,
andflags passed in.

In addition to the raw syscalls discussed above,
there is a user-level library called “libnuma”
that attempts to present a more cohesive inter-
face to the NUMA API, topology, and sched-
uler affinity functionality. This, however, is
documented elsewhere.

5.3 At mbind() Time

After argument validation, the passed-in list of
nodes is checked to make sure they are all on-
line. If the node list is ok, a new memory policy
structure is allocated and populated with the
binding details. Next, the given address range
is checked to make sure the vma’s for the re-
gion are present and correct. If the region is ok,
we proceed to actually install the new policy
into all the vma’s in that range. For most types
of virtual memory regions, this involves simply
pointing thevma->vm_policy to the newly
allocated memory policy structure. For shared
memory, hugetlbfs, and tmpfs, however, it’s
not quite this simple. In the case of a memory
policy for a shared segment, a red-black tree
root node is created, if it doesn’t already exist,
to represent the shared memory segment and
is populated with “shared policy nodes.” This
allows a user to bind a single shared memory
segment with multiple different bindings.

5.4 At Page Fault Time

There are now several new and differ-
ent flavors ofalloc_pages() style func-
tions. Previous to the NUMA API, there
existedalloc_page() , alloc_pages()
and alloc_pages_node() . Without go-
ing into too much detail,alloc_page()
and alloc_pages() both calledalloc_
pages_node() with the current node id as
an argument.alloc_pages_node() allo-
cated2order pages from a specific node, and
was the only caller to thereal page allocator,
__alloc_pages() .

alloc_page() alloc_pages()

__alloc_pages()

alloc_pages_node()

Figure 8: oldalloc_pages

With the introduction of the NUMA API, non-
NUMA kernels still retain the oldalloc_
page*() routines, but the NUMA alloca-
tors have changed.alloc_pages_node()
and __alloc_pages() , the core routines
remain untouched, but all calls toalloc_
page() /alloc_pages() now end up call-
ing alloc_pages_current() , a new
function.



100 • Linux Symposium 2004 • Volume One

There has also been the addition
of two new page allocation func-
tions: alloc_page_vma() and
alloc_page_interleave() .
alloc_pages_current() checks that the
system is not currentlyin_interrupt() ,
and if it isn’t, uses the current pro-
cess’s process policy for allocation. If
the system is currently in interrupt con-
text, alloc_pages_current() falls
back to the old default allocation scheme.
alloc_page_interleave() allocates
pages from regions that are bound with an
interleave policy, and is broken out separately
because there are some statistics kept for
interleaved regions. alloc_page_vma()
is a new allocator that allocates only sin-
gle pages based on a per-vma policy. The
alloc_page_vma() function is the only
one of the new allocator functions that must be
called explicity, so you will notice that some
calls toalloc_pages() have been replaced
by calls toalloc_page_vma() throughout
the kernel, as necessary.

5.5 Problems/Future Work

There is no checking that the nodes re-
quested are online at page fault time, so in-
teractions with hotpluggable CPUs/memory
will be tricky. There is an asymmetry be-
tween how you bind a memory region and
a whole process’s memory: One call takes
a flags argument, and one doesn’t. Also
the maxnode argument is a bit strange,
the get/set_affinity calls take a number of
bytes to be read/written instead of a max-
imum CPU number. Thealloc_page_
interleave() function could be dropped if
we were willing to forgo the statistics that are
kept for interleaved regions. Again, a lack of
symmetry exists because other types of poli-
cies aren’t tracked in any way.

6 Legal statement

This work represents the view of the authors, and
does not necessarily represent the view of IBM.

IBM, NUMA-Q and Sequent are registerd trade-
marks of International Business Machines Corpo-
ration in the United States, other contries, or both.
Other company, product, or service names may be
trademarks of service names of others.

References

[LWN] LWN Editor, “Scheduling Domains,”
http://lwn.net/Articles/
80911/

[MM2] Linux 2.6.6-rc2/mm2 source,http:
//www.kernel.org



Linux Symposium 2004 • Volume One • 101

alloc_page()

alloc_pages()

__alloc_pages()

alloc_pages_node()

alloc_pages_current()

alloc_page_interleave()

alloc_page_vma()
Both UP/SMP & NUMA

NUMA only

UP/SMP only

Figure 9: newalloc_pages



102 • Linux Symposium 2004 • Volume One


