Is Parallel Programming Hard, And, If So, What
Can You Do About It?

Edited by:

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck@linux.vnet.ibm.com

December 16, 2011

paulmck@linux.vnet.ibm.com

ii

Legal Statement

This work represents the views of the authors and does not necessarily represent the
view of their employers.

IBM, zSeries, and Power PC are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

1386 is a trademarks of Intel Corporation or its subsidiaries in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of
such companies.

The non-source-code text and images in this document are provided under the
terms of the Creative Commons Attribution-Share Alike 3.0 United States license
(http://creativecommons.org/licenses/by-sa/3.0/us/)). In brief, you may use the
contents of this document for any purpose, personal, commercial, or otherwise, so long
as attribution to the authors is maintained. Likewise, the document may be modified,
and derivative works and translations made available, so long as such modifications
and derivations are offered to the public on equal terms as the non-source-code text
and images in the original document.

Source code is covered by various versions of the GPL (http://www.gnu.org/
licenses/gpl-2.0.html). Some of this code is GPLv2-only, as it derives from the
Linux kernel, while other code is GPLv2-or-later. See the CodeSamples directory in the
git archive (git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git) for the exact licenses, which are included in comment headers in each file. If you
are unsure of the license for a given code fragment, you should assume GPLv2-only.

Combined work (©) 2005-2011 by Paul E. McKenney.

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1

1.1 Historic Parallel Programming Difficulties| 1
1.2 Parallel Programming Goals|. 3
21 Performancel, 3
[1.2.2 Productivity] oo 5
[1.2.3 Generality]., 6

I1.3 Alternatives to Parallel Programming] 8
[1.3.1 Multiple Instances of a Sequential Application| 9
[1.3.2 Make Use of Existing Parallel Softwaref. 9
[1.3.3 Performance Optimization|. 9

1.4 What Makes Parallel Programming Hard?| 10
(1.4.1 Work Partitioning] 11
(1.4.2 Parallel Access Controll 12
[1.4.3 Resource Partitioning and Replication| 12
[1.4.4 Interacting With Hardware| 13
[1.4.5 Composite Capabilities| 13
[[4.6 How Do Languages and Environments Assist With Lhese |

asks’?l . .o L e 13

Lo Guide to This Booklo oL 14
[1.5.1 Quick Quizzes| 14
[1.5.2 Sample Source Code| 14
2__Hardware and its Habits| 15
ETOverviewl oo oo 15
[2.1.1 Pipelined CPUs|. 15
[2.1.2 Memory References|. 16
[2.1.3 Atomic Operations| 17
[2.1.4 Memory Barriers| 00000000 18
215 Cache MAsses . . -« v v vovovo e 18
[2.1.6 I/O Operations|. 19

22 Overheadd 20
[2.2.1 Hardware System Architecture| 20
[2.2.2 Costs of Operations| 22

2.3 Hardware Free Lunch? 24
[2.3.1 3D Integration| oL 25
[2.3.2 Novel Materials and Processesl 25
[2.3.3 Special-Purpose Accelerators| 26
[2.3.4 Existing Parallel Sottware]00 27

il

iv

2.4 Software Design Implications|

[3_Tools of the Tradel

3.1 Scripting Languages| 0oL
8.2 POSIX Multiprocessing|
3.2.1 POSIX Process Creation and Destructionl

B.2.3 POSIX Locking|.
13.2.4 POSIX Reader-Writer Lockingl
3.3 Atomic Operations|
3.4 Linux-Kernel Equivalents to POSIX Operations|.
3.5 The Right Tool for the Job: How to Choose?|

4.1 Why Isn’t Concurrent Counting Trivial?|
(4.2 Statistical Countersl, .

] Desio
4.2.2 Array-Based Implementation|
4.2.3 Eventually Consistent Implementation|
4.2.4 Per-Thread-Variable-Based Implementation|
25 Discussion].o

4.3 Approximate Limit Counters|

4.3.2 Simple Limit Counter Implementation|
4.3.3 Simple Limit Counter Discussion|
4.3.4 Approximate Limit Counter Implementation|
K4.3.0 Approximate Limit Counter Discussion|
4.4 Exact Lomit Countersl
4.4.1 Atomic Limit Counter Implementation|.

4.4.3 Signal-Theft Limit Counter Design|
4.4.4 Signal-Theft Limit Counter Implementation|
4.4.5 Signal-Theft Limit Counter Discussion|
4.5 Applying Specialized Parallel Counters|.
4.6 Parallel Counting Discussion|

5

Partitioning and Synchronization Design|

p.1 Partitioning Exercises| o000
p.1.1 Dining Philosophers Problem|
b.1.2 Double-Ended Queue|
b.1.3 Partitioning Example Discussion|

.2 Design Criteria] o oo

5.3 Synchronization Granularity|.
b.3.1 Sequential Program|
p.3.2 Code Locking|
b.3.3 Data Locking|
b.3.4 Data Ownership|
5.3.5 Locking Granularity and Performance]

0.4 Parallel Fastpathf
[5.4.1 Reader/Writer Locking]

27

29
29
30
30
32
33
36
39
40
42

43
44
46
46
46
48
51
52
52
92
93
58
58
99
99
99
63
65
66
68
71
72

CONTEI

CONTENTS

[5.4.2 Hierarchical Locking| 101

5.4.3 Resource Allocator Cachesl 101

b.5 Performance Summary| 108

6 Locking 109
6.1 Staying Alivel 110
6.1.1 Deadlockl o oo 110

6.1.2 Tiavelockl o 113

6.1.3 Unfairmess. 114

[6.1.4 TInefficiencyl 114

6.2 Typesof Locks| 114
621 Exclusive Lockd. 114

6.2.2 Reader-Writer Locks| 114

[6.2.3 Beyond Reader-Writer Locks| 114

6.3 Lock-Based Existence Guarantees. 114

7 Data Ownership| 117
I8 Deferred Processing] 119
8.1 Barriersl 119
8.2 Reference Counting|. 119
[8.2.1 Implementation of Reference-Counting Categories| . 121

[8.2.2 Linux Primitives Supporting Reference Countingl 126

[8.2.3 Counter Optimizations|. 127

[8.3 Read-Copy Update (RCU)|. 127
8.3.1 RCU Fundamentalsf, 127

832 RCUUsage| o o ... 138

B33 RCU Linux-Kernel APTl 151

[8.3.4 “Toy” RCU Implementations| 157

8.3.5 RCUExercises| 177

19 Applying RCU]| 179
- - - . 179

9 Design| 179

[9.1.2 Tmplementation|. oL 180

9.1.3 Discussion|. e 180

[9.2 RCU and Counters for Removable I/O Devices| 182
|10 Validation: Debugging and Analysis| 183
0 gl e 183
MO27ASSertions] . - - - v v v oo e 183
[10.3 Static Analysis|o 183
110.4 Probability and Heisenbugs| 183
10.5 Profiling| 183
110.6 Daifterential Profilingl 183
[10.7 Performance Estimationl 183

vi CONTEI

11 Data Structures| 185
0 T 185
|I11.2 Computational Complexity and Performance| 185
[11.3 Design Tradeofts| 185
ML Protectionl . - - -« v v v oo 185
I11.5 Bitsand Bytes| 185
[1.6 Hardware Considerationd 185

|12 Advanced Synchronization| 187
112.1 Avoiding Locks| o 0. 187
112.2 Memory Barriers| oo 187

112.2.1 Memory Ordering and Memory Barriers| 187
112.2.2 It B Follows A, and C Follows B, Why Doesn’t C Follow A7[189
[12.2.3 Variables Can Have More Than One Valud 190
[12.2.4 What Can You Trustd 191
112.2.5 Review of Locking Implementations] 197
12.2.6 A Few Simple Rules| 197
112.2.7 Abstract Memory Access Model| 198
112.2.8 Device Operations| 200
[229 Guaranteed 200
12.2.10 What Are Memory Barriers?| 202
112.2.11 Locking Constraints| 213
112.2.12 Memory-Barrier Examples|. 214
[12.2.13 The Effects of the CPU Cachel 216
112.2.14 Where Are Memory Barriers Needed?| 218
112.3 Non-Blocking Synchronization|. 218
112.3.1 Simple NBS|. 218
[232 Hazard Pointers 218
[12.3.3 Atomic Data Structures| 218
1234 “Macho” NBSl 219

13 Ease of Usel 221
[13.1 Rusty Scale for API Design| 221
|113.2 Shaving the Mandelbrot Set| 222

114 Time Management| 225

|15 Conflicting Visions of the Future] 227
[15.1 Transactional Memory| 227

[15.1.1 T/O Operations| 228
[[512 RPC Operations] 229
115.1.3 Memory-Mapping Operations| 230
15.1.4 Multithreaded Transactions 231
115.1.5 Extra-Transactional Accessesl 232
115.1.6 Time Delays| 233
15.1.7 Locking| 233
115.1.8 Reader-Writer Locking|. 234
[[5.1.9 Persistencel 235
115.1.10 Dynamic Linking and Loading| 236

5. LIIDEDUSEINE] . - - « « o o oo e e e 237

CONTENTS vii

[15.1.12 The exec() System Calll 238
MELIBRCU. . . oot e 239
[5.1.74Discussionl . . - « v v v v v v e e 240

|15.2 Shared-Memory Parallel Functional Programmingf. 241
115.3 Process-Based Parallel Functional Programming| 241
|A Important Questions| 243
‘ ’ d 243

IB Synchronization Primitives| 249
IB.1 Organization and Initialization| 250
B.11 smpinit()] 250

IB.2 Thread Creation, Destruction, and Control| 250
B.2.1 createthread()] 250
B.2.2 smp._threadid()[. oo L 250
B.2.3 for.each_thread()| 251
B.2.4 for_each_running_thread()] 251
B.2.5 wait_thread()| L L 251
B.2.6 wait_all threads()[. 251
B27 Example Usagd 251

B3 Tocking 252
[B.3.1 spinlockinit()] o v oot 252
B.3.2 spinlock()|o 252
B.3.3 spin_trylock()] o 252
B.3.4 spinunlock()] oo 253

3.5 Example Usagelo oo 253

B4 Per-Thread Variables 253
@1@1 253
B.4.2 DECLARE_PER_THREAD()|................ 253
B.4.3 per_thread()|. Lo 253
B.4.4 __get_threadvar()[. 254
B.4.5 init_per_thread()| 254

4.6 Usage Example] o oo 254

IB.5 Performancel. oo 254
|IC Why Memory Barriers?| 255
IC.1 Cache Structurel L o 255
) . -Coherence Protocold 258
(C2.1 MESIStatesl L. 258
[C.2.2 MESI Protocol Messages|. 259
C.2.3 MESI State Diagram|.o 259

2. rotocol Example]o o000 00 261

|C.3 Stores Result in Unnecessary Stalls 262
[C3T1 StoreBuffersl 262
[C.3.2 Store Forwarding| 263
|C.3.3 Store Bufters and Memory Barriers|. 265

|C.4 Store Sequences Result in Unnecessary Stalls| 268
[C.4.1 Invalidate Queues| 268
[C.4.2 Invalidate Queues and Invalidate Acknowledgel 268

[C.4.3 Invalidate Queues and Memory Barriers| 269

viii

C.5 Read and Write Memory Barriers|. 272
.6 Example Memory-Barrier Sequences| 273
IC.6.1 Ordering-Hostile Architecture|. 273
IC.6.2 Exampled|. 274
IC.6.3 Example2|., 274
IC.6.4 Exampled|. 275

[C77 Memory-Barrier Instructions For Specific CPUS| 276
[C7T1 ATphal 278
C.7.2 AMDGA e 280
C.7.3 ARMV7-A/R| 280
CTA TAGH 282
[CTHE PARIST e 283
C.7.6 POWER / Power PC| 283

. , ,and TSO|o oo 284

C.7T8 x86l. e 285
C.7.9 zSertesl.o 286

IC.8 Are Memory Barriers Forever?] 286
IC.9 Advice to Hardware Designers|. 287
ID Read-Copy Update Implementations| 289
ID.1 Sleepable RCU Implementation| 289
[D.1.1 SRCU Implementation Strategy]. 290

1.2 and Usage| 291

[D1.3 Tmplementation]. 294
ID.1.4 SRCU Summary] 298
[D.2 Hierarchical RCU Overview] 299
D.2.1 Review of RCU Fundamentals] 299
[D.2.2 Brief Overview of Classic RCU Implementation| 300
D23 RCUDesideratal 300
ID.2.4 Towards a More Scalable RCU Implementation| 302
ID.2.5 Towards a Greener RCU Implementation| 304
ID.2.6 State Machinelo oo 305
D27 UseCased 308
D.2.8 Ol o e 312
.......................... 317

ID.3 Hierarchical RCU Code Walkthrough|. 318
D.3.1 Data Structures and Kernel Parameters| 319
[D.3.2 FExternal Interfaced 328
ID.3.3 Tnitializationl L. 334
[D.3.4 CPU Hotplug| 339
[D35_ Miscellaneous Functions v o o v v oL 344
D.3.6 Grace-Period-Detection Functions| 345
ID.3.7 Dyntick-Idle Functions|. 355
ID.3.8 Forcing Quiescent States|. 360
[D.3.9 CPU-Stall Detectionl 366
[D.3.10 Possible Flaws and Changes|. 369

D.4 P ptible RCU|. o 369
[D4T1 Conceptual RCU] ot 370
ID.4.2 Overview of Preemptible RCU Algorithm| 371

D.4.3 Validation of Preemptible RCU]o oo v .. 385

CONTEI

CONTENTS

EF [Verification

|E.1 What are Promela and Spin?| 000

|E.2 " Promela Example: Non-Atomic Increment|.

.3 Promela Example: Atomic Increment|.

[E.3.1 Combinatorial Explosion|.

[E.4.2 Promela Coding Tricks|.

|E.5 Promela Example: Lockingl

|E.6 Promela Example: QRCU}

[£.6.1 Running the QRCU Example]

|[E.6.2 How Many Readers and Updaters Are Really Needed?| . .

|[E.6.3 Alternative Approach: Proof of Correctness|

[E.6.4 Alternative Approach: More Capable Tools|

[E.6.5 Alternative Approach: Divide and Conquer|

.7 Promela Parable: dynticks and Preemptible RCU|.

[E.7.1 Introduction to Preemptible RCU and dynticks|

[E.7.2 Validating Preemptible RCU and dynticks|.

[E.7.3 Lessons (Re)Learned|

.8 Simplicity Avoids Formal Verification|

[E.8.1 State Variables for Simplified Dynticks Interface]

[E.8.2 Entering and Leaving Dynticks-Idle Mode|

[E£.8.3 NMIs From Dynticks-Idle Mode|.

[E.8.4 Interrupts From Dynticks-Idle Mode|

IF.5 Partitioning and Synchronization Design|.

.6 Locking

|F.7 Deterred Processing]

.8 Applying

RCU| .« oo

IF.9 Advanced Synchronization|.,

.11 Conflicting Visions of the Future|

IF.12 Important Questions|

|F.13 Synchronization Primitives|

IF.14 Why Memory Barriers?|

|[F.15 Read-Copy Update Implementations|

x (zlossar

389
389
390
392
394
394
395
396
398
400
406
406
407
407
408
408
409
412
428
429
429
430
431
431
432
433
434

435
435
442
445
451
468
474
476
497
499
502
503
504
504
505
509
529

535

ix

CONTEI

[H_Credits 557
HI Authors o oo 557
M2 Reviewersl o v vt oo e e 557
IH.3 Machine Ownersl, 558
[H.4 Original Publications|. 558

.5 Figure Credits| 559
6 Other SUPPOTT| . . v v o o v o 560

Preface

The purpose of this book is to help you understand how to program shared-
memory parallel machines without risking your Sanityﬂ By describing the al-
gorithms and designs that have worked well in the past, we hope to help you
avoid at least some of the pitfalls that have beset parallel projects. But you
should think of this book as a foundation on which to build, rather than as a
completed cathedral. Your mission, if you choose to accept, is to help make fur-
ther progress in the exciting field of parallel programming, progress that should
in time render this book obsolete. Parallel programming is not as hard as it is
reputed, and it is hoped that this book makes it even easier for you.

This book follows a watershed shift in the parallel-programming field, from
being primarily the domain of science, research, and grand-challenge projects
to being primarily an engineering discipline. In presenting this engineering
discipline, this book will examine the specific development tasks peculiar to
parallel programming, and describe how they may be most effectively handled,
and, in some surprisingly common special cases, automated.

This book is written in the hope that presenting the engineering discipline
underlying successful parallel-programming projects will free a new generation
of parallel hackers from the need to slowly and painstakingly reinvent old wheels,
instead focusing their energy and creativity on new frontiers. Although the book
is intended primarily for self-study, it is likely to be more generally useful. It is
hoped that this book will be useful to you, and that the experience of parallel
programming will bring you as much fun, excitement, and challenge as it has
provided the authors over the years.

1 Or, perhaps more accurately, without much greater risk to your sanity than that incurred
by non-parallel programming. Which, come to think of it, might not be saying all that much.
Either way, Appendix E discusses some important questions whose answers are less intuitive
in parallel programs than in sequential program.

xi

xii CONTEI

Chapter 1

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a
hacker can tackle. Papers and textbooks warn of the perils of deadlock, livelock,
race conditions, non-determinism, Amdahl’s-Law limits to scaling, and excessive
realtime latencies. And these perils are quite real; we authors have accumulated
uncounted years of experience dealing with them, and all of the emotional scars,
grey hairs, and hair loss that go with such an experience.

However, new technologies have always been difficult to use at introduction,
but have invariably become easier over time. For example, there was a time
when the ability to drive a car was a rare skill, but in many developed countries,
this skill is now commonplace. This dramatic change came about for two basic
reasons: (1) cars became cheaper and more readily available, so that more people
had the opportunity to learn to drive, and (2) cars became simpler to operate,
due to automatic transmissions, automatic chokes, automatic starters, greatly
improved reliability, and a host of other technological improvements.

The same is true of a host of other technologies, including computers. It
is no longer necessary to operate a keypunch in order to program. Spread-
sheets allow most non-programmers to get results from their computers that
would have required a team of specialists a few decades ago. Perhaps the most
compelling example is web-surfing and content creation, which since the early
2000s has been easily done by untrained, uneducated people using various now-
commonplace social-networking tools. As recently as 1968, such content creation
was a far-out research project |[Eng68], described at the time as “like a UFO
landing on the White House lawn” [Gri00].

Therefore, if you wish to argue that parallel programming will remain as
difficult as it is currently perceived by many to be, it is you who bears the
burden of proof, keeping in mind the many centuries of counter-examples in a
variety of fields of endeavor.

1.1 Historic Parallel Programming Difficulties

As indicated by its title, this book takes a different approach. Rather than
complain about the difficulty of parallel programming, it instead examines the
reasons why parallel programming is difficult, and then works to help the reader
to overcome these difficulties. As will be seen, these difficulties have fallen into

2 CHAPTER 1.

several categories, including;:

1. The historic high cost and relative rarity of parallel systems.

2. The typical researcher’s and practitioner’s lack of experience with parallel
systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel program-
ming.

5. The high cost of communication relative to that of processing, even in
tightly coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome.
First, over the past few decades, the cost of parallel systems has decreased from
many multiples of that of a house to a fraction of that of a used car, thanks to
the advent of multicore systems. Papers calling out the advantages of multicore
CPUs were published as early as 1996 [ONH"96], IBM introduced simultaneous
multi-threading into its high-end POWER family in 2000, and multicore in 2001.
Intel introduced hyperthreading into its commodity Pentium line in November
2000, and both AMD and Intel introduced dual-core CPUs in 2005. Sun followed
with the multicore/multi-threaded Niagara in late 2005. In fact, in 2008, it is
becoming difficult to find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices.

Second, the advent of low-cost and readily available multicore system means
that the once-rare experience of parallel programming is now available to al-
most all researchers and practitioners. In fact, parallel systems are now well
within the budget of students and hobbyists. We can therefore expect greatly
increased levels of invention and innovation surrounding parallel systems, and
that increased familiarity will over time make once-forbidding field of parallel
programming much more friendly and commonplace.

Third, where in the 20" century, large systems of highly parallel soft-
ware were almost always closely guarded proprietary secrets, the 215° century
has seen numerous open-source (and thus publicly available) parallel software
projects, including the Linux kernel [Tor03], database systems [Pos08, MS0§],
and message-passing systems [The08, [UoC08]. This book will draw primarily
from the Linux kernel, but will provide much material suitable for user-level
applications.

Fourth, even though the large-scale parallel-programming projects of the
1980s and 1990s were almost all proprietary projects, these projects have seeded
the community with a cadre of developers who understand the engineering dis-
cipline required to develop production-quality parallel code. A major purpose
of this book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to
that of processing, remains largely in force. Although this difficulty has been
receiving increasing attention during the new millennium, according to Stephen
Hawking, the finite speed of light and the atomic nature of matter is likely to
limit progress in this area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned engineering discipline

INTRODUCT!

1.2. PARALLEL PROGRAMMING GOALS

has evolved practical and effective strategies for handling it. In addition, hard-
ware designers are increasingly aware of these issues, so perhaps future hardware
will be more friendly to parallel software as discussed in Section [2.3

Quick Quiz 1.1: Come on now!!! Parallel programming has been known
to be exceedingly hard for many decades. You seem to be hinting that it is not
so hard. What sort of game are you playing? W

However, even though parallel programming might not be as hard as is
commonly advertised, it is often more work than is sequential programming.

Quick Quiz 1.2: How could parallel programming ever be as easy as se-
quential programming? W

It therefore makes sense to consider alternatives to parallel programming.
However, it is not possible to reasonably consider parallel-programming alterna-
tives without understanding parallel-programming goals. This topic is addressed
in the next section.

1.2 Parallel Programming Goals

The three major goals of parallel programming (over and above those of sequen-
tial programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Quick Quiz 1.3: Oh, really??? What about correctness, maintainability,
robustness, and so on? W

Quick Quiz 1.4: And if correctness, maintainability, and robustness don’t
make the list, why do productivity and generality” H

Quick Quiz 1.5: Given that parallel programs are much harder to prove
correct than are sequential programs, again, shouldn’t correctness really be on
the list? W

Quick Quiz 1.6: What about just having fun? Wl

Each of these goals is elaborated upon in the following sections.

1.2.1 Performance

Performance is the primary goal behind most parallel-programming effort. After
all, if performance is not a concern, why not do yourself a favor, just write se-
quential code, and be happy? It will very likely be easier, and you will probably
get done much more quickly.

Quick Quiz 1.7: Are there no cases where parallel programming is about
something other than performance? M

Note that “performance” is interpreted quite broadly here, including scal-
ability (performance per CPU) and efficiency (for example, performance per
watt).

That said, the focus of performance has shifted from hardware to parallel
software. This change in focus is due to the fact that although Moore’s Law
continues to deliver increases in transistor density, it has ceased to provide the

4 CHAPTER 1.

10000 =TT T T T T 7
»
2 A i
S 1000 | =
< i]
8 - -]
o 100 | %? =
g i o]
T 5
~ 10 - =
8 ++ i
) i #+ +]
) 1F + —
o | _
G +
oq L— 1 1 1041]
Yo} o To) o Te} o Te} o Te}
N~ o] [e0) D (o] o o — ~—
(o)} (o)} (o)) (o)) (o)} o o o o
— — — -~ ~— Al (aV} A A
Year

Figure 1.1: MIPS/Clock-Frequency Trend for Intel CPUs

traditional single-threaded performance increases, as can be seen in Figure
This means that writing single-threaded code and simply waiting a year or two
for the CPUs to catch up may no longer be an option. Given the recent trends on
the part of all major manufacturers towards multicore/multithreaded systems,
parallelism is the way to go for those wanting the avail themselves of the full
performance of their systems.

Even so, the first goal is performance rather than scalability, especially given
that the easiest way to attain linear scalability is to reduce the performance of
each CPU [Tor(0l]. Given a four-CPU system, which would you prefer? A
program that provides 100 transactions per second on a single CPU, but does
not scale at all? Or a program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems like a better bet,
though the answer might change if you happened to be one of the lucky few
with access to a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of
itself a reason to use them all, especially given the recent decreases in price of
multi-CPU systems. The key point to understand is that parallel programming
is primarily a performance optimization, and, as such, it is one potential opti-
mization of many. If your program is fast enough as currently written, there is
no reason to optimize, either by parallelizing it or by applying any of a number
of potential sequential optimizationsﬂ By the same token, if you are looking
to apply parallelism as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential algorithms. This

I This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or
more instructions per clock, and MIPS for older CPUs requiring multiple clocks to execute even
the simplest instruction. The reason for taking this approach is that the newer CPUs’ ability
to retire multiple instructions per clock is typically limited by memory-system performance.

2 Of course, if you are a hobbyist whose primary interest is writing parallel software, that
is more than enough reason to parallelize whatever software you are interested in.

INTRODUCT!

1.2. PARALLEL PROGRAMMING GOALS

100000 F— T T T T T #;: =
10000 F -
[S
Q 1000 g —
o -]
3 100 £ Jﬁ# -
N - { 1
& B :t+++]
= 10 F ::I- -
5 + H#+ + i
1 -
[+]

0.1 | | | | | | |
0n O 1 O WV O W O W
N © ® ® O O O — +—
o O O O O O O o o
— ~— — — -~ A (aV] Al A

Year

Figure 1.2: MIPS per Die for Intel CPUs

may require some care, as far too many publications ignore the sequential case
when analyzing the performance of parallel algorithms.

1.2.2 Productivity

Quick Quiz 1.8: Why all this prattling on about non-technical issues??? And
not just any non-technical issue, but productivity of all things? Who cares? Bl

Productivity has been becoming increasingly important through the decades.
To see this, consider that early computers cost millions of dollars at a time when
engineering salaries were a few thousand dollars a year. If dedicating a team of
ten engineers to such a machine would improve its performance by 10%, their
salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program
computer, put in operation in 1949 [Mus04, [Mel06]. Given that the machine had
but 768 words of RAM, it is safe to say that the productivity issues that arise
in large-scale software projects were not an issue for this machine. Because
this machine was built before the transistor era, it was constructed of 2,000
vacuum tubes, ran with a clock frequency of 1kHz, consumed 30kW of power,
and weighed more than three metric tons.

It would be difficult to purchase a machine with this little compute power
roughly sixty years later (2008), with the closest equivalents being 8-bit embed-
ded microprocessors exemplified by the venerable Z80 [Wik08]. This CPU had
8,500 transistors, and can still be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC, software-development
costs are anything but insignificant for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen
in Figure This figure plots an approximation to computational power per
die over the past three decades, showing a consistent four-order-of-magnitude
increase. Note that the advent of multicore CPUs has permitted this increase

6 CHAPTER 1.

to continue unabated despite the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid decrease in the cost of
hardware is that software productivity grows increasingly important. It is no
longer sufficient merely to make efficient use of the hardware, it is now also
necessary to make extremely efficient use of software developers. This has long
been the case for sequential hardware, but only recently has parallel hardware
become a low-cost commodity. Therefore, the need for high productivity in
creating parallel software has only recently become hugely important.

Quick Quiz 1.9: Given how cheap parallel hardware has become, how can
anyone afford to pay people to program it? H

Perhaps at one time, the sole purpose of parallel software was performance.
Now, however, productivity is increasingly important.

1.2.3 Generality

One way to justify the high cost of developing parallel software is to strive for
maximal generality. All else being equal, the cost of a more-general software
artifact can be spread over more users than can a less-general artifact.

Unfortunately, generality often comes at the cost of performance, productiv-
ity, or both. To see this, consider the following popular parallel programming
environments:

C/C++ “Locking Plus Threads” : This category, which includes POSIX
Threads (pthreads) [Ope97], Windows Threads, and numerous operating-
system kernel environments, offers excellent performance (at least within
the confines of a single SMP system) and also offers good generality. Pity
about the relatively low productivity.

Java : This programming environment, which is inherently multithreaded, is
widely believed to be much more productive than C or C++4, courtesy
of the automatic garbage collector and the rich set of class libraries, and
is reasonably general purpose. However, its performance, though greatly
improved over the past ten years, is generally considered to be less than
that of C and C++.

MPT : this message-passing interface [MPIO8] powers the largest scientific and
technical computing clusters in the world, so offers unparalleled perfor-
mance and scalability. It is in theory general purpose, but has generally
been used for scientific and technical computing. Its productivity is be-
lieved by many to be even less than that of C/C++ “locking plus threads”
environments.

OpenMP : this set of compiler directives can be used to parallelize loops.
It is thus quite specific to this task, and this specificity often limits its
performance. It is, however, much easier to use than MPI or parallel
C/C++.

SQL : structured query language [Int92] is extremely specific, applying only
to relational database queries. However, its performance is quite good,
doing quite well in Transaction Processing Performance Council (TPC)

INTRODUCT!

1.2. PARALLEL PROGRAMMING GOALS

Productivity

Performance
Alelsuan

Figure 1.3: Software Layers and Performance, Productivity, and Generality

benchmarks [Tra01]. Productivity is excellent, in fact, this parallel pro-
gramming environment permits people who know almost nothing about
parallel programming to make good use of a large parallel machine.

The nirvana of parallel programming environments, one that offers world-
class performance, productivity, and generality, simply does not yet exist. Un-
til such a nirvana appears, it will be necessary to make engineering tradeoffs
among performance, productivity, and generality. One such tradeoff is shown
in Figure|l.3] which shows how productivity becomes increasingly important at
the upper layers of the system stack, while performance and generality become
increasingly important at the lower layers of the system stack. The huge devel-
opment costs incurred near the bottom of the stack must be spread over equally
huge numbers of users on the one hand (hence the importance of generality),
and performance lost near the bottom of the stack cannot easily be recovered
further up the stack. Near the top of the stack, there might be very few users for
a given specific application, in which case productivity concerns are paramount.
This explains the tendency towards “bloatware” further up the stack: extra
hardware is often cheaper than would be the extra developers. This book is
intended primarily for developers working near the bottom of the stack, where
performance and generality are paramount concerns.

It is important to note that a tradeoff between productivity and generality
has existed for centuries in many fields. For but one example, a nailgun is far
more productive than is a hammer, but in contrast to the nailgun, a hammer can
be used for many things besides driving nails. It should therefore be absolutely
no surprise to see similar tradeoffs appear in the field of parallel computing.
This tradeoff is shown schematically in Figure Here, Users 1, 2, 3, and 4
have specific jobs that they need the computer to help them with. The most
productive possible language or environment for a given user is one that simply
does that user’s job, without requiring any programming, configuration, or other
setup.

Quick Quiz 1.10: This is a ridiculously unachievable ideal! Why not focus
on something that is achievable in practice?

Unfortunately, a system that does the job required by user 1 is unlikely to do

8 CHAPTER 1.

Special-Purpose
~<—Env Productive User2
for User1
\

Spemal Purpose
Environment
Productlve for User 2

User 3 General- Purpose User 4
Environment

Special-Purpose Environment s
) pecial-Purpose
Productive for User 3 Environment

Productive for User 4
Figure 1.4: Tradeoff Between Productivity and Generality

user 2’s job. In other words, the most productive languages and environments
are domain-specific, and thus by definition lacking generality.

Another option is to tailor a given programming language or environment
to the hardware system (for example, low-level languages such as assembly, C,
C++, or Java) or to some abstraction (for example, Haskell, Prolog, or Snobol),
as is shown by the circular region near the center of Figure[1.4] These languages
can be considered to be general in the sense that they are equally ill-suited to
the jobs required by users 1, 2, 3, and 4. In other words, their generality is
purchased at the expense of decreased productivity when compared to domain-
specific languages and environments.

With the three often-conflicting parallel-programming goals of performance,
productivity, and generality in mind, it is now time to look into avoiding these
conflicts by considering alternatives to parallel programming.

1.3 Alternatives to Parallel Programming

In order to properly consider alternatives to parallel programming, you must
first have thought through what you expect the parallelism to do for you. As
seen in Section[I.2] the primary goals of parallel programming are performance,
productivity, and generality.

Although historically most parallel developers might be most concerned with
the first goal, one advantage of the other goals is that they relieve you of the
need to justify using parallelism. The remainder of this section is concerned
only performance improvement.

It is important to keep in mind that parallelism is but one way to improve
performance. Other well-known approaches include the following, in roughly
increasing order of difficulty:

1. Run multiple instances of a sequential application.

2. Construct the application to make use of existing parallel software.

INTRODUCT!

1.3. ALTERNATIVES TO PARALLEL PROGRAMMING

3. Apply performance optimization to the serial application.

1.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do
parallel programming without actually doing parallel programming. There are
a large number of ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different scenarios, or is ana-
lyzing a large number of independent data sets, one easy and effective approach
is to create a single sequential program that carries out a single analysis, then
use any of a number of scripting environments (for example the bash shell) to
run a number of instances of this sequential program in parallel. In some cases,
this approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact some denigrate such
programs as “embarrassingly parallel”. And in fact, this approach does have
some potential disadvantages, including increased memory consumption, waste
of CPU cycles recomputing common intermediate results, and increased copying
of data. However, it is often extremely effective, garnering extreme performance
gains with little or no added effort.

1.3.2 Make Use of Existing Parallel Software

There is no longer any shortage of parallel software environments that can
present a single-threaded programming environment, including relational databases,
web-application servers, and map-reduce environments. For example, a common
design provides a separate program for each user, each of which generates SQL
that is run concurrently against a common relational database. The per-user
programs are responsible only for the user interface, with the relational database
taking full responsibility for the difficult issues surrounding parallelism and per-
sistence.

Taking this approach often sacrifices some performance, at least when com-
pared to carefully hand-coding a fully parallel application. However, such sac-
rifice is often justified given the great reduction in development effort required.

1.3.3 Performance Optimization

Up through the early 2000s, CPU performance was doubling every 18 months.
In such an environment, it is often much more important to create new func-
tionality than to do careful performance optimization. Now that Moore’s Law
is “only” increasing transistor density instead of increasing both transistor den-
sity and per-transistor performance, it might be a good time to rethink the
importance of performance optimization.

After all, performance optimization can reduce power consumption as well
as increasing performance.

From this viewpoint, parallel programming is but another performance opti-
mization, albeit one that is becoming much more attractive as parallel systems
become cheaper and more readily available. However, it is wise to keep in mind
that the speedup available from parallelism is limited to roughly the number of

10 CHAPTER 1. INTRODUCT:

CPUs, while the speedup potentially available from straight software optimiza-
tion can be multiple orders of magnitude.

Furthermore, different programs might have different performance bottle-
necks. Parallel programming will only help with some bottlenecks. For example,
suppose that your program spends most of its time waiting on data from your
disk drive. In this case, making your program use multiple CPUs is not likely
to gain much performance. In fact, if the program was reading from a large file
laid out sequentially on a rotating disk, parallelizing your program might well
make it a lot slower. You should instead add more disk drives, optimize the
data so that the file can be smaller (thus faster to read), or, if possible, avoid
the need to read quite so much of the data.

Quick Quiz 1.11: What other bottlenecks might prevent additional CPUs
from providing additional performance? H

Parallelism can be a powerful optimization technique, but it is not the only
such technique, nor is it appropriate for all situations. Of course, the easier it
is to parallelize your program, the more attractive parallelization becomes as
an optimization. Parallelization has a reputation of being quite difficult, which
leads to the question “exactly what makes parallel programming so difficult?”

1.4 What Makes Parallel Programming Hard?

It is important to note that the difficulty of parallel programming is as much a
human-factors issue as it is a set of technical properties of the parallel program-
ming problem. This is the case because we need human beings to be able to tell
parallel systems what to do, and this two-way communication between human
and computer is as much a function of the human as it is of the computer.
Therefore, appeals to abstractions or to mathematical analyses will necessarily
be of severely limited utility.

In the Industrial Revolution, the interface between human and machine was
evaluated by human-factor studies, then called time-and-motion studies. Al-
though there have been a few human-factor studies examining parallel pro-
gramming [ENS05| [ES05, [HCS™05, [SS94], these studies have been extremely
narrowly focused, and hence unable to demonstrate any general results. Fur-
thermore, given that the normal range of programmer productivity spans more
than an order of magnitude, it is unrealistic to expect an affordable study to
be capable of detecting (say) a 10% difference in productivity. Although the
multiple-order-of-magnitude differences that such studies can reliably detect are
extremely valuable, the most impressive improvements tend to be based on a
long series of 10% improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel program-
mers must undertake that are not required of sequential programmers. We can
then evaluate how well a given programming language or environment assists
the developer with these tasks. These tasks fall into the four categories shown
in Figure each of which is covered in the following sections.

1.4. WHAT MAKES PARALLEL PROGRAMMING HARD?

Ve

~
Performance Productivity

Generality

Figure 1.5: Categories of Tasks Required of Parallel Programmers

1.4.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: if there is but
one “glob” of work, then it can be executed by at most one CPU at a time, which
is by definition sequential execution. However, partitioning the code requires
great care. For example, uneven partitioning can result in sequential execution
once the small partitions have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware, thus attaining more-
optimal performance.

In addition, partitioning of work can complicate handling of global errors and
events: a parallel program may need to carry out non-trivial synchronization in
order to safely process such global events.

Each partition requires some sort of communication: after all, if a given
thread did not communicate at all, it would have no effect and would thus not
need to be executed. However, because communication incurs overhead, careless
partitioning choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must often be controlled,
as each such thread occupies common resources, for example, space in CPU
caches. If too many threads are permitted to execute concurrently, the CPU
caches will overflow, resulting in high cache miss rate, which in turn degrades
performance. On the other hand, large numbers of threads are often required
to overlap computation and 1/0.

Quick Quiz 1.12: What besides CPU cache capacity might require limiting
the number of concurrent threads? M

Finally, permitting threads to execute concurrently greatly increases the
program’s state space, which can make the program difficult to understand,
degrading productivity. All else being equal, smaller state spaces having more
regular structure are more easily understood, but this is a human-factors state-
ment as much as it is a technical or mathematical statement. Good parallel
designs might have extremely large state spaces, but nevertheless be easy to
understand due to their regular structure, while poor designs can be impenetra-
ble despite having a comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to one having an embar-
rassingly parallel solution. In either case, “embarrassingly parallel” is in fact an

11

12 CHAPTER 1. INTRODUCT:

embarrassment of riches. The current state of the art enumerates good designs;
more work is required to make more general judgements on state-space size and
structure.

1.4.2 Parallel Access Control

Given a sequential program with only a single thread, that single thread has
full access to all of the program’s resources. These resources are most often
in-memory data structures, but can be CPUs, memory (including caches), I/0
devices, computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the form of the access to
a given resource depends on that resource’s location. For example, in many
message-passing environments, local-variable access is via expressions and as-
signments, while remote-variable access uses an entirely different syntax, usu-
ally involving messaging. The POSIX threads environment [Ope97], Structured
Query Language (SQL) [Int92], and partitioned global address-space (PGAS)
environments such as Universal Parallel C (UPC) [EGCDO03| offer implicit ac-
cess, while Message Passing Interface (MPI) [MPIOS] offers explicit access be-
cause access to remote data requires explicit messaging.

The other parallel access-control issue is how threads coordinate access to
the resources. This coordination is carried out by the very large number of
synchronization mechanisms provided by various parallel languages and envi-
ronments, including message passing, locking, transactions, reference counting,
explicit timing, shared atomic variables, and data ownership. Many traditional
parallel-programming concerns such as deadlock, livelock, and transaction roll-
back stem from this coordination. This framework can be elaborated to in-
clude comparisons of these synchronization mechanisms, for example locking
vs. transactional memory [MMWO7], but such elaboration is beyond the scope
of this section.

1.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallelism,
so much so that it is usually wise to begin parallelization by partitioning your
write-intensive resources and replicating frequently accessed read-mostly re-
sources. The resource in question is most frequently data, which might be
partitioned over computer systems, mass-storage devices, NUMA nodes, CPU
cores (or dies or hardware threads), pages, cache lines, instances of synchro-
nization primitives, or critical sections of code. For example, partitioning over
locking primitives is termed “data locking” [BKS85].

Resource partitioning is frequently application dependent, for example, nu-
merical applications frequently partition matrices by row, column, or sub-matrix,
while commercial applications frequently partition write-intensive data struc-
tures and replicate read-mostly data structures. For example, a commercial
application might assign the data for a given customer to a given few computer
systems out of a large cluster. An application might statically partition data,
or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite challenging
for complex multilinked data structures.

1.4. WHAT MAKES PARALLEL PROGRAMMING HARD?

Ve

~
Performance Productivity

’—ﬁ

Generality

Figure 1.6: Ordering of Parallel-Programming Tasks

1.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the com-
piler, libraries, or other software-environment infrastructure. However, devel-
opers working with novel hardware features and components will often need to
work directly with such hardware. In addition, direct access to the hardware
can be required when squeezing the last drop of performance out of a given sys-
tem. In this case, the developer may need to tailor or configure the application
to the cache geometry, system topology, or interconnect protocol of the target
hardware.

In some cases, hardware may be considered to be a resource which may be
subject to partitioning or access control, as described in the previous sections.

1.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice uses
composites of these capabilities. For example, the data-parallel approach first
partitions the data so as to minimize the need for inter-partition communication,
partitions the code accordingly, and finally maps data partitions and threads
S0 as to maximize throughput while minimizing inter-thread communication, as
shown in Figure The developer can then consider each partition separately,
greatly reducing the size of the relevant state space, in turn increasing produc-
tivity. Of course, some problems are non-partitionable but on the other hand,
clever transformations into forms permitting partitioning can greatly enhance
both performance and scalability [Met99].

1.4.6 How Do Languages and Environments Assist With
These Tasks?

Although many environments require that the developer deal manually with
these tasks, there are long-standing environments that bring significant automa-
tion to bear. The poster child for these environments is SQL, many implemen-
tations of which automatically parallelize single large queries and also automate
concurrent execution of independent queries and updates.

13

14 CHAPTER 1. INTRODUCT:

These four categories of tasks must be carried out in all parallel programs,
but that of course does not necessarily mean that the developer must manually
carry out these tasks. We can expect to see ever-increasing automation of these
four tasks as parallel systems continue to become cheaper and more readily
available.

Quick Quiz 1.13: Are there any other obstacles to parallel programming?
]

1.5 Guide to This Book

This book is not a collection of optimal algorithms with tiny areas of applicabil-
ity; instead, it is a handbook of widely applicable and heavily used techniques.
We of course could not resist the urge to include some of our favorites that have
not (yet!) passed the test of time (what author could?), but we have nonethe-
less gritted our teeth and banished our darlings to appendices. Perhaps in time,
some of them will see enough use that we can promote them into the main body
of the text.

1.5.1 Quick Quizzes

“Quick quizzes” appear throughout this book. Some of these quizzes are based
on material in which that quick quiz appears, but others require you to think
beyond that section, and, in some cases, beyond the entire book. As with most
endeavors, what you get out of this book is largely determined by what you
are willing to put into it. Therefore, readers who invest some time into these
quizzes will find their effort repaid handsomely with increased understanding of
parallel programming.
Answers to the quizzes may be found in Appendix [F]starting on page
Quick Quiz 1.14: Where are the answers to the Quick Quizzes found? B
Quick Quiz 1.15: Some of the Quick Quiz questions seem to be from the
viewpoint of the reader rather than the author. Is that really the intent? H
Quick Quiz 1.16: These Quick Quizzes just are not my cup of tea. What
do you recommend? W

1.5.2 Sample Source Code

This book discusses its fair share of source code, and in many cases this source
code may be found in the CodeSamples directory of this book’s git tree. For
example, on UNIX systems, you should be able to type:

find CodeSamples -name rcu_rcpls.c -print

to locate the file rcu_rcpls. c, which is called out in Section Other types
of systems have well-known ways of locating files by filename.

The source to this book may be found in the git archive at git://git.
kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git, and git it-
self is available as part of most mainstream Linux distributions. PDFs of
this book are sporadically posted at http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html.

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

Chapter 2

Hardware and its Habits

Most people have an intuitive understanding that passing messages between sys-
tems is considerably more expensive than performing simple calculations within
the confines of a single system. However, it is not always so clear that communi-
cating among threads within the confines of a single shared-memory system can
also be quite expensive. This chapter therefore looks the cost of synchroniza-
tion and communication within a shared-memory system. This chapter merely
scratches the surface of shared-memory parallel hardware design; readers desir-
ing more detail would do well to start with a recent edition of Hennessy and
Patterson’s classic text [HP95].

Quick Quiz 2.1: Why should parallel programmers bother learning low-
level properties of the hardware? Wouldn’t it be easier, better, and more general
to remain at a higher level of abstraction? H

2.1 Overview

Careless reading of computer-system specification sheets might lead one to be-
lieve that CPU performance is a footrace on a clear track, as illustrated in
Figure 2.1} where the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the ideal
shown in Figure the typical program more closely resembles an obstacle
course than a race track. This is because the internal architecture of CPUs
has changed dramatically over the past few decades, courtesy of Moore’s Law.
These changes are described in the following sections.

2.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an instruction, decoded
it, and executed it, typically taking at least three clock cycles to complete one
instruction before proceeding to the next. In contrast, the CPU of the late
1990s and early 2000s will be executing many instructions simultaneously, using
a deep “pipeline” to control the flow of instructions internally to the CPU, this
difference being illustrated by Figure

Achieving full performance with a CPU having a long pipeline requires highly
predictable control flow through the program. Suitable control flow can be

15

16 CHAPTER 2. HARDWARE AND ITS HAB

CPU Benchimar k.
|- “Trac kmeet

Figure 2.1: CPU Performance at its Best

provided by a program that executes primarily in tight loops, for example,
programs doing arithmetic on large matrices or vectors. The CPU can then
correctly predict that the branch at the end of the loop will be taken in almost
all cases. In such programs, the pipeline can be kept full and the CPU can
execute at full speed.

If, on the other hand, the program has many loops with small loop counts, or
if the program is object oriented with many virtual objects that can reference
many different real objects, all with different implementations for frequently
invoked member functions, then it is difficult or even impossible for the CPU
to predict where a given branch might lead. The CPU must then either stall
waiting for execution to proceed far enough to know for certain where the branch
will lead, or guess — and, in the face of programs with unpredictable control
flow, frequently guess wrong. In either case, the pipeline will empty and have to
be refilled, leading to stalls that can drastically reduce performance, as fancifully
depicted in Figure 2.3]

Unfortunately, pipeline flushes are not the only hazards in the obstacle course
that modern CPUs must run. The next section covers the hazards of referencing
memory.

2.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from
memory than it did to execute an instruction. In 2006, a microprocessor might
be capable of executing hundreds or even thousands of instructions in the time
required to access memory. This disparity is due to the fact that Moore’s Law
has increased CPU performance at a much greater rate than it has increased

2.1. OVERVIEW

r“f-" The oNLY PT

PEL}ME\
= cooll
J

(‘ INE&F < =
THAY T

>F R

Figure 2.2: CPUs Old and New

memory performance, in part due to the rate at which memory sizes have grown.
For example, a typical 1970s minicomputer might have 4KB (yes, kilobytes, not
megabytes, let alone gigabytes) of main memory, with single-cycle access. In
2008, CPU designers still can construct a 4KB memory with single-cycle access,
even on systems with multi-GHz clock frequencies. And in fact they frequently
do construct such memories, but they now call them “level-0 caches”.

Although the large caches found on modern microprocessors can do quite
a bit to help combat memory-access latencies, these caches require highly pre-
dictable data-access patterns to successfully hide memory latencies. Unfortu-
nately, common operations, such as traversing a linked list, have extremely un-
predictable memory-access patterns — after all, if the pattern was predictable,
us software types would not bother with the pointers, right?

Therefore, as shown in Figure [2.4] memory references are often severe ob-
stacles for modern CPUs.

Thus far, we have only been considering obstacles that can arise during a
given CPU’s execution of single-threaded code. Multi-threading presents addi-
tional obstacles to the CPU, as described in the following sections.

2.1.3 Atomic Operations

One such obstacle is atomic operations. The whole idea of an atomic operation
in some sense conflicts with the piece-at-a-time assembly-line operation of a
CPU pipeline. To hardware designers’ credit, modern CPUs use a number of
extremely clever tricks to make such operations look atomic even though they
are in fact being executed piece-at-a-time, but even so, there are cases where
the pipeline must be delayed or even flushed in order to permit a given atomic
operation to complete correctly.

The resulting effect on performance is depicted in Figure 2.5

Unfortunately, atomic operations usually apply only to single elements of
data. Because many parallel algorithms require that ordering constraints be

17

18 CHAPTER 2. HARDWARE AND ITS HAB

Figure 2.3: CPU Meets a Pipeline Flush

maintained between updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as performance-sapping
obstacles, as described in the next section.

Quick Quiz 2.2: What types of machines would allow atomic operations
on multiple data elements? Wl

2.1.4 Memory Barriers

Memory barriers will be considered in more detail in Section and Ap-
pendix [C] In the meantime, consider the following simple lock-based critical
section:

1 spin_lock(&mylock) ;
2a=a+1;
3 spin_unlock(&mylock) ;

If the CPU were not constrained to execute these statements in the order
shown, the effect would be that the variable “a” would be incremented with-
out the protection of “mylock”, which would certainly defeat the purpose of
acquiring it. To prevent such destructive reordering, locking primitives contain
either explicit or implicit memory barriers. Because the whole purpose of these
memory barriers is to prevent reorderings that the CPU would otherwise under-
take in order to increase performance, memory barriers almost always reduce
performance, as depicted in Figure [2.6

2.1.5 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache miss”.
As noted earlier, modern CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to slow memory latencies.

2.1. OVERVIEW

Figure 2.4: CPU Meets a Memory Reference

However, these caches are actually counter-productive for variables that are
frequently shared among CPUs. This is because when a given CPU wishes to
modify the variable, it is most likely the case that some other CPU has modified
it recently. In this case, the variable will be in that other CPU’s cache, but not
in this CPU’s cache, which will therefore incur an expensive cache miss (see
Section for more detail). Such cache misses form a major obstacle to CPU
performance, as shown in Figure

2.1.6 I/0 Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such is
one of the cheapest I/O operations available. I/O operations involving network-
ing, mass storage, or (worse yet) human beings pose much greater obstacles than
the internal obstacles called out in the prior sections, as illustrated by Figure|2.8

This is one of the differences between shared-memory and distributed-system
parallelism: shared-memory parallel programs must normally deal with no ob-
stacle worse than a cache miss, while a distributed parallel program will typically
incur the larger network communication latencies. In both cases, the relevant
latencies can be thought of as a cost of communication—a cost that would be
absent in a sequential program. Therefore, the ratio between the overhead of
the communication to that of the actual work being performed is a key design
parameter. A major goal of parallel design is to reduce this ratio as needed to
achieve the relevant performance and scalability goals.

Of course, it is one thing to say that a given operation is an obstacle, and
quite another to show that the operation is a significant obstacle. This distinc-
tion is discussed in the following sections.

19

20 CHAPTER 2. HARDWARE AND ITS HAB

Figure 2.5: CPU Meets an Atomic Operation

2.2 Overheads

This section presents actual overheads of the obstacles to performance listed
out in the previous section. However, it is first necessary to get a rough view of
hardware system architecture, which is the subject of the next section.

2.2.1 Hardware System Architecture

Figure 2.9 shows a rough schematic of an eight-core computer system. Each die
has a pair of CPU cores, each with its cache, as well as an interconnect allowing
the pair of CPUs to communicate with each other. The system interconnect
in the middle of the diagram allows the four dies to communicate, and also
connects them to main memory.

Data moves through this system in units of “cache lines”, which are power-
of-two fixed-size aligned blocks of memory, usually ranging from 32 to 256 bytes
in size. When a CPU loads a variable from memory to one of its registers, it
must first load the cacheline containing that variable into its cache. Similarly,
when a CPU stores a value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache, but must also ensure
that no other CPU has a copy of that cacheline.

For example, if CPU 0 were to perform a compare-and-swap (CAS) operation
on a variable whose cacheline resided in CPU 7’s cache, the following over-
simplified sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the cacheline.

2. The request is forwarded to CPU 0’s and 1’s interconnect, which checks
CPU 1’s local cache, and does not find the cacheline.

2.2. OVERHEADS

Figure 2.6: CPU Meets a Memory Barrier

3. The request is forwarded to the system interconnect, which checks with the
other three dies, learning that the cacheline is held by the die containing
CPU 6 and 7.

4. The request is forwarded to CPU 6’s and 7’s interconnect, which checks
both CPUs’ caches, finding the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect, and also flushes the
cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline to the system inter-
connect.

7. The system interconnect forwards the cacheline to CPU 0’s and 1’s inter-
connect.

8. CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the value in its cache.

Quick Quiz 2.3: This is a simplified sequence of events? How could it
possibly be any more complex? W

Quick Quiz 2.4: Why is it necessary to flush the cacheline from CPU 7’s
cache? W

22

CACHE- |
MISS |

7T OLL
BO0TH

CHAPTER 2. HARDWARE AND ITS HAB

Figure 2.7: CPU Meets a Cache Miss

2.2.2 Costs of Operations

The overheads of some common operations important to parallel programs are
displayed in Table[2.1] This system’s clock period rounds to 0.6ns. Although it is
not unusual for modern microprocessors to be able to retire multiple instructions
per clock period, the operations will be normalized to a full clock period in the
third column, labeled “Ratio”. The first thing to note about this table is the

large values of many of the ratios.

The best-case CAS operation consumes almost forty nanoseconds, a duration
more than sixty times that of the clock period. Here, “best case” means that the

Operation H Cost (ns) \ Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 | 216,000,000

Table 2.1: Performance of Synchronization Mechanisms on 4-CPU 1.8GHz AMD

Opteron 844 System

2.2. OVERHEADS

Please sty o7
e \ine-YO\X\‘/
WS vex
Sl o U

Figure 2.8: CPU Waits for I/O Completion

same CPU now performing the CAS operation on a given variable was the last
CPU to operate on this variable, so that the corresponding cache line is already
held in that CPU’s cache, Similarly, the best-case lock operation (a “round trip”
pair consisting of a lock acquisition followed by a lock release) consumes more
than sixty nanoseconds, or more than one hundred clock cycles. Again, “best
case” means that the data structure representing the lock is already in the cache
belonging to the CPU acquiring and releasing the lock. The lock operation is
more expensive than CAS because it requires two atomic operations on the lock
data structure.

An operation that misses the cache consumes almost one hundred and forty
nanoseconds, or more than two hundred clock cycles. A CAS operation, which
must look at the old value of the variable as well as store a new value, consumes
over three hundred nanoseconds, or more than five hundred clock cycles. Think
about this a bit. In the time required to do one CAS operation, the CPU
could have executed more than five hundred normal instructions. This should
demonstrate the limitations of fine-grained locking.

Quick Quiz 2.5: Surely the hardware designers could be persuaded to
improve this situation! Why have they been content with such abysmal perfor-
mance for these single-instruction operations? H

I/O operations are even more expensive. A high performance (and expen-
sivel) communications fabric, such as InfiniBand or any number of proprietary
interconnects, has a latency of roughly three microseconds, during which time
five thousand instructions might have been executed. Standards-based commu-
nications networks often require some sort of protocol processing, which further
increases the latency. Of course, geographic distance also increases latency, with
the theoretical speed-of-light latency around the world coming to roughly 130

23

24 CHAPTER 2. HARDWARE AND ITS HAB

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—= Memory

zZ= N
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPUS5 CPUB6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

Figure 2.9: System Hardware Architecture

milliseconds, or more than 200 million clock cycles.
Quick Quiz 2.6: These numbers are insanely large! How can I possibly get
my head around them? B

2.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so much focus over the
past few years is the end of Moore’s-Law induced single-threaded performance
increases (or “free lunch” [Sut0§]), as shown in Figure on page This
section briefly surveys a few ways that hardware designers might be able to
bring back some form of the “free lunch”.

However, the preceding section presented some substantial hardware obsta-
cles to exploiting concurrency. One severe physical limitation that hardware
designers face is the finite speed of light. As noted in Figure on page
light can travel only about an 8-centimeters round trip in a vacuum during the
duration of a 1.8 GHz clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively small compared to the
size of a modern computer system.

To make matters even worse, electrons in silicon move from three to thirty
times more slowly than does light in a vacuum, and common clocked logic
constructs run still more slowly, for example, a memory reference may need to
wait for a local cache lookup to complete before the request may be passed on
to the rest of the system. Furthermore, relatively low speed and high power
drivers are required to move electrical signals from one silicon die to another,
for example, to communicate between a CPU and main memory.

There are nevertheless some technologies (both hardware and software) that
might help improve matters:

1. 3D integration,

2.3. HARDWARE FREE LUNCH?

70 uy

I I <—=

3cm 1.5cm
Figure 2.10: Latency Benefit of 3D Integration

2. Novel materials and processes,
3. Substituting light for electrons,
4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sections.

2.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding very thin silicon dies
to each other in a vertical stack. This practice provides potential benefits, but
also poses significant fabrication challenges [Kni0g].

Perhaps the most important benefit of 3DI is decreased path length through
the system, as shown in Figure A 3-centimeter silicon die is replaced
with a stack of four 1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in mind that each layer is
quite thin. In addition, given proper attention to design and placement, long
horizontal electrical connections (which are both slow and power hungry) can
be replaced by short vertical electrical connections, which are both faster and
more power efficient.

However, delays due to levels of clocked logic will not be decreased by 3D
integration, and significant manufacturing, testing, power-supply, and heat-
dissipation problems must be solved for 3D integration to reach production
while still delivering on its promise. The heat-dissipation problems might be
solved using semiconductors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains difficult to grow large
single diamond crystals, to say nothing of slicing them into wafers. In addition,
it seems unlikely that any of these technologies will be able to deliver the ex-
ponential increases to which some people have become accustomed. That said,
they may be necessary steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

2.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconductor manufacturers have
but two fundamental problems: (1) the finite speed of light and (2) the atomic

25

26 CHAPTER 2. HARDWARE AND ITS HAB

nature of matter [Gar07]. It is possible that semiconductor manufacturers are
approaching these limits, but there are nevertheless a few avenues of research
and development focused on working around these fundamental limits.

One workaround for the atomic nature of matter are so-called “high-K di-
electric” materials, which allow larger devices to mimic the electrical properties
of infeasibly small devices. These materials pose some severe fabrication chal-
lenges, but nevertheless may help push the frontiers out a bit farther. Another
more-exotic workaround stores multiple bits in a single electron, relying on the
fact that a given electron can exist at a number of energy levels. It remains to
be seen if this particular approach can be made to work reliably in production
semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows
much smaller device sizes, but which is still in the research stage.

Although the speed of light would be a hard limit, the fact is that semicon-
ductor devices are limited by the speed of electrons rather than that of light,
given that electrons in semiconductor materials move at between 3% and 30%
of the speed of light in a vacuum. The use of copper connections on silicon
devices is one way to increase the speed of electrons, and it is quite possible
that additional advances will push closer still to the actual speed of light. In
addition, there have been some experiments with tiny optical fibers as inter-
connects within and between chips, based on the fact that the speed of light in
glass is more than 60% of the speed of light in a vacuum. One obstacle to such
optical fibers is the inefficiency conversion between electricity and light and vice
versa, resulting in both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics, any
exponential increases in the speed of data flow will be sharply limited by the
actual speed of light in a vacuum.

2.3.3 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending
significant time and energy doing work that is only tangentially related to the
problem at hand. For example, when taking the dot product of a pair of vectors,
a general-purpose CPU will normally use a loop (possibly unrolled) with a loop
counter. Decoding the instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in some sense wasted
effort: the real goal is instead to multiply corresponding elements of the two vec-
tors. Therefore, a specialized piece of hardware designed specifically to multiply
vectors could get the job done more quickly and with less energy consumed.

This is in fact the motivation for the vector instructions present in many
commodity microprocessors. Because these instructions operate on multiple
data items simultaneously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt,
compress and decompress, encode and decode, and many other tasks besides.
Unfortunately, this efficiency does not come for free. A computer system in-
corporating this specialized hardware will contain more transistors, which will
consume some power even when not in use. Software must be modified to take
advantage of this specialized hardware, and this specialized hardware must be
sufficiently generally useful that the high up-front hardware-design costs can be

2.4. SOFTWARE DESIGN IMPLICATIONS

spread over enough users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized hardware has thus far
appeared only for a few application areas, including graphics processing (GPUs),
vector processors (MMX, SSE; and VMX instructions), and, to a lesser extent,
encryption.

Nevertheless, given the end of Moore’s-Law-induced single-threaded perfor-
mance increases, it seems safe to predict that there will be an increasing variety
of special-purpose hardware going forward.

2.3.4 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by sur-
prise, the fact remains that shared-memory parallel computer systems have
been commercially available for more than a quarter century. This is more
than enough time for significant parallel software to make its appearance, and
it indeed has. Parallel operating systems are quite commonplace, as are par-
allel threading libraries, parallel relational database management systems, and
parallel numerical software. Using existing parallel software goes a long ways
towards solving any parallel-software crisis we might encounter.

Perhaps the most common example is the parallel relational database man-
agement system. It is not unusual for single-threaded programs, often written
in high-level scripting languages, to access a central relational database concur-
rently. In the resulting highly parallel system, only the database need actually
deal directly with parallelism. A very nice trick when it works!

2.4 Software Design Implications

The values of the ratios in Table [2.I] are critically important, as they limit the
efficiency of a given parallel application. To see this, suppose that the parallel
application uses CAS operations to communicate among threads. These CAS
operations will typically involve a cache miss, that is, assuming that the threads
are communicating primarily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each CAS communication
operation takes 300ns, which is sufficient time to compute several floating-point
transcendental functions. Then about half of the execution time will be con-
sumed by the CAS communication operations! This in turn means that a two-
CPU system running such a parallel program would run no faster than one a
sequential implementation running on a single CPU.

The situation is even worse in the distributed-system case, where the latency
of a single communications operation might take as long as thousands or even
millions of floating-point operations. This illustrates how important it is for
communications operations to be extremely infrequent and to enable very large
quantities of processing.

Quick Quiz 2.7: Given that distributed-systems communication is so hor-
ribly expensive, why does anyone bother with them? H

The lesson should be quite clear: parallel algorithms must be explicitly de-
signed to run nearly independent threads. The less frequently the threads com-
municate, whether by atomic operations, locks, or explicit messages, the better

27

28 CHAPTER 2. HARDWARE AND ITS HAB

the application’s performance and scalability will be. In short, achieving excel-
lent parallel performance and scalability means striving for embarrassingly par-
allel algorithms and implementations, whether by careful choice of data struc-
tures and algorithms, use of existing parallel applications and environments, or
transforming the problem into one for which an embarrassingly parallel solution
exists.

Chapter [5| will discuss design disciplines that promote performance and scal-
ability.

Chapter 3

Tools of the Trade

This chapter provides a brief introduction to some basic tools of the parallel-
programming trade, focusing mainly on those available to user applications run-
ning on operating systems similar to Linux. Section begins with scripting
languages, Section describes the multi-process parallelism supported by the
POSIX API, Section touches on POSIX threads, and finally, Section 3.3
describes atomic operations.

Please note that this chapter provides but a brief introduction. More detail
is available from the references cited, and more information on how best to use
these tools will be provided in later chapters.

3.1 Scripting Languages

The Linux shell scripting languages provide simple but effective ways of man-
aging parallelism. For example, suppose that you had a program compute_it
that you needed to run twice with two different sets of arguments. This can be
accomplished as follows:

1 compute_it 1 > compute_it.l.out &
2 compute_it 2 > compute_it.2.out &
3 wait

4 cat compute_it.1l.out

5 cat compute_it.2.out

Lines 1 and 2 launch two instances of this program, redirecting their output
to two separate files, with the & character directing the shell to run the two
instances of the program in the background. Line 3 waits for both instances to
complete, and lines 4 and 5 display their output. The resulting execution is as
shown in Figure the two instances of compute_it execute in parallel, wait
completes after both of them do, and then the two instances of cat execute
sequentially.

Quick Quiz 3.1: But this silly shell script isn’t a real parallel program!
Why bother with such trivia??? B

Quick Quiz 3.2: Is there a simpler way to create a parallel shell script? If
so, how? If not, why not? Ml

29

30 CHAPTER 3. TOOLS OF THE TR/

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

|cat compute_it.1l.out |

|cat compute_1it.2.out |

Figure 3.1: Execution Diagram for Parallel Shell Execution

For another example, the make software-build scripting language provides
a —j option that specifies how much parallelism should be introduced into the
build process. For example, typing make -j4 when building a Linux kernel
specifies that up to four parallel compiles be carried out concurrently.

It is hoped that these simple examples convince you that parallel program-
ming need not always be complex or difficult.

Quick Quiz 3.3: But if script-based parallel programming is so easy, why
bother with anything else? B

3.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environment, including pthreads [Ope97],
as this environment is readily available and widely implemented. Section [3.2.1
provides a glimpse of the POSIX fork() and related primitives, Section [3.2.2

touches on thread creation and destruction, Section [3.2.3| gives a brief overview

of POSIX locking, and, finally, Section [3.4] presents the analogous operations

within the Linux kernel.

3.2.1 POSIX Process Creation and Destruction

Processes are created using the fork() primitive, they may be destroyed using
the kill() primitive, they may destroy themselves using the exit () primitive.
A process executing a fork() primitive is said to be the “parent” of the newly
created process. A parent may wait on its children using the wait () primitive.
Please note that the examples in this section are quite simple. Real-world
applications using these primitives might need to manipulate signals, file descrip-
tors, shared memory segments, and any number of other resources. In addition,
some applications need to take specific actions if a given child terminates, and
might also need to be concerned with the reason that the child terminated.
These concerns can of course add substantial complexity to the code. For more
information, see any of a number of textbooks on the subject [Ste92].

3.2. POSIX MULTIPROCESSING

pid = fork();
if (pid == 0) {
/* child */
} else if (pid < 0) {
/* parent, upon error */
perror("fork");
exit(-1);
} else {
/* parent, pid == child ID */

O WO NOOU P WN~

[N
[

Figure 3.2: Using the fork() Primitive

void waitall(void)
{
int pid;
int status;
for (5;) {
pid = wait(&status);
if (pid == -1) {
9 if (errno == ECHILD)
10 break;
11 perror("wait");
12 exit(-1);

Figure 3.3: Using the wait() Primitive

If fork() succeeds, it returns twice, once for the parent and again for the
child. The value returned from fork() allows the caller to tell the difference,
as shown in Figure (forkjoin.c). Line 1 executes the fork() primitive,
and saves its return value in local variable pid. Line 2 checks to see if pid is
zero, in which case, this is the child, which continues on to execute line 3. As
noted earlier, the child may terminate via the exit () primitive. Otherwise, this
is the parent, which checks for an error return from the fork() primitive on
line 4, and prints an error and exits on lines 5-7 if so. Otherwise, the fork() has
executed successfully, and the parent therefore executes line 9 with the variable
pid containing the process ID of the child.

The parent process may use the wait () primitive to wait for its children
to complete. However, use of this primitive is a bit more complicated than its
shell-script counterpart, as each invocation of wait() waits for but one child
process. It is therefore customary to wrap wait() into a function similar to
the waitall() function shown in Figure (api-pthread.h), this waitall()
function having semantics similar to the shell-script wait command. Each pass
through the loop spanning lines 6-15 waits on one child process. Line 7 invokes
the wait () primitive, which blocks until a child process exits, and returns that
child’s process ID. If the process ID is instead -1, this indicates that the wait ()
primitive was unable to wait on a child. If so, line 9 checks for the ECHILD errno,
which indicates that there are no more child processes, so that line 10 exits the
loop. Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 3.4: Why does this wait () primitive need to be so compli-
cated? Why not just make it work like the shell-script wait does? B

It is critically important to note that the parent and child do not share mem-

31

CHAPTER 3. TOOLS OF THE TR/

w
N

int x = 0;
int pid;

pid = fork();
if (pid == 0) { /* child */
x =1;
printf("Child process set x=1\n");
exit(0);
}
10 if (pid < 0) { /* parent, upon error */
11 perror("fork");
12 exit(-1);
13 }
14 waitall();
15 printf("Parent process sees x=%4d\n", x);

OO0 ~NOU S WN -

Figure 3.4: Processes Created Via fork() Do Not Share Memory

ory. This is illustrated by the program shown in Figure (forkjoinvar.c),
in which the child sets a global variable x to 1 on line 6, prints a message on
line 7, and exits on line 8. The parent continues at line 14, where it waits on
the child, and on line 15 finds that its copy of the variable x is still zero. The
output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 3.5: Isn’t there a lot more to fork() and wait() than dis-
cussed here? H

The finest-grained parallelism requires shared memory, and this is covered in
Section That said, shared-memory parallelism can be significantly more
complex than fork-join parallelism.

3.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create()
primitive, for example, as shown on line 15 of Figure 3.5 (pcreate.c). The first
argument is a pointer to a pthread_t in which to store the ID of the thread
to be created, the second NULL argument is a pointer to an optional pthread_
attr_t, the third argument is the function (in this case, mythread() that is to
be invoked by the new thread, and the last NULL argument is the argument that
will be passed to mythread.

In this example, mythread () simply returns, but it could instead call pthread_
exit).

Quick Quiz 3.6: If the mythread() function in Figure [3.5| can simply
return, why bother with pthread exit()7 Wl

The pthread_join() primitive, shown on line 19, is analogous to the fork-
join wait () primitive. It blocks until the thread specified by the tid variable
completes execution, either by invoking pthread_exit() or by returning from
the thread’s top-level function. The thread’s exit value will be stored through
the pointer passed as the second argument to pthread_join(). The thread’s
exit value is either the value passed to pthread_exit () or the value returned by
the thread’s top-level function, depending on how the thread in question exits.

The program shown in Figure produces output as follows, demonstrating

3.2. POSIX MULTIPROCESSING

int x = 0;

oid *mythread(void *arg)

~ <

x =1;
printf("Child process set x=1\n");
return NULL;

©O~NOUSWN R
-

10 int main(int argc, char *argv[])
11 {

12 pthread_t tid;

13 void *vp;

14

15 if (pthread_create(&tid, NULL, mythread, NULL) != 0) {
16 perror("pthread_create");

17 exit(-1);

18 3

19 if (pthread_join(tid, &vp) != 0) {

20 perror("pthread_join");

21 exit(-1);

22 }

23 printf("Parent process sees x=%4d\n", x);
24 return O;

Figure 3.5: Threads Created Via pthread_create() Share Memory

that memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only one of the threads
stores a value to variable x at a time. Any situation in which one thread might
be storing a value to a given variable while some other thread either loads from
or stores to that same variable is termed a “data race”. Because the C language
makes no guarantee that the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data concurrently, such as
the locking primitives discussed in the following section.

Quick Quiz 3.7: If the C language makes no guarantees in presence of a
data race, then why does the Linux kernel have so many data races? Are you
trying to tell me that the Linux kernel is completely broken??? H

3.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX
locking”. POSIX locking features a number of primitives, the most fundamen-
tal of which are pthread mutex_lock() and pthread mutex_unlock(). These
primitives operate on locks, which are of type pthread mutex_t. These locks
may be declared statically and initialized with PTHREAD MUTEX INITIALIZER,
or they may be allocated dynamically and initialized using the pthread mutex_
init () primitive. The demonstration code in this section will take the former
course.

The pthread mutex_lock() primitive “acquires” the specified lock, and the
pthread mutex unlock() “releases” the specified lock. Because these are “ex-
clusive” locking primitives, only one thread at a time may “hold” a given lock
at a given time. For example, if a pair of threads attempt to acquire the same

33

34 CHAPTER 3. TOOLS OF THE TR/

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;

4

5 void *lock_reader(void *arg)

6 {

7 int i;

8 int newx = -1;

9 int oldx = -1;
10 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

11

12 if (pthread_mutex_lock(pmlp) != 0) {

13 perror("lock_reader:pthread_mutex_lock");
14 exit(-1);

15 }

16 for (i = 0; i < 100; i++) {

17 newx = ACCESS_ONCE(x);

18 if (newx != oldx) {

19 printf("lock_reader(): x = %d\n", newx);
20

21 oldx = newx;

22 poll(NULL, 0, 1);

23}

24 if (pthread_mutex_unlock(pmlp) != 0) {

25 perror ("lock_reader:pthread_mutex_unlock");
26 exit(-1);

27}

28 return NULL;

29 }

30

31 void *lock_writer(void *arg)

32 {

33 int i;

34 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
35

36 if (pthread_mutex_lock(pmlp) != 0) {

37 perror("lock_reader:pthread_mutex_lock");
38 exit(-1);

39 }

40 for (i = 0; i < 3; i++) {

41 ACCESS_ONCE (x) ++;

42 poll(NULL, 0, 5);

43}

44 if (pthread_mutex_unlock(pmlp) '= 0) {

45 perror("lock_reader:pthread_mutex_unlock");
46 exit(-1);

47 }

48 return NULL;

49 }

Figure 3.6: Demonstration of Exclusive Locks

lock concurrently, one of the pair will be “granted” the lock first, and the other
will wait until the first thread releases the lock.

Quick Quiz 3.8: What if I want several threads to hold the same lock at
the same time? W

This exclusive-locking property is demonstrated using the code shown in
Figure[3.6] (lock.c). Line 1 defines and initializes a POSIX lock named lock_a,
while line 2 similarly defines and initializes a lock named lock_b. Line 3 defines
and initializes a shared variable x.

Lines 5-28 defines a function lock reader() which repeatedly reads the
shared variable x while holding the lock specified by arg. Line 10 casts arg to
a pointer to a pthread mutex_t, as required by the pthread mutex_lock() and
pthread mutex_unlock() primitives.

Quick Quiz 3.9: Why not simply make the argument to lock_reader ()

3.2. POSIX MULTIPROCESSING
1 printf ("Creating two threads using same lock:\n");
2 if (pthread_create(&tidl, NULL,
3 lock_reader, &lock_a) !'= 0) {
4 perror("pthread_create") ;
5 exit(-1);
6 1}
7 if (pthread_create(&tid2, NULL,
8 lock_writer, &lock_a) !'= 0) {
9 perror("pthread_create") ;

10 exit(-1);

11 }

12 if (pthread_join(tidl, &vp) !'= 0) {

13 perror("pthread_join");

14 exit(-1);

15}

16 if (pthread_join(tid2, &vp) != 0) {

17 perror ("pthread_join");

18 exit(-1);

19 }

Figure 3.7: Demonstration of Same Exclusive Lock

on line 5 of Figure be a pointer to a pthread mutex_t? M

Lines 12-15 acquire the specified pthread mutex_t, checking for errors and
exiting the program if any occur. Lines 16-23 repeatedly check the value of
x, printing the new value each time that it changes. Line 22 sleeps for one
millisecond, which allows this demonstration to run nicely on a uniprocessor
machine. Line 24-27 release the pthread mutex_t, again checking for errors
and exiting the program is any occur. Finally, line 28 returns NULL, again to
match the function type required by pthread_create().

Quick Quiz 3.10: Writing four lines of code for each acquisition and release
of a pthread mutex_t sure seems painful! Isn’t there a better way? H

Lines 31-49 of Figure shows lock writer (), which periodically update
the shared variable x while holding the specified pthread mutex_t. As with
lock_reader(), line 34 casts arg to a pointer to pthread mutex_t, lines 36-
39 acquires the specified lock, and lines 44-47 releases it. While holding the
lock, lines 40-48 increment the shared variable x, sleeping for five milliseconds
between each increment.

Figure[3.7]shows a code fragment that runs lock_reader () and lock_writer ()

as thread using the same lock, namely, lock_a. Lines 2-6 create a thread running
lock.reader (), and then Lines 7-11 create a thread running lock_writer().
Lines 12-19 wait for both threads to complete. The output of this code fragment
is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the lock reader() thread
cannot see any of the intermediate values of x produced by lock_writer () while
holding the lock.

Quick Quiz 3.11: Is “x = 07 the only possible output from the code
fragment shown in Figure 3.7 If so, why? If not, what other output could
appear, and why? H

Figure [3.8| shows a similar code fragment, but this time using different locks:
lock_a for lock_reader () and lock_b for lock_writer (). The output of this

35

36 CHAPTER 3. TOOLS OF THE TR/
1 printf ("Creating two threads w/different locks:\n");
2 x = 0;

3 if (pthread_create(&tidl, NULL,
4 lock_reader, &lock_a) !'= 0) {
5 perror ("pthread_create") ;
6 exit(-1);
7 %}
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror("pthread_create") ;
11 exit(-1);
12}
13 if (pthread_join(tidl, &vp) '= 0) {
14 perror ("pthread_join") ;
15 exit(-1);
16 }
17 if (pthread_join(tid2, &vp) !'= 0) {
18 perror("pthread_join");
19 exit(-1);
20}

Figure 3.8: Demonstration of Different Exclusive Locks

code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they do not exclude each
other, and can run concurrently. The lock_reader () function can therefore see
the intermediate values of x stored by lock writer().

Quick Quiz 3.12: Using different locks could cause quite a bit of con-
fusion, what with threads seeing each others’ intermediate states. So should
well-written parallel programs restrict themselves to using a single lock in order
to avoid this kind of confusion? M

Quick Quiz 3.13: In the code shown in Figure is lock_reader ()
guaranteed to see all the values produced by lock writer()? Why or why not?
|

Quick Quiz 3.14: Wait a minute here!!! Figure didn’t initialize shared
variable x, so why does it need to be initialized in Figure |

Although there is quite a bit more to POSIX exclusive locking, these primi-
tives provide a good start and are in fact sufficient in a great many situations.
The next section takes a brief look at POSIX reader-writer locking.

3.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a pthread_
rwlock_t. As with pthread mutex_t, pthread rwlock_t may be statically ini-
tialized via PTHREAD RWLOCK_INITIALIZER or dynamically initialized via the
pthread _rwlock_init() primitive. The pthread rwlock_rdlock() primitive
read-acquires the specified pthread rwlock_t, the pthread rwlock wrlock()
primitive write-acquires it, and the pthread rwlock_unlock() primitive re-
leases it. Only a single thread may write-hold a given pthread_rwlock_t at

3.2. POSIX MULTIPROCESSING

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
int holdtime = 0;

int thinktime = 0;

long long *readcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT O
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;

OO0 ~NOOUd WN -

12 void *reader(void *arg)
13 {

14 int i;

15 long long loopcnt = 0;
16 long me = (long)arg;

17

18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE(goflag) == GOFLAG_INIT) {
20 continue;

21 }

22 while (ACCESS_ONCE(goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock(&rwl) != 0) {
24 perror ("pthread_rwlock_rdlock");

25 exit(-1);

26 ¥

27 for (i = 1; i < holdtime; i++) {

28 barrier();

29 X

30 if (pthread_rwlock_unlock(&rwl) != 0) {
31 perror ("pthread_rwlock_unlock") ;

32 exit(-1);

33 }

34 for (i = 1; i < thinktime; i++) {

35 barrier();

36 i

37 loopcnt++;

38 }

39 readcounts[me] = loopcnt;
40 return NULL;

Figure 3.9: Measuring Reader-Writer Lock Scalability

any given time, but multiple threads may read-hold a given pthread_rwlock_t,
at least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly situ-
ations. In these situations, a reader-writer lock can provide greater scalability
than can an exclusive lock because the exclusive lock is by definition limited
to a single thread holding the lock at any given time, while the reader-writer
lock permits an arbitrarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much additional scalability is
provided by reader-writer locks.

Figure (rwlockscale.c) shows one way of measuring reader-writer lock
scalability. Line 1 shows the definition and initialization of the reader-writer
lock, line 2 shows the holdtime argument controlling the time each thread
holds the reader-writer lock, line 3 shows the thinktime argument controlling
the time between the release of the reader-writer lock and the next acquisition,
line 4 defines the readcounts array into which each reader thread places the
number of times it acquired the lock, and line 5 defines the nreadersrunning
variable, which determines when all reader threads have started running.

Lines 7-10 define goflag, which synchronizes the start and the end of the

37

38 CHAPTER 3. TOOLS OF THE TR/

11

T T T T T T
! ki % ideal |
I\ \#F
" "
09 & z M{E :
Hs“‘ E= 5 Ty
08 11 & £ t*%*%%
Q ©Cn “+ N
= ‘.% = % t%et%&
g o7h! oy, T, |
S b E% @% 100M
S osh* ¥ *‘z&& %
g } ‘A B +
g 05 ! " oM
] v * +ﬁ;‘5¢—
T o4 T s e -
= |
S _f\i b |
03 |-}
L ™
o2 | %10k e _
L %% o,
“r +**MK |
o 1K) e R :

0 20 40 60 80 100 120 140
Number of CPUs (Threads)

Figure 3.10: Reader-Writer Lock Scalability

test. This variable is initially set to GOFLAG_INIT, then set to GOFLAG_RUN after
all the reader threads have started, and finally set to GOFLAG_STOP to terminate
the test run.

Lines 12-41 define reader (), which is the reader thread. Line 18 atomically
increments the nreadersrunning variable to indicate that this thread is now
running, and lines 19-21 wait for the test to start. The ACCESS_ONCE() primitive
forces the compiler to fetch goflag on each pass through the loop—the compiler
would otherwise be within its rights to assume that the value of goflag would
never change.

The loop spanning lines 22-38 carries out the performance test. Lines 23-
26 acquire the lock, lines 27-29 hold the lock for the specified duration (and
the barrier () directive prevents the compiler from optimizing the loop out of
existence), lines 30-33 release the lock, and lines 34-36 wait for the specified
duration before re-acquiring the lock. Line 37 counts this lock acquisition.

Line 38 moves the lock-acquisition count to this thread’s element of the
readcounts[] array, and line 40 returns, terminating this thread.

Figure[3.10[shows the results of running this test on a 64-core Power-5 system
with two hardware threads per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and the holdtime parameter
set to values ranging from one thousand (“1K” on the graph) to 100 million
(“100M” on the graph). The actual value plotted is:

Ly
NL;

(3.1)

where N is the number of threads, Ly is the number of lock acquisitions by N
threads, and L; is the number of lock acquisitions by a single thread. Given
ideal hardware and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking scalability is decidedly

3.3. ATOMIC OPERATIONS

non-ideal, especially for smaller sizes of critical sections. To see why read-
acquisition can be so slow, consider that all the acquiring threads must update
the pthread rwlock_t data structure. Therefore, if all 128 executing threads
attempt to read-acquire the reader-writer lock concurrently, they must update
this underlying pthread rwlock_t one at a time. One lucky thread might do
so almost immediately, but the least-lucky thread must wait for all the other
127 threads to do their updates. This situation will only get worse as you add
CPUs.

Quick Quiz 3.15: Isn’t comparing against single-CPU throughput a bit
harsh? H

Quick Quiz 3.16: But 1,000 instructions is not a particularly small size
for a critical section. What do I do if I need a much smaller critical section, for
example, one containing only a few tens of instructions? H

Quick Quiz 3.17: In Figure 310} all of the traces other than the 100M
trace deviate gently from the ideal line. In contrast, the 100M trace breaks
sharply from the ideal line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that between the 10M trace
and the 1M trace. Why does the 100M trace behave so much differently than
the other traces? M

Quick Quiz 3.18: Power 5 is several years old, and new hardware should
be faster. So why should anyone worry about reader-writer locks being slow? H

Despite these limitations, reader-writer locking is quite useful in many cases,
for example when the readers must do high-latency file or network I/O. There
are alternatives, some of which will be presented in Chapters [4] and

3.3 Atomic Operations

Given that Figure|3.10|shows that the overhead of reader-writer locking is most
severe for the smallest critical sections, it would be nice to have some other way
to protect the tiniest of critical sections. One such way are atomic operations.
We have seen one atomic operations already, in the form of the __sync_fetch_
and_add () primitive on line 18 of Figure [3.9] This primitive atomically adds
the value of its second argument to the value referenced by its first argument,
returning the old value (which was ignored in this case). If a pair of threads con-
currently execute __sync_fetch_and_add() on the same variable, the resulting
value of the variable will include the result of both additions.

The gcc compiler offers a number of additional atomic operations, including
__sync_fetch_and_sub(), __sync_fetch_and_or(), __sync_fetch_and_and(), __
sync_fetch_and xor(), and __sync_fetch_and nand(), all of which return the
old value. If you instead need the new value, you can instead use the __sync_add_
and fetch(), __sync_sub_and fetch(), __sync_or_and fetch(), __sync_and_
and_fetch(), __sync_xor_and_fetch(), and __syncnand_and_fetch() primi-
tives.

Quick Quiz 3.19: Is it really necessary to have both sets of primitives? B

The classic compare-and-swap operation is provided by a pair of primitives,
__sync_bool_compare_and_swap() and __sync_val_compare_and_swap(). Both
of these primitive atomically update a location to a new value, but only if its
prior value was equal to the specified old value. The first variant returns 1 if
the operation succeeded and 0 if it failed, for example, if the prior value was not

39

40 CHAPTER 3. TOOLS OF THE TR/

equal to the specified old value. The second variant returns the prior value of the
location, which, if equal to the specified old value, indicates that the operation
succeeded. Either of the compare-and-swap operation is “universal” in the sense
that any atomic operation on a single location can be implemented in terms of
compare-and-swap, though the earlier operations are often more efficient where
they apply. The compare-and-swap operation is also capable of serving as the
basis for a wider set of atomic operations, though the more elaborate of these
often suffer from complexity, scalability, and performance problems [Her90].
The __sync_synchronize () primitive issues a “memory barrier”, which con-
strains both the compiler’s and the CPU’s ability to reorder operations, as dis-
cussed in Section In some cases, it is sufficient to constrain the compiler’s
ability to reorder operations, while allowing the CPU free rein, in which case
the barrier () primitive may be used, as it in fact was on line 28 of Figure[3.9
In some cases, it is only necessary to ensure that the compiler avoids optimizing
away a given memory access, in which case the ACCESS_ONCE() primitive may
be used, as it was on line 17 of Figure [3.6] These last two primitives are not
provided directly by gcc, but may be implemented straightforwardly as follows:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define barrier() __asm volatile__("": : :"memory")

Quick Quiz 3.20: Given that these atomic operations will often be able to
generate single atomic instructions that are directly supported by the underlying
instruction set, shouldn’t they be the fastest possible way to get things done?
|

3.4 Linux-Kernel Equivalents to POSIX Opera-
tions

Unfortunately, threading operations, locking primitives, and atomic operations
were in reasonably wide use long before the various standards committees got
around to them. As a result, there is considerable variation in how these oper-
ations are supported. It is still quite common to find these operations imple-
mented in assembly language, either for historical reasons or to obtain better
performance in specialized circumstances. For example, the gce __sync_ family
of primitives all provide memory-ordering semantics, motivating many devel-
opers to create their own implementations for situations where the memory
ordering semantics are not required.

Therefore, Table on page provides a rough mapping between the
POSIX and gcc primitives to those used in the Linux kernel. Exact mappings are
not always available, for example, the Linux kernel has a wide variety of locking
primitives, while gcc has a number of atomic operations that are not directly
available in the Linux kernel. Of course, on the one hand, user-level code does
not need the Linux kernel’s wide array of locking primitives, while on the other
hand, gecc’s atomic operations can be emulated reasonably straightforwardly
using cmpxchg ().

Quick Quiz 3.21: What happened to the Linux-kernel equivalents to
fork() and join()? M

3.4. LINUX-KERNEL EQUIVALENTS TO POSIX OPERATIONS

Category

POSIX

41

Linux Kernel

Thread Management

pthread_t

struct task_struct

pthread _create()

kthread_create

pthread_exit()

kthread_should_stop (Jrough)

pthread_join()

kthread_stop()(rough)

poll(NULL, 0, 5)

schedule_timeout_interruptible()

POSIX Locking

pthread mutex_t

spinlock_t(rough)
struct mutex

PTHREAD_MUTEX_INITIALIZER

DEFINE_SPINLOCK ()
DEFINE_MUTEX ()

pthread mutex_lock()

spin_lock()(and friends)
mutex_lock()(and friends)

pthread mutex_unlock()

spin_unlock () (and friends)
mutex_unlock()

POSIX Reader-Writer
Locking

pthread rwlock_t

rwlock_t(rough)
struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZER

DEFINE_RWLOCK()
DECLARE_RWSEM()

pthread_rwlock_rdlock()

read_lock()(and friends)
down_read () (and friends)

pthread rwlock unlock()

read_unlock()(and friends)
up_read()

thread_rwlock_wrlock()

write_lock()(and friends)
down_write () (and friends)

pthread _rwlock unlock()

write unlock()(and friends)
up_write()

Atomic Operations

C Scalar Types

atomic_t
atomic64_t

__sync_fetch_and_add ()

atomic_add_return()
atomic64_add_return()

__sync_fetch_and_sub()

atomic_sub_return()
atomic64_sub_return()

__sync_val_compare_and_swap

(¢mpxchg ()

__sync_lock_test_and_set ()

xchg() (rough)

__sync_synchronize ()

smp_mb ()

Table 3.1: Mapping from POSIX to Linux-Kernel Primitives

42 CHAPTER 3. TOOLS OF THE TR/

3.5 The Right Tool for the Job: How to Choose?

As a rough rule of thumb, use the simplest tool that will get the job done. If you
can, simply program sequentially. If that is insufficient, try using a shell script
to mediate parallelism. If the resulting shell-script fork() /exec() overhead
(about 480 microseconds for a minimal C program on an Intel Core Duo laptop)
is too large, try using the C-language fork() and wait() primitives. If the
overhead of these primitives (about 80 microseconds for a minimal child process)
is still too large, then you might need to use the POSIX threading primitives,
choosing the appropriate locking and/or atomic-operation primitives. If the
overhead of the POSIX threading primitives (typically sub-microsecond) is too
great, then the primitives introduced in Chapter [§] may be required. Always
remember that inter-process communication and message-passing can be good
alternatives to shared-memory multithreaded execution.

Of course, the actual overheads will depend not only on your hardware, but
most critically on the manner in which you use the primitives. Therefore, it
is necessary to make the right design choices as well as the correct choice of
individual primitives, as is discussed at length in subsequent chapters.

Chapter 4

Counting

Counting is perhaps the simplest and most natural for a computer to do. How-
ever, counting efficiently and scalably on a large shared-memory multiprocessor
can be quite challenging. Furthermore, the simplicity of the underlying concept
of counting allows us to explore the fundamental issues of concurrency with-
out the distractions of elaborate data structures or complex synchronization
primitives. Counting therefore provides an excellent introduction to parallel
programming.

This chapter covers a number of special cases for which there are simple,
fast, and scalable counting algorithms. But first, let us find out how much you
already know about concurrent counting.

Quick Quiz 4.1: Why on earth should efficient and scalable counting be
hard? After all, computers have special hardware for the sole purpose of doing
counting, addition, subtraction, and lots more besides, don’t they??? H

Quick Quiz 4.2: Network-packet counting problem. Suppose that
you need to collect statistics on the number of networking packets (or total
number of bytes) transmitted and/or received. Packets might be transmitted or
received by any CPU on the system. Suppose further that this large machine is
capable of handling a million packets per second, and that there is a systems-
monitoring package that reads out the count every five seconds. How would you
implement this statistical counter? Wl

Quick Quiz 4.3: Approximate structure-allocation limit problem.
Suppose that you need to maintain a count of the number of structures allocated
in order to fail any allocations once the number of structures in use exceeds a
limit (say, 10,000). Suppose further that these structures are short-lived, that
the limit is rarely exceeded, and that a “sloppy” approximate limit is acceptable.
]

Quick Quiz 4.4: Exact structure-allocation limit problem. Sup-
pose that you need to maintain a count of the number of structures allocated
in order to fail any allocations once the number of structures in use exceeds an
exact limit (say, 10,000). Suppose further that these structures are short-lived,
and that the limit is rarely exceeded, that there is almost always at least one
structure in use, and suppose further still that it is necessary to know exactly
when this counter reaches zero, for example, in order to free up some memory
that is not required unless there is at least one structure in use. H

Quick Quiz 4.5: Removable I/O device access-count problem.

43

44 CHAPTER 4. COUNT.

Suppose that you need to maintain a reference count on a heavily used removable
mass-storage device, so that you can tell the user when it is safe to removed the
device. This device follows the usual removal procedure where the user indicates
a desire to remove the device, and the system tells the user when it is safe to
do so. A

The remainder of this chapter will develop answers to these questions.

4.1 Why Isn’t Concurrent Counting Trivial?

Let’s start with something simple, for example, the straightforward use of arith-
metic shown in Figure (count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value on line 10. What
could be simpler?

This approach has the additional advantage of being blazingly fast if you
are doing lots of reading and almost no incrementing, and on small systems, the
performance is excellent.

There is just one large fly in the ointment: this approach can lose counts.
On my dual-core laptop, a short run invoked inc_count() 100,014,000 times,
but the final value of the counter was only 52,909,118. Although it is true that
approximate values have their place in computing, it is almost always necessary
to do better than this.

Quick Quiz 4.6: But doesn’t the ++ operator produce an x86 add-to-
memory instruction? And won’t the CPU cache cause this to be atomic? B

Quick Quiz 4.7: The 8-figure accuracy on the number of failures indicates
that you really did test this. Why would it be necessary to test such a trivial
program, especially when the bug is easily seen by inspection? B

The straightforward way to count accurately is to use atomic operations,
as shown in Figure (count_atomic.c). Line 1 defines an atomic variable,
line 5 atomically increments it, and line 10 reads it out. Because this is atomic,
it keeps perfect count. However, it is slower: on a Intel Core Duo laptop, it
is about six times slower than non-atomic increment when a single thread is
incrementing, and more than ten times slower if two threads are incrementing.

This poor performance should not be a surprise, given the discussion in
Chapter [2| nor should it be a surprise that the performance of atomic incre-
ment gets slower as the number of CPUs and threads increase, as shown in
Figure In this figure, the horizontal dashed line resting on the x axis is
the ideal performance that would be achieved by a perfectly scalable algorithm:

1 long counter = 0;

2

3 void inc_count(void)
4 {

5 counter++;

6 }

7

8 long read_count(void)
9 {

10 return counter;

11 }

Figure 4.1: Just Count!

count_nonatomic.c
count_atomic.c

4.1. WHY ISN'T CONCURRENT COUNTING TRIVIAL?

atomic_t counter = ATOMIC_INIT(O);

void inc_count(void)
{
atomic_inc(&counter);

}

long read_count(void)
{
return atomic_read(&counter);

}

B O ©OWOoONOOPD WNR

o

Figure 4.2: Just Count Atomically!

900 T T T T T T

2 800 |- 5

g et

g 700 - E -

2 600 |- { -

© s

5 ’

= 500 - /7 —

GE-) //f

5 400 E/ —

2 300 | _

o 200 [A .

: .

= 100 ‘—///’F -

0'.--.1--..4 b L. R T
1 2 3 4 5 6 7 8
Number of CPUs/Threads

Figure 4.3: Atomic Increment Scalability on Nehalem

with such an algorithm, a given increment would incur the same overhead that
it would in a single-threaded program. Atomic increment of a single global
variable is clearly decidedly non-ideal, and gets worse as you add CPUs.

Quick Quiz 4.8: Why doesn’t the dashed line on the x axis meet the
diagonal line at y = 17 A

Quick Quiz 4.9: But atomic increment is still pretty fast. And increment-
ing a single variable in a tight loop sounds pretty unrealistic to me, after all,
most of the program’s execution should be devoted to actually doing work, not
accounting for the work it has done! Why should I care about making this go
faster?” M

For another perspective on global atomic increment, consider Figure [£.4] In
order for each CPU to get a chance to increment a given global variable, the
cache line containing that variable must circulate among all the CPUs, as shown
by the red arrows. Such circulation will take significant time, resulting in the
poor performance seen in Figure |4.3]

The following sections discuss high-performance counting, which avoids the

45

46 CHAPTER 4. COUNT.

e
‘Cach achel Cach Cache’
‘rnghmahect Inte k‘.o.nﬂpe(

Figure 4.4: Data Flow For Global Atomic Increment

delays inherent in such circulation.

Quick Quiz 4.10: But why can’t CPU designers simply ship the operation
to the data, avoiding the need to circulate the cache line containing the global
variable being incremented? M

4.2 Statistical Counters

This section covers the common special case of statistical counters, where the
count is updated extremely frequently and the value is read out rarely, if ever.
These will be used to solve the network-packet counting problem from the Quick

Quiz on page [43]

4.2.1 Design

Statistical counting is typically handled by providing a counter per thread (or
CPU, when running in the kernel), so that each thread updates its own counter.
The aggregate value of the counters is read out by simply summing up all of
the threads’ counters, relying on the commutative and associative properties
of addition. This is an example of the Data Ownership pattern that will be
introduced in Section £.3.4l

Quick Quiz 4.11: But doesn’t the fact that C’s “integers” are limited in
size complicate things? W

4.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate an array with one element
per thread (presumably cache aligned and padded to avoid false sharing).
Quick Quiz 4.12: An array??? But doesn’t that limit the number of
threads?” W
Such an array can be wrapped into per-thread primitives, as shown in Fig-
ure (count_stat.c|). Line 1 defines an array containing a set of per-thread
counters of type long named, creatively enough, counter.

count_stat.c

4.2. STATISTICAL COUNTERS

DEFINE_PER_THREAD(long, counter);

1
2
3 void inc_count(void)

4 {

5 __get_thread_var (counter)++;
6

7

8

long read_count(void)
9 {
10 int t;
11 long sum = O;

13 for_each_thread(t)

14 sum += per_thread(counter, t);
15 return sum;
16 }

Figure 4.5: Array-Based Per-Thread Statistical Counters

CPUO CPU-t CPY2 CPU3
Cache Cache Cache Cache!
Interconnect Interconnect
~ =

Memory e>| System Interconnect |e> Memory

/ ™~

Z= N
Interconnect Interconnect

m ach ach ach
Ceu 4 CPUS CPUG CPU7

Figure 4.6: Data Flow For Per-Thread Increment

Lines 3-6 show a function that increments the counters, using the __get_
thread var () primitive to locate the currently running thread’s element of the
counter array. Because this element is modified only by the corresponding
thread, non-atomic increment suffices.

Lines 8-16 show a function that reads out the aggregate value of the counter,
using the for_each thread() primitive to iterate over the list of currently
running threads, and using the per_thread() primitive to fetch the specified
thread’s counter. Because the hardware can fetch and store a properly aligned
long atomically, and because gcc is kind enough to make use of this capability,
normal loads suffice, and no special atomic instructions are required.

Quick Quiz 4.13: What other choice does gcc have, anyway??? W

Quick Quiz 4.14: How does the per-thread counter variable in Figure |4.5
get initialized? W

Quick Quiz 4.15: How is the code in Figure supposed to permit more
than one counter? M

This approach scales linearly with increasing number of updater threads
invoking inc_count(). As is shown by the green arrows in Figure the
reason for this is that each CPU can make rapid progress incrementing its
thread’s variable, with no expensive communication required crossing the full

47

48 CHAPTER 4. COUNT.

diameter of the computer system. However, this excellent update-side scalability
comes at great read-side expense for large numbers of threads. The next section
shows one way to reduce read-side expense while still retaining the update-side
scalability.

4.2.3 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-side per-
formance is to weaken consistency requirements. While the counting algorithm
in the previous section is guaranteed to return a value between the value that
an ideal counter would have taken on near the beginning of read_count()’s
execution and that near the end of read_count ()’s execution. Fventual consis-
tency [Vog09] provides a weaker guarantee: in absence of calls to inc_count (),
calls to read_count () will eventually return the correct answer.

We exploit eventual consistency by maintaining a global counter. However,
updaters only manipulate their per-thread counters. A separate thread is pro-
vided to transfer counts from the per-thread counters to the global counter.
Readers simply access the value of the global counter. If updaters are active,
the value used by the readers will be out of date, however, once updates cease,
the global counter will eventually converge on the true value—hence this ap-
proach qualifies as eventually consistent.

The implementation is shown in Figure (count_stat_eventual.c). Lines 1-
2 show the per-thread variable and the global variable that track the counter’s
value, and line three shows stopflag which is used to coordinate termination
(for the case where we want to terminate the program with an accurate counter
value). The inc_count () function shown on lines 5-8 is identical to its coun-
terpart in Figure [4.5] The read_count () function shown on lines 10-13 simply
returns the value of the global_count variable.

However, the count_init () function on lines 34-42 creates the eventual ()
thread shown on lines 15-32, which cycles through all the threads, using the
atomic_xchg() function to remove count from each thread’s local counter,
adding the sum to the global_count variable. The eventual() thread waits
an arbitrarily chosen one millisecond between passes. The count_cleanup()
function on lines 44-50 coordinates termination.

This approach gives extremely fast counter read-out while still supporting
linear counter-update performance. However, this excellent read-side perfor-
mance and update-side scalability comes at the cost of high update-side over-
head, due to both the atomic operations and the array indexing hidden in the
__get_thread var() primitive, which can be quite expensive on some CPUs
with deep pipelines.

Quick Quiz 4.16: Why does inc_count () in Figure [f.7 need to use atomic
instructions? M

Quick Quiz 4.17: Won’t the single global thread in the function eventual ()
of Figure [£.7] be just as severe a bottleneck as a global lock would be? B

Quick Quiz 4.18: Won'’t the estimate returned by read_count() in Fig-
ure [£.7] become increasingly inaccurate as the number of threads rises? W

count_stat_eventual.c

4.2. STATISTICAL COUNTERS

W0 ~NOOOd WN -

DEFINE_PER_THREAD (atomic_t, counter);
atomic_t global_count;
int stopflag;

void inc_count(void)

{
atomic_inc(&__get_thread_var(counter));
}
unsigned long read_count(void)
{
return atomic_read(&global_count);
}
void *eventual(void *arg)
{
int t;
int sum;

while (stopflag < 3) {
sum = O;
for_each_thread(t)
sum += atomic_xchg(&per_thread(counter, t), 0);
atomic_add(sum, &global_count);
poll(NULL, 0, 1);
if (stopflag) {

smp_mb() ;
stopflag++;
}
return NULL;

}

void count_init(void)
{
thread_id_t tid;

if (pthread_create(&tid, NULL, eventual, NULL) != 0) {
perror("count_init:pthread_create");
exit(-1);
}
}

void count_cleanup(void)
{
stopflag = 1;
while (stopflag < 3)
poll(NULL, 0, 1);
smp_mb () ;
}

Figure 4.7: Array-Based Per-Thread Eventually Consistent Counters

49

50

0N U d WN -

36

long __thread counter = 0;

long *counterp[NR_THREADS] = { NULL };
long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

void inc_count(void)

{
}

counter++;

long read_count(void)

{

}

int t;
long sum;

spin_lock(&final_mutex) ;
sum = finalcount;
for_each_thread(t)
if (counterp[t] != NULL)
sum += *counterp[t];
spin_unlock(&final_mutex) ;
return sum;

void count_register_thread(void)

{

}

int idx = smp_thread_id();

spin_lock(&final_mutex);
counterp[idx] = &counter;
spin_unlock(&final_mutex);

void count_unregister_thread(int nthreadsexpected)

{

int idx = smp_thread_id();

spin_lock(&final_mutex);
finalcount += counter;
counterp[idx] = NULL;
spin_unlock(&final_mutex) ;

Figure 4.8: Per-Thread Statistical Counters

CHAPTER 4. COUNT.

4.2. STATISTICAL COUNTERS

4.2.4 Per-Thread-Variable-Based Implementation

Fortunately, gcc provides an __thread storage class that provides per-thread
storage. This can be used as shown in Figure (count_end.c) to implement
a statistical counter that not only scales, but that also incurs little or no per-
formance penalty to incrementers compared to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-thread counter variable,
the counterp[] array allows threads to access each others’ counters, finalcount
accumulates the total as individual threads exit, and final _mutex coordinates
between threads accumulating the total value of the counter and exiting threads.

Quick Quiz 4.19: Why do we need an explicit array to find the other
threads’ counters? Why doesn’t gcc provide a per_thread() interface, similar
to the Linux kernel’s per_cpu() primitive, to allow threads to more easily access
each others’ per-thread variables? H

The inc_count () function used by updaters is quite simple, as can be seen
on lines 6-9.

The read_count () function used by readers is a bit more complex. Line 16
acquires a lock to exclude exiting threads, and line 21 releases it. Line 17
initializes the sum to the count accumulated by those threads that have already
exited, and lines 18-20 sum the counts being accumulated by threads currently
running. Finally, line 22 returns the sum.

Quick Quiz 4.20: Why on earth do we need something as heavyweight as
a lock guarding the summation in the function read_count () in Figure |

Lines 25-32 show the count_register_thread() function, which must be
called by each thread before its first use of this counter. This function simply
sets up this thread’s element of the counterp[] array to point to its per-thread
counter variable.

Quick Quiz 4.21: Why on earth do we need to acquire the lock in count_
register_thread() in Figure It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it should be atomic
anyway, right? H

Lines 34-42 show the count_unregister_thread() function, which must
be called prior to exit by each thread that previously called count_register_
thread (). Line 38 acquires the lock, and line 41 releases it, thus excluding any
calls to read_count () as well as other calls to count_unregister_thread().
Line 39 adds this thread’s counter to the global finalcount, and then NULLs
out its counterp[] array entry. A subsequent call to read_count () will see the
exiting thread’s count in the global finalcount, and will skip the exiting thread
when sequencing through the counterp [] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same performance as a non-
atomic add, and also scales linearly. On the other hand, concurrent reads con-
tend for a single global lock, and therefore perform poorly and scale abysmally.
However, this is not a problem for statistical counters, where incrementing hap-
pens often and readout happens almost never. In addition, this approach is
considerably more complex than the array-based scheme, due to the fact that a
given thread’s per-thread variables vanish when that thread exits.

Quick Quiz 4.22: Fine, but the Linux kernel doesn’t have to acquire a
lock when reading out the aggregate value of per-CPU counters. So why should
user-space code need to do this???

51

count_end.c

52 CHAPTER 4. COUNT.

4.2.5 Discussion

These two implementations show that it is possible to obtain uniprocessor per-
formance for statistical counters, despite running on a parallel machine.

Quick Quiz 4.23: What fundamental difference is there between counting
packets and counting the total number of bytes in the packets, given that the
packets vary in size? Bl

Quick Quiz 4.24: Given that the reader must sum all the threads’ counters,
this could take a long time given large numbers of threads. Is there any way that
the increment operation can remain fast and scalable while allowing readers to
also enjoy reasonable performance and scalability? Bl

Given what has been presented in this section, you should now be able
to answer the Quick Quiz about statistical counters for networking near the
beginning of this chapter.

4.3 Approximate Limit Counters

Another special case of counting involves limit-checking. For example, as noted
in the approximate structure-allocation limit problem in the Quick Quiz on
page suppose that you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number of structures in use
exceeds a limit, in this case, 10,000. Suppose further that these structures are
short-lived, and that this limit is rarely exceeded.

4.3.1 Design

One possible design for limit counters is to divide the limit of 10,000 by the
number of threads, and give each thread a fixed pool of structures. For example,
given 100 threads, each thread would manage its own pool of 100 structures.
This approach is simple, and in some cases works well, but it does not handle
the common case where a given structure is allocated by one thread and freed
by another [MS93]. On the one hand, if a given thread takes credit for any
structures it frees, then the thread doing most of the allocating runs out of
structures, while the threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures are credited to the CPU
that allocated them, it will be necessary for CPUs to manipulate each others’
counters, which will require lots of expensive atomic instructions. Furthermore,
because structures come in different sizes, rather than supporting inc_count ()
and dec_count () interfaces, we implement add_count() and sub_count() to
allow variable-sized structures to be properly accounted for.

In short, for many important workloads, we cannot fully partition the counter.
However, we can partially partition the counter, so that in the common case,
each thread need only manipulate its own private state, while still allowing
counts to flow between threads as needed. The statistical counting scheme dis-
cussed in Section[f:2.4] provides an interesting starting point, in that it maintains
a global counter as well as per-thread counters, with the aggregate value being
the sum of all of these counters, global along with per-thread. The key change
is to pull each thread’s counter into the global sum while that thread is still
running, rather than waiting for thread exit. Clearly, we want threads to pull
in their own counts, as cross-thread accesses are expensive and scale poorly.

4.3. APPROXIMATE LIMIT COUNTERS

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK(gblcnt_mutex) ;

N O WN -

Figure 4.9: Simple Limit Counter Variables

This leaves open the question of exactly when a given thread’s counter should
be pulled into the global counter. In the initial implementation, we will start
by maintaining a limit on the value of the per-thread counter. When this limit
would be exceeded, the thread pulls its counter into the global counter. Of
course, we cannot simply add to the counter when a structure is allocated:
we must also subtract from the counter when a structure is freed. We must
therefore make use of the global counter when a subtraction would otherwise
reduce the value of the per-thread counter below zero. However, if the limit is
reasonably large, almost all of the addition and subtraction operations should
be handled by the per-thread counter, which should give us good performance
and scalability.

This design is an example of “parallel fastpath”, which is an important design
pattern in which the common case executes with no expensive instructions and
no interactions between threads, but where occasional use is also made of a
more conservatively designed global algorithm.

4.3.2 Simple Limit Counter Implementation

Figure [4.9] shows both the per-thread and global variables used by this imple-
mentation. The per-thread counter and countermax variables are the corre-
sponding thread’s local counter and the upper bound on that counter, respec-
tively. The globalcountmax variable on line 3 contains the upper bound for the
aggregate counter, and the globalcount variable on line 4 is the global counter.
The sum of globalcount and each thread’s counter gives the aggregate value
of the overall counter. The globalreserve variable on line 5 is the sum of all of
the per-thread countermax variables. The relationship among these variables

is shown by Figure

1. The sum of globalcount and globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal to
globalreserve.

3. Each thread’s counter must be less than or equal to that thread’s countermax.

Fach element of the counterp[] array references the corresponding thread’s
counter variable, and, finally, the gblcnt_mutex spinlock guards all of the global
variables, in other words, no thread is permitted to access or modify any of the
global variables unless it has acquired gblcnt _mutex.

Figure shows the add_count (), sub_count (), and read_count () func-
tions (count_lim.c).

53

count_lim.c

54 CHAPTER 4. COUNT.

Figure 4.10: Simple Limit Counter Variable Relationships

Lines 1-18 show add_count (), which adds the specified value delta to the
counter. Line 3 checks to see if there is room for delta on this thread’s counter,
and, if so, line 4 adds it and line 6 returns success. This is the add_counter ()
fastpath, and it does no atomic operations, references only per-thread variables,
and should not incur any cache misses.

Quick Quiz 4.25: What is with the strange form of the condition on line 3
of Figure Why not the following more intuitive form of the fastpath?

3 if (counter + delta <= countermax){
4 counter += delta;

5 return 1;
6 }

[|

If the test on line 3 fails, we must access global variables, and thus must
acquire gblent mutex on line 7, which we release on line 11 in the failure case
or on line 16 in the success case. Line 8 invokes globalize_count (), shown in
Figure [£.12] which clears the thread-local variables, adjusting the global vari-
ables as needed, thus simplifying global processing. (But don’t take my word for
it, try coding it yourself!) Lines 9 and 10 check to see if addition of delta can
be accommodated, with the meaning of the expression preceding the less-than
sign shown in Figure as the difference in height of the two red bars. If
the addition of delta cannot be accommodated, then line 11 (as noted earlier)
releases gblcnt mutex and line 12 returns indicating failure.

Otherwise, line 14 subtracts delta from globalcount, line 15 invokes balance_
count () (shown in Figure in order to update both the global and the

4.3.

i
{

18 }

20 i
21 {

36 }

APPROXIMATE LIMIT COUNTERS

nt add_count (unsigned long delta)

if (countermax - counter >= delta) {
counter += delta;
return 1;
}
spin_lock(&gblcnt_mutex);
globalize_count();
if (globalcountmax -
globalcount - globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;
}
globalcount += delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

nt sub_count (unsigned long delta)

if (counter >= delta) {
counter -= delta;
return 1;

}

spin_lock(&gblcnt_mutex);

globalize_count();

if (globalcount < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;

}

globalcount -= delta;

balance_count();

spin_unlock(&gblcnt_mutex) ;

return 1;

38 unsigned long read_count(void)

39 {

int t;
unsigned long sum;

spin_lock(&gblcnt_mutex) ;
sum = globalcount;
for_each_thread(t)
if (counterp[t] !'= NULL)
sum += *counterp[t];
spin_unlock(&gblcnt_mutex) ;
return sum;

Figure 4.11: Simple Limit Counter Add, Subtract, and Read

95

56 CHAPTER 4. COUNT.

per-thread variables (hopefully setting this thread’s countermax to re-enable
the fastpath), if appropriate, to re-enable fastpath processing, line 16 release
gblent mutex (again, as noted earlier), and, finally, line 17 returns indicating
success.

Quick Quiz 4.26: Why do globalize_count() to zero the per-thread
variables, only to later call balance_count() to refill them in Figure [.IIJ
Why not just leave the per-thread variables non-zero? W

Lines 20-36 show sub_count (), which subtracts the specified delta from
the counter. Line 22 checks to see if the per-thread counter can accommodate
this subtraction, and, if so, line 23 does the subtraction and line 24 returns
success. These lines form sub_count ()’s fastpath, and, as with add_count (),
this fastpath executes no costly operations.

If the fastpath cannot accommodate subtraction of delta, execution pro-
ceeds to the slowpath on lines 26-35. Because the slowpath must access global
state, line 26 acquires gblcnt mutex, which is release either by line 29 (in case of
failure) or by line 34 (in case of success). Line 27 invokes globalize_count (),
shown in Figure which again clears the thread-local variables, adjusting
the global variables as needed. Line 28 checks to see if the counter can accom-
modate subtracting delta, and, if not, line 29 releases gblcnt mutex (as noted
earlier) and line 30 returns failure.

Quick Quiz 4.27: Given that globalreserve counted against us in add_
count (), why doesn’t it count for us in sub_count () in Figure |

If, on the other hand, line 28 finds that the counter can accommodate sub-
tracting delta, then line 32 does the subtraction, line 33 invokes balance_
count () (shown in Figure in order to update both global and per-thread
variables (hopefully re-enabling the fastpath), line 34 releases gblcnt mutex,
and line 35 returns success.

Quick Quiz 4.28: Why have both add_count () and sub_count() in Fig-
ure Why not simply pass a negative number to add_count ()? H

Lines 38-50 show read_count (), which returns the aggregate value of the
counter. It acquires gblcnt_mutex on line 43 and releases it on line 48, excluding
global operations from add_count () and sub_count (), and, as we will see, also
excluding thread creation and exit. Line 44 initializes local variable sum to
the value of globalcount, and then the loop spanning lines 45-47 sums the
per-thread counter variables. Line 49 then returns the sum.

Figure[.12|shows a number of utility functions that support the add_count ()
sub_count (), and read_count () primitives shown in Figure [4.11

Lines 1-7 show globalize_count(), which zeros the current thread’s per-
thread counters, adjusting the global variables appropriately. It is important
to note that this function does not change the aggregate value of the counter,
but instead changes how the counter’s current value is represented. Line 3
adds the thread’s counter variable to globalcount, and line 4 zeroes counter.
Similarly, line 5 subtracts the per-thread countermax from globalreserve, and
line 6 zeroes countermax. It is helpful to refer to Figure [4.10] when reading both
this function and balance_count (), which is next.

Lines 9-19 show balance_count (), which can is, roughly speaking the in-
verse of globalize _count (). This function sets the current thread’s counter
and countermax variables (with corresponding adjustments to globalcount
and globalreserve) in an attempt to promote use of add_count()’s and sub_

4.3. APPROXIMATE LIMIT COUNTERS

static void globalize_count(void)
{
globalcount += counter;
counter = 0;
globalreserve -= countermax;
countermax = O;

0N URWN R
-

9 static void balance_count(void)

10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;
13 countermax /= num_online_threads();

14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

17 counter = globalcount;

18 globalcount -= counter;

19 }

20

21 void count_register_thread(void)
22 {

23 int idx = smp_thread_id();

24

25 spin_lock(&gblcnt_mutex);
26 counterp[idx] = &counter;
27 spin_unlock(&gblcnt_mutex);
28 }

30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();

34 spin_lock(&gblcnt_mutex);
35 globalize_count();

36 counterp[idx] = NULL;

37 spin_unlock(&gblcnt_mutex) ;

Figure 4.12: Simple Limit Counter Utility Functions

[
co

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define MAX_COUNTERMAX 100

0 ~NO U WN -

Figure 4.13: Approximate Limit Counter Variables

count ()’s fastpaths. As with globalize_count (), balance_count() does not
change the aggregate value of the counter. Lines 11-13 compute this thread’s
share of that portion of globalcountmax that is not already covered by ei-
ther globalcount or globalreserve, and assign the computed quantity to
this thread’s countermax. Line 14 makes the corresponding adjustment to
globalreserve. Line 15 sets this thread’s counter to the middle of the range
from zero to countermax. Line 16 checks to see whether globalcount can in
fact accommodate this value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the corresponding adjustment
to globalcount.

Lines 21-28 show count_register_thread(), which sets up state for newly
created threads. This function simply installs a pointer to the newly created
thread’s counter variable into the corresponding entry of the counterp[] array
under the protection of ghlcnt mutex.

Finally, lines 30-38 show count_unregister_thread(), which tears down
state for a soon-to-be-exiting thread. Line 34 acquires gblcnt mutex and line 37
releases it. Line 35 invokes globalize_count () to clear out this thread’s counter
state, and line 36 clears this thread’s entry in the counterp[] array.

4.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero, with
some overhead due to the comparison and branch in both add_count()’s and
sub_count ()’s fastpaths. However, the use of a per-thread countermax reserve
means that add_count () can fail even when the aggregate value of the counter
is nowhere near globalcountmax. Similarly, sub_count() can fail even when
the aggregate value of the counter is nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax is intended
to be an approximate limit, there is usually a limit to exactly how much ap-
proximation can be tolerated. One way to limit the degree of approximation is
to impose an upper limit on the value of the per-thread countermax instances.
This task is undertaken in the next section.

4.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app.c) is quite similar to that in the
previous section (Figures and , only the changes are shown here.
Figure is identical to Figure with the addition of MAX_COUNTERMAX,
which sets the maximum permissible value of the per-thread countermax vari-
able.

CHAPTER 4. COUNT.

count_lim_app.c

4.4. EXACT LIMIT COUNTERS

static void balance_count(void)
{
countermax = globalcountmax - globalcount - globalreserve;
countermax /= num_online_threads();
if (countermax > MAX_COUNTERMAX)
countermax = MAX_COUNTERMAX;
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)
counter = globalcount;
globalcount -= counter;

0 ~NO P WN

o
= O O

12 }
Figure 4.14: Approximate Limit Counter Balancing

Similarly, Figure is identical to the balance_count () function in Fig-
ure [4.12)), with the addition of lines 5 and 6, which enforce the MAX_COUNTERMAX
limit on the per-thread countermax variable.

4.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous version,
but present another problem: any given value of MAX_COUNTERMAX will cause a
workload-dependent fraction of accesses to fall off the fastpath. As the number
of threads increase, non-fastpath execution will become both a performance and
a scalability problem. However, we will defer this problem and turn instead to
counters with exact limits.

4.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted in the Quick Quiz
on page [I3] we need a limit counter that can tell exactly when its limits are
exceeded. One way of implementing such a limit counter is to cause threads
that have reserved counts to give them up. One way to do this is to use atomic
instructions. Of course, atomic instructions will slow down the fastpath, but on
the other hand, it would be silly not to at least give them a try.

4.4.1 Atomic Limit Counter Implementation

Unfortunately, when causing a given thread to give up its count, it is necessary
to atomically manipulate both that thread’s counter and countermax variables.
The usual way to do this is to combine these two variables into a single variable,
for example, given a 32-bit variable, using the high-order 16 bits to represent
counter and the low-order 16 bits to represent countermax.

The variables and access functions for a simple atomic limit counter are
shown in Figure m (count_lim_atomic.c|). The counter and countermax
variables in earlier algorithms are combined into the single variable counterandmax
shown on line 1, with counter in the upper half and countermax in the lower
half. This variable is of type atomic_t, which has an underlying representation
of int.

Lines 2-6 show the definitions for globalcountmax, globalcount, globalreserve,
counterp, and gblcnt mutex, all of which take on roles similar to their coun-

count_lim_atomic.c

60 CHAPTER 4. COUNT.
1 atomic_t __thread counterandmax = ATOMIC_INIT(O);
2 unsigned long globalcountmax = 10000;
3 unsigned long globalcount = 0;
4 unsigned long globalreserve = 0;
5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex) ;
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

10 static void

11 split_counterandmax_int(int cami, int *c, int *cm)
12 {

13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;

14 xcm = cami & MAX_COUNTERMAX;

15 }

17 static void
18 split_counterandmax(atomic_t *cam, int *old,

19 int *c, int *cm)
20 {

21 unsigned int cami = atomic_read(cam);
22

23 *0ld = cami;
24 split_counterandmax_int(cami, c, cm);
25 }

27 static int merge_counterandmax(int c, int cm)
28 {
29 unsigned int cami;

31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);
33}

Figure 4.15: Atomic Limit Counter Variables and Access Functions

terparts in Figure Line 7 defines CM_BITS, which gives the number of bits
in each half of counterandmax, and line 8 defines MAX_COUNTERMAX, which gives
the maximum value that may be held in either half of counterandmax.

Quick Quiz 4.29: In what way does line 7 of Figure violate the C
standard? W

Lines 10-15 show the split_counterandmax_int() function, which, when
given the underlying int from the atomic_t counterandmax variable. Line 13
isolates the most-significant half of this int, placing the result as specified by
argument ¢, and line 14 isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-25 show the split_counterandmax() function, which picks up the
underlying int from the specified variable on line 21, stores it as specified by
the old argument on line 23, and then invokes split_counterandmax_int () to
split it on line 24.

Quick Quiz 4.30: Given that there is only one counterandmax variable,
why bother passing in a pointer to it on line 18 of Figure |

Lines 27-33 show the merge_counterandmax () function, which can be thought
of as the inverse of split_counterandmax (). Line 31 merges the counter and
countermax values passed in ¢ and cm, respectively, and returns the result.

Quick Quiz 4.31: Why does merge_counterandmax () in Figure[f.I5|return
an int rather than storing directly into an atomic_t? M

Figure shows the add_count (), sub_count (), and read_count () func-
tions.

4.4. EXACT LIMIT COUNTERS

1 int add_count(unsigned long delta)

2 q{

3 int c;

4 int cm;

5 int old;

6 int new;

7

8 do {

9 split_counterandmax (&counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;

12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,
14 old, new) != old);

15 return 1;

16 slowpath:

17 spin_lock(&gblcnt_mutex);

18 globalize_count () ;

19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock(&gblcnt_mutex) ;

25 return 0;

26 ¥

27 }

28 globalcount += delta;

29 balance_count();

30 spin_unlock(&gblcnt_mutex) ;
31 return 1;

32 }

34 int sub_count(unsigned long delta)
35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

42 split_counterandmax(&counterandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_counterandmax(c - delta, cm);

46 } while (atomic_cmpxchg(&counterandmax,

47 old, new) != old);

48 return 1;

49 slowpath:

50 spin_lock(&gblcnt_mutex);
51 globalize_count () ;

52 if (globalcount < delta) {

53 flush_local_count();

54 if (globalcount < delta) {
55 spin_unlock(&gblcnt_mutex) ;
56 return O;

57 }

58 }

59 globalcount -= delta;

60 balance_count () ;

61 spin_unlock(&gblcnt_mutex) ;
62 return 1;

Figure 4.16: Atomic Limit Counter Add and Subtract

1 unsigned long read_count(void)
2 {

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock(&gblcnt_mutex);
10 sum = globalcount;
11 for_each_thread(t)

12 if (counterp[t] != NULL) {

13 split_counterandmax(counterp[t], &old, &c, &cm);
14 sum += c;

15 }

16 spin_unlock(&gblcnt_mutex);
17 return sum;

Figure 4.17: Atomic Limit Counter Read

Lines 1-32 show add_count (), whose fastpath spans lines 8-15, with the re-
mainder of the function being the slowpath. Lines 8-14 of the fastpath form
a compare-and-swap (CAS) loop, with the atomic_cmpxchg() primitives on
lines 13-14 performing the actual CAS. Line 9 splits the current thread’s counter
variable into its counter (in c¢) and countermax (in cm) components, while plac-
ing the underlying int into old. Line 10 checks whether the amount delta can
be accommodated locally (taking care to avoid integer overflow), and if not,
line 11 transfers to the slowpath. Otherwise, line 11 combines an updated
counter value with the original countermax value into new. The atomic_
cmpxchg() primitive on lines 13-14 then atomically compares this thread’s
counterandmax variable to old, updating its value to new if the comparison
succeeds. If the comparison succeeds, line 15 returns success, otherwise, execu-
tion continues in the loop at line 9.

Quick Quiz 4.32: Yecch! Why the ugly goto on line 11 of Figure
Haven’t you heard of the break statement??? Wl

Quick Quiz 4.33: Why would the atomic_cmpxchg() primitive at lines 13-
14 of Figure [£.16] ever fail? After all, we picked up its old value on line 9 and
have not changed it! H

Lines 16-32 of Figure [£.16] show add_count ()’s slowpath, which is protected
by gblcnt.mutex, which is acquired on line 17 and released on lines 24 and
30. Line 18 invokes globalize_count(), which moves this thread’s state to
the global counters. Lines 19-20 check whether the delta value can be ac-
commodated by the current global state, and, if not, line 21 invokes flush_
local_count () to flush all threads’ local state to the global counters, and then
lines 22-23 recheck whether delta can be accommodated. If, after all that, the
addition of delta still cannot be accommodated, then line 24 releases gblcnt_
mutex (as noted earlier), and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads counts
to the local state if appropriate, line 30 releases gblcnt mutex (again, as noted
earlier), and finally, line 31 returns success.

Lines 34-63 of Figure show sub_count (), which is structured similarly
to add_count (), having a fastpath on lines 41-48 and a slowpath on lines 49-62.
A line-by-line analysis of this function is left as an exercise to the reader.

CHAPTER 4. COUNT.

andmax

4.4. EXACT LIMIT COUNTERS

Figure m shows read_count (). Line 9 acquires gblcnt mutex and line 16
releases it. Line 10 initializes local variable sum to the value of globalcount, and
the loop spanning lines 11-15 adds the per-thread counters to this sum, isolating
each per-thread counter using split_counterandmax on line 13. Finally, line 17
returns the sum.

Figure shows the utility functions globalize_count(), flush local_
count (), balance_count (), count_register_thread(), and count_unregister_
thread(). The code for globalize_count() is shown on lines 1-12, and it is
similar to that of previous algorithms, with the addition of line 7, which is now
required to split out counter and countermax from counterandmax.

The code for flush_local_count (), which moves all threads’ local counter
state to the global counter, is shown on lines 14-32. Line 22 checks to see if
the value of globalreserve permits any per-thread counts, and, if not, line 23
returns. Otherwise, line 24 initializes local variable zero to a combined zeroed
counter and countermax. The loop spanning lines 25-31 sequences through
each thread. Line 26 checks to see if the current thread has counter state,
and, if so, lines 27-30 move that state to the global counters. Line 27 atomically
fetches the current thread’s state while replacing it with zero. Line 28 splits this
state into its counter (in local variable ¢) and countermax (in local variable
cm) components. Line 29 adds this thread’s counter to globalcount, while
line 30 subtracts this thread’s countermax from globalreserve.

Quick Quiz 4.34: What stops a thread from simply refilling its counterandmax
variable immediately after flush_local_count () on line 14 of Figure emp-
ties it? M

Quick Quiz 4.35: What prevents concurrent execution of the fastpath of
either atomic_add () or atomic_sub() from interfering with the counterandmax
variable while flush_local_count() is accessing it on line 27 of Figure [4.18
empties it? W

Lines 34-54 show the code for balance_count (), which refills the calling
thread’s local counterandmax variable. This function is quite similar to that of
the preceding algorithms, with changes required to handle the merged counterandmax
variable. Detailed analysis of the code is left as an exercise for the reader, as
it is with the count_register_thread() function starting on line 56 and the
count_unregister_thread() function starting on line 65.

Quick Quiz 4.36: Given that the atomic_set() primitive does a simple
store to the specified atomic_t, how can line 53 of balance_count() in Fig-
ure [£.18 work correctly in face of concurrent flush_local_count () updates to
this variable? W

4.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run
all the way to either of its limits, but it does so at the expense of adding
atomic operations to the fastpaths, which slow down the fastpaths significantly.
Although some workloads might tolerate this slowdown, it is worthwhile looking
for algorithms with better read-side performance. One such algorithm uses a
signal handler to steal counts from other threads. Because signal handlers run
in the context of the signaled thread, atomic operations are not necessary, as
shown in the next section.

Quick Quiz 4.37: But signal handlers can be migrated to some other CPU

1 static void globalize_count(void)
2 {

3 int c;

4 int cm;

5 int old;
6
7
8

split_counterandmax(&counterandmax, &old, &c, &cm);

globalcount += c;
9 globalreserve -= cm;
10 old = merge_counterandmax(0, 0);
11 atomic_set (&counterandmax, old);
12 }

14 static void flush_local_count(void)
15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

22 if (globalreserve == 0)
23 return;

24 zero = merge_counterandmax(0, 0);
25 for_each_thread(t)

26 if (counterp[t] != NULL) {

27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;

31 }

32

33

34 static void balance_count(void)

35 {

36 int c;

37 int cm;

38 int old;

39 unsigned long limit;
40

41 limit = globalcountmax - globalcount - globalreserve;

42 1limit /= num_online_threads();
43 if (limit > MAX_COUNTERMAX)

44 cm = MAX_COUNTERMAX;
45 else
46 cm = limit;

47 globalreserve += cm;

48 c=cm / 2;

49 if (c > globalcount)

50 c = globalcount;

51 globalcount -= c;

52 old = merge_counterandmax(c, cm);
53 atomic_set (&counterandmax, old);
54 }

55

56 void count_register_thread(void)
57 {

58 int idx = smp_thread_id();

59

60 spin_lock(&gblcnt_mutex);

61 counterp[idx] = &counterandmax;
62 spin_unlock(&gblcnt_mutex) ;

63 }

64

65 void count_unregister_thread(int nthreadsexpected)

66 {
67 int idx = smp_thread_id();

69 spin_lock(&gblcnt_mutex);
70 globalize_count();

71 counterp[idx] = NULL;

72 spin_unlock(&gblcnt_mutex) ;

Figure 4.18: Atomic Limit Counter Utility Functions

CHAPTER 4. COUNT.

4.4. EXACT LIMIT COUNTERS

Figure 4.19: Signal-Theft State Machine

while running. Doesn’t this possibility require that atomic instructions and
memory barriers are required to reliably communicate between a thread and a
signal handler that interrupts that thread? M

4.4.3 Signal-Theft Limit Counter Design

Figure [£.19)shows the state diagram. The state machine starts out in the IDLE
state, and when add_count () or sub_count () find that the combination of the
local thread’s count and the global count cannot accommodate the request,
the corresponding slowpath sets each thread’s theft state to REQ (unless that
thread has no count, in which case it transitions directly to READY). Only the
slowpath, which holds the gblent mutex lock, is permitted to transition from
the IDLE state, as indicated by the green color. The slowpath then sends a signal
to each thread, and the corresponding signal handler checks the corresponding
thread’s theft and counting variables. If the theft state is not REQ, then
the signal handler is not permitted to change the state, and therefore simply
returns. Otherwise, if the counting variable is set, indicating that the current
thread’s fastpath is in progress, the signal handler sets the theft state to ACK,
otherwise to READY.

If the theft state is ACK, only the fastpath is permitted to change the
theft state, as indicated by the blue color. When the fastpath completes, it
sets the theft state to READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath is
permitted to steal that thread’s count. The slowpath then sets that thread’s
theft state to IDLE.

Quick Quiz 4.38: In Figure 4.19) why is the REQ theft state colored
blue? B

Quick Quiz 4.39: In Figure what is the point of having separate REQ

65

D
(@)

#define THEFT_IDLE O
#define THEFT_REQ 1
#define THEFT_ACK 2
#define THEFT_READY 3

int __thread theft = THEFT_IDLE;

int __thread counting = 0;

unsigned long __thread counter = 0;

unsigned long __thread countermax = O0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long *countermaxp[NR_THREADS] = { NULL };
int *theftp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK(gblcnt_mutex) ;

17 #define MAX_COUNTERMAX 100

OO0 ~NOU S WN -

e el el
P WN PO

Figure 4.20: Signal-Theft Limit Counter Data

and ACK theft states? Why not simplify the state machine by collapsing them
into a single state? Then whichever of the signal handler or the fastpath gets
there first could set the state to READY. B

4.4.4 Signal-Theft Limit Counter Implementation

Figure (count_lim_sig.c) shows the data structures used by the signal-
theft based counter implementation. Lines 1-7 define the states and values for
the per-thread theft state machine described in the preceding section. Lines 8-
17 are similar to earlier implementations, with the addition of lines 14 and 15 to
allow remote access to a thread’s countermax and theft variables, respectively.

Figure shows the functions responsible for migrating counts between
per-thread variables and the global variables. Lines 1-7 shows global_count (),
which is identical to earlier implementations. Lines 9-19 shows flush_local_
count_sig(), which is the signal handler used in the theft process. Lines 11 and
12 check to see if the theft state is REQ, and, if not returns without change.
Line 13 executes a memory barrier to ensure that the sampling of the theft
variable happens before any change to that variable. Line 14 sets the theft
state to ACK, and, if line 15 sees that this thread’s fastpaths are not running,
line 16 sets the theft state to READY.

Quick Quiz 4.40: In Figure {.21] function flush_local_count_sig(), why
are there ACCESS_ONCE() wrappers around the uses of the theft per-thread
variable? Wl

Lines 21-49 shows flush_local_count (), which is called from the slowpath
to flush all threads’ local counts. The loop spanning lines 26-34 advances the
theft state for each thread that has local count, and also sends that thread a
signal. Line 27 skips any non-existent threads. Otherwise, line 28 checks to see
if the current thread holds any local count, and, if not, line 29 sets the thread’s
theft state to READY and line 28 skips to the next thread. Otherwise, line 32
sets the thread’s theft state to REQ and line 29 sends the thread a signal.

Quick Quiz 4.41: In Figure[4.21] why is it safe for line 28 to directly access
the other thread’s countermax variable? H

Quick Quiz 4.42: In Figure why doesn’t line 33 check for the current

CHAPTER 4. COUNT.

count_lim_sig.c

4.4.

{

}

EXACT LIMIT COUNTERS

static void globalize_count(void)

globalcount += counter;
counter = 0;

globalreserve -= countermax;
countermax = O;

9 static void flush_local_count_sig(int unused)

10 {

19 }

if (ACCESS_ONCE(theft) != THEFT_REQ)
return;

smp_mb () ;

ACCESS_ONCE(theft) = THEFT_ACK;

if (!counting) {
ACCESS_ONCE(theft) = THEFT_READY;

}

smp_mb () ;

21 static void flush_local_count(void)

22 {

49 }

int t;
thread_id_t tid;

for_each_tid(t, tid)
if (theftp[t] != NULL) {

if (*countermaxp[t] == 0) {
ACCESS_ONCE (*theftp[t]) =
continue;

}

ACCESS_ONCE (*theftp[t]) = THEFT_REQ;

pthread_kill(tid, SIGUSR1);

THEFT_READY;

}
for_each_tid(t, tid) {
if (theftp[t] == NULL)
continue;
while (ACCESS_ONCE(*theftp[t]) != THEFT_READY) {
poll(NULL, 0, 1);
if (ACCESS_ONCE(*theftp[t]) == THEFT_REQ)
pthread_kill(tid, SIGUSR1);
}
globalcount += *counterp[t];
xcounterp[t] = 0;
globalreserve -= *countermaxp[t];
*countermaxp[t] = 0;
ACCESS_ONCE (*theftp[t]) = THEFT_IDLE;
}

51 static void balance_count(void)

52 {

countermax = globalcountmax -
globalcount - globalreserve;
countermax /= num_online_threads();
if (countermax > MAX_COUNTERMAX)
countermax = MAX_COUNTERMAX;
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)
counter = globalcount;
globalcount -= counter;

Figure 4.21: Signal-Theft Limit Counter Value-Migration Functions

67

68 CHAPTER 4. COUNT.

thread sending itself a signal? H

Quick Quiz 4.43: The code in Figure works with gcc and POSIX.
What would be required to make it also conform to the ISO C standard? M

The loop spanning lines 35-48 waits until each thread reaches READY state,
then steals that thread’s count. Lines 36-37 skip any non-existent threads, and
the loop spanning lines 38-42 wait until the current thread’s theft state becomes
READY. Line 39 blocks for a millisecond to avoid priority-inversion problems,
and if line 40 determines that the thread’s signal has not yet arrived, line 41
resends the signal. Execution reaches line 43 when the thread’s theft state
becomes READY, so lines 43-46 do the thieving. Line 47 then sets the thread’s
theft state back to IDLE.

Quick Quiz 4.44: In Figure why does line 41 resend the signal? W

Lines 51-63 show balance_count (), which is similar to that of earlier exam-
ples.

Lines 1-36 of Figure [£.22] shows the add_count() function. The fastpath
spans lines 5-20, and the slowpath lines 21-35. Line 5 sets the per-thread
counting variable to 1 so that any subsequent signal handlers interrupting
this thread will set the theft state to ACK rather than READY, allowing this
fastpath to complete properly. Line 6 prevents the compiler from reordering any
of the fastpath body to precede the setting of counting. Lines 7 and 8 check to
see if the per-thread data can accommodate the add_count () and if there is no
ongoing theft in progress, and if so line 9 does the fastpath addition and line 10
notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath
body to follow line 13, which permits any subsequent signal handlers to under-
take theft. Line 14 again disables compiler reordering, and then line 15 checks
to see if the signal handler deferred the theft state-change to READY, and, if
so, line 16 executes a memory barrier to ensure that any CPU that sees line 17
setting state to READY also sees the effects of line 9. If the fastpath addition
at line 9 was executed, then line 20 returns success.

Otherwise, we fall through to the slowpath starting at line 21. The structure
of the slowpath is similar to those of earlier examples, so its analysis is left as
an exercise to the reader. Similarly, the structure of sub_count () on lines 38-71
is the same as that of add_count (), so the analysis of sub_count () is also left
as an exercise for the reader, as is the analysis of read_count () in Figure

Lines 1-12 of Figure [£:24] show count_init(), which set up flush local_
count_sig() as the signal handler for SIGUSR1, enabling the pthread kill()
calls in flush local_count() to invoke flush_local_count_sig(). The code
for thread registry and unregistry is similar to that of earlier examples, so its
analysis is left as an exercise for the reader.

4.4.5 Signal-Theft Limit Counter Discussion

The signal-theft implementation runs more than twice as fast as the atomic
implementation on my Intel Core Duo laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-4
systems, given their slow atomic instructions, but the old 80386-based Sequent
Symmetry systems would do much better with the shorter path length of the
atomic implementation. If ultimate performance is of the essence, you will need
to measure them both on the system that your application is to be deployed on.

4.4.

i
{

0 ~NO P WN

36 }

EXACT LIMIT COUNTERS

nt add_count (unsigned long delta)

int fastpath = 0;

counting = 1;
barrier();
if (countermax - counter >= delta &&
ACCESS_ONCE(theft) <= THEFT_REQ) {
counter += delta;
fastpath = 1;
}
barrier();
counting = 0;
barrier();
if (ACCESS_ONCE(theft) == THEFT_ACK) {
smp_mb () ;
ACCESS_ONCE (theft) = THEFT_READY;
}
if (fastpath)
return 1;
spin_lock(&gblcnt_mutex) ;
globalize_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
flush_local_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;
}
}
globalcount += delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

38 int sub_count(unsigned long delta)

39 {

71}

int fastpath = 0;

counting = 1;
barrier();
if (counter >= delta &&
ACCESS_ONCE(theft) <= THEFT_REQ) {
counter -= delta;
fastpath = 1;
}
barrier();
counting = 0;
barrier();
if (ACCESS_ONCE(theft) == THEFT_ACK) {
smp_mb () ;
ACCESS_ONCE(theft) = THEFT_READY;
}
if (fastpath)
return 1;
spin_lock(&gblcnt_mutex);
globalize_count () ;
if (globalcount < delta) {
flush_local_count();
if (globalcount < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;
}
}
globalcount -= delta;
balance_count () ;
spin_unlock(&gblcnt_mutex) ;
return 1;

Figure 4.22: Signal-Theft Limit Counter Add and Subtract Functions

69

70

{

{

12 }

unsigned long read_count(void)

int t;
unsigned long sum;

spin_lock(&gblcnt_mutex) ;
sum = globalcount;
for_each_thread(t)
if (counterp[t] != NULL)
sum += *counterp[t];
spin_unlock(&gblcnt_mutex) ;
return sum;

Figure 4.23: Signal-Theft Limit Counter Read Function

void count_init(void)

struct sigaction sa;

sa.sa_handler = flush_local_count_sig;
sigemptyset (&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL) != 0) {
perror("sigaction");
exit(-1);
}

14 void count_register_thread(void)

15 {

23 }

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
counterp[idx] = &counter;
countermaxp[idx] = &countermax;
theftp[idx] = &theft;
spin_unlock(&gblcnt_mutex) ;

25 void count_unregister_thread(int nthreadsexpected)

26 {

35 }

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
globalize_count();
counterp[idx] = NULL;
countermaxp[idx] = NULL;
theftp[idx] = NULL;
spin_unlock(&gblcnt_mutex) ;

Figure 4.24: Signal-Theft Limit Counter Initialization Functions

CHAPTER 4. COUNT.

4.5. APPLYING SPECIALIZED PARALLEL COUNTERS

This is but one reason why high-quality APIs are so important: they permit
implementations to be changed as required by ever-changing hardware perfor-
mance characteristics.

Quick Quiz 4.45: What if you want an exact limit counter to be exact
only for its lower limit? H

4.5 Applying Specialized Parallel Counters

Although the exact limit counter implementations in Section [{.4] can be very
useful, they are not much help if the counter’s value remains near zero at all
times, as it might when counting the number of outstanding accesses to an 1/0O
device. The high overhead of such near-zero counting is especially painful given
that we normally don’t care how many references there are. As noted in the
removable I/O device access-count problem on page the number of accesses
is irrelevant except in those rare cases when someone is actually trying to remove
the device.

One simple solution to this problem is to add a large “bias” (for example,
one billion) to the counter in order to ensure that the value is far enough from
zero that the counter can operate efficiently. When someone wants to remove
the device, this bias is subtracted from the counter value. Counting the last few
accesses will be quite inefficient, but the important point is that the many prior
accesses will have been counted at full speed.

Quick Quiz 4.46: What else had you better have done when using a biased
counter? Wl

Although a biased counter can be quite helpful and useful, it is only a par-
tial solution to the removable I/O device access-count problem called out on
page When attempting to remove a device, we must not only know the pre-
cise number of current I/O accesses, we also need to prevent any future accesses
from starting. One way to accomplish this is to read-acquire a reader-writer
lock when updating the counter, and to write-acquire that same reader-writer
lock when checking the counter. Code for doing I/O might be as follows:

1 read_lock(&mylock) ;

2 if (removing) {

3 read_unlock(&mylock);
cancel_io();

} else {
add_count (1) ;
read_unlock(&mylock) ;
do_io();
sub_count (1) ;

O © 00N OO

10 }

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2 checks
to see if the device is being removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate given that the device
is to be removed. Otherwise, line 6 increments the access count, line 7 releases
the lock, line 8 performs the I/O, and line 9 decrements the access count.

Quick Quiz 4.47: This is ridiculous! We are read-acquiring a reader-writer
lock to update the counter? What are you playing at??? W

The code to remove the device might be as follows:

71

72
Reads
Algorithm Section | Updates | 1 Core \ 64 Cores
“count_stat.c 4.2.2 40.4 ns | 220 ns 220 ns
count_end.c 4.2.4 6.7 ns | 521 ns | 205,000 ns
count_end_rcu.c E 6.7 ns | 481 ns 3,700 ns

Table 4.1: Statistical Counter Performance on Power 5

write_lock(&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock(&mylock) ;

while (read_count() !'= 0) {
poll(NULL, 0, 1);

}

remove_device();

W ~NO O W N -

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that
the device is being removed, and the loop spanning lines 5-7 wait for any I/0
operations to complete. Finally, line 8 does any additional processing needed to
prepare for device removal.

Quick Quiz 4.48: What other issues would need to be accounted for in a
real system? H

4.6 Parallel Counting Discussion

This chapter has presented the reliability, performance, and scalability problems
with traditional counting primitives. The C-language ++ operator is not guar-
anteed to function reliably in multithreaded code, and atomic operations to a
single variable neither perform nor scale well. This chapter has also presented a
number of counting algorithms that perform and scale extremely well in certain
special cases.

Table shows the performance of the three parallel statistical counting
algorithms. All three algorithms provide perfect linear scalability for updates.
The per-thread-variable implementation is significantly faster on updates than
the array-based implementation, but is slower at reads, and suffers severe lock
contention when there are many parallel readers. This contention can be ad-
dressed using techniques introduced in Chapter [8] as shown on the last row of
Table {11

Quick Quiz 4.49: On the|count_stat.c/ row of Table we see that the
update side scales linearly with the number of threads. How is that possible
given that the more threads there are, the more per-thread counters must be
summed up? W

Quick Quiz 4.50: Even on the last row of Table the read-side perfor-
mance of these statistical counter implementations is pretty horrible. So why
bother with them? W

Figure shows the performance of the parallel limit-counting algorithms.
Exact enforcement of the limits incurs a substantial performance penalty, al-
though on the Power 5 system this penalty can be reduced by substituting

CHAPTER 4. COUNT.

count_stat.c
count_end.c
count_end_rcu.c
count_stat.c

4.6. PARALLEL COUNTING DISCUSSION

Reads
Algorithm Section | Exact? | Updates | 1 Core \ 64 Cores
lcount_lim.c 4.9 N 9.7ns | 517 ns | 202,000 ns
count_lim_app.c 4.3.4 N 6.6 ns | 520 ns | 205,000 ns
count_lim_atomic.c 4.4.1 Y 56.1 ns | 606 ns | 166,000 ns
count_lim_sig.c 4.4.4 Y 17.5ns | 520 ns | 205,000 ns

Table 4.2: Limit Counter Performance on Power 5

read-side signals for update-side atomic operations. All of these implementa-
tions suffer from read-side lock contention in the face of concurrent readers.

Quick Quiz 4.51: Given the performance data shown in Table [£.2] we
should always prefer update-side signals over read-side atomic operations, right?
]

Quick Quiz 4.52: Can advanced techniques be applied to address the lock
contention for readers seen in Table [£2 W

The fact that these algorithms only work well in their respective special cases
might be considered a major problem with parallel programming in general.
After all, the C-language ++ operator works just fine in single-threaded code,
and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence mis-
guided. The problem is not parallelism as such, but rather scalability. To
understand this, first consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of numbers. If you need
to deal with 1,000-digit decimal numbers, the C-language ++ operator will not
work for you.

Quick Quiz 4.53: The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading??? Bl

This problem is not specific to arithmetic. Suppose you need to store and
query data. Should you use an ASCII file, XML, a relational database, a linked
list, a dense array, a B-tree, a radix tree, or any of the plethora of other data
structures and environments that permit data to be stored and queried? It
depends on what you need to do, how fast you need it done, and how large your
data set is.

Similarly, if you need to count, your solution will depend on how large of
numbers you need to work with, how many CPUs need to be manipulating a
given number concurrently, how the number is to be used, and what level of
performance and scalability you will need.

Nor is this problem specific to software. The design for a bridge meant to
allow people to walk across a small brook might be a simple as a plank thrown
across the brook. But this solution of using a plank does not scale. You would
probably not use a plank to span the kilometers-wide mouth of the Columbia
River, nor would such a design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increasing span and load, so
must software design change as the number of CPUs increases.

The examples in this chapter have shown that an important tool permitting
large numbers of CPUs to be brought to bear is partitioning. Whether fully
partitioned, as in the statistical counters discussed in Section .2 or partially

73

count_lim.c
count_lim_app.c
count_lim_atomic.c
count_lim_sig.c

74 CHAPTER 4. COUNT.

partitioned as in the limit counters discussed in Sections and Partition-
ing will be considered in far greater depth in the next chapter.

Quick Quiz 4.54: But if we are going to have to partition everything,
why bother with shared-memory multithreading? Why not just partition the
problem completely and run as multiple processes, each in its own address space?
]

Chapter 5

Partitioning and
Synchronization Design

This chapter describes how to design software to take advantage of the multiple
CPUs that are increasingly appearing in commodity systems. It does this by
presenting a number of idioms, or “design patterns” that can help you balance
performance, scalability, and response time. As noted in earlier chapters, the
most important decision you will make when creating parallel software is how to
carry out the partitioning. Correctly partitioned problems lead to simple, scal-
able, and high-performance solutions, while poorly partitioned problems result
in slow and complex solutions.
@Q@Q@ roadmap QQQ

5.1 Partitioning Exercises

This section uses a pair of exercises (the classic Dining Philosophers problem
and a double-ended queue) to demonstrate the value of partitioning.

5.1.1 Dining Philosophers Problem

Figure shows a diagram of the classic Dining Philosophers problem [Dij71].
This problem features five philosophers who do nothing but think and eat a
“very difficult kind of spaghetti” which requires two forks to eat. A given
philosopher is permitted to use only the forks to his or her immediate right and
left, and once a philosopher picks up a fork, he or she will not put it down until
sated.

The object is to construct an algorithm that, quite literally, prevents starva-
tion. One starvation scenario would be if all of the philosophers picked up their
leftmost forks simultaneously. Because none of them would put down their fork
until after they ate, and because none of them may pick up their second fork
until at least one has finished eating, they all starve.

Dijkstra’s solution used a global semaphore, which works fine assuming neg-
ligible communications delays, an assumption that has become invalid in the
ensuing decades. Therefore, recent solutions number the forks as shown in Fig-
ure [5.2l Each philosopher picks up the lowest-numbered fork next to his or

(0]

76 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

Figure 5.1: Dining Philosophers Problem

Figure 5.2: Dining Philosophers Problem, Textbook Solution

her plate, then picks up the highest-numbered fork. The philosopher sitting
in the uppermost position in the diagram thus picks up the leftmost fork first,
then the rightmost fork, while the rest of the philosophers instead pick up their
rightmost fork first. Because two of the philosophers will attempt to pick up
fork 1 first, and because only one of those two philosophers will succeed, there
will be five forks available to four philosophers. At least one of these four will
be guaranteed to have two forks, and thus be able to proceed eating.

This general technique of numbering resources and acquiring them in nu-
merical order is heavily used as a deadlock-prevention technique. However, it
is easy to imagine a sequence of events that will result in only one philosopher
eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.

5.1. PARTITIONING EXERCISES

2. P3 picks up fork 2.
. P4 picks up fork 3.
. P5 picks up fork 4.
. P5 picks up fork 5 and eats.
. P5 puts down forks 4 and 5.

~N O Ot s W

. P4 picks up fork 4 and eats.

Please think about ways of partitioning the Dining Philosophers Problem
before reading further.

7

78

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

5.1. PARTITIONING EXERCISES

Figure 5.3: Dining Philosophers Problem, Partitioned

One approach is shown in Figure[5.3] which includes four philosophers rather
than five to better illustrate the partition technique. Here the upper and right-
most philosophers share a pair of forks, while the lower and leftmost philoso-
phers share another pair of forks. If all philosophers are simultaneously hungry,
at least two will be able to eat concurrently. In addition, as shown in the figure,
the forks can now be bundled so that the pair are picked up and put down
simultaneously, simplifying the acquisition and release algorithms.

Quick Quiz 5.1: Is there a better solution to the Dining Philosophers
Problem? W

This is an example of “horizontal parallelism” [Inm85] or “data parallelism”,
so named because there is no dependency among the philosophers. In a data-
processing system, a given item of data would pass through only one of a repli-
cated set of software components.

Quick Quiz 5.2: And in just what sense can this “horizontal parallelism”
be said to be “horizontal”? H

5.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a list of elements that may
be inserted or removed from either end [Knu73]. It has been claimed that a
lock-based implementation permitting concurrent operations on both ends of the
double-ended queue is difficult [Gro07]. This section shows how a partitioning
design strategy can result in a reasonably simple implementation, looking at
three general approaches in the following sections.

5.1.2.1 Right- and Left-Hand Locks

One seemingly straightforward approach would be to have a left-hand lock for
left-hand-end enqueue and dequeue operations along with a right-hand lock
for right-hand-end operations, as shown in Figure [5.40 However, the problem

79

80 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES!
Lock L Lock R
Header L Header R
Lock L Lock R
Header L n Header R

Lock L Lock R

Header L 0 1 2 3 Header R

Figure 5.4: Double-Ended Queue With Left- and Right-Hand Locks

Lock L Lock R

Figure 5.5: Compound Double-Ended Queue

with this approach is that the two locks’ domains must overlap when there
are fewer than four elements on the list. This overlap is due to the fact that
removing any given element affects not only that element, but also its left- and
right-hand neighbors. These domains are indicated by color in the figure, with
blue indicating the domain of the left-hand lock, red indicating the domain of
the right-hand lock, and purple indicating overlapping domains. Although it
is possible to create an algorithm that works this way, the fact that it has no
fewer than five special cases should raise a big red flag, especially given that
concurrent activity at the other end of the list can shift the queue from one
special case to another at any time. It is far better to consider other designs.

5.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 5.5 Two
separate double-ended queues are run in tandem, each protected by its own lock.
This means that elements must occasionally be shuttled from one of the double-
ended queues to the other, in which case both locks must be held. A simple lock
hierarchy may be used to avoid deadlock, for example, always acquiring the left-
hand lock before acquiring the right-hand lock. This will be much simpler than

5.1. PARTITIONING EXERCISES

DEQO
Lock 0

DEQ 3
Lock 3

Index L Index R

Lock L Lock R

Figure 5.6: Hashed Double-Ended Queue

applying two locks to the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-enqueue elements to the
right-hand queue. The main complication arises when dequeuing from an empty
queue, in which case it is necessary to:

1. If holding the right-hand lock, release it and acquire the left-hand lock,
rechecking that the queue is still empty.

Acquire the right-hand lock.
Rebalance the elements across the two queues.

Remove the required element.

BT el R

Release both locks.

Quick Quiz 5.3: In this compound double-ended queue implementation,
what should be done if the queue has become non-empty while releasing and
reacquiring the lock? W

The rebalancing operation might well shuttle a given element back and
forth between the two queues, wasting time and possibly requiring workload-
dependent heuristics to obtain optimal performance. Although this might well
be the best approach in some cases, it is interesting to try for an algorithm with
greater determinism.

5.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a
data structure is to hash it. It is possible to trivially hash a double-ended queue
by assigning each element a sequence number based on its position in the list,
so that the first element left-enqueued into an empty queue is numbered zero
and the first element right-enqueued into an empty queue is numbered one. A
series of elements left-enqueued into an otherwise-idle queue would be assigned
decreasing numbers (-1, -2, -3, ...), while a series of elements right-enqueued
into an otherwise-idle queue would be assigned increasing numbers (2, 3, 4, ...).
A key point is that it is not necessary to actually represent a given element’s
number, as this number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the left-hand index, one to
guard the right-hand index, and one lock for each hash chain. Figure [5.6]shows
the resulting data structure given four hash chains. Note that the lock domains

81

82 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

R1

DEQO | DEQ1 | DEQ2 | DEQ3

b

Index L Index R

R4 R1 R2 R3

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

R4 R5 R2 R3

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

Figure 5.7: Hashed Double-Ended Queue After Insertions

do not overlap, and that deadlock is avoided by acquiring the index locks before
the chain locks, and by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and in this example, each
holds every fourth element. The uppermost portion of Figure shows the
state after a single element (“R1”) has been right-enqueued, with the right-
hand index having been incremented to reference hash chain 2. The middle
portion of this same figure shows the state after three more elements have been
right-enqueued. As you can see, the indexes are back to their initial states,
however, each hash chain is now non-empty. The lower portion of this figure
shows the state after three additional elements have been left-enqueued and an
additional element has been right-enqueued.

From the last state shown in Figure a left-dequeue operation would

5.1. PARTITIONING EXERCISES

R7 | R6 | R5 | R4
Lo | R1 R2 | R3
L-4 | L-83|L-2] L
L-8 | L-7 | L-6 | L-5

Figure 5.8: Hashed Double-Ended Queue With 12 Elements

1 struct pdeq {

2 spinlock_t 1llock;

3 int 1lidx;

4 spinlock_t rlock;

5 int ridx;

6 struct deq bkt [DEQ_N_BKTS];
7T}

Figure 5.9: Lock-Based Parallel Double-Ended Queue Data Structure

return element “L-2” and left the left-hand index referencing hash chain 2, which
would then contain only a single element (“R2”). In this state, a left-enqueue
running concurrently with a right-enqueue would result in lock contention, but
the probability of such contention can be arbitrarily reduced by using a larger
hash table.

Figure shows how 12 elements would be organized in a four-hash-bucket
parallel double-ended queue. Each underlying single-lock double-ended queue
holds a one-quarter slice of the full parallel double-ended queue.

Figure[5.9|shows the corresponding C-language data structure, assuming an
existing struct deq that provides a trivially locked double-ended-queue im-
plementation. This data structure contains the left-hand lock on line 2, the
left-hand index on line 3, the right-hand lock on line 4, the right-hand index on
line 5, and, finally, the hashed array of simple lock-based double-ended queues
on line 6. A high-performance implementation would of course use padding or
special alignment directives to avoid false sharing.

Figure [5.10] shows the implementation of the enqueue and dequeue func-
tionsEI Discussion will focus on the left-hand operations, as the right-hand
operations are trivially derived from them.

Lines 1-13 show pdeq_-dequeue_1(), which left-dequeues and returns an ele-
ment if possible, returning NULL otherwise. Line 6 acquires the left-hand spin-
lock, and line 7 computes the index to be dequeued from. Line 8 dequeues the
element, and, if line 9 finds the result to be non-NULL, line 10 records the new
left-hand index. Either way, line 11 releases the lock, and, finally, line 12 returns
the element if there was one, or NULL otherwise.

Lines 15-24 shows pdeq_enqueue_1(), which left-enqueues the specified el-
ement. Line 19 acquires the left-hand lock, and line 20 picks up the left-hand
index. Line 21 left-enqueues the specified element onto the double-ended queue
indexed by the left-hand index. Line 22 updates the left-hand index, and finally

1 One could easily create a polymorphic implementation in any number of languages, but
doing so is left as an exercise for the reader.

83

84

s
{

13 }

15 v

24 }

26 s
27 {

38 }

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

truct element *pdeq_dequeue_l(struct pdeq *d)

struct element *e;
int i;

spin_lock(&d->1lock);

i = moveright(d->1idx);

e = deq_dequeue_1(&d->bkt[i]);
if (e !'= NULL)

d->lidx = i;
spin_unlock(&d->1lock) ;
return e;

oid pdeq_enqueue_l(struct element *e, struct pdeq *d)
int i;

spin_lock(&d->1lock);

i = d->1lidx;

deq_enqueue_1(e, &d->bkt[il);
d->1idx = moveleft(d->1idx);
spin_unlock(&d->1lock) ;

truct element *pdeq_dequeue_r(struct pdeq *d)

struct element *e;
int i;

spin_lock(&d->rlock);
i = moveleft(d->ridx);
e = deq_dequeue_r(&d->bkt[i]);
if (e != NULL)

d->ridx = i;
spin_unlock(&d->rlock) ;
return e;

40 void pdeq_enqueue_r(struct element *e, struct pdeq *d)

Figure 5.10: Lock-Based Parallel Double-Ended Queue Implementation

int i;

spin_lock(&d->rlock);

i = d->ridx;

deq_enqueue_r(e, &d->bkt[il);
d->ridx = moveright(d->1idx);
spin_unlock(&d->rlock) ;

5.1. PARTITIONING EXERCISES

line 23 releases the lock.

As noted earlier, the right-hand operations are completely analogous to their
left-handed counterparts.

Quick Quiz 5.4: Is the hashed double-ended queue a good solution? Why
or why not? W

5.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue, using a trivial rebal-
ancing scheme that moves all the elements from the non-empty queue to the
now-empty queue.

Quick Quiz 5.5: Move all the elements to the queue that became empty?
In what possible universe is this braindead solution in any way optimal??? B

In contrast to the hashed implementation presented in the previous section,
the compound implementation will build on a sequential implementation of a
double-ended queue that uses neither locks nor atomic operations.

Figure shows the implementation. Unlike the hashed implementation,
this compound implementation is asymmetric, so that we must consider the
pdeq._dequeue_1() and pdeq_dequeue_r() implementations separately.

Quick Quiz 5.6: Why can’t the compound parallel double-ended queue
implementation be symmetric? H

The pdeq_dequeue_1() implementation is shown on lines 1-16 of the figure.
Line 6 acquires the left-hand lock, which line 14 releases. Line 7 attempts to
left-dequeue an element from the left-hand underlying double-ended queue, and,
if successful, skips lines 8-13 to simply return this element. Otherwise, line 9
acquires the right-hand lock, line 10 left-dequeues an element from the right-
hand queue, and line 11 moves any remaining elements on the right-hand queue
to the left-hand queue, and line 12 releases the right-hand lock. The element,
if any, that was dequeued on line 10 will be returned.

The pdeq_-dequeue_r () implementation is shown on lines 18-38 of the figure.
As before, line 23 acquires the right-hand lock (and line 36 releases it), and
line 24 attempts to right-dequeue an element from the right-hand queue, and,
if successful, skips lines 24-35 to simply return this element. However, if line 25
determines that there was no element to dequeue, line 26 releases the right-
hand lock and lines 27-28 acquire both locks in the proper order. Line 29 then
attempts to right-dequeue an element from the right-hand list again, and if
line 30 determines that this second attempt has failed, line 31 right-dequeues an
element from the left-hand queue (if there is one available) and line 32 moves any
remaining elements from the left-hand queue to the right-hand queue. Either
way, line 34 releases the left-hand lock.

Quick Quiz 5.7: Why is it necessary to retry the right-dequeue operation
on line 29 of Figure [5.117 W

Quick Quiz 5.8: Surely the left-hand lock must sometimes be available!!!
So why is it necessary that line 26 of Figure [5.11] unconditionally release the
right-hand lock? W

The pdeq_enqueue_1() implementation is shown on lines 40-47 of Figure[5.11
Line 44 acquires the left-hand spinlock, line 45 left-enqueues the element onto
the left-hand queue, and finally line 46 releases the lock. The pdeq_enqueue_r ()
implementation (shown on lines 49-56) is quite similar.

85

86 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES]
1 struct list_head *pdeq_dequeue_l(struct pdeq *d)
2 {

3 struct list_head x*e;

4 int i;

5

6 spin_lock(&d->1lock);

7 e = deq_dequeue_1(&d->1deq);

8 if (e == NULL) {

9 spin_lock(&d->rlock);

10 e = deq_dequeue_1(&d->rdeq);
11 list_splice_init(&d->rdeq.chain, &d->1ldeq.chain);
12 spin_unlock(&d->rlock) ;

13}

14 spin_unlock(&d->1lock) ;

15 return e;

16 }

17

18 struct list_head *pdeq_dequeue_r(struct pdeq *d)
19 {
20 struct list_head *e;
21 int i;
22
23 spin_lock(&d->rlock);

24 e = deq_dequeue_r(&d->rdeq);

25 if (e == NULL) {

26 spin_unlock(&d->rlock) ;

27 spin_lock(&d->1lock);

28 spin_lock(&d->rlock);

29 e = deq_dequeue_r (&d->rdeq) ;
30 if (e == NULL) {

31 e = deq_dequeue_r(&d->1deq);
32 list_splice_init(&d->1ldeq.chain, &d->rdeq.chain);
33 }

34 spin_unlock(&d->1lock) ;

35 ¥

36 spin_unlock(&d->rlock) ;

37 return e;

38 }

39

40 void pdeq_enqueue_l(struct list_head *e, struct pdeq *d)
41 {

42 int i;

43

44 spin_lock(&d->1lock);

45 deq_enqueue_l(e, &d->ldeq);

46 spin_unlock(&d->1lock) ;

47 }

48

49 void pdeq_enqueue_r(struct list_head *e, struct pdeq *d)
50 {

51 int i;

52

53 spin_lock(&d->rlock);

54 deq_enqueue_r(e, &d->rdeq);

55 spin_unlock(&d->rlock) ;

56 }

Figure 5.11: Compound Parallel Double-Ended Queue Implementation

5.2. DESIGN CRITERIA

5.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed
variant presented in Section but is still reasonably simple. Of course, a
more intelligent rebalancing scheme could be arbitrarily complex, but the simple
scheme shown here will has been shown to perform well compared to software
alternatives [DCW™11] and even compared to algorithms using hardware as-
sist [DLM™10]. Nevertheless, the best we can hope for from such a scheme
is 2x scalability, as at most two threads can be holding the dequeue’s locks
concurrently.

The key point is that there can be significant overhead enqueuing to or
dequeuing from a shared queue.

5.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem given in the answer
to the Quick Quiz in Section [5.1.1] is an excellent example of “horizontal par-
allelism” or “data parallelism”. The synchronization overhead in this case is
nearly (or even exactly) zero. In contrast, the double-ended queue implemen-
tations are examples of “vertical parallelism” or “pipelining”, given that data
moves from one thread to another. The tighter coordination required for pipelin-
ing in turn requires larger units of work to obtain a given level of efficiency.

Quick Quiz 5.9: The tandem double-ended queue runs about twice as fast
as the hashed double-ended queue, even when I increase the size of the hash
table to an insanely large number. Why is that? B

Quick Quiz 5.10: Is there a significantly better way of handling concur-
rency for double-ended queues? M

These two examples show just how powerful partitioning can be in devising
parallel algorithms. However, these example beg for more and better design
criteria for parallel programs, a topic taken up in the next section.

5.2 Design Criteria

Section [1.2) called out the three parallel-programming goals of performance,
productivity, and generality. However, more detailed design criteria are required
to actually produce a real-world design, a task taken up in this section. This
being the real world, these criteria often conflict to a greater or lesser degree,
requiring that the designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the “forces” acting on the
design, with particularly good tradeoffs between these forces being called “design
patterns” [Ale79l [GHIV95].

The design criteria for attaining the three parallel-programming goals are
speedup, contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section [I.2] increased performance is the major reason
to go to all of the time and trouble required to parallelize it. Speedup is
defined to be the ratio of the time required to run a sequential version of
the program to the time required to run a parallel version.

Contention: If more CPUs are applied to a parallel program than can be kept
busy by that program, the excess CPUs are prevented from doing useful

87

88 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

work by contention. This may be lock contention, memory contention, or
a host of other performance killers.

‘Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-preemptible,
and non—interruptibleﬂ version of a given parallel program would not need
any synchronization primitives. Therefore, any time consumed by these
primitives (including communication cache misses as well as message la-
tency, locking primitives, atomic instructions, and memory barriers) is
overhead that does not contribute directly to the useful work that the
program is intended to accomplish. Note that the important measure is
the relationship between the synchronization overhead and the overhead
of the code in the critical section, with larger critical sections able to toler-
ate greater synchronization overhead. The work-to-synchronization ratio
is related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may often be
replicated rather than partitioned, and furthermore may be protected with
asymmetric synchronization primitives that reduce readers’ synchroniza-
tion overhead at the expense of that of writers, thereby reducing overall
synchronization overhead. Corresponding optimizations are possible for
frequently updated data structures, as discussed in Chapter [4]

Complexity: A parallel program is more complex than an equivalent sequen-
tial program because the parallel program has a much larger state space
than does the sequential program, although these larger state spaces can
in some cases be easily understood given sufficient regularity and struc-
ture. A parallel programmer must consider synchronization primitives,
messaging, locking design, critical-section identification, and deadlock in
the context of this larger state space.

This greater complexity often translates to higher development and main-
tenance costs. Therefore, budgetary constraints can limit the number and
types of modifications made to an existing program, since a given degree of
speedup is worth only so much time and trouble. Furthermore, there may
be potential sequential optimizations that are cheaper and more effective
than parallelization. As noted in Section [1.2.1] parallelization is but one
performance optimization of many, and is furthermore an optimization
that applies most readily to CPU-based bottlenecks.

These criteria will act together to enforce a maximum speedup. The first three
criteria are deeply interrelated, so the remainder of this section analyzes these
interrelationshipsEI

Note that these criteria may also appear as part of the requirements specifica-
tion. For example, speedup may act as a desideratum (“the faster, the better”)
or as an absolute requirement of the workload, or “context” (“the system must
support at least 1,000,000 web hits per second”).

An understanding of the relationships between these design criteria can be
very helpful when identifying appropriate design tradeoffs for a parallel program.

2 Either by masking interrupts or by being oblivious to them.
3 A real-world parallel system will be subject to many additional design criteria, such as
data-structure layout, memory size, memory-hierarchy latencies, and bandwidth limitations.

5.3. SYNCHRONIZATION GRANULARITY

1. The less time a program spends in critical sections, the greater the poten-
tial speedup. This is a consequence of Amdahl’s Law [Amd67] and of the
fact that only one CPU may execute within a given critical section at a
given time.

2. The fraction of time that the program spends in a given exclusive critical
section must be much less than the reciprocal of the number of CPUs for
the actual speedup to approach the number of CPUs. For example, a
program running on 10 CPUs must spend much less than one tenth of its
time in the most-restrictive critical section if it is to scale at all well.

3. Contention effects will consume the excess CPU and/or wallclock time
should the actual speedup be less than the number of available CPUs.
The larger the gap between the number of CPUs and the actual speedup,
the less efficiently the CPUs will be used. Similarly, the greater the desired
efficiency, the smaller the achievable speedup.

4. If the available synchronization primitives have high overhead compared
to the critical sections that they guard, the best way to improve speedup is
to reduce the number of times that the primitives are invoked (perhaps by
batching critical sections, using data ownership, using RCU, or by moving
toward a more coarse-grained design such as code locking).

5. If the critical sections have high overhead compared to the primitives
guarding them, the best way to improve speedup is to increase parallelism
by moving to reader/writer locking, data locking, RCU, or data ownership.

6. If the critical sections have high overhead compared to the primitives
guarding them and the data structure being guarded is read much more
often than modified, the best way to increase parallelism is to move to
reader/writer locking or RCU.

7. Many changes that improve SMP performance, for example, reducing lock
contention, also improve response times.

5.3 Synchronization Granularity

Figure [5.12| gives a pictorial view of different levels of synchronization granular-
ity, each of which is described in one of the following sections. These sections
focus primarily on locking, but similar granularity issues arise with all forms of
synchronization.

5.3.1 Sequential Program

If the program runs fast enough on a single processor, and has no interactions
with other processes, threads, or interrupt handlers, you should remove the
synchronization primitives and spare yourself their overhead and complexity.
Some years back, there were those who would argue that Moore’s Law would
eventually force all programs into this category. However, given the cessation
in rate of CPU MIPS and clock-frequency growth in Intel CPUs since the year
2003, as can be seen in Figure increasing performance will increasingly

89

90 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

Sequential

Program |
I —

Partition Batch

—> Code

Locking |
|

Partition Batch

—> Data

Locking |
| S

Own Disown
Data

Ownership

Figure 5.12: Design Patterns and Lock Granularity

require parallelismﬁ The debate as to whether this new trend will result in
single chips with thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age of SMP does seem to
be upon us. It is also important to note that Ethernet bandwidth is continuing
to grow, as shown in Figure This growth will motivate multithreaded
servers in order to handle the communications load.

Please note that this does not mean that you should code each and every pro-
gram in a multi-threaded manner. Again, if a program runs quickly enough on
a single processor, spare yourself the overhead and complexity of SMP synchro-
nization primitives. The simplicity of the hash-table lookup code in Figure[5.15
underscores this pointE|

On the other hand, if you are not in this happy situation, read on!

5.3.2 Code Locking

Code locking is the simplest locking design, using only global locksﬁ It is
especially easy to retrofit an existing program to use code locking in order to
run it on a multiprocessor. If the program has only a single shared resource,
code locking will even give optimal performance. However, many of the larger
and more complex programs require much of the execution to occur in critical
sections, which in turn causes code locking to sharply limits their scalability.

4 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or
more instructions per clock, and MIPS for older CPUs requiring multiple clocks to execute even
the simplest instruction. The reason for taking this approach is that the newer CPUs’ ability
to retire multiple instructions per clock is typically limited by memory-system performance.

5 The examples in this section are taken from Hart et al. [HMBO6], adapted for clarity by
gathering code related code from multiple files.

6 If your program instead has locks in data structures, or, in the case of Java, uses classes
with synchronized instances, you are instead using “data locking”, described in Section @

5.3. SYNCHRONIZATION GRANULARITY

10000 =TT 7T T T T 7
%)
L i i
S 1000 =
< i]
8 - -]
o 100 | %? =
g i o]
L 4
~ 10 - =
8 | ++ -
) i #+ +]
-] 1F + -
[a | _
G +
oq L— 1 1 10 4 1]
Yo} o To) o Te} o Te} o |Te}
N~ [ee] [e0] (o] D o o — -
» » » » » o o o o
— — — ~— — Al Al A A
Year

Figure 5.13: MIPS/Clock-Frequency Trend for Intel CPUs

Therefore, you should use code locking on programs that spend only a small
fraction of their execution time in critical sections or from which only modest
scaling is required. In these cases, code locking will provide a relatively simple
program that is very similar to its sequential counterpart, as can be seen in
Figure [5.16] However, not that the simple return of the comparison in hash_
search() in Figure has now become three statements due to the need to
release the lock before returning.

However, code locking is particularly prone to “lock contention”, where mul-
tiple CPUs need to acquire the lock concurrently. SMP programmers who have
taken care of groups of small children (or of older people who are acting like
children) will immediately recognize the danger of having only one of something,
as illustrated in Figure 5.1

One solution to this problem, named “data locking”, is described in the next
section.

5.3.3 Data Locking

Many data structures may be partitioned, with each partition of the data struc-
ture having its own lock. Then the critical sections for each part of the data
structure can execute in parallel, although only one instance of the critical sec-
tion for a given part could be executing at a given time. Use data locking when
contention must be reduced, and where synchronization overhead is not lim-
iting speedups. Data locking reduces contention by distributing the instances
of the overly-large critical section into multiple critical sections, for example,
maintaining per-hash-bucket critical sections in a hash table, as shown in Fig-
ure .18 The increased scalability again results in increased complexity in the
form of an additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure data lock-
ing helps promote harmony, as illustrated by Figure [5.19] — and in parallel

91

92 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

1e+06

100000 Ethernet

10000
1000
100 x86 CPUs

10

Relative Performance

1

0.1

1970

1975
1990
1995
2000
2005
2010
2015

Year

Figure 5.14: Ethernet Bandwidth vs. Intel x86 CPU Performance

programs, this almost always translates into increased performance and scal-
ability. For this reason, data locking was heavily used by Sequent in both
its DYNIX and DYNIX/ptx operating systems [BK85, Inm85l [Gar90, [Dov90,
MD92, MG92, IMS93].

However, as those how have taken care of small children can again attest,
even providing enough to go around is no guarantee of tranquillity. The anal-
ogous situation can arise in SMP programs. For example, the Linux kernel
maintains a cache of files and directories (called “dcache”). Each entry in this
cache has its own lock, but the entries corresponding to the root directory and
its direct descendants are much more likely to be traversed than are more ob-
scure entries. This can result in many CPUs contending for the locks of these
popular entries, resulting in a situation not unlike that shown in Figure |5.20

In many cases, algorithms can be designed to reduce the instance of data
skew, and in some cases eliminate it entirely (as appears to be possible with
the Linux kernel’s dcache [MSS04]). Data locking is often used for partitionable
data structures such as hash tables, as well as in situations where multiple
entities are each represented by an instance of a given data structure. The task
list in version 2.6.17 of the Linux kernel is an example of the latter, each task
structure having its own proc_lock.

A key challenge with data locking on dynamically allocated structures is en-
suring that the structure remains in existence while the lock is being acquired.
The code in Figure finesses this challenge by placing the locks in the stat-
ically allocated hash buckets, which are never freed. However, this trick would
not work if the hash table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some means to prevent the
hash bucket from being freed during the time that its lock was being acquired.

Quick Quiz 5.11: What are some ways of preventing a structure from
being freed while its lock is being acquired? B

5.3. SYNCHRONIZATION GRANULARITY

struct hash_table
{
long nbuckets;
struct node *x*buckets;

};

typedef struct node {

unsigned long key;
9 struct node *next;
10 } node_t;

0 ~NO U WN -

12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;

16 cur = h->buckets[key % h->nbuckets];
17 while (cur '= NULL) {

18 if (cur->key >= key) {

19 return (cur->key == key);
20 X

21 cur = cur->next;

22 }

23 return O;

24 }

Figure 5.15: Sequential-Program Hash Table Search

spinlock_t hash_lock;

1

2

3 struct hash_table

4 {

5 long nbuckets;

6 struct node **buckets;
7
8

};

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)
15 {

16 struct node *cur;

17 int retval;

18

19 spin_lock(&hash_lock);

20 cur = h->buckets[key % h->nbuckets];
21 while (cur !'= NULL) {

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);

25 return retval;

26 ¥

27 cur = cur->next;

28 }

29 spin_unlock(&hash_lock) ;
30 return 0;
31}

Figure 5.16: Code-Locking Hash Table Search

93

94 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

Figure 5.17: Lock Contention

5.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs,
so that each thread/CPU accesses its subset of the data structure without any
synchronization overhead whatsoever. However, if one thread wishes to access
some other thread’s data, the first thread is unable to do so directly. Instead,
the first thread must communicate with the second thread, so that the second
thread performs the operation on behalf of the first, or, alternatively, migrates
the data to the first thread.
Data ownership might seem arcane, but it is used very frequently:

1. Any variables accessible by only one CPU or thread (such as auto variables
in C and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context. It is
very common for applications interacting with parallel database engines to
be written as if they were entirely sequential programs. Such applications
own the user interface and his current action. Explicit parallelism is thus
confined to the database engine itself.

3. Parametric simulations are often trivially parallelized by granting each
thread ownership of a particular region of the parameter space.

If there is significant sharing, communication between the threads or CPUs
can result in significant complexity and overhead. Furthermore, if the most-
heavily used data happens to be that owned by a single CPU, that CPU will be
a “hot spot”, sometimes with results resembling that shown in Figure[5.20] How-
ever, in situations where no sharing is required, data ownership achieves ideal
performance, and with code that can be as simple as the sequential-program
case shown in Figure Such situations are often referred to as “embarrass-

5.3. SYNCHRONIZATION GRANULARITY

struct hash_table

{

long nbuckets;

struct bucket **buckets;

struct bucket {
spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

1
2
3
4
5 3};
6
7
8

12 typedef struct node {
13 unsigned long key;
14 struct node *next;
15 } node_t;

17 int hash_search(struct hash_table *h, long key)
18 {

19 struct bucket *bp;

20 struct node *cur;

21 int retval;

23 bp = h->buckets[key % h->nbuckets];
24 spin_lock(&bp->bucket_lock);

25 cur = bp->list_head;

26 while (cur !'= NULL) {

27 if (cur->key >= key) {

28 retval = (cur->key == key);
29 spin_unlock(&bp->hash_lock) ;
30 return retval;

31 ¥

32 cur = cur->next;

33}

34 spin_unlock(&bp->hash_lock);
35 return 0;
36 }

Figure 5.18: Data-Locking Hash Table Search

96 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

Figure 5.19: Data Locking

ingly parallel”, and, in the best case, resemble the situation previously shown
in Figure [5.19}

Another important instance of data ownership occurs when the data is read-
only, in which case, all threads can “own” it via replication.

5.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathematical
synchronization-efficiency viewpoint. Readers who are uninspired by mathe-
matics might choose to skip this section.

The approach is to use a crude queueing model for the efficiency of synchro-
nization mechanism that operate on a single shared global variable, based on
an M/M/1 queue. M/M/1 queuing models are based on an exponentially dis-
tributed “inter-arrival rate” A\ and an exponentially distributed “service rate”
w. The inter-arrival rate A can be thought of as the average number of synchro-
nization operations per second that the system would process if the synchro-
nization were free, in other words, A is an inverse measure of the overhead of
each non-synchronization unit of work. For example, if each unit of work was
a transaction, if each transaction took one millisecond to process, not counting
synchronization overhead, then A would be 1,000 transactions per second.

The service rate p is defined similarly, but for the average number of synchro-
nization operations per second that the system would process if the overhead of
each transaction was zero, and ignoring the fact that CPUs must wait on each
other to complete their increment operations, in other words, © can be roughly
thought of as the synchronization overhead in absence of contention. For ex-
ample, some recent computer systems are able to do an atomic increment every

5.3. SYNCHRONIZATION GRANULARITY

Figure 5.20: Data Locking and Skew

25 nanoseconds or so if all CPUs are doing atomic increments in a tight loopm
The value of p is therefore about 40,000,000 atomic increments per second.

Of course, the value of A\ increases with increasing numbers of CPUs, as
each CPU is capable of processing transactions independently (again, ignoring
synchronization):

A= n)\o (51)

where n is the number of CPUs and)\ is the transaction-processing capa-
bility of a single CPU. Note that the expected time for a single CPU to execute
a single transaction is 1/Ag.

Because the CPUs have to “wait in line” behind each other to get their
chance to increment the single shared variable, we can use the M/M/1 queueing-
model expression for the expected total waiting time:

1
T=—+- 5.2
T (5.2)
Substituting the above value of A:
1
T=———— 5.3
= (5.3)

Now, the efficiency is just the ratio of the time required to process a trans-
action in absence of synchronization to the time required including synchroniza-
tion:

7 Of course, if there are 8 CPUs, each CPU must wait 175 nanoseconds for each of the
other CPUs to do its increment before consuming an additional 25 nanoseconds doing its own
increment.

98 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

1 = B T s B T R

-

[\
(6}
L

Synchronization Efficiency

|
oNoNe
~ AN M

100

Number of CPUs/Threads

Figure 5.21: Synchronization Efficiency

1/X0
= - 5.4
“TTi1/n (5-4)
Substituting the above value for T' and simplifying:
0
)\70 —n
e= —>—— (5.5)
% —(-1)

But the value of /Ao is just the ratio of the time required to process the
transaction (absent synchronization overhead) to that of the synchronization
overhead itself (absent contention). If we call this ratio f, we have:

f—n
e FEyr—y (5.6)

Figure[5.21] plots the synchronization efficiency e as a function of the number
of CPUs/threads n for a few values of the overhead ratio f. For example, again
using the 25-nanosecond atomic increment, the f = 10 line corresponds to
each CPU attempting an atomic increment every 250 nanoseconds, and the
f = 100 line corresponds to each CPU attempting an atomic increment every
2.5 microseconds, which in turn corresponds to several thousand instructions.
Given that each trace drops off sharply with increasing numbers of CPUs or
threads, we can conclude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not scale well if used heavily
on current commodity hardware. This is a mathematical depiction of the forces
leading to the parallel counting algorithms that were discussed in Chapter

The concept of efficiency is useful even in cases having little or no formal
synchronization. Consider for example a matrix multiply, in which the columns

5.4. PARALLEL FASTPATH

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O Lol L
1 10 100

Number of CPUs/Threads

Matrix Multiply Efficiency

Figure 5.22: Matrix Multiply Efficiency

of one matrix are multiplied (via “dot product”) by the rows of another, result-
ing in an entry in a third matrix. Because none of these operations conflict, it is
possible to partition the columns of the first matrix among a group of threads,
with each thread computing the corresponding columns of the result matrix.
The threads can therefore operate entirely independently, with no synchroniza-
tion overhead whatsoever, as is done in matmul.c. One might therefore expect
a parallel matrix multiply to have a perfect efficiency of 1.0.

However, Figure tells a different story, especially for a 64-by-64 matrix
multiply, which never gets above an efficiency of about 0.7, even when running
single-threaded. The 512-by-512 matrix multiply’s efficiency is measurably less
than 1.0 on as few as 10 threads, and even the 1024-by-1024 matrix multiply
deviates noticeably from perfection at a few tens of threads.

Quick Quiz 5.12: How can a single-threaded 64-by-64 matrix multiple pos-
sibly have an efficiency of less than 1.07 Shouldn’t all of the traces in Figure[5.22
have efficiency of exactly 1.0 when running on only one thread? M

Given these inefficiencies, it is worthwhile to look into more-scalable ap-
proaches such as the data locking described in Section [5.3.3] or the parallel-
fastpath approach discussed in the next section.

Quick Quiz 5.13: How are data-parallel techniques going to help with
matrix multiply? It is already data parallel!!! B

5.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance) designs are typically
more complex than are coarser-grained designs. In many cases, most of the
overhead is incurred by a small fraction of the code [Knu73]. So why not focus
effort on that small fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively
parallelize the common-case code path without incurring the complexity that

99

100 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

would be required to aggressively parallelize the entire algorithm. You must
understand not only the specific algorithm you wish to parallelize, but also the
workload that the algorithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one else-
where) and is therefore a template pattern. The following instances of parallel
fastpath occur often enough to warrant their own patterns, as depicted in Fig-
ure

Parallel
Fastpath PR
_ Hierarchical
™| Locking
~——

o
Allocator

> Caches
~. @@ J

Figure 5.23: Parallel-Fastpath Design Patterns

1. Reader/Writer Locking (described below in Section |5.4.1)).

2. Read-copy update (RCU), which may be used as a high-performance re-
placement for reader/writer locking, is introduced in Section and will
not be discussed further in this chapter.

3. Hierarchical Locking ([McK96]), which is touched upon in Section [5.4.2}

4. Resource Allocator Caches ([McK96l IMS93]). See Section [5.4.3] for more
detail.

5.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if the program uses
coarse-grained parallelism), and if only a small fraction of the critical sections
modify data, then allowing multiple readers to proceed in parallel can greatly
increase scalability. Writers exclude both readers and each other. Figure [5.24]
shows how the hash search might be implemented using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking. Sna-
man [ST87] describes a more ornate six-mode asymmetric locking design used
in several clustered systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter [f]

5.4. PARALLEL FASTPATH

1 rwlock_t hash_lock;
2

3 struct hash_table
4 {
5 long nbuckets;

6 struct node **buckets;

73}

8

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)
15 {

16 struct node *cur;

17 int retval;

19 read_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 read_unlock(&hash_lock) ;

25 return retval;

26 ¥

27 cur = cur->next;

28 }

29 read_unlock(&hash_lock) ;
30 return 0;

Figure 5.24: Reader-Writer-Locking Hash Table Search

5.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-grained lock that is held
only long enough to work out which fine-grained lock to acquire. Figure [5.25
shows how our hash-table search might be adapted to do hierarchical locking,
but also shows the great weakness of this approach: we have paid the overhead
of acquiring a second lock, but we only hold it for a short time. In this case,
the simpler data-locking approach would be simpler and likely perform better.

Quick Quiz 5.14: In what situation would hierarchical locking work well?
]

5.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel fixed-block-size memory
allocator. More detailed descriptions may be found in the literature [MG92]
MS93|, BAOT, [MSKOT] or in the Linux kernel [Tor03].

5.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between
the need to provide extremely fast memory allocation and freeing in the com-
mon case and the need to efficiently distribute memory in face of unfavorable
allocation and freeing patterns.

To see this tension, consider a straightforward application of data ownership
to this problem — simply carve up memory so that each CPU owns its share. For

101

102 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket **buckets;
5 };

6

7

8

struct bucket {
spinlock_t bucket_lock;
9 node_t *1list_head;
10 };

12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;

15 struct node *next;

16 } node_t;

18 int hash_search(struct hash_table *h, long key)
19 {

20 struct bucket *bp;

21 struct node *cur;

22 int retval;

24 Dbp = h->buckets[key % h->nbuckets];
25 spin_lock(&bp->bucket_lock) ;

26 cur = bp->list_head;

27 while (cur != NULL) {

28 if (cur->key >= key) {

29 spin_lock(&cur->node_lock) ;

30 spin_unlock (&bp->bucket_lock) ;
31 retval = (cur->key == key);

32 spin_unlock(&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36 }

37 spin_unlock(&bp->bucket_lock) ;
38 return 0;

Figure 5.25: Hierarchical-Locking Hash Table Search

5.4. PARALLEL FASTPATH

example, suppose that a system with two CPUs has two gigabytes of memory
(such as the one that I am typing on right now). We could simply assign
each CPU one gigabyte of memory, and allow each CPU to access its own
private chunk of memory, without the need for locking and its complexities
and overheads. Unfortunately, this simple scheme breaks down if an algorithm
happens to have CPU 0 allocate all of the memory and CPU 1 the free it, as
would happen in a simple producer-consumer workload.

The other extreme, code locking, suffers from excessive lock contention and
overhead [MS93].

5.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning a
modest cache of blocks, and with a large code-locked shared pool for additional
blocks. To prevent any given CPU from monopolizing the memory blocks, we
place a limit on the number of blocks that can be in each CPU’s cache. In a
two-CPU system, the flow of memory blocks will be as shown in Figure [5.26
when a given CPU is trying to free a block when its pool is full, it sends blocks
to the global pool, and, similarly, when that CPU is trying to allocate a block
when its pool is empty, it retrieves blocks from the global pool.

Global Pool

i
! i
! i
> B
! i
= ! i =
2 ! (Code Locked) i ke
5 [L 5
> >
(@) 2 2 (@)
Q. Q
€ €
w w
pT o A i ittt Rt
i ! i !
i !
i CPU 0 Pool CPU 1 Pool :
I H
i !
! !
|

(Owned by CPU 0) (Owned by CPU 1)

L

Allocate/Free

Figure 5.26: Allocator Cache Schematic

5.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are
shown in Figure The “Global Pool” of Figure [5.26] is implemented by
globalmem of type struct globalmempool, and the two CPU pools by the
per-CPU variable percpumen of type percpumempool. Both of these data struc-
tures have arrays of pointers to blocks in their pool fields, which are filled

103

104 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

from index zero upwards. Thus, if globalmem.pool[3] is NULL, then the re-
mainder of the array from index 4 up must also be NULL. The cur fields
contain the index of the highest-numbered full element of the pool array, or
-1 if all elements are empty. All elements from globalmem.pool[0] through
globalmem.pool [globalmem. cur] must be full, and all the rest must be emptyﬁ

#define TARGET_POOL_SIZE 3
#define GLOBAL_POOL_SIZE 40

spinlock_t mutex;
int cur;
struct memblock *pool [GLOBAL_POOL_SIZE];

1
2
3
4 struct globalmempool {
5
6
7
8 } globalmem;

10 struct percpumempool {

11 int cur;

12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };

15 DEFINE_PER_THREAD(struct percpumempool, percpumem) ;

Figure 5.27: Allocator-Cache Data Structures

The operation of the pool data structures is illustrated by Figure [5.28] with
the six boxes representing the array of pointers making up the pool field, and
the number preceding them representing the cur field. The shaded boxes rep-
resent non-NULL pointers, while the empty boxes represent NULL pointers. An
important, though potentially confusing, invariant of this data structure is that
the cur field is always one smaller than the number of non-NULL pointers.

(Empty) -1

Figure 5.28: Allocator Pool Schematic

8 Both pool sizes (TARGET-POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically small, but
this small size makes it easier to single-step the program in order to get a feel for its operation.

5.4. PARALLEL FASTPATH
5.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen in Figure Line 7
picks up the current thread’s per-thread pool, and line 8 check to see if it is
empty.

If so, lines 9-16 attempt to refill it from the global pool under the spinlock
acquired on line 9 and released on line 16. Lines 10-14 move blocks from the
global to the per-thread pool until either the local pool reaches its target size
(half full) or the global pool is exhausted, and line 15 sets the per-thread pool’s
count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty, and
if not, lines 19-21 remove a block and return it. Otherwise, line 23 tells the sad
tale of memory exhaustion.

1 struct memblock *memblock_alloc(void)

2 {

3 int i;

4 struct memblock *p;

5 struct percpumempool *pcpp;

6

7 pcpp = &__get_thread_var (percpumem) ;

8 if (pcpp—>cur < 0) {

9 spin_lock(&globalmem.mutex) ;

10 for (i = 0; i < TARGET_POOL_SIZE &%

11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool [globalmem.cur--] = NULL;
14 i

15 pcpp->cur = i - 1;

16 spin_unlock(&globalmem.mutex) ;

17 }

18 if (pcpp->cur >= 0) {

19 p = pcpp->pool [pcpp->cur];
20 pcpp->pool [pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 }

Figure 5.29: Allocator-Cache Allocator Function

5.4.3.5 Free Function

Figure |5.30[shows the memory-block free function. Line 6 gets a pointer to this
thread’s pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into the global pool, with
lines 8 and 14 acquiring and releasing the spinlock. Lines 9-12 implement the
loop moving blocks from the local to the global pool, and line 13 sets the per-
thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block into the per-thread
pool.

105

106 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

1 void memblock_free(struct memblock *p)

2 {

3 int i;

4 struct percpumempool *pcpp;

5

6 pcpp = &__get_thread_var (percpumemn) ;

7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {

8 spin_lock(&globalmem.mutex) ;

9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool [++globalmem.cur] = pcpp->pooll[il;
11 pepp—>pool[i] = NULL;

12 }

13 pcpp->cur = ij;

14 spin_unlock(&globalmem.mutex) ;

15 %

16 pcpp->pool [++pcpp->cur] = p;

17 }

Figure 5.30: Allocator-Cache Free Function

5.4.3.6 Performance

Rough performance resultsﬂ are shown in Figure running on a dual-core
Intel x86 running at 1GHz (4300 bogomips per CPU) with at most six blocks
allowed in each CPU’s cache. In this micro-benchmark, each thread repeatedly
allocates a group of blocks and then frees it, with the size of the group being the
“allocation run length” displayed on the x-axis. The y-axis shows the number
of successful allocation/free pairs per microsecond — failed allocations are not
counted. The “X”s are from a two-thread run, while the “+”s are from a single-
threaded run.

Note that run lengths up to six scale linearly and give excellent performance,
while run lengths greater than six show poor performance and almost always
also show negative scaling. It is therefore quite important to size TARGET_POOL._
SIZE sufficiently large, which fortunately is usually quite easy to do in actual
practice [MSKOI], especially given today’s large memories. For example, in
most systems, it is quite reasonable to set TARGET_POOL_SIZE to 100, in which
case allocations and frees are guaranteed to be confined to per-thread pools at
least 99% of the time.

As can be seen from the figure, the situations where the common-case data-
ownership applies (run lengths up to six) provide greatly improved performance
compared to the cases where locks must be acquired. Avoiding locking in the
common case will be a recurring theme through this book.

Quick Quiz 5.15: In Figure there is a pattern of performance rising
with increasing run length in groups of three samples, for example, for run
lengths 10, 11, and 12. Why? B

Quick Quiz 5.16: Allocation failures were observed in the two-thread tests
at run lengths of 19 and greater. Given the global-pool size of 40 and the per-
CPU target pool size of three, what is the smallest allocation run length at
which failures can occur? B

9 This data was not collected in a statistically meaningful way, and therefore should be
viewed with great skepticism and suspicion. Good data-collection and -reduction practice is
discussed in Chapter @Q@Q. That said, repeated runs gave similar results, and these results
match more careful evaluations of similar algorithms.

5.4. PARALLEL FASTPATH

30 T T T T
o SOCKXK
S 25 -
[0]
(%)
o
S 20| _
S 0
o
o R,
Y, 15 | -
(0]
o
[T
@ 10 |- ++X +]
s +t L+
2 T et
3] X
kel 5 X %]
= XAEYHXK)X XXX X

0]]]]

0 5 10 15 20 25

Allocation Run Length

Figure 5.31: Allocator Cache Performance

5.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs
expand on this approach in a number of ways.

First, real-world allocators are required to handle a wide range of allocation
sizes, as opposed to the single size shown in this toy example. One popular
way to do this is to offer a fixed set of sizes, spaced so as to balance exter-
nal and internal fragmentation, such as in the late-1980s BSD memory alloca-
tor [MKS8S8|. Doing this would mean that the “globalmem” variable would need
to be replicated on a per-size basis, and that the associated lock would simi-
larly be replicated, resulting in data locking rather than the toy program’s code
locking.

Second, production-quality systems must be able to repurpose memory,
meaning that they must be able to coalesce blocks into larger structures, such
as pages [MS93]. This coalescing will also need to be protected by a lock, which
again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the underlying memory sys-
tem, and pages of memory must also be allocated from the underlying memory
system. The locking required at this level will depend on that of the underlying
memory system, but could well be code locking. Code locking can often be tol-
erated at this level, because this level is so infrequently reached in well-designed
systems [MSKO1].

Despite this real-world design’s greater complexity, the underlying idea is
the same — repeated application of parallel fastpath, as shown in Table

107

108 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DES.

Level Locking Purpose

Per-thread pool Data ownership High-speed alloca-
tion

Global block pool | Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

Table 5.1: Schematic of Real-World Parallel Allocator

5.5 Performance Summary

@@@ summarize performance of the various options. Forward-reference to the
RCU/NBS section.

Chapter 6

Locking

The role of villain in much of the past few decades’ concurrency research litera-
ture is played by locking, which stands accused of promoting deadlocks, convoy-
ing, starvation, unfairness, data races, and all manner of other concurrency sins.
Interestingly enough, the role of workhorse in shared-memory parallel software
is played by, you guessed it, locking.

There are a number of reasons behind this dichotomy:

1. Many of locking’s sins have pragmatic design solutions that work well in
most cases, for example:

(a) Lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the Linux kernel’s lockdep
facility [Cor06].

(¢) Locking-friendly data structures, such as arrays, hash tables, and
radix trees, which will be covered in Chapter

2. Some of locking’s sins are problems only at high levels of contention, levels
reached only by poorly designed programs.

3. Some of locking’s sins are avoided by using other synchronization mecha-
nisms in concert with locking. These other mechanisms include reference
counters, statistical counters, simple non-blocking data structures, and
RCU.

4. Until quite recently, almost all large shared-memory parallel programs
were developed in secret, so that it was difficult for most researchers to
learn of these pragmatic solutions.

5. All good stories need a villain, and locking has a long and honorable
history serving as a research-paper whipping boy.

This chapter will give an overview of a number of ways to avoid locking’s
more serious sins.

109

110

Figure 6.1: Locking: Villain or Slob?

6.1 Staying Alive

Given that locking stands accused of deadlock and starvation, one important
concern for shared-memory parallel developers is simply staying alive. The
following sections therefore cover deadlock, livelock, starvation, unfairness, and
inefficiency.

6.1.1 Deadlock

Deadlock occurs when each of a group of threads is holding at least one lock
while at the same time waiting on a lock held by a member of the same group.

Without some sort of external intervention, deadlock is forever. No thread
can acquire the lock it is waiting on until that lock is released by the thread
holding it, but the thread holding it cannot release it until the holding thread
acquires the lock that it is waiting on.

We can create a directed-graph representation of a deadlock scenario with
nodes for threads and locks, as shown in Figure An arrow from a lock to
a thread indicates that the thread holds the lock, for example, Thread B holds
Locks 2 and 4. An arrow from a thread to a lock indicates that the thread is
waiting on the lock, for example, Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one deadlock cycle. In
Figure this cycle is Thread B, Lock 3, Thread C, Lock 4, and back to
Thread B.

Quick Quiz 6.1: But the definition of deadlock only said that each thread
was holding at least one lock and waiting on another lock that was held by some
thread. How do you know that there is a cycle? l

Although there are some software environments such as database systems
that can repair an existing deadlock, this approach requires either that one of
the threads be killed or that a lock be forcibly stolen from one of the threads.

CHAPTER 6. LOCK.

6.1. STAYING ALIVE

Figure 6.2: Locking: Workhorse or Hero?

This killing and forcible stealing can be appropriate for transactions, but is
problematic for kernel and application-level use of locking.

Kernels and applications therefore work to avoid deadlocks. There are three
major approaches, locking hierarchies, conditional locking, and single-lock-at-a-
time designs.

Locking hierarchies order the locks and prohibit acquiring locks out of or-
der. In Figure we might order the locks numerically, so that a thread was
forbidden from acquiring a given lock if it already held a lock with the same or
a higher number. Thread B has violated this hierarchy because it is attempting
to acquire Lock 3 while holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks and prohibit out-of-order
lock acquisition. In large program, it is wise to use tools to enforce your locking
hierarchy [Cor06].

But suppose that there is no reasonable locking hierarchy. This can happen
in real life, for example, in layered network protocol stacks where packets flow
in both directions. In the networking case, it might be necessary to hold the
locks from both layers when passing a packet from one layer to another. Given
that packets travel both up and down the protocol stack, this is an excellent
recipe for deadlock, as illustrated in Figure Here, a packet moving down the
stack towards the wire must acquire the next layer’s lock out of order. Given
that packets moving up the stack away from the wire are acquiring the locks in
order, the lock acquisition in line 4 of the figure can result in deadlock.

One way to avoid deadlocks in this case is to impose a locking hierarchy,
but when it is necessary to acquire a lock out of order, acquire it conditionally,
as shown in Figure Instead of unconditionally acquiring the layer-1 lock,
line 5 conditionally acquires the lock using the spin_trylock() primitive. This
primitive acquires the lock immediately if the lock is available (returning non-
zero), and otherwise returns zero without acquiring the lock.

111

112

Lock 1

Thread A Lock 2

Lock 3 Thread B

Thread C Lock 4

Figure 6.3: Deadlock Cycle

spin_lock(&lock?2);
layer_2_processing(pkt) ;
nextlayer = layer_1(pkt);
spin_lock(&nextlayer->lock1);
layer_1_processing(pkt);
spin_unlock(&lock2);
spin_unlock(&nextlayer->lockl);

NOoO O WN -

Figure 6.4: Protocol Layering and Deadlock

If spin_trylock() was successful, line 15 does the needed layer-1 processing.
Otherwise, line 6 releases the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking devices on the system
(e.g., Ethernet and WiF1i), so that the layer_1() function must make a routing
decision. This decision might change at any time, especially if the system is
mobileE] Therefore, line 9 must recheck the decision, and if it has changed,
must release the locks and start over.

Quick Quiz 6.2: Can the transformation from Figure to Figure be
applied universally? H

Quick Quiz 6.3: But the complexity in Figure is well worthwhile given

L And, in contrast to the 1900s, mobility is the common case.

CHAPTER 6. LOCK.

6.1. STAYING ALIVE

1 retry:

2 spin_lock(&lock2);

3 layer_2_processing(pkt) ;

4 nextlayer = layer_1(pkt);

5 if (!spin_trylock(&nextlayer->lockl)) {
6 spin_unlock(&lock2) ;

7 spin_lock(&nextlayer->lockl);

8 spin_lock((&lock2);

9 if (layer_1(pkt) != nextlayer) {

10 spin_unlock(&nextlayer->lockl);
11 spin_unlock((&lock?2) ;

12 goto retry;

13 }

14 3}

15 layer_1_processing(pkt);
16 spin_unlock(&lock2);
17 spin_unlock(&nextlayer->lockl);

Figure 6.5: Avoiding Deadlock Via Conditional Locking

void threadi(void)
{
retry:
spin_lock(&lockl);
do_one_thing() ;
if (!spin_trylock(&lock2)) {
spin_unlock(&lockl) ;
goto retry;

0N d WN -

9 }

10 do_another_thing();
11 spin_unlock(&lock2);
12 spin_unlock(&lockl);
13 }

15 void thread2(void)

16 {

17 retry:

18 spin_lock(&lock2);

19 do_a_third_thing();

20 if (!spin_trylock(&lock1)) {

21 spin_unlock(&lock2) ;
22 goto retry;
23}

24 do_a_fourth_thing();
25 spin_unlock(&lockl);
26 spin_unlock(&lock2);

Figure 6.6: Abusing Conditional Locking

that it avoids deadlock, right? B

In some cases, it is possible to avoid nesting locks, thus avoiding deadlock.
However, there must be some mechanism to ensure that the needed data struc-
tures remain in existence during the time that neither lock is held. One such
mechanism is discussed in Section and several others are presented in Chap-

ter B

6.1.2 Livelock

Although conditional locking can an effective deadlock-avoidance mechanism, it
can be abused. Consider for example the beautifully symmetric example shown
in Figure[6.6] This example’s beauty hids an ugly livelock. To see this, consider

113

114 CHAPTER 6. LOCK.

the following sequence of events:

1. Thread 1 acquires lockl on line 4, then invokes do_one_thing().

2. Thread 2 acquires lock2 on line 18, then invokes do_a_third_thing().
3. Thread 1 attempts to acquire lock2, but fails because Thread 2 holds it.
4. Thread 2 attempts to acquire lock1, but fails because Thread 1 holds it.
5. Thread 1 releases lockl, and jumps to retry.

6. Thread 2 releases lock2, and jumps to retry.

7. The livelock dance repeats from the beginning.

Quick Quiz 6.4: How can the livelock shown in Figure [6.6] be avoided? M
Starvation is very similar to livelock. Put another way, a livelock is an
extreme form of starvation where all threads starve.

6.1.3 Unfairness
6.1.4 Inefficiency

6.2 Types of Locks

There are a surprising number of types of locks, more than this short chap-
ter can possibly do justice to. The following sections discuss exclusive locks

(Section [6.2.1]), reader-writer locks (Section [6.2.2)), and multi-role locks (Sec-

tion [6.2.3)).

6.2.1 Exclusive Locks
6.2.2 Reader-Writer Locks

6.2.3 Beyond Reader-Writer Locks
VAXCluster six-state locking.

6.3 Lock-Based Existence Guarantees

A key challenge in parallel programming is to provide ezistence guarantees [GKAS99],
so that attempts to delete an object that others are concurrently attempting
to access are correctly resolved. Existence guarantees are extremely helpful in
cases where a data element is to be protected by a lock or reference count that
is located within the data element in question. Code failing to provide such
guarantees is subject to subtle races, as shown in Figure [6.7]

Quick Quiz 6.5: What if the element we need to delete is not the first
element of the list on line 8 of Figure |

Quick Quiz 6.6: What race condition can occur in Figure |

One way to fix this example is to use a hashed set of global locks, so that
each hash bucket has its own lock, as shown in Figure [6.8] This approach

6.3. LOCK-BASED EXISTENCE GUARANTEES

i
{

i
{

nt delete(int key)

int b;
struct element *p;

b = hashfunction(key);

p = hashtable[b];

if (p == NULL || p->key != key)
return O;

spin_lock(&p->lock) ;

hashtable[b] = NULL;

spin_unlock(&p->lock) ;

kfree(p);

return 1;

Figure 6.7: Per-Element Locking Without Existence Guarantees

nt delete(int key)

int b;
struct element *p;
spinlock_t *sp;

b = hashfunction(key);

sp = &locktable[b];

spin_lock(sp);

p = hashtable[b];

if (p == NULL || p->key != key) {
spin_unlock(sp);
return 0;

}

hashtable[b] = NULL;

spin_unlock(sp);

kfree(p);

return 1;

Figure 6.8: Per-Element Locking With Lock-Based Existence Guarantees

115

116

allows acquiring the proper lock (on line 9) before gaining a pointer to the data
element (on line 10). Although this approach works quite well for elements
contained in a single partitionable data structure such as the hash table shown
in the figure, it can be problematic if a given data element can be a member
of multiple hash tables or given more-complex data structures such as trees or
graphs. These problems can be solved, in fact, such solutions form the basis
of lock-based software transactional memory implementations [ST95] [DSS06].
However, Chapter [§ describes simpler ways of providing existence guarantees.

CHAPTER 6. LOCK.

Chapter 7

Data Ownership

Per-CPU and per-task/process/thread data.

Function shipping vs. data shipping.

Big question: how much local vs. global processing? How frequent, how
expensive, ... Better to divide or to centralize?

Relationship to map/reduce? Message passing!

@@@Q populate with problems showing benefits of coupling data ownership
with other approaches. For example, work-stealing schedulers. Perhaps also
move memory allocation here, though its current location is quite good.

117

118 CHAPTER 7. DATA OWNERS

Chapter 8

Deferred Processing

The strategy of deferring work probably predates mankind, but only in the last
few decades have workers recognized this strategy’s value in simplifying paral-
lel algorithms [KL80, Mas92]. General approaches to work deferral in parallel
programming include queuing, reference counting, and RCU.

8.1 Barriers

HPC-style barriers.

8.2 Reference Counting

Reference counting tracks the number of references to a given object in order to
prevent that object from being prematurely freed. Although this is a concep-
tually simple technique, many devils hide in the details. After all, if the object
was not subject to being prematurely freed, there would be no need for the
reference counter. But if the object is subject to being prematurely freed, what
prevents that object from being freed during the reference-acquisition process
itself?
There are a number of possible answers to this question, including:

1. A lock residing outside of the object must be held while manipulating
the reference count. Note that there are a wide variety of types of locks,
however, pretty much any type will suffice.

2. The object is created with a non-zero reference count, and new references
may be acquired only when the current value of the reference counter is
non-zero. Once acquired, a reference may be handed off to some other
entity.

3. An existence guarantee is provided for the object, so that it cannot be
freed during any time interval when some entity might be attempting to
acquire a reference. Existence guarantees are often provided by automatic
garbage collectors, and, as will be seen in Section they can also be
provided by RCU.

119

120 CHAPTER 8. DEFERRED PROCESS.

Release Synchronization
Acquisition Reference
Synchronization || Locking | Counting | RCU
Locking - CAM CA
Reference A AM A
Counting
RCU CA MCA CA

Table 8.1: Reference Counting and Synchronization Mechanisms

4. A type-safety guarantee is provided for the object, and there is in addition
some identity check that can be performed once the reference is acquired.
Type-safety guarantees can be provided by special-purpose memory al-
locators, and can also be provided by the SLAB_DESTROY_BY_RCU feature
within the Linux kernel, again, as will be seen in Section [8.3

Of course, any mechanism that provides existence guarantees by definition
also provides type-safety guarantees. This section will therefore group the last
two answers together under the rubric of RCU, leaving us with three general cat-
egories of reference-acquisition protection, namely, locking, reference counting,
and RCU.

Quick Quiz 8.1: Why not implement reference-acquisition using a sim-
ple compare-and-swap operation that only acquires a reference if the reference
counter is non-zero? M

Given that the key reference-counting issue is synchronization between acqui-
sition of a reference and freeing of the object, we have nine possible combinations
of mechanisms, as shown in Table 8] This table divides reference-counting
mechanisms into the following broad categories:

1. Simple counting with neither atomic operations, memory barriers, nor
alignment constraints (“-”).

2. Atomic counting without memory barriers (“A”).
3. Atomic counting, with memory barriers required only on release (“AM”).

4. Atomic counting with a check combined with the atomic acquisition op-
eration, and with memory barriers required only on release (“CAM”).

5. Atomic counting with a check combined with the atomic acquisition op-
eration (“CA”).

6. Atomic counting with a check combined with the atomic acquisition op-
eration, and with memory barriers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that return a value are de-
fined to contain memory barriers, all release operations contain memory barriers,
and all checked acquisition operations also contain memory barriers. Therefore,
cases “CA” and “MCA” are equivalent to “CAM”, so that there are sections
below for only the first four cases: “-”7, “A”, “AM”, and “CAM”. The Linux
primitives that support reference counting are presented in Section Later
sections cite optimizations that can improve performance if reference acquisition

8.2. REFERENCE COUNTING

and release is very frequent, and the reference count need be checked for zero
only very rarely.

8.2.1 Implementation of Reference-Counting Categories

Simple counting protected by locking (“-”) is described in Section8.2.1.1} atomic
8.2.1.2)

counting with no memory barriers (“A”) is described in Section |8.2.1.2) atomic
counting with acquisition memory barrier (“AM”) is described in Section|8.2.1.3
and atomic counting with check and release memory barrier (“CAM”) is de-

scribed in Section B.2.1.41

8.2.1.1 Simple Counting

Simple counting, with neither atomic operations nor memory barriers, can be
used when the reference-counter acquisition and release are both protected by
the same lock. In this case, it should be clear that the reference count itself
may be manipulated non-atomically, because the lock provides any necessary
exclusion, memory barriers, atomic instructions, and disabling of compiler op-
timizations. This is the method of choice when the lock is required to protect
other operations in addition to the reference count, but where a reference to
the object must be held after the lock is released. Figure [8:I] shows a simple
API that might be used to implement simple non-atomic reference counting —
although simple reference counting is almost always open-coded instead.

struct sref {
int refcount;

};

1
2
3
4
5 void sref_init(struct sref *sref)
6 {

7 sref->refcount = 1;

8}

9

10 void sref_get(struct sref *sref)
11 {

12 sref->refcount++;

13 }

15 int sref_put(struct sref *sref,

16 void (*release) (struct sref *sref))

17 {

18 WARN_ON(release == NULL);

19 WARN_ON(release == (void (%) (struct sref *))kfree);

20

21 if (--sref->refcount == 0) {
22 release(sref);

23 return 1;

24 }

25 return 0;

26 }

Figure 8.1: Simple Reference-Count API

8.2.1.2 Atomic Counting

Simple atomic counting may be used in cases where any CPU acquiring a refer-
ence must already hold a reference. This style is used when a single CPU creates

121

122 CHAPTER 8. DEFERRED PROCESS.

an object for its own private use, but must allow other CPU, tasks, timer han-
dlers, or I/O completion handlers that it later spawns to also access this object.
Any CPU that hands the object off must first acquire a new reference on behalf
of the recipient object. In the Linux kernel, the kref primitives are used to
implement this style of reference counting, as shown in Figure [8:2]

Atomic counting is required because locking is not used to protect all reference-
count operations, which means that it is possible for two different CPUs to con-
currently manipulate the reference count. If normal increment and decrement
were used, a pair of CPUs might both fetch the reference count concurrently,
perhaps both obtaining the value “3”. If both of them increment their value,
they will both obtain “4”, and both will store this value back into the counter.
Since the new value of the counter should instead be “5”, one of the two in-
crements has been lost. Therefore, atomic operations must be used both for
counter increments and for counter decrements.

If releases are guarded by locking or RCU, memory barriers are not required,
but for different reasons. In the case of locking, the locks provide any needed
memory barriers (and disabling of compiler optimizations), and the locks also
prevent a pair of releases from running concurrently. In the case of RCU, cleanup
must be deferred until all currently executing RCU read-side critical sections
have completed, and any needed memory barriers or disabling of compiler opti-
mizations will be provided by the RCU infrastructure. Therefore, if two CPUs
release the final two references concurrently, the actual cleanup will be deferred
until both CPUs exit their RCU read-side critical sections.

Quick Quiz 8.2: Why isn’t it necessary to guard against cases where one
CPU acquires a reference just after another CPU releases the last reference? Bl

struct kref {
atomic_t refcount;

};

{
atomic_set (&kref->refcount,1);

}
9
10 void kref_get(struct kref xkref)
11 {
12 WARN_ON('atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);

1
2
3
4
5 void kref_init(struct kref *kref)
6
7
8

14 }

15

16 int kref_put(struct kref xkref,

17 void (*release) (struct kref *kref))
18 {

19 WARN_ON(release == NULL);

20 WARN_ON(release == (void (*) (struct kref *))kfree);
21

22 if ((atomic_read(&kref->refcount) == 1) ||

23 (atomic_dec_and_test (&kref->refcount))) {

24 release (kref);

25 return 1;

26 }

27 return O;

28 }

Figure 8.2: Linux Kernel kref API

The kref structure itself, consisting of a single atomic data item, is shown

8.2. REFERENCE COUNTING

in lines 1-3 of Figure [8.2] The kref_init() function on lines 5-8 initializes
the counter to the value “1”. Note that the atomic_set () primitive is a simple
assignment, the name stems from the data type of atomic_t rather than from the
operation. The kref_init() function must be invoked during object creation,
before the object has been made available to any other CPU.

The kref_get () function on lines 10-14 unconditionally atomically incre-
ments the counter. The atomic_inc() primitive does not necessarily explicitly
disable compiler optimizations on all platforms, but the fact that the kref prim-
itives are in a separate module and that the Linux kernel build process does no
cross-module optimizations has the same effect.

The kref_put () function on lines 16-28 checks for the counter having the
value “1” on line 22 (in which case no concurrent kref_get () is permitted), or if
atomically decrementing the counter results in zero on line 23. In either of these
two cases, kref _put () invokes the specified release function and returns “17,
telling the caller that cleanup was performed. Otherwise, kref _put () returns
“0”.

Quick Quiz 8.3: If the check on line 22 of Figure fails, how could the
check on line 23 possibly succeed? W

Quick Quiz 8.4: How can it possibly be safe to non-atomically check for
equality with “1” on line 22 of Figure |

8.2.1.3 Atomic Counting With Release Memory Barrier

This style of reference is used in the Linux kernel’s networking layer to track the
destination caches that are used in packet routing. The actual implementation
is quite a bit more involved; this section focuses on the aspects of struct dst_
entry reference-count handling that matches this use case, shown in Figure[8:3]

1 static inline

2 struct dst_entry * dst_clone(struct dst_entry * dst)
39

4 if (dst)

5 atomic_inc(&dst->__refcnt);

6 return dst;

7

8

}

9 static inline
10 void dst_release(struct dst_entry * dst)

11 {

12 if (dst) {

13 WARN_ON(atomic_read(&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();

15 atomic_dec(&dst->__refcnt);

16 }

17 }

Figure 8.3: Linux Kernel dst_clone API

The dst_clone() primitive may be used if the caller already has a reference
to the specified dst_entry, in which case it obtains another reference that may
be handed off to some other entity within the kernel. Because a reference is
already held by the caller, dst_clone() need not execute any memory barriers.
The act of handing the dst_entry to some other entity might or might not
require a memory barrier, but if such a memory barrier is required, it will be
embedded in the mechanism used to hand the dst_entry off.

123

124 CHAPTER 8. DEFERRED PROCESS.

The dst_release() primitive may be invoked from any environment, and
the caller might well reference elements of the dst_entry structure immediately
prior to the call to dst_release(). The dst_release() primitive therefore
contains a memory barrier on line 14 preventing both the compiler and the
CPU from misordering accesses.

Please note that the programmer making use of dst_clone() and dst_
release() need not be aware of the memory barriers, only of the rules for
using these two primitives.

8.2.1.4 Atomic Counting With Check and Release Memory Barrier

The fact that reference-count acquisition can run concurrently with reference-
count release adds further complications. Suppose that a reference-count release
finds that the new value of the reference count is zero, signalling that it is
now safe to clean up the reference-counted object. We clearly cannot allow a
reference-count acquisition to start after such clean-up has commenced, so the
acquisition must include a check for a zero reference count. This check must be
part of the atomic increment operation, as shown below.

Quick Quiz 8.5: Why can’t the check for a zero reference count be made
in a simple “if” statement with an atomic increment in its “then” clause? B

The Linux kernel’s fget () and fput () primitives use this style of reference
counting. Simplified versions of these functions are shown in Figure [8.4

Line 4 of fget () fetches the pointer to the current process’s file-descriptor
table, which might well be shared with other processes. Line 6 invokes rcu_
read_lock(), which enters an RCU read-side critical section. The callback
function from any subsequent call rcu() primitive will be deferred until a
matching rcu_read_unlock() is reached (line 10 or 14 in this example). Line 7
looks up the file structure corresponding to the file descriptor specified by the £d
argument, as will be described later. If there is an open file corresponding to the
specified file descriptor, then line 9 attempts to atomically acquire a reference
count. If it fails to do so, lines 10-11 exit the RCU read-side critical section
and report failure. Otherwise, if the attempt is successful, lines 14-15 exit the
read-side critical section and return a pointer to the file structure.

The fcheck files() primitive is a helper function for fget (). It uses the
rcu_dereference () primitive to safely fetch an RCU-protected pointer for later
dereferencing (this emits a memory barrier on CPUs such as DEC Alpha in
which data dependencies do not enforce memory ordering). Line 22 uses rcu_
dereference() to fetch a pointer to this task’s current file-descriptor table,
and line 24 checks to see if the specified file descriptor is in range. If so, line 25
fetches the pointer to the file structure, again using the rcu_dereference()
primitive. Line 26 then returns a pointer to the file structure or NULL in case of
failure.

The fput () primitive releases a reference to a file structure. Line 31 atomi-
cally decrements the reference count, and, if the result was zero, line 32 invokes
the call_rcu() primitives in order to free up the file structure (via the file_
free rcu() function specified in call rcu()’s second argument), but only af-
ter all currently-executing RCU read-side critical sections complete. The time
period required for all currently-executing RCU read-side critical sections to
complete is termed a “grace period”. Note that the atomic_dec_and test()
primitive contains a memory barrier. This memory barrier is not necessary in

8.2. REFERENCE COUNTING

24
25
26
27
28
29
30
31
32
33
34

41

struct file *fget(unsigned int fd)
{
struct file *file;
struct files_struct *files = current->files;

rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {
if (latomic_inc_not_zero(&file->f_count)) {
rcu_read_unlock();
return NULL;
}
}
rcu_read_unlock();
return file;

}

struct file *
fcheck_files(struct files_struct *files, unsigned int £d)
{

struct file * file = NULL;

struct fdtable *fdt = rcu_dereference((files)->fdt);

if (fd < fdt->max_fds)
file = rcu_dereference(fdt->fd[fd]);
return file;

}

void fput(struct file *file)
{
if (atomic_dec_and_test(&file->f_count))
call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);

}

static void file_free_rcu(struct rcu_head *head)

{

struct file *f;
f = container_of (head, struct file, f_u.fu_rcuhead);

kmem_cache_free(filp_cachep, £);
}

Figure 8.4: Linux Kernel fget/fput API

125

126 CHAPTER 8. DEFERRED PROCESS.

this example, since the structure cannot be destroyed until the RCU read-side
critical section completes, but in Linux, all atomic operations that return a
result must by definition contain memory barriers.

Once the grace period completes, the file free rcu() function obtains a
pointer to the file structure on line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-memory system, see get_page_
unless_zero() and put_page_testzero() for page structures as well as try-
to_unuse () and mmput () for memory-map structures.

8.2.2 Linux Primitives Supporting Reference Counting

The Linux-kernel primitives used in the above examples are summarized in the
following list.

e atomic_t Type definition for 32-bit quantity to be manipulated atomi-
cally.

e void atomic_dec(atomic_t *var); Atomically decrements the refer-
enced variable without necessarily issuing a memory barrier or disabling
compiler optimizations.

e int atomic_dec_and test(atomic_t *var); Atomically decrements the
referenced variable, returning true if the result is zero. Issues a memory
barrier and disables compiler optimizations that might otherwise move
memory references across this primitive.

e void atomic_inc(atomic_t *var); Atomically increments the refer-
enced variable without necessarily issuing a memory barrier or disabling
compiler optimizations.

e int atomic_inc_not_zero(atomic_t *var); Atomically increments the
referenced variable, but only if the value is non-zero, and returning true
if the increment occurred. Issues a memory barrier and disables compiler
optimizations that might otherwise move memory references across this
primitive.

e int atomic_read(atomic_t *var); Returns the integer value of the
referenced variable. This is not an atomic operation, and it neither issues
memory barriers nor disables compiler optimizations.

e void atomic_set(atomic_t *var, int val); Sets the value of the ref-
erenced atomic variable to “val”. This is not an atomic operation, and it
neither issues memory barriers nor disables compiler optimizations.

e void call_rcu(struct rcu_head *head, void (*func) (struct rcu_head
xhead)); Invokes func(head) some time after all currently executing
RCU read-side critical sections complete, however, the call rcu() prim-
itive returns immediately. Note that head is normally a field within an
RCU-protected data structure, and that func is normally a function that
frees up this data structure. The time interval between the invocation of
call rcu() and the invocation of func is termed a “grace period”. Any
interval of time containing a grace period is itself a grace period.

8.3. READ-COPY UPDATE (RCU)

[3Sy)

e type *container_of (p, type, f); Given a pointer “p” to a field “f”
within a structure of the specified type, return a pointer to the structure.

e void rcu.read lock(void); Marks the beginning of an RCU read-side
critical section.

e void rcu_read_unlock(void); Marks the end of an RCU read-side
critical section. RCU read-side critical sections may be nested.

e void smp.mb__before_atomic_dec(void); Issues a memory barrier and
disables code-motion compiler optimizations only if the platform’s atomic_
dec () primitive does not already do so.

e struct rcuhead A data structure used by the RCU infrastructure to
track objects awaiting a grace period. This is normally included as a field
within an RCU-protected data structure.

8.2.3 Counter Optimizations

In some cases where increments and decrements are common, but checks for
zero are rare, it makes sense to maintain per-CPU or per-task counters, as was
discussed in Chapter See Appendix for an example of this technique
applied to RCU. This approach eliminates the need for atomic instructions or
memory barriers on the increment and decrement primitives, but still requires
that code-motion compiler optimizations be disabled. In addition, the primi-
tives such as synchronize_srcu() that check for the aggregate reference count
reaching zero can be quite slow. This underscores the fact that these techniques
are designed for situations where the references are frequently acquired and
released, but where it is rarely necessary to check for a zero reference count.

8.3 Read-Copy Update (RCU)

8.3.1 RCU Fundamentals

Authors: Paul E. McKenney and Jonathan Walpole

Read-copy update (RCU) is a synchronization mechanism that was added
to the Linux kernel in October of 2002. RCU achieves scalability improvements
by allowing reads to occur concurrently with updates. In contrast with conven-
tional locking primitives that ensure mutual exclusion among concurrent threads
regardless of whether they be readers or updaters, or with reader-writer locks
that allow concurrent reads but not in the presence of updates, RCU supports
concurrency between a single updater and multiple readers. RCU ensures that
reads are coherent by maintaining multiple versions of objects and ensuring that
they are not freed up until all pre-existing read-side critical sections complete.
RCU defines and uses efficient and scalable mechanisms for publishing and read-
ing new versions of an object, and also for deferring the collection of old versions.
These mechanisms distribute the work among read and update paths in such
a way as to make read paths extremely fast. In some cases (non-preemptible
kernels), RCU’s read-side primitives have zero overhead.

Quick Quiz 8.6: But doesn’t seqlock also permit readers and updaters to
get work done concurrently? W

127

128 CHAPTER 8. DEFERRED PROCESS.

struct foo {
int a;
int b;
int c;
};
struct foo *gp = NULL;

0 ~NO U d WN -

/x .. K/

10 p = kmalloc(sizeof (*p), GFP_KERNEL);

11 p—>a = 1;
12 p->b = 2;
13 p—>c = 3;
14 gp = p;

Figure 8.5: Data Structure Publication (Unsafe)

This leads to the question “what exactly is RCU?”, and perhaps also to the
question “how can RCU possibly work?” (or, not infrequently, the assertion that
RCU cannot possibly work). This document addresses these questions from a
fundamental viewpoint; later installments look at them from usage and from
API viewpoints. This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms, the first being used for
insertion, the second being used for deletion, and the third being used to allow
readers to tolerate concurrent insertions and deletions. Section B.3.1.1l describes
the publish-subscribe mechanism used for insertion, Section describes
how waiting for pre-existing RCU readers enabled deletion, and Section
discusses how maintaining multiple versions of recently updated objects permits
concurrent insertions and deletions. Finally, Section summarizes RCU
fundamentals.

8.3.1.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan data, even though that
data is being modified concurrently. To provide this ability for concurrent in-
sertion, RCU uses what can be thought of as a publish-subscribe mechanism.
For example, consider an initially NULL global pointer gp that is to be modified
to point to a newly allocated and initialized data structure. The code fragment
shown in Figure (with the addition of appropriate locking) might be used
for this purpose.

Unfortunately, there is nothing forcing the compiler and CPU to execute
the last four assignment statements in order. If the assignment to gp hap-
pens before the initialization of p fields, then concurrent readers could see the
uninitialized values. Memory barriers are required to keep things ordered, but
memory barriers are notoriously difficult to use. We therefore encapsulate them
into a primitive rcu_assign pointer() that has publication semantics. The
last four lines would then be as follows:

1 p—>a = 1;
2 p—>b = 2;
3 p—>c = 3;

4 rcu_assign_pointer(gp, p);

The rcu_assign pointer() would publish the new structure, forcing both

8.3. READ-COPY UPDATE (RCU)

L, next »| Next » Next »| Next J

prev [prev < prev [prev
(A B C

Figure 8.6: Linux Circular Linked List

the compiler and the CPU to execute the assignment to gp after the assignments
to the fields referenced by p

However, it is not sufficient to only enforce ordering at the updater, as the
reader must enforce proper ordering as well. Consider for example the following
code fragment:

1p=gp;

2 if (p != NULL) {

3 do_something with(p->a, p->b, p->c);
4 %

Although this code fragment might well seem immune to misordering, un-
fortunately, the DEC Alpha CPU [McKO05a, McKO05b] and value-speculation
compiler optimizations can, believe it or not, cause the values of p->a, p->b,
and p->c to be fetched before the value of p. This is perhaps easiest to see in
the case of value-speculation compiler optimizations, where the compiler guesses
the value of p fetches p—>a, p—>b, and p->c then fetches the actual value of p
in order to check whether its guess was correct. This sort of optimization is
quite aggressive, perhaps insanely so, but does actually occur in the context of
profile-driven optimization.

Clearly, we need to prevent this sort of skullduggery on the part of both
the compiler and the CPU. The rcu dereference() primitive uses whatever
memory-barrier instructions and compiler directives are required for this pur-
pose:

1 rcu_read_lock();

2 p = rcu_dereference(gp);

3 if (p !'= NULL) {

4 do_something with(p->a, p->b, p->c);
5}

6 rcu_read_unlock();

The rcu_dereference() primitive can thus be thought of as subscribing to
a given value of the specified pointer, guaranteeing that subsequent dereference
operations will see any initialization that occurred before the corresponding
publish (rcu assign pointer() operation. The rcu read lock() and rcu_
read_unlock() calls are absolutely required: they define the extent of the RCU
read-side critical section. Their purpose is explained in Section[8.3.1.2] however,
they never spin or block, nor do they prevent the list_add_rcu() from executing
concurrently. In fact, in non-CONFIG_PREEMPT kernels, they generate absolutely
no code.

Although rcu_assign pointer () and rcu_dereference() can in theory be

129

130 CHAPTER 8. DEFERRED PROCESS.

A 3 B 3 C

Figure 8.7: Linux Linked List Abbreviated

struct foo {
struct list_head *list;
int a;
int b;
int c;
};
LIST_HEAD (head);

0 ~NOoO U WN -

9 /*x . . ./

11 p = kmalloc(sizeof (*p), GFP_KERNEL);
12 p—>a = 1;

13 p->b = 2;

14 p->c 3;

15 list_add_rcu(&p->list, &head);

Figure 8.8: RCU Data Structure Publication

used to construct any conceivable RCU-protected data structure, in practice
it is often better to use higher-level constructs. Therefore, the rcu_assign_
pointer() and rcu._dereference() primitives have been embedded in spe-
cial RCU variants of Linux’s list-manipulation API. Linux has two variants
of doubly linked list, the circular struct list_head and the linear struct
hlist head/struct hlist node pair. The former is laid out as shown in Fig-
ure where the green boxes represent the list header and the blue boxes
represent the elements in the list. This notation is cumbersome, and will there-
fore be abbreviated as shown in Figure [8.7]
Adapting the pointer-publish example for the linked list results in the code
shown in Figure 8.8
Line 15 must be protected by some synchronization mechanism (most com-
monly some sort of lock) to prevent multiple list_add() instances from exe-
cuting concurrently. However, such synchronization does not prevent this 1ist_
add () instance from executing concurrently with RCU readers.
Subscribing to an RCU-protected list is straightforward:
1 rcu_read_lock();
2 1ist_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);
4}

5 rcu_read_unlock();

The 1list_add_rcu() primitive publishes an entry into the specified list, guar-
anteeing that the corresponding list_for_each_entry_rcu() invocation will
properly subscribe to this same entry.

Quick Quiz 8.7: What prevents the list _for_each entry rcu() from
getting a segfault if it happens to execute at exactly the same time as the
list.add rcu()? M

Linux’s other doubly linked list, the hlist, is a linear list, which means that
it needs only one pointer for the header rather than the two required for the
circular list, as shown in Figurd8.9] Thus, use of hlist can halve the memory

8.3. READ-COPY UPDATE (RCU)

int a;
int b;
int c;

};

OO0 ~NOOOd WN -

VE T

| first I_> next »| Next »| Next
prev [prev [prev
A B C

Figure 8.9: Linux Linear Linked List

struct foo {
struct hlist_node *list;

HLIST_HEAD (head) ;

. ox/

11 p = kmalloc(sizeof (*p), GFP_KERNEL);

12 p—>a
13 p->b
14 p->c

1;
2;
3;

15 hlist_add_head_rcu(&p->list, &head) ;

Category “

Figure 8.10: RCU hlist Publication

Publish

[Retract

Subscribe

Pointers

rcu_assign_pointer ()

rcu_assign pointer(..., NULL)

rcu_dereference()

Lists

Tist_add_rcu()
list_add_tail_rcu()
list_replace.rcu()

list_del.rcu()

list_for_each_entry.rcu()

Hlists

hlist_add_after-rcu()
hlist_add_before_rcu()
hlist_add_head rcu()
hlist_replace_rcu()

Table 8.2: RCU Publish and Subscribe Primitives

hlist_del_rcu()

hlist_for_each_entry_rcu()

consumption for the hash-bucket arrays of large hash tables. As before, this
notation is cumbersome, so hlists will be abbreviated in the same way lists are,
as shown in Figure B7}
Publishing a new element to an RCU-protected hlist is quite similar to doing
so for the circular list, as shown in Figure [8.10
As before, line 15 must be protected by some sort of synchronization mech-
anism, for example, a lock.
Subscribing to an RCU-protected hlist is also similar to the circular list:

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, q, head, list) {
3 do_something_with(p->a, p->b, p->c);

4}

5 rcu_read_unlock();

Quick Quiz 8.8: Why do we need to pass two pointers into hlist_for_each_entry_rcu()
when only one is needed for 1list_for_each_entry_rcu()? W
The set of RCU publish and subscribe primitives are shown in Table
along with additional primitives to “unpublish”, or retract.

Note that the list_replace_rcu(), list_del rcu(), hlist _replace rcu(),

131

132 CHAPTER 8. DEFERRED PROCESS.

|Reader| | I Reader | F Reader |
| Reader | |Reader| Grace Period
Extends as
|Reader| | Reader Needed
[
| Reader | Reader
Removal Reclamation
Time

Figure 8.11: Readers and RCU Grace Period

and hlist_del rcu() APIs add a complication. When is it safe to free up the

data element that was replaced or removed? In particular, how can we possibly

know when all the readers have released their references to that data element?
These questions are addressed in the following section.

8.3.1.2 Wait For Pre-Existing RCU Readers to Complete

In its most basic form, RCU is a way of waiting for things to finish. Of course,
there are a great many other ways of waiting for things to finish, including
reference counts, reader-writer locks, events, and so on. The great advantage of
RCU is that it can wait for each of (say) 20,000 different things without having
to explicitly track each and every one of them, and without having to worry
about the performance degradation, scalability limitations, complex deadlock
scenarios, and memory-leak hazards that are inherent in schemes using explicit
tracking.

In RCU’s case, the things waited on are called “RCU read-side critical sec-
tions”. An RCU read-side critical section starts with an rcu_read lock() prim-
itive, and ends with a corresponding rcu_read unlock() primitive. RCU read-
side critical sections can be nested, and may contain pretty much any code, as
long as that code does not explicitly block or sleep (although a special form
of RCU called SRCU |[McKO06|] does permit general sleeping in SRCU read-side
critical sections). If you abide by these conventions, you can use RCU to wait
for any desired piece of code to complete.

RCU accomplishes this feat by indirectly determining when these other
things have finished [McK07g, McKO07a], as is described in detail in Appendix@

In particular, as shown in Figure RCU is a way of waiting for pre-
existing RCU read-side critical sections to completely finish, including memory
operations executed by those critical sections. However, note that RCU read-
side critical sections that begin after the beginning of a given grace period can
and will extend beyond the end of that grace period.

The following pseudocode shows the basic form of algorithms that use RCU
to wait for readers:

1. Make a change, for example, replace an element in a linked list.

8.3. READ-COPY UPDATE (RCU)

struct foo {
struct list_head *list;
int a;
int b;
int c;
};
LIST_HEAD (head) ;

0 ~NO P WN

9 /x . . . x/

11 p = search(head, key);

12 if (p == NULL) {

13 /* Take appropriate action, unlock, and return. */
14 }

15 q = kmalloc(sizeof (*p), GFP_KERNEL);
16 *q = *p;

17 g->b = 2;

18 g->c = 3;

19 list_replace_rcu(&p->list, &g->list);
20 synchronize_rcu();

21 kfree(p);

Figure 8.12: Canonical RCU Replacement Example

2. Wait for all pre-existing RCU read-side critical sections to completely
finish (for example, by using the synchronize rcu() primitive). The key
observation here is that subsequent RCU read-side critical sections have
no way to gain a reference to the newly removed element.

3. Clean up, for example, free the element that was replaced above.

The code fragment shown in Figure[8:12] adapted from those in Section
demonstrates this process, with field a being the search key.

Lines 19, 20, and 21 implement the three steps called out above. Lines 16-19
gives RCU (“read-copy update”) its name: while permitting concurrent reads,
line 16 copies and lines 17-19 do an update.

The synchronize rcu() primitive might seem a bit mysterious at first. Af-
ter all, it must wait for all RCU read-side critical sections to complete, and, as
we saw earlier, the rcu_read lock() and rcu read unlock() primitives that
delimit RCU read-side critical sections don’t even generate any code in non-
CONFIG_PREEMPT kernels!

There is a trick, and the trick is that RCU Classic read-side critical sections
delimited by rcu_read_lock() and rcu.read unlock() are not permitted to
block or sleep. Therefore, when a given CPU executes a context switch, we are
guaranteed that any prior RCU read-side critical sections will have completed.
This means that as soon as each CPU has executed at least one context switch,
all prior RCU read-side critical sections are guaranteed to have completed,
meaning that synchronize_rcu() can safely return.

Thus, RCU Classic’s synchronize_rcu() can conceptually be as simple as
the following (see Appendix for additional “toy” RCU implementations):

1 for_each_online_cpu(cpu)
2 run_on(cpu);

Here, run_on() switches the current thread to the specified CPU, which
forces a context switch on that CPU. The for_each_online_cpu() loop there-
fore forces a context switch on each CPU, thereby guaranteeing that all prior

133

134 CHAPTER 8. DEFERRED PROCESS.

RCU read-side critical sections have completed, as required. Although this
simple approach works for kernels in which preemption is disabled across RCU
read-side critical sections, in other words, for non-CONFIG_PREEMPT and CONFIG_
PREEMPT kernels, it does not work for CONFIG_PREEMPT RT realtime (-rt) kernels.
Therefore, realtime RCU uses a different approach based loosely on reference
counters [McKO07a].

Of course, the actual implementation in the Linux kernel is much more com-
plex, as it is required to handle interrupts, NMIs, CPU hotplug, and other
hazards of production-capable kernels, but while also maintaining good per-
formance and scalability. Realtime implementations of RCU must additionally
help provide good realtime response, which rules out implementations (like the
simple two-liner above) that rely on disabling preemption.

Although it is good to know that there is a simple conceptual implementation
of synchronize_rcu(), other questions remain. For example, what exactly do
RCU readers see when traversing a concurrently updated list? This question is
addressed in the following section.

8.3.1.3 Maintain Multiple Versions of Recently Updated Objects

This section demonstrates how RCU maintains multiple versions of lists to ac-
commodate synchronization-free readers. Two examples are presented showing
how an element that might be referenced by a given reader must remain intact
while that reader remains in its RCU read-side critical section. The first example
demonstrates deletion of a list element, and the second example demonstrates
replacement of an element.

Example 1: Maintaining Multiple Versions During Deletion To start
the “deletion” example, we will modify lines 11-21 in Figure [B:12] to read as
follows:

p = search(head, key);

if (p != NULL) {
list_del_rcu(&p->list);
synchronize_rcu() ;
kfree(p);

O WN -

}

This code will update the list as shown in Figure|8.13] The triples in each
element represent the values of fields a, b, and c, respectively. The red-shaded
elements indicate that RCU readers might be holding references to them. Please
note that we have omitted the backwards pointers and the link from the tail of
the list to the head for clarity.

After the 1list_del _rcu() on line 3 has completed, the 5,6,7 element has
been removed from the list, as shown in the second row of Figure Since
readers do not synchronize directly with updaters, readers might be concurrently
scanning this list. These concurrent readers might or might not see the newly
removed element, depending on timing. However, readers that were delayed
(e.g., due to interrupts, ECC memory errors, or, in CONFIG_PREEMPT_RT kernels,
preemption) just after fetching a pointer to the newly removed element might
see the old version of the list for quite some time after the removal. Therefore,
we now have two versions of the list, one with element 5,6,7 and one without.

8.3. READ-COPY UPDATE (RCU)

list_del_rcu()

1

synchronize_rcu()

kfree()

Figure 8.13: RCU Deletion From Linked List

-
!

The 5,6,7 element is shaded yellow, indicating that old readers might still be
referencing it, but that new readers cannot obtain a reference to it.

Please note that readers are not permitted to maintain references to ele-
ment 5,6,7 after exiting from their RCU read-side critical sections. Therefore,
once the synchronize_rcu() on line 4 completes, so that all pre-existing read-
ers are guaranteed to have completed, there can be no more readers referencing
this element, as indicated by its green shading on the third row of Figure [8.13
We are thus back to a single version of the list.

At this point, the 5,6,7 element may safely be freed, as shown on the
final row of Figure [8.13] At this point, we have completed the deletion of
element 5,6,7. The following section covers replacement.

Example 2: Maintaining Multiple Versions During Replacement To
start the replacement example, here are the last few lines of the example shown
in Figure [8.12}
1 q = kmalloc(sizeof (*p), GFP_KERNEL) ;
2 *q = *p;
q->b = 2;
q->c = 3;
list_replace_rcu(&p->list, &g->list);
synchronize_rcu();
kfree(p);

~N O O W

The initial state of the list, including the pointer p, is the same as for the

135

136

Allocate %_

5,6,7

synchronize_rcu()

kfree()

Figure 8.14: RCU Replacement in Linked List

CHAPTER 8. DEFERRED PROCESS!

8.3. READ-COPY UPDATE (RCU)

deletion example, as shown on the first row of Figure [8.14

As before, the triples in each element represent the values of fields a, b, and
c, respectively. The red-shaded elements might be referenced by readers, and
because readers do not synchronize directly with updaters, readers might run
concurrently with this entire replacement process. Please note that we again
omit the backwards pointers and the link from the tail of the list to the head
for clarity.

The following text describes how to replace the 5,6,7 element with 5,2,3
in such a way that any given reader sees one of these two values.

Line 1 kmalloc()s a replacement element, as follows, resulting in the state
as shown in the second row of Figure At this point, no reader can hold
a reference to the newly allocated element (as indicated by its green shading),
and it is uninitialized (as indicated by the question marks).

Line 2 copies the old element to the new one, resulting in the state as shown
in the third row of Figure .14 The newly allocated element still cannot be
referenced by readers, but it is now initialized.

Line 3 updates q—>b to the value “2”, and line 4 updates q->c to the value
“3”, as shown on the fourth row of Figure

Now, line 5 does the replacement, so that the new element is finally visible
to readers, and hence is shaded red, as shown on the fifth row of Figure [8.14]
At this point, as shown below, we have two versions of the list. Pre-existing
readers might see the 5,6,7 element (which is therefore now shaded yellow),
but new readers will instead see the 5,2,3 element. But any given reader is
guaranteed to see some well-defined list.

After the synchronize rcu() on line 6 returns, a grace period will have
elapsed, and so all reads that started before the 1ist_replace_rcu() will have
completed. In particular, any readers that might have been holding references
to the 5,6,7 element are guaranteed to have exited their RCU read-side critical
sections, and are thus prohibited from continuing to hold a reference. Therefore,
there can no longer be any readers holding references to the old element, as
indicated its green shading in the sixth row of Figure As far as the readers
are concerned, we are back to having a single version of the list, but with the
new element in place of the old.

After the kfree() on line 7 completes, the list will appear as shown on the
final row of Figure [8:14]

Despite the fact that RCU was named after the replacement case, the vast
majority of RCU usage within the Linux kernel relies on the simple deletion
case shown in Section B.3.1.3l

Discussion These examples assumed that a mutex was held across the entire
update operation, which would mean that there could be at most two versions
of the list active at a given time.

Quick Quiz 8.9: How would you modify the deletion example to permit
more than two versions of the list to be active?

Quick Quiz 8.10: How many RCU versions of a given list can be active at
any given time? H

This sequence of events shows how RCU updates use multiple versions to
safely carry out changes in presence of concurrent readers. Of course, some
algorithms cannot gracefully handle multiple versions. There are techniques for

137

138 CHAPTER 8. DEFERRED PROCESS.

Mechanism RCU Replaces | Section
Reader-writer locking Section [8.3.2.1
Restricted reference-counting mechanism Section [3.3.2.2
Bulk reference-counting mechanism Section [8.3.2.3
Poor man’s garbage collector Section [8.3.2.4]
Existence Guarantees Section [8.3.2.9
Type-Safe Memory Section [8.3.2.
Wait for things to finish Section [8.3.2.

Table 8.3: RCU Usage

adapting such algorithms to RCU [McK04], but these are beyond the scope of
this section.

8.3.1.4 Summary of RCU Fundamentals

This section has described the three fundamental components of RCU-based
algorithms:

1. a publish-subscribe mechanism for adding new data,
2. a way of waiting for pre-existing RCU readers to finish, and

3. a discipline of maintaining multiple versions to permit change without
harming or unduly delaying concurrent RCU readers.

Quick Quiz 8.11: How can RCU updaters possibly delay RCU readers,
given that the rcu_read_lock() and rcu_read unlock() primitives neither spin
nor block?” W

These three RCU components allow data to be updated in face of concurrent
readers, and can be combined in different ways to implement a surprising variety
of different types of RCU-based algorithms, some of which are described in the
following section.

8.3.2 RCU Usage

This section answers the question ”what is RCU?” from the viewpoint of the
uses to which RCU can be put. Because RCU is most frequently used to replace
some existing mechanism, we look at it primarily in terms of its relationship
to such mechanisms, as listed in Table Following the sections listed in this
table, Section [8.3.2.§ provides a summary.

8.3.2.1 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux kernel is as a replace-
ment for reader-writer locking in read-intensive situations. Nevertheless, this use
of RCU was not immediately apparent to me at the outset, in fact, I chose to
implement something similar to brlock before implementing a general-purpose
RCU implementation back in the early 1990s. Each and every one of the uses I
envisioned for the proto-brlock primitive was instead implemented using RCU.
In fact, it was more than three years before the proto-brlock primitive saw its
first use. Boy, did I feel foolish!

8.3. READ-COPY UPDATE (RCU)

10000
1000
100
10

1

0.1
0.01
0.001
1e-04
1e-05

T
£ 3 D - e 3 K
IEVE S dalala X Wlock

Al

Overhead (nanoseconds)

ﬂ
(@]
[

k

]]]
4 6 8 10 12 14 16
Number of CPUs

o
N

Figure 8.15: Performance Advantage of RCU Over Reader-Writer Locking

The key similarity between RCU and reader-writer locking is that both have
read-side critical sections that can execute in parallel. In fact, in some cases, it
is possible to mechanically substitute RCU API members for the corresponding
reader-writer lock API members. But first, why bother?

Advantages of RCU include performance, deadlock immunity, and realtime
latency. There are, of course, limitations to RCU, including the fact that readers
and updaters run concurrently, that low-priority RCU readers can block high-
priority threads waiting for a grace period to elapse, and that grace-period
latencies can extend for many milliseconds. These advantages and limitations
are discussed in the following sections.

Performance The read-side performance advantages of RCU over reader-
writer locking are shown in Figure [8.15

Quick Quiz 8.12: WTF? How the heck do you expect me to believe that
RCU has a 100-femtosecond overhead when the clock period at 3GHz is more
than 300 picoseconds? B

Note that reader-writer locking is orders of magnitude slower than RCU on
a single CPU, and is almost two additional orders of magnitude slower on 16
CPUs. In contrast, RCU scales quite well. In both cases, the error bars span a
single standard deviation in either direction.

A more moderate view may be obtained from a CONFIG_PREEMPT kernel,
though RCU still beats reader-writer locking by between one and three orders
of magnitude, as shown in Figure Note the high variability of reader-
writer locking at larger numbers of CPUs. The error bars span a single standard
deviation in either direction.

Of course, the low performance of reader-writer locking in Figure [8.16] is
exaggerated by the unrealistic zero-length critical sections. The performance
advantages of RCU become less significant as the overhead of the critical section
increases, as shown in Figure for a 16-CPU system, in which the y-axis

139

140 CHAPTER 8. DEFERRED PROCESS.

10000

E I | T T | — —

C XX*X ilock
’a - ’ -
T 1000 5™]
g e ;
3 E « :
o - v' -
3 100 5 _
m - -
[0)
E - -
q>) N] rcu 3
° F ottt +———++—++F

1 | | | l | | |

Number of CPUs

Figure 8.16: Performance Advantage of Preemptible RCU Over Reader-Writer
Locking

represents the sum of the overhead of the read-side primitives and that of the
critical section.

Quick Quiz 8.13: Why does both the variability and overhead of rwlock
decrease as the critical-section overhead increases? M

However, this observation must be tempered by the fact that a number of
system calls (and thus any RCU read-side critical sections that they contain)
can complete within a few microseconds.

In addition, as is discussed in the next section, RCU read-side primitives are
almost entirely deadlock-immune.

Deadlock Immunity Although RCU offers significant performance advan-
tages for read-mostly workloads, one of the primary reasons for creating RCU
in the first place was in fact its immunity to read-side deadlocks. This immu-
nity stems from the fact that RCU read-side primitives do not block, spin, or
even do backwards branches, so that their execution time is deterministic. It is
therefore impossible for them to participate in a deadlock cycle.

Quick Quiz 8.14: Is there an exception to this deadlock immunity, and if
so, what sequence of events could lead to deadlock? M

An interesting consequence of RCU’s read-side deadlock immunity is that
it is possible to unconditionally upgrade an RCU reader to an RCU updater.
Attempting to do such an upgrade with reader-writer locking results in deadlock.
A sample code fragment that does an RCU read-to-update upgrade follows:

8.3. READ-COPY UPDATE (RCU)

lx

10000

8000 I rwiock N N

6000 |- " _

4000 | -

Overhead (nanoseconds)

2000

rcu -

0 1 1 1 1
0 2 4 6 8 10

Critical-Section Duration (microseconds)

Figure 8.17: Comparison of RCU to Reader-Writer Locking as Function of
Critical-Section Duration

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something with(p);

4 if (need_update(p)) {

5 spin_lock(my_lock);

6 do_update(p) ;

7 spin_unlock(&my_lock) ;
8 }

9}

10 rcu_read_unlock();

Note that do_update() is executed under the protection of the lock and
under RCU read-side protection.

Another interesting consequence of RCU’s deadlock immunity is its immu-
nity to a large class of priority inversion problems. For example, low-priority
RCU readers cannot prevent a high-priority RCU updater from acquiring the
update-side lock. Similarly, a low-priority RCU updater cannot prevent high-
priority RCU readers from entering an RCU read-side critical section.

Realtime Latency Because RCU read-side primitives neither spin nor block,
they offer excellent realtime latencies. In addition, as noted earlier, this means
that they are immune to priority inversion involving the RCU read-side primi-
tives and locks.

However, RCU is susceptible to more subtle priority-inversion scenarios, for
example, a high-priority process blocked waiting for an RCU grace period to
elapse can be blocked by low-priority RCU readers in -rt kernels. This can be
solved by using RCU priority boosting [McK07d, [GMTWOS].

RCU Readers and Updaters Run Concurrently Because RCU read-
ers never spin nor block, and because updaters are not subject to any sort of
rollback or abort semantics, RCU readers and updaters must necessarily run

141

142 CHAPTER 8. DEFERRED PROCESS.

| rwlock readér | spin
| rwlock reader | spin
| rwlock reader | spin

| spin [rwlock writer

|
| RCU reader |RCU reader
| RCUreader [RCU reader
| RCUreader; [RCU reader
| RCU updater]

/ Time

Update Received

Figure 8.18: Response Time of RCU vs. Reader-Writer Locking

concurrently. This means that RCU readers might access stale data, and might
even see inconsistencies, either of which can render conversion from reader-writer
locking to RCU non-trivial.

However, in a surprisingly large number of situations, inconsistencies and
stale data are not problems. The classic example is the networking routing
table. Because routing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have been sending packets
the wrong way for quite some time when the update arrives. It is usually not
a problem to continue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can make changes without
waiting for RCU readers to finish, the RCU readers might well see the change
more quickly than would batch-fair reader-writer-locking readers, as shown in
Figure [8.18

Once the update is received, the rwlock writer cannot proceed until the
last reader completes, and subsequent readers cannot proceed until the writer
completes. However, these subsequent readers are guaranteed to see the new
value, as indicated by the green background. In contrast, RCU readers and
updaters do not block each other, which permits the RCU readers to see the
updated values sooner. Of course, because their execution overlaps that of the
RCU updater, all of the RCU readers might well see updated values, including
the three readers that started before the update. Nevertheless only the RCU
readers with green backgrounds are guaranteed to see the updated values, again,
as indicated by the green background.

Reader-writer locking and RCU simply provide different guarantees. With
reader-writer locking, any reader that begins after the writer begins is guaran-
teed to see new values, and any reader that attempts to begin while the writer
is spinning might or might not see new values, depending on the reader/writer
preference of the rwlock implementation in question. In contrast, with RCU,
any reader that begins after the updater completes is guaranteed to see new
values, and any reader that completes after the updater begins might or might
not see new values, depending on timing.

The key point here is that, although reader-writer locking does indeed guar-

8.3. READ-COPY UPDATE (RCU)

antee consistency within the confines of the computer system, there are sit-
uations where this consistency comes at the price of increased inconsistency
with the outside world. In other words, reader-writer locking obtains internal
consistency at the price of silently stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency and stale data within
the confines of the system cannot be tolerated. Fortunately, there are a number
of approaches that avoid inconsistency and stale data [McK04, [ACMS03], and
some methods based on reference counting are discussed in Section [8.2

Low-Priority RCU Readers Can Block High-Priority Reclaimers In
Realtime RCU [GMTWOS] (see Section [D.4), SRCU [McKO06] (see Section
or QRCU [McKOTf] (see Section each of which is described in the final
installment of this series, a preempted reader will prevent a grace period from
completing, even if a high-priority task is blocked waiting for that grace period to
complete. Realtime RCU can avoid this problem by substituting call_rcu() for
synchronize _rcu() or by using RCU priority boosting [McK07d, [GMTWO0S]|,
which is still in experimental status as of early 2008. It might become necessary
to augment SRCU and QRCU with priority boosting, but not before a clear
real-world need is demonstrated.

RCU Grace Periods Extend for Many Milliseconds With the excep-
tion of QRCU and several of the “toy” RCU implementations described in Sec-
tion RCU grace periods extend for multiple milliseconds. Although there
are a number of techniques to render such long delays harmless, including use of
the asynchronous interfaces where available (call_rcu() and call_rcu bh()),
this situation is a major reason for the rule of thumb that RCU be used in
read-mostly situations.

Comparison of Reader-Writer Locking and RCU Code In the best
case, the conversion from reader-writer locking to RCU is quite simple, as shown
in Figures [8.19] [8.20, and [8.21} all taken from Wikipedia [MPA™06].

1 struct el { 1 struct el {

2 struct list_head 1lp; 2 struct list_head 1lp;

3 long key; 3 long key;

4 spinlock_t mutex; 4 spinlock_t mutex;

5 int data; 5 int data;

6 /x Other data fields */ 6 /* Other data fields */
7} 7k

8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex);
9 LIST_HEAD(head); 9 LIST_HEAD(head) ;

Figure 8.19: Converting Reader-Writer Locking to RCU: Data

More-elaborate cases of replacing reader-writer locking with RCU are beyond
the scope of this document.
8.3.2.2 RCU is a Restricted Reference-Counting Mechanism

Because grace periods are not allowed to complete while there is an RCU read-
side critical section in progress, the RCU read-side primitives may be used as

143

i
{

CHAPTER 8. DEFERRED PROCESS.

nt search(long key, int *result)
struct el *p;

rcu_read_lock();
list_for_each_entry_rcu(p, &head, 1lp) {
if (p->key == key) {
*result = p->data;
rcu_read_unlock();
return 1;
}
}
rcu_read_unlock();
return 0;

Figure 8.20: Converting Reader-Writer Locking to RCU: Search

144

1 int search(long key, int *result)
2 {

3 struct el *p;

4

5 read_lock(&listmutex);

6 list_for_each_entry(p, &head, 1lp) {
7 if (p->key == key) {

8 *result = p->data;

9 read_unlock(&listmutex) ;
10 return 1;
11 ¥

12 }

13 read_unlock(&listmutex) ;
14 return 0;
15 }

1 int delete(long key)

2 {

3 struct el *p;

4

5 write_lock(&listmutex);

6 list_for_each_entry(p, &head, 1lp) {
7 if (p->key == key) {

8 list_del(&p->1p);

9 write_unlock(&listmutex) ;
10 kfree(p);
11 return 1;
12 }
13 T
14 write_unlock(&listmutex);
15 return O;
16 }

i
{

0 ~NO U WN -

nt delete(long key)
struct el *p;

spin_lock(&listmutex) ;
list_for_each_entry(p, &head, 1lp) {
if (p->key == key) {
list_del_rcu(&p->1p);
spin_unlock(&listmutex) ;
synchronize_rcu() ;
kfree(p);
return 1;
}
}
spin_unlock(&listmutex) ;
return 0;

Figure 8.21: Converting Reader-Writer Locking to RCU: Deletion

8.3. READ-COPY UPDATE (RCU)

10000

1 T T T | | | 1
[%) IV RV ¢ 3¢ K X o font
2 1000 F X NEVIY _
wn
o ! -
C
g 100 _
© 3 :
m - -
[0)
-E - -
: F rcu 3
(@] F ===+ +—+—+—++—++3F

1 | | | | : | |
0 2 4 6 8 10 12 14 16

Number of CPUs

Figure 8.22: Performance of RCU vs. Reference Counting

a restricted reference-counting mechanism. For example, consider the following
code fragment:

1 rcu_read_lock(); /* acquire reference. */

2 p = rcu_dereference(head);

3 /* do something with p. */

4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock() primitive can be thought of as acquiring a reference
to p, because a grace period starting after the rcu_dereference() assigns to
p cannot possibly end until after we reach the matching rcu read unlock().
This reference-counting scheme is restricted in that we are not allowed to block
in RCU read-side critical sections, nor are we permitted to hand off an RCU
read-side critical section from one task to another.

Regardless of these restrictions, the following code can safely delete p:

spin_lock(&mylock) ;

p = head;

rcu_assign_pointer (head, NULL);
spin_unlock(&mylock) ;

/* Wait for all references to be released. */
synchronize_rcu();

kfree(p);

NS WN e

The assignment to head prevents any future references to p from being ac-
quired, and the synchronize_rcu() waits for any previously acquired references
to be released.

Quick Quiz 8.15: But wait! This is exactly the same code that might be
used when thinking of RCU as a replacement for reader-writer locking! What
gives? H

Of course, RCU can also be combined with traditional reference counting,
as has been discussed on LKML and as summarized in Section [8.21

But why bother? Again, part of the answer is performance, as shown in

145

146 CHAPTER 8. DEFERRED PROCESS.

10000

8000

Overhead (nanoseconds)
[e)]
o
o
o
T
|

2000 rcu -

0 1 1 1 1
0 2 4 6 8 10

Critical-Section Duration (microseconds)

Figure 8.23: Response Time of RCU vs. Reference Counting

Figure [8:22] again showing data taken on a 16-CPU 3GHz Intel x86 system.

Quick Quiz 8.16: Why the dip in refcnt overhead near 6 CPUs?” B

And, as with reader-writer locking, the performance advantages of RCU are
most pronounced for short-duration critical sections, as shown Figure for a
16-CPU system. In addition, as with reader-writer locking, many system calls
(and thus any RCU read-side critical sections that they contain) complete in a
few microseconds.

However, the restrictions that go with RCU can be quite onerous. For exam-
ple, in many cases, the prohibition against sleeping while in an RCU read-side
critical section would defeat the entire purpose. The next section looks at ways
of addressing this problem, while also reducing the complexity of traditional
reference counting, at least in some cases.

8.3.2.3 RCU is a Bulk Reference-Counting Mechanism

As noted in the preceding section, traditional reference counters are usually
associated with a specific data structure, or perhaps a specific group of data
structures. However, maintaining a single global reference counter for a large
variety of data structures typically results in bouncing the cache line containing
the reference count. Such cache-line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives permit extremely fre-
quent read-side usage with negligible performance degradation, permitting RCU
to be used as a ”bulk reference-counting” mechanism with little or no perfor-
mance penalty. Situations where a reference must be held by a single task
across a section of code that blocks may be accommodated with Sleepable RCU
(SRCU) [McK06]. This fails to cover the not-uncommon situation where a ref-
erence is ”"passed” from one task to another, for example, when a reference is
acquired when starting an I/O and released in the corresponding completion
interrupt handler. (In principle, this could be handled by the SRCU implemen-

8.3. READ-COPY UPDATE (RCU)

tation, but in practice, it is not yet clear whether this is a good tradeoft.)

Of course, SRCU brings restrictions of its own, namely that the return value
from srcu_read_lock() be passed into the corresponding srcu_read unlock(),
and that no SRCU primitives be invoked from hardware irq handlers or from
NMI/SMI handlers. The jury is still out as to how much of a problem is pre-
sented by these restrictions, and as to how they can best be handled.

8.3.2.4 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learning about RCU is "RCU
is sort of like a garbage collector!”. This exclamation has a large grain of truth,
but it can also be misleading.

Perhaps the best way to think of the relationship between RCU and auto-
matic garbage collectors (GCs) is that RCU resembles a GC in that the timing
of collection is automatically determined, but that RCU differs from a GC in
that: (1) the programmer must manually indicate when a given data structure
is eligible to be collected, and (2) the programmer must manually mark the
RCU read-side critical sections where references might legitimately be held.

Despite these differences, the resemblance does go quite deep, and has ap-
peared in at least one theoretical analysis of RCU. Furthermore, the first RCU-
like mechanism I am aware of used a garbage collector to handle the grace
periods. Nevertheless, a better way of thinking of RCU is described in the
following section.

8.3.2.5 RCU is a Way of Providing Existence Guarantees

Gamsa et al. [GKAS99| discuss existence guarantees and describe how a mech-
anism resembling RCU can be used to provide these existence guarantees (see
section 5 on page 7 of the PDF), and Section discusses how to guarantee ex-
istence via locking, along with the ensuing disadvantages of doing so. The effect
is that if any RCU-protected data element is accessed within an RCU read-side
critical section, that data element is guaranteed to remain in existence for the
duration of that RCU read-side critical section.

Figure [8:24] demonstrates how RCU-based existence guarantees can enable
per-element locking via a function that deletes an element from a hash table.
Line 6 computes a hash function, and line 7 enters an RCU read-side critical
section. If line 9 finds that the corresponding bucket of the hash table is empty
or that the element present is not the one we wish to delete, then line 10 exits
the RCU read-side critical section and line 11 indicates failure.

Quick Quiz 8.17: What if the element we need to delete is not the first
element of the list on line 9 of Figure |

Otherwise, line 13 acquires the update-side spinlock, and line 14 then checks
that the element is still the one that we want. If so, line 15 leaves the RCU read-
side critical section, line 16 removes it from the table, line 17 releases the lock,
line 18 waits for all pre-existing RCU read-side critical sections to complete,
line 19 frees the newly removed element, and line 20 indicates success. If the
element is no longer the one we want, line 22 releases the lock, line 23 leaves
the RCU read-side critical section, and line 24 indicates failure to delete the
specified key.

Quick Quiz 8.18: Why is it OK to exit the RCU read-side critical section

147

148 CHAPTER 8. DEFERRED PROCESS.

1 int delete(int key)

2 {
3 struct element *p;

4 int b;

5 5

6 b = hashfunction(key);

7 rcu_read_lock();

8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {

10 rcu_read_unlock();
11 return 0O;
12}

13 spin_lock(&p->lock);
14 if (hashtable[b] == p && p->key == key) {

15 rcu_read_unlock();

16 hashtable[b] = NULL;
17 spin_unlock(&p->lock) ;
18 synchronize_rcu();

19 kfree(p);

20 return 1;

21 }

22 spin_unlock(&p->lock) ;
23 rcu_read_unlock();
24 return 0;

Figure 8.24: Existence Guarantees Enable Per-Element Locking

on line 15 of Figure before releasing the lock on line 177 l

Quick Quiz 8.19: Why not exit the RCU read-side critical section on
line 23 of Figure before releasing the lock on line 227 M

Alert readers will recognize this as only a slight variation on the original
"RCU is a way of waiting for things to finish” theme, which is addressed in
Section They might also note the deadlock-immunity advantages over
the lock-based existence guarantees discussed in Section [6.3

8.3.2.6 RCU is a Way of Providing Type-Safe Memory

A number of lockless algorithms do not require that a given data element keep
the same identity through a given RCU read-side critical section referencing
it—but only if that data element retains the same type. In other words, these
lockless algorithms can tolerate a given data element being freed and reallocated
as the same type of structure while they are referencing it, but must prohibit
a change in type. This guarantee, called “type-safe memory” in academic liter-
ature [GC96], is weaker than the existence guarantees in the previous section,
and is therefore quite a bit harder to work with. Type-safe memory algorithms
in the Linux kernel make use of slab caches, specially marking these caches with
SLAB_DESTROY_BY_RCU so that RCU is used when returning a freed-up slab to
system memory. This use of RCU guarantees that any in-use element of such
a slab will remain in that slab, thus retaining its type, for the duration of any
pre-existing RCU read-side critical sections.

Quick Quiz 8.20: But what if there is an arbitrarily long series of RCU
read-side critical sections in multiple threads, so that at any point in time there
is at least one thread in the system executing in an RCU read-side critical
section? Wouldn’t that prevent any data from a SLAB_DESTROY_BY_RCU slab
ever being returned to the system, possibly resulting in OOM events? B

These algorithms typically use a validation step that checks to make sure that

8.3. READ-COPY UPDATE (RCU)

the newly referenced data structure really is the one that was requested [L.S86,
Section 2.5]. These validation checks require that portions of the data structure
remain untouched by the free-reallocate process. Such validation checks are
usually very hard to get right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algorithms can be extremely
helpful in a very few difficult situations, you should instead use existence guar-
antees where possible. Simpler is after all almost always better!

8.3.2.7 RCU is a Way of Waiting for Things to Finish

As noted in Section [8:3:1]an important component of RCU is a way of waiting for
RCU readers to finish. One of RCU’s great strengths is that it allows you to wait
for each of thousands of different things to finish without having to explicitly
track each and every one of them, and without having to worry about the
performance degradation, scalability limitations, complex deadlock scenarios,
and memory-leak hazards that are inherent in schemes that use explicit tracking.

In this section, we will show how synchronize_sched()’s read-side counter-
parts (which include anything that disables preemption, along with hardware
operations and primitives that disable irq) permit you to implement interac-
tions with non-maskable interrupt (NMI) handlers that would be quite difficult
if using locking. This approach has been called "Pure RCU” [McK04], and it is
used in a number of places in the Linux kernel.

The basic form of such ”"Pure RCU” designs is as follows:

1. Make a change, for example, to the way that the OS reacts to an NMI.

2. Wait for all pre-existing read-side critical sections to completely finish
(for example, by using the synchronize_sched() primitive). The key
observation here is that subsequent RCU read-side critical sections are
guaranteed to see whatever change was made.

3. Clean up, for example, return status indicating that the change was suc-
cessfully made.

The remainder of this section presents example code adapted from the Linux
kernel. In this example, the timer_stop function uses synchronize_sched()
to ensure that all in-flight NMI notifications have completed before freeing the
associated resources. A simplified version of this code is shown Figure [8.25

Lines 1-4 define a profile buffer structure, containing a size and an in-
definite array of entries. Line 5 defines a pointer to a profile buffer, which is
presumably initialized elsewhere to point to a dynamically allocated region of
memory.

Lines 7-16 define the nmi_profile () function, which is called from within an
NMI handler. As such, it cannot be preempted, nor can it be interrupted by a
normal irq handler, however, it is still subject to delays due to cache misses, ECC
errors, and cycle stealing by other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu_dereference () primitive
to ensure memory ordering on DEC Alpha, and lines 11 and 12 exit from this
function if there is no profile buffer currently allocated, while lines 13 and 14 exit
from this function if the pcvalue argument is out of range. Otherwise, line 15
increments the profile-buffer entry indexed by the pcvalue argument. Note

149

150 CHAPTER 8. DEFERRED PROCESS.

1 struct profile_buffer {

2 long size;

3 atomic_t entry[0];

4%},

5 static struct profile_buffer *buf = NULL;
6

7

8

void nmi_profile(unsigned long pcvalue)

{
9 struct profile_buffer *p = rcu_dereference(buf);
10
11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc (&p->entry[pcvalue]);
16 }
17
18 void nmi_stop(void)
19 {
20 struct profile_buffer *p = buf;
21
22 if (p == NULL)
23 return;

24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched();
26 kfree(p);

Figure 8.25: Using RCU to Wait for NMIs to Finish

that storing the size with the buffer guarantees that the range check matches
the buffer, even if a large buffer is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop() function, where the caller is responsible
for mutual exclusion (for example, holding the correct lock). Line 20 fetches
a pointer to the profile buffer, and lines 22 and 23 exit the function if there
is no buffer. Otherwise, line 24 NULLs out the profile-buffer pointer (using
the rcu_assign pointer () primitive to maintain memory ordering on weakly
ordered machines), and line 25 waits for an RCU Sched grace period to elapse,
in particular, waiting for all non-preemptible regions of code, including NMI
handlers, to complete. Once execution continues at line 26, we are guaranteed
that any instance of nmi_profile() that obtained a pointer to the old buffer has
returned. It is therefore safe to free the buffer, in this case using the kfree ()
primitive.

Quick Quiz 8.21: Suppose that the nmi_profile() function was pre-
emptible. What would need to change to make this example work correctly?
]

In short, RCU makes it easy to dynamically switch among profile buffers (you
just try doing this efficiently with atomic operations, or at all with locking!).
However, RCU is normally used at a higher level of abstraction, as was shown
in the previous sections.

8.3.2.8 RCU Usage Summary
At its core, RCU is nothing more nor less than an API that provides:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to finish, and

8.3. READ-COPY UPDATE (RCU)

3. a discipline of maintaining multiple versions to permit change without
harming or unduly delaying concurrent RCU readers.

That said, it is possible to build higher-level constructs on top of RCU,
including the reader-writer-locking, reference-counting, and existence-guarantee
constructs listed in the earlier sections. Furthermore, I have no doubt that the
Linux community will continue to find interesting new uses for RCU, as well as
for any of a number of other synchronization primitives.

8.3.3 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its Linux-kernel API. Sec-
tion presents RCU’s wait-to-finish APIs, and Section presents
RCU’s publish-subscribe and version-maintenance APIs. Finally, Section[8:3.3:4]
presents concluding remarks.

8.3.3.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that RCU is an API used
in the Linux kernel, as summarized by Tables[8.4] and 8.5 which shows the wait-
for-RCU-readers portions of the non-sleepable and sleepable APIs, respectively,
and by Table which shows the publish/subscribe portions of the API

If you are new to RCU, you might consider focusing on just one of the
columns in Table each of which summarizes one member of the Linux ker-
nel’s RCU API family.. For example, if you are primarily interested in under-
standing how RCU is used in the Linux kernel, “RCU Classic” would be the
place to start, as it is used most frequently. On the other hand, if you want
to understand RCU for its own sake, “SRCU” has the simplest API. You can
always come back for the other columns later.

If you are already familiar with RCU, these tables can serve as a useful
reference.

Quick Quiz 8.22: Why do some of the cells in Table have exclamation
marks (“1”)? W

The “RCU Classic” column corresponds to the original RCU implemen-
tation, in which RCU read-side critical sections are delimited by rcu_read._
lock() and rcu_read_unlock (), which may be nested. The corresponding syn-
chronous update-side primitives, synchronize_rcu(), along with its synonym
synchronize net (), wait for any currently executing RCU read-side critical
sections to complete. The length of this wait is known as a “grace period”. The
asynchronous update-side primitive, call_rcu(), invokes a specified function
with a specified argument after a subsequent grace period. For example, call_
rcu(p,f); will result in the “RCU callback” £ (p) being invoked after a subse-
quent grace period. There are situations, such as when unloading a Linux-kernel
module that uses call_rcu(), when it is necessary to wait for all outstanding
RCU callbacks to complete [McK07e]. The rcu_barrier() primitive does this
job. Note that the more recent hierarchical RCU [McKO08a] implementation
described in Sections [D.2] and [D.3] also adheres to “RCU Classic” semantics.

Finally, RCU may be used to provide type-safe memory [GC96], as described
in Section In the context of RCU, type-safe memory guarantees that
a given data element will not change type during any RCU read-side critical

151

152 CHAPTER 8. DEFERRED PROCESS.

Attribute [RCU Classic [RCU BH [RCU Sched [Realtime RCU
Purpose Original Prevent DDoS attacks Wait for preempt- Realtime response
disable regions,
hardirgs, & NMIs
Availability 2.5.43 2.6.9 2.6.12 2.6.26
Read-side primitives rcu_read_lock() ! rcu_read_lock_bh() preempt_disable() rcu_read_lock()
rcu_read-unlock() ! rcu_read-unlock_bh() preempt_enable () rcu_read_unlock()
(and friends)
Update-side primitives | synchronize_rcu() synchronize_sched () synchronize_rcu()
(synchronous) synchronize net () synchronize_net ()
Update-side primitives | call_rcu() ! call_rcu-bh() call_rcu_sched() call_rcu()
(asynchronous/call-
back)
Update-side primitives | rcu_barrier() rcu_barrier_ bh() rcu_barrier_sched() rcu_barrier()
(wait for callbacks)
Type-safe memory SLAB_DESTROY_BY_RCU SLAB_DESTROY_BY_RCU
Read side constraints No blocking No irq enabling No blocking Only preemption
and lock acquisition
Read side overhead Preempt disable/en- | BH disable/enable Preempt disable/en- | Simple instructions,
able (free on non- able (free on mnon- | irq disable/enable
PREEMPT) PREEMPT)
Asynchronous update- | sub-microsecond sub-microsecond sub-microsecond
side overhead
Grace-period latency 10s of milliseconds 10s of milliseconds 10s of milliseconds 10s of milliseconds
Non-PREEMPT RT imple- | RCU Classic RCU BH RCU Classic Preemptible RCU
mentation
PREEMPTRT implemen- | Preemptible RCU Realtime RCU Forced Schedule on | Realtime RCU
tation all CPUs

Table 8.4: RCU Wait-to-Finish APIs

Attribute | SRCU | QrRCU
Purpose Sleeping readers Sleeping readers and fast grace
periods

Availability 2.6.19

Read-side primitives srcu_read_lock() qrcu_read_lock()
srcu_read_unlock() qrcu_read_unlock()

Update-side primitives | synchronize_srcu() synchronize_qrcu()

(synchronous)

Update-side primitives | N/A N/A

(asynchronous/call-

back)

Update-side primitives N/A N/A

(wait for callbacks)
Type-safe memory

Read side constraints No synchronize_srcu() No synchronize_qrcu()

Read side overhead Simple instructions, preempt Atomic increment and decre-
disable/enable ment of shared variable

Asynchronous update- N/A N/A

side overhead

Grace-period latency 10s of milliseconds 10s of nanoseconds in absence

of readers

Non-PREEMPT RT imple- | SRCU N/A

mentation

PREEMPT_RT implemen- SRCU N/A

tation

Table 8.5: Sleepable RCU Wait-to-Finish APIs

8.3. READ-COPY UPDATE (RCU)

section that accesses it. To make use of RCU-based type-safe memory, pass
SLAB_DESTROY BY RCU to kmem _cache _create(). It is important to note that
SLAB_DESTROY_BY_RCU will in no way prevent kmem_cache_alloc() from imme-
diately reallocating memory that was just now freed via kmem_cache_free()!
In fact, the SLAB_DESTROY_BY_RCU-protected data structure just returned by
rcu_dereference might be freed and reallocated an arbitrarily large number
of times, even when under the protection of rcu_read lock(). Instead, SLAB_
DESTROY_BY_RCU operates by preventing kmem_cache free() from returning a
completely freed-up slab of data structures to the system until after an RCU
grace period elapses. In short, although the data element might be freed and
reallocated arbitrarily often, at least its type will remain the same.

Quick Quiz 8.23: How do you prevent a huge number of RCU read-side
critical sections from indefinitely blocking a synchronize_rcu() invocation? W

Quick Quiz 8.24: The synchronize rcu() API waits for all pre-existing
interrupt handlers to complete, right? W

In the “RCU BH” column, rcu_read_lock_bh() and rcu_read_unlock_bh()
delimit RCU read-side critical sections, and call_rcu_bh() invokes the specified
function and argument after a subsequent grace period. Note that RCU BH
does not have a synchronous synchronize_rcu_bh () interface, though one could
easily be added if required.

Quick Quiz 8.25: What happens if you mix and match? For example, sup-
pose you use rcu_read_lock() and rcu read-unlock() to delimit RCU read-
side critical sections, but then use call rcu bh() to post an RCU callback?
|

Quick Quiz 8.26: Hardware interrupt handlers can be thought of as being
under the protection of an implicit rcu_read lock bh(), right? H

In the “RCU Sched” column, anything that disables preemption acts as
an RCU read-side critical section, and synchronize_sched() waits for the
corresponding RCU grace period. This RCU API family was added in the
2.6.12 kernel, which split the old synchronize kernel() API into the current
synchronize rcu() (for RCU Classic) and synchronize_sched() (for RCU
Sched). Note that RCU Sched did not originally have an asynchronous call_
rcu_sched() interface, but one was added in 2.6.26. In accordance with the
quasi-minimalist philosophy of the Linux community, APIs are added on an
as-needed basis.

Quick Quiz 8.27: What happens if you mix and match RCU Classic and
RCU Sched? R

Quick Quiz 8.28: In general, you cannot rely on synchronize_sched() to
wait for all pre-existing interrupt handlers, right? W

The “Realtime RCU” column has the same API as does RCU Classic, the
only difference being that RCU read-side critical sections may be preempted and
may block while acquiring spinlocks. The design of Realtime RCU is described
elsewhere [McKO07al.

Quick Quiz 8.29: Why do both SRCU and QRCU lack asynchronous
call_srcu() or call_grcu() interfaces? M

The “SRCU” column in Table displays a specialized RCU API that
permits general sleeping in RCU read-side critical sections (see Appendix
for more details). Of course, use of synchronize_srcu() in an SRCU read-side
critical section can result in self-deadlock, so should be avoided. SRCU differs

153

154 CHAPTER 8. DEFERRED PROCESS.

from earlier RCU implementations in that the caller allocates an srcu_struct
for each distinct SRCU usage. This approach prevents SRCU read-side critical
sections from blocking unrelated synchronize_srcu() invocations. In addition,
in this variant of RCU, srcu_read lock() returns a value that must be passed
into the corresponding srcu_read unlock().

The “QRCU” column presents an RCU implementation with the same API
structure as SRCU, but optimized for extremely low-latency grace periods in
absence of readers, as described elsewhere [McKOT7f]. As with SRCU, use of
synchronize_qrcu() in a QRCU read-side critical section can result in self-
deadlock, so should be avoided. Although QRCU has not yet been accepted
into the Linux kernel, it is worth mentioning given that it is the only kernel-
level RCU implementation that can boast deep sub-microsecond grace-period
latencies.

Quick Quiz 8.30: Under what conditions can synchronize _srcu() be
safely used within an SRCU read-side critical section? B

The Linux kernel currently has a surprising number of RCU APIs and im-
plementations. There is some hope of reducing this number, evidenced by the
fact that a given build of the Linux kernel currently has at most three imple-
mentations behind four APIs (given that RCU Classic and Realtime RCU share
the same APT). However, careful inspection and analysis will be required, just
as would be required in order to eliminate one of the many locking APIs.

The various RCU APIs are distinguished by the forward-progress guarantees
that their RCU read-side critical sections must provide, and also by their scope,
as follows:

1. RCU BH: read-side critical sections must guarantee forward progress against
everything except for NMI and TRQ handlers, but not including softirq
handlers. RCU BH is global in scope.

2. RCU Sched: read-side critical sections must guarantee forward progress
against everything except for NMI and TRQ handlers, including softirq
handlers. RCU Sched is global in scope.

3. RCU (both classic and real-time): read-side critical sections must guar-
antee forward progress against everything except for NMI handlers, TRQ
handlers, softirq handlers, and (in the real-time case) higher-priority real-
time tasks. RCU is global in scope.

4. SRCU and QRCU: read-side critical sections need not guarantee forward
progress unless some other task is waiting for the corresponding grace pe-
riod to complete, in which case these read-side critical sections should com-
plete in no more than a few seconds (and preferably much more quickly)ﬂ
SRCU’s and QRCU’s scope is defined by the use of the corresponding

srcu_struct or qrcu_struct, respectively.

In other words, SRCU and QRCU compensate for their extremely weak
forward-progress guarantees by permitting the developer to restrict their scope.

I Thanks to James Bottomley for urging me to this formulation, as opposed to simply
saying that there are no forward-progress guarantees.

8.3. READ-COPY UPDATE (RCU)

Category \ Primitives \ Availability \ Overhead

List traversal list_for_each_entry_rcu() 2.5.99 Simple instructions
(memory barrier on
Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail rcu() 2.5.44 Memory barrier
list_del_rcu(Q) 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_rcu() 2.6.8 Simple instructions

(memory barrier on

Alpha)
hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add-head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions

(memory barrier on
Alpha)
Pointer update rcu_assign pointer() 2.6.10 Memory barrier

Table 8.6: RCU Publish-Subscribe and Version Maintenance APIs

8.3.3.2 RCU has Publish-Subscribe and Version-Maintenance APIs

Fortunately, the RCU publish-subscribe and version-maintenance primitives
shown in the following table apply to all of the variants of RCU discussed above.
This commonality can in some cases allow more code to be shared, which cer-
tainly reduces the API proliferation that would otherwise occur. The original
purpose of the RCU publish-subscribe APIs was to bury memory barriers into
these APIs, so that Linux kernel programmers could use RCU without need-
ing to become expert on the memory-ordering models of each of the 20+ CPU
families that Linux supports [SprO1].

The first pair of categories operate on Linux struct list_head lists, which
are circular, doubly-linked lists. The 1ist_for_each_entry_rcu() primitive tra-
verses an RCU-protected list in a type-safe manner, while also enforcing memory
ordering for situations where a new list element is inserted into the list concur-
rently with traversal. On non-Alpha platforms, this primitive incurs little or
no performance penalty compared to list_for_each_entry(). The list_add-
rcu(), list_add_tail_rcu(), and list_replace_rcu() primitives are analo-
gous to their non-RCU counterparts, but incur the overhead of an additional
memory barrier on weakly-ordered machines. The list_del_rcu() primitive is
also analogous to its non-RCU counterpart, but oddly enough is very slightly
faster due to the fact that it poisons only the prev pointer rather than both
the prev and next pointers as 1list_del() must do. Finally, the list_splice.
init_rcu() primitive is similar to its non-RCU counterpart, but incurs a full
grace-period latency. The purpose of this grace period is to allow RCU read-

155

156 CHAPTER 8. DEFERRED PROCESS.

NMI T
=335
2’085
OQC>
Scom <o
528 & §
|RQ CO O+ "E =
L5 ==
S _1_>D 0=
£330 §T%
et 259 }
&8°o ,
Process I| © synchronize_rcu()
3| ¢
—

Figure 8.26: RCU API Usage Constraints

ers to finish their traversal of the source list before completely discon