arm

© 2018 Arm Limited

Atomic explosion: evolution
and use of relaxed concurrency
primitives

Kernel Recipes, Paris

Will Deacon <will.deacon@arm.com>

September, 2018

e Co-maintainer of arm64 architecture, ARM perf
backends, SMMU drivers, atomics, locking, memory
model, TLB invalidation...

e Developer in the Open-Source Software group at Arm

e Close working relationship with Architecture and
Technology Group

e Co-author of Armv8 architectural memory model

e Involved in C/C++ memory model working group

Unsurprisingly, I'm going to talk about concurrency.

2 © 2018 Arm Limited q rm

Concurrency is the problem, not the solution

Imagine paying for an upgrade on a flight...
- : 4

arm

Concurrency is the problem, not the solution

...but getting given this instead.

4 © 2018 Arm Limited q rm

Concurrency is the problem, not the solution

...but getting given this instead.

We asked for performance, and

they gave us concurrency.

Just say no!

4 © 2018 Arm Limited q rm

Concurrency is the problem, not the solution

4

© 2018 Arm Limited

...but getting given this instead.

We asked for performance, and

they gave us concurrency.

Just say no!

Unfortunately, it’s unavoidable in the kernel

arm

Low-level concurrency in Linux

5

Interrupts and preemption

spin lock (), mutex lock(), rwsem
seqglock

RCU

cmpxchg (), xchg ()

lockref

percpu-rwsem

atomic t, atomic64 t

READ ONCE (), WRITE ONCE ()

smp load acquire(), smp store release()

smp mb (), smp_rmb(), smp_ wmb ()

© 2018 Arm Limited

and there’s more...

arm

Atomics

e Accessesto atomic t guaranteed to be ‘indivisible’ (single-copy atomic)

e (Badly) described inmemory barriers.txt;atomic t.txt much better.

e Core code provides lock/hash-based implementation which you probably don’t want
e Traditionally, separated into three classes:

get/set Unordered access similar to READ ONCE/WRITE ONCE e.g. atomic64 read/()
read-modify-write (rmw) Unordered posted operation e.g. atomic long inc()

value-returning rmw Returns new value with full ordering e.g. atomic_add return()

© 2018 Arm Limited q rl I I

Five historic limitations of atomic t and friends

Limited set of operations
Unordered or fully ordered: nothing in-between
Implementation entirely duplicated per-arch

Independent of cmpxchg () etc

ok N e

Not well defined or understood

Concurrency is hard: shouldn’t force arch maintainers to take on burden of implementing atomics.

7 © 2018 Arm Limited q rm

Milestones

® 47933ad4 ("arch: Introduce smp load acquire(), smp store release()"),Nov2013

® e6942b7d ("atomic: Provide atomic_{or,xor,and}"), April 2014

® 654672d4 ("locking/atomics: Add {acquire|release|relaxed} () variants of some
atomic operations"), Aug 2015

® 28aa2bda ("locking/atomic: Implement
atomic{, 64, long} fetch {add,sub,and,andnot,or,xor}{, relaxed, acquire, release

April 2016

® 1f03e8d2 ("locking/barriers: Replace smp cond acquire() with
smp_cond load acquire()"), April 2016
3942b771 ("MAINTAINERS: Claim atomic* t maintainership"), Nov 2016
087133ac ("locking/grwlock, armé64: Move rwlock implementation over to
grwlocks"), Oct 2017

® 1c27b644 ("Automate memory-barriers.txt; provide Linux-kernel memory model"),
Jan 2018

® c1109047 ("arm64: locking: Replace ticket lock implementation with
gspinlock"), March 2018

© 2018 Arm Limited q rm

Semantics
Extensions include:

Bitwise operations
* fetchops return old value prior to atomic update
* relaxed no ordering required
* {acquire,release} message passing
smp cond load acquire () poll with acquire semantics until condition is satisfied
Core code will generate what the arch doesn’t provide!

e cmpxchg-based atomics in asm-generic/atomic.h

e atomic-based bitopsin asm-generic/bitops/*

Old API remains for unordered and fully-ordered atomics.

9 © 2018 Arm Limited q rI I I

Relaxed

e Unordered — even the compiler can reorder!

e Single-copy atomic

e Fiddly to use (esp. value-returning variants) but indispensable at
times

e Often (but not always) used in conjunction with fences

PO Pl
atomic fetch inc relaxed(&x); | atomic fetch inc relaxed (&x);

arm

Adoption of relaxed atomics in mainline

Unfortunately, adoption of the atomic extensions has been slow...

11 © 2018 Arm Limited q rm

Adoption of relaxed atomics in mainline

Unfortunately, adoption of the atomic extensions has been slow...

Author ‘ Number of relaxed atomics

Will Deacon: 12
Catalin Marinas:
Peter Z:

Robin Murphy:

Kevin Brodsky:
David Howells:
Waiman Long:
Davidlohr Bueso:
Trond Myklebust:

B R R R RN WO

smp_ load acquire, smp store release are doing much better, but have a headstart
and are generally ‘safer’. arm

) 2018 Arm Limited

Fully-ordered

e Asifthere’san smp mb () on either side of the operation
° Beesmp_mb__{before,after}_atomic)

e Orders all access types across the operation (inc. ST->LD)
e Expensive on all architectures (inc. x86)

e Sometimes referred to as ‘SC-restoring’

e Even in the presence of racy writes:

PO Pl

WRITE ONCE (*x, 1); | WRITE ONCE(*y, 2);
atomic inc return (&p); | atomic inc_ return(&q)
WRITE ONCE (*y, 1); | READ ONCE (*x)

12 © 2018 Arm Limited q rm

Acquire/Release

Middle-ground between relaxed and fully-ordered:

e Appeals to “message-passing” idiom DR

. STR

e Producer thread writes/releases data T
. LDR Critical
e Consumer thread reads/acquires the same data o cods
section

TLR:
LDR

e Maps efficiently to existing architectures and C/C11

e ‘Roach-motel’ semantics STR

Everthing before a release is visible to everything after an acquire that reads from the release.

More flexible than smp_wmb () /smp_rmb () but without enforcing ST->LD ordering of
smp_mb ().

© 2018 Arm Limited q rl I I

Acquire/Release

Acquire/release operations can be chained together without loss of cumulativity:

PO Pl P2
WRITE ONCE (*x,1); | atomic read acquire(y); atomic xchg acquire(z,2);

atomic set release(y,1); | atomic fetch inc release(z); | READ ONCE (*x);

Try doing this with fences.
14 © 2018 Arm Limited q rm

Show me the code!

x86 arm64 ppc
smp_load acquire MOV LDAR LD; LWSYNC
smp_store release MOV STLR LWSYNC; ST
atomic_ fetch add release | LOCK XADD | LDADDL | LWSYNC; LL/SC
smp_mb () LOCK ADDL | DMB ISH SYNC

RISC-V also has native support.

15 © 2018 Arm Limited

arm

Generic locking code:
kernel/locking/*

16 © 2018 Arm Limited q rm

Generic locking implementations

Can we really have our cake and eat it?

Portability: implemented entirely using in-kernel concurrency APIs. No need for additional
assembly code! Can also be ported to userspace/bare-metal.
Performance: use of relaxed atomics to implement complex, scalable, fair algorithms
Correctness: formal modelling as well as extensive testing on multiple architectures

Let’s look at some examples...

17 © 2018 Arm Limited q rm

grwlock layout

typedef struct grwlock {

union {
atomic t cnts;
struct {
u8 wmode; /* Writer mode: 0 or LOCKED (Oxff) */

u8 1lstate[3]; /* 23-bit reader count + WAITING bit */
}i
bi
arch spinlock t wait lock;

} arch rwlock t;

Put the writer count in its own byte and use a spinlock for implicit queueing.

arm

18 © 2018 Arm Limited

grwlock

write lock () cmpxchgonlockword O => LOCKED (acquire)
write unlock() Clear wmode to O (release)
read lock () Increment reader count if wmode is O (acquire)

read unlock () Decrement reader count (release)

Ifa lock () operation fails, then take the wait lock which gives us queueing for free!
e spin lock () acquisition implies head of queue
e Writers poll for all others to drain (set WAITING bit)

e Readers poll for writers to drain

19 © 2018 Arm Limited

arm

grwlock results

// locktorture 2w/8r/rw_lock irg

rwlock: (191:1)

Writes: Total: 6612 Max/Min: 0/0
Reads : Total: 1265230 Max/Min: 0/0
Writes: Total: 6709 Max/Min: 0/0
Reads : Total: 1916418 Max/Min: 0/0
Writes: Total: 6725 Max/Min: 0/0
Reads : Total: 5103727 Max/Min: 0/0
grwlock: (6:1)
Writes: Total: 47962 Max/Min: 0/0
Reads : Total: 277903 Max/Min: 0/0
Writes: Total: 100151 Max/Min: 0/0
Reads : Total: 525781 Max/Min: 0/0
Writes: Total: 155284 Max/Min: 0/0
Reads : Total: 767703 Max/Min: 0/0

20 © 2018 Arm Limited

Fail:
Fail:
Fail:
Fail:
Fail:
Fail:

Fail:

Fail:
Fail:
Fail:
Fail:
Fail:

o O O O O

arm

gspinlock: generic spinlock implementation

Complex locking implementation based around MCS locks:

®)
o [w [o Lockword points to end of linked waiter list

e Each CPU spins on their own cacheline within their list node

e When unlocking, write to the next node in the queue

e Linux implementation optimises the low-contention case, avoids
dynamic node allocation and squeezes everything into a 32-bit

@ 2w] word (atomic t)
s 1]

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors — Mellor-Crummey & Scott, 1991

21 © 2018 Arm Limited q rl I I

gspinlock: scaling under contention

22

Total lock acquisitions as number of cores increases (10s total, 500ns critical section)

1.6x107"

1.4x107

.2x107

ns

x107

Total acquisitio

8x108

6x108

test-and-set =—t=—
tickets ==
gspinlock ===

6
410°—

© 2018 Arm Limited

Cores

32

arm

Verification tools

‘Beware of bugs in the above code; | have only proved it correct, not tried it.’

23 © 2018 Arm Limited q rm

LKMM

‘Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel’ —
https://dl.acm.org/citation.cfm?id=3177156

Pl (int *x, int *y, spinlock t *mylock)
{

C MP+polocks .
int r0;

PO (int *x, int *y, spinlock t *mylock) int rl;
{

WRITE ONCE (*x, 1);

spin_lock (mylock);

WRITE ONCE (*y, 1);

spin_unlock (mylock) ;

spin lock (mylock) ;

r0 = READ ONCE (*y) ;
spin_unlock (mylock) ;
rl = READ ONCE (*x) ;

exists (1:xr0=1 /\ 1:rl1=0)

24 © 2018 Arm Limited q rI I I

https://dl.acm.org/citation.cfm?id=3177156

tools/memory-model/

$ herd7 -conf linux-kernel.cfg litmus-tests/MP+polocks.litmus
Test MP+polocks Allowed

States 3

1:r0=0; 1:r1=0;

e Strong vs weak
1:xr0=0; 1l:rl=1;

1:r0=1; 1:rl=1; e Compiler transforms
No e Preemption
Witnesses e 1/O

Positive: 0 Negative: 3

Condition exists (l:r0=1 /\ 1l:rl1=0)
Observation MP+polocks Never 0 3
Time MP+polocks 0.01

Hash=602e4c28ae61714bf6072£8a98078bd7
25 © 2018 Arm Limited q rm

e Tests as modules

TLA+

o TIAT (Temporal Logic of Actions) is a formal specification language developed by Leslie
Lamport
o Based on set theory and temporal logic, can specify invariant and liveness properties
o Specification written in formal logic is amenable to finite model checking (using TLC model checker)
e Can also be used for machine-checked proofs of correctness

e PlusCalis a formal specification language which transpiles to TLAT
o Pseudocode like, better suited to specify sequential algorithms
o Simple to describe SC concurrent threads/processes
e Used to model grwlock, gspinlock and parts of the arm64 kernel!

e git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git
o Proved exclusiveness of locking algorithms

e Proved that forward progress is always made by each thread

o grwlock: 2+2 reader/writer

e gspinlock: 3 lockers

6 2018 Arm Limited arm

git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git

https://github.com/herd/herdtools?

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"

{

0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}

PO |
MOV WO, #1 |
STR WO, [X1] |
MOV W2, #1 |
STLR W2, [X3] |

exists

(1:X0=1 /\ 1:X2=

27 © 2018 Arm Limited

Pl
LDR WO, [X1]
LDR W2, [X3]

0)

Thread O Thread 1

a: Wx=1 c: Ry=1

p f/f/'p

P
b: WyRel=1 d: Rx=0

arm

https://github.com/herd/herdtools7

Example litmus test: MP+popl+po

AArch64 MP+popl+po
"PodWWPL RfeLP PodRR Fre"

{

0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}

PO |
MOV WO, #1 |
STR WO, [X1] |
MOV W2, #1 |
STLR W2, [X3] |

exists

(1:X0=1 /\ 1:X2=

28 © 2018 Arm Limited

Pl
LDR WO, [X1]
LDR W2, [X3]

0)

Test MP+popl+po Allowed

States 4
1:X0=0; 1:X2=0;
1:X0=0; 1:X2=1;
1:X0=1; 1:X2=0;
1:X0=1; 1:X2=1;
Ok

Witnesses

Positive: 1 Negative: 3

Condition exists (1:X0=1 /\ 1:X2=0)
Observation MP+popl+po Sometimes 1 3
Time MP+popl+po 0.01
Hash=75d804cb38£3f607de6ab3cc9925140e

arm

Testing

Ongoing work in academia to improve formal tools, but until then...

—mn
- -

locktorture to stress mutex, spinlock, rwlock, rwsem
rcutorture to stress RCU, CPU hotplug

lkmm modules to run a ‘litmus test’ from within the kernel

Generic locking implementations automatically get cross-arch testing!

29 © 2018 Arm Limited q rl I I

But what does this have to do with
YOU?

arm

Patch review

So you’ve received a patch using relaxed/weak atomics?

e Most people don’t need this stuff: use RCU, locking or existing high-level interfaces where
possible

e Acquire/release in preference to smp_*mb ()

o Discourage legacy atomic * return() ops

e Acquire/release should be paired; don’t mix-and-match with barriers if you can avoid it
e Require comments showing the pairing

e Heavy fences generally only needed for racy writes

e Try to express the problem as a litmus test for LKMM.

and last, but not least...

arm

Who are we?

We’re here to help!

Will Deacon <will.deacon@arm.com>
Boqun Feng <bogqun.feng@gmail.com>
Paul McKenney <paulmck@linux.vnet.ibm.com>
Ingo Molnar <mingo@redhat.com>
Alan Stern <stern@rowland.harvard.edu>

Peter Zijlstra <peterz@infradead.org>

...and others in MAINTAINERS.

32 © 2018 Arm Limited q rm

Conclusion

The kernel’s low-level concurrency primitives have never looked so good:

e Portable and efficient abstraction of the underlying machine
e Parity with modern programming languages

e Off-the-shelf synchronisation code suitable for production

e Ability to reason about concurrent behaviours

e Active group of maintainers

Generic concurrent code doesn’t have to suck!

© 2018 Arm Limited

arm

Questions?

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

	
	Intro
	Concurrency is the problem, not the solution
	Concurrency is the problem, not the solution
	Low-level concurrency in Linux
	Atomics
	Five historic limitations of atomic_t and friends
	Milestones
	Semantics
	Relaxed
	Adoption of _relaxed atomics in mainline
	Fully-ordered
	Acquire/Release
	Acquire/Release
	Show me the code!
	
	Generic locking implementations
	qrwlock layout
	qrwlock
	qrwlock results
	qspinlock: generic spinlock implementation
	qspinlock: scaling under contention
	
	LKMM
	tools/memory-model/
	TLA+
	` `%%%`#`&12_`__~~~ౡ氀猀e
	Example litmus test: MP+popl+po
	Testing
	
	Patch review
	Who are we?
	Conclusion
	

