REFSORT

Section Page

Introduction e 1 1
SOTEIIE ettt 6 2
A DU X oo 9 3
Index ... 11 4

Editor’s Note: The present variant of this C/WEB source file has been modified for use in the TEX Live system.
The following sections were changed by the change file: 1, 2, 5, 9, 10, 11.

August 12, 2024 at 13:30

81 REFSORT INTRODUCTION 1

1¥ Introduction. This short program sorts the mini-indexes of listings prepared by CTWILL.

More precisely, suppose you have said ctwill foo.w, getting a file foo.tex, and that you've then said
tex foo.tex, getting files foo.dvi and foo.ref. If you're happy with foo.dvi except for the alphabetic
order of the mini-indexes, you can then say

refsort <foo.ref >foo.sref

after which tex foo will produce foo.dvi again, this time with the mini-indexes in order.

Still more precisely, this program reads from standard input a file consisting of groups of unsorted lines
and writes to standard output a file consisting of groups of sorted lines. Each input group begins with an
identification line whose first character is !; the remaining characters are a page number. The other lines in
the group all have the form

+ua\?{r}w

where « is a string containing no spaces, 7 is a single character, x is a string of letters, digits, and _’s, and w
is an arbitrary string. The output groups contain the same lines without the initial +,, sorted alphabetically
with respect to the k fields, followed by a closing line that says ‘\donewithpage’ followed by the page number
copied from the original identification line.

Exception: In the case of a “custom” identifier, \7{x} takes the alternative form $\x_$ instead.

We define limits on the number and size of mini-index entries that should be plenty big enough.
#define maz_key 50 > greater than the length of the longest identifier <
#define maz_size 120 > greater than the length of the longest mini-index entry <
#define maz_items 300 > the maximum number of items in a single mini-index <

2 INTRODUCTION REFSORT 82

2¥ Here’s the layout of the C program:
#define abort(c, m)

forintf (stderr, "%s!\n%s", m, buf); return c;

}

#include <stdio.h>

#include <string.h>

#include <ctype.h>
typedef struct {

char key[maz_key];
char entry[maz_size];

} item;

item items|[maxz_items]; > all items of current group <

item xsorted[maz_items]; > pointers to items in alphabetic order <
char cur_page[10]; > page number, as a string <

char buf [maz_size]; > current line of input <

char xinput_status; > A if end of input reached, else buf <

int main()
{
char xp, xq;
int n; > current number of items «
item xx, #xy;
input_status < fgets(buf , maz_size, stdin);
while (input_status) {
(Check that buf contains a valid page-number line 3);
(Read and sort additional lines, until buf terminates a group 4);
(Output the current group 5*);

}

return 0; > normal exit <

5¥ (Output the current group 5*) =

for (y < sorted; y < sorted + n; y++) printf ("hs\n", (xy)~-entry);
printf ("\\donewithpage%s\n", cur_page);

}

This code is used in section 2*.

89 REFSORT A BUCGFIX 3

9% A bugfix. The program specification had a subtle bug: There are cases where « includes spaces that
should be removed in the output.
These cases occur when a space occurs after an odd number of doublequote characters. Ergo, the following
routine replaced a simpler original loop.
(Scan past a 9%) =
{
int toggle < 0;
for (p < buf +2; (xp # ’L° V toggle) A *p; p++)
if (xp=""") toggle ®= 1,
}

This code is used in section 6.

10¥ A corresponding change to the copying loop is also needed.

(Copy the buffer to z~entry 10*) =

int toggle + 0;

for (p + buf +2,q + z~entry; (xp # ’° V toggle) A *xp; p++) {
if (xp=2"") toggle &= 1;
if (xp# W) *q++ < *p;

}

for (; xp; p++) *xq++ *xp;

}

This code is used in section 6.

4 INDEX

11* Index.

The following sections were changed by the change file: 1, 2, 5, 9, 10, 11.

abort: 2¥3, 4, 6, 7.
buf: 2¥3, 4, 6, 9F 10*
cur_page: 2¥ 3, 5¥
entry: 2F 5¥ 10*
foets: 2¥ 4.

fprintf: 2%
input_status: 2F 4.
wsupper: 6, 7.
item: 2F

items: 2F 4.

key: 2¥6, 7, 8.
main: 2¥
maz_items: 1% 2¥ 4.
maz_key: 1F 2% 6.
maz_size: 1F2F 4 6.
n: 2F

p: 2¥
printf: 5%
q: 2%

sorted: 2% 5% 8.
stderr: 2%

stdin: 2F 4.
stremp: 8.
strlen: 3.
toggle: 9F 10%*
x: 2F

y: 2F

REFSORT

§11

REFSORT NAMES OF THE SECTIONS 5

Check that buf contains a valid page-number line 3) Used in section 2*.

Copy the buffer to z~entry 10*) Used in section 6.

Copy buf to item z 6) Used in section 4.

Output the current group 5*) Used in section 2%*.

Process a custom-formatted identifier 7) Used in section 6.

Read and sort additional lines, until buf terminates a group 4) Used in section 2*.
Scan past « 9*) Used in section 6.

Sort the new item into its proper place 8) Used in section 4.

(
(
(
(
(
(
(
(

	Introduction
	Sorting
	A bugfix
	Index
	Names of the sections
	Check that buf contains a valid page-number line
	Copy the buffer to x->entry
	Copy buf to item x
	Output the current group
	Process a custom-formatted identifier
	Read and sort additional lines, until buf terminates a group
	Scan past
	Sort the new item into its proper place

