
Petri-nets packages

Franck Pommereau (pommereau@univ-paris12.fr)

Last update: 2006-03-02

Abstract

This paper describes Petri-nets, a set of TEX/LATEX packages about
Petri nets and related models. One package allows to draw Petri-nets
in PostScript or PDF documents. One other defines macros related to
PBC, M-nets and B(PN)2 models. A last package just gathers together
the two previous.

Contents

1 Introduction 2
1.1 Installation . 2
1.2 Loading the packages . 4
1.3 Things to do, known bugs and problems 5
1.4 Legal stuff . 5
1.5 Contributors . 5

2 Text commands: package pntext 6

3 Drawing nets: package pndraw 7
3.1 Some words about PSTricks . 7
3.2 Beginning and ending nets . 9
3.3 Drawing nodes . 10

3.3.1 Additional labels . 11
3.3.2 Free text . 12

3.4 Linking nodes . 12
3.4.1 Additional labels . 15
3.4.2 Arcs . 15

4 Tips, tricks and troubleshooting 15

5 Producing PDF documents 17

1

A Reference pages 20
A.1 Text commands: package pntext . 20
A.2 Drawing command: package pndraw 20

1 Introduction

Petri-nets is a set of packages which I use to write my papers about Petri
nets and related models (essentially: PBC, M-nets and B(PN)2). It features
three packages: one for drawing net, one other which defines additional
macros for textual purpose (like the name “B(PN)2”) and a last one for
both purposes. The first package has been designed with a precise goal:
saving me a lot of work when I have to draw nets. This goal explains some
choices I did: typesetting labels in math mode by default, ending commands
with the line, etc. I feel this results in an intuitive and high-level way to
define Petri nets, but if you have ideas to improve this, don’t hesitate to
contact me. The text command package is more classical and if it saves also
a lot of typing, its main goal is to ensure uniform notations.

All these packages may evolve and grow up and if you (or I) feel that a
feature is missing, you can send me an e-mail explaining your needs (TEX
code is welcome too). Notice that I don’t pretend being a specialist in
Petri nets and I’m only used to work on three or four models; so I may
ignore particular things in particular models. This may explain some missing
features.

1.1 Installation

The last version of the package may be downloaded on the web at the URL
http://www.univ-paris12.fr/lacl/pommereau/petrinets.tar.gz , a copy should
be available on CTAN/macros/generic/petri-nets; the distribution contains
the following files:

• pnets.tex is the main TEX package;

• pnets.sty is its LATEX counterpart;

• pndraw.tex and pndraw.sty are the TEX and LATEX sub-packages for
drawing nets;

• pntext.tex and pntext.sty are the TEX and LATEX sub-packages for
text commands;

• pnversion.tex defines macro \pnversion;

2

• pndoc.ps, pndoc.pdf and pndoc.tex are the present paper and its
source;

• COPYING is the text of the GNU GPL;

• ChangeLog collects all changes done to Petri-nets;

• README is a short introduction text;

• pn2pdf is a Perl script used to produce PDF files with pdfLATEX.

In order to have Petri-nets working, you need to copy files pnets.*,
pndraw.*, pntext.* and pnversion.tex in a place where TEX will be able
to find them. This can be somewhere in the default search path (see your
local TEX documentation) or in a directory included in your TEXINPUT en-
vironment variable.

Packages from Petri-nets have been developed and tested with teTEX-
1.0.2 for Linux. TEX packages should work with any TEX version greater
than or equal to 3 (my version is 3.14159, Web2C 7.3.7). LATEX packages
have been designed for LATEX2ε so you may experiment troubles with an
older version.

In order to typeset symbols for classical sets of numbers (N, R, etc.)
Petri-nets uses fonts from AMS. So you must have package amsfonts in-
stalled for LATEX or fonts bbm for TEX (I think these conditions are more or
less equivalent).

The drawing basis are provided by package PSTricks, my version is
PST97 but I used only macros described in the manual of version 0.93a
so I hope it should work with it.

Using PSTricks has an important consequence: actual drawings are done
in PostScript, so, you may not see them directly from the DVI viewer (at
least not correctly); additionally, you must use a PostScript driver in order to
produce your final document (for example, dvips works well). Some support
to produce PDF documents with pdfLATEX is provided (see section 5).

PSTricks conflicts with packages color, graphics and graphicx, Petri-
nets thus inherits this conflict. If you wish to use them together, you should
first load package pstcol, then Petri-nets and at last, color, graphics or
graphicx. The following is quoted from PSTricks’ README:

To use the standard ‘color’ package (which is available both for
plain TEX and LATEX) with PSTricks, you must load the ‘pstcol’
extra package written by David Carlisle, which interface the two
packages, loading them in the right order, and overriding some

3

small parts of PSTricks to allow it to use the ‘color’ package
system for specifying color. We strongly recommend that you
use this way today.

LATEX users must also take care that the ‘pstcol’ package is
required in place of the ‘pstricks’ one if the ‘graphics’ or
‘graphicx’ package is also loaded.

If you wish to produce PDF files using pdfLATEX, you also need to copy
the script pn2pdf in a directory from which it can be executed. This script
requires a working Perl with the packages Digest::MD5 and Getopt::Long
installed. Moreover, the script calls the following programs: latex, dvips
and epstopdf which must be installed on your system (there should be not
problem for the first two). In order to include the PDF pictures, the package
graphicx is used (in this case, it does not lead to any conflict since PSTricks
is not loaded when running pdfLATEX). Finally, the package ifpdf is used
to detect whether a document is compiled using LATEX or pdfLATEX. This
package should be thus installed.

You can test your installation by recompiling the present manual which
is written in LATEX. If it compiles successfully, this means that Petri-nets
and PSTricks have been found by TEX. If one file is not found, TEX will
complain, giving the file name. Then, running dvips will ensure that the
PostScript headers of PSTricks can be found. You may also test the PDF
support by producing the PDF version of this manual, see section 5 for the
way to proceed.

If you successfully use Petri-nets under another configuration, feel free to
send me an e-mail at pommereau@univ-paris12.fr. You may also send bug
reports or comments, they are welcome. Of course, bug fixes are welcome
too.

1.2 Loading the packages

From TEX, you can load the package with \input pnets, from LATEX, you
should put \usepackage{pnets} in the preamble of your document. Since
you may want to use only the drawing macros, you can use \input pndraw
or from LATEX: \usepackage{pndraw}. Similarly, in order to load only text
commands, you can use \input pntext or \usepackage{pntext}.

Both packages define a macro \pnversion which gives the date of the
last update of the package. The date is given as a triple of numbers of the
form year-month-day.

4

1.3 Things to do, known bugs and problems

In order to draw additional labels at the right position, pndraw has to per-
form some time consuming floating point computing. I plane in the future
to perform this directly in PostScript, in order to speed-up TEX compilation
stage.

Only transitions are allowed to change their size according to their inner
label, it may be nice to have this feature for the other nodes. But it’s may
be a little bit difficult or quite ugly for some nodes.

I also could add looping arcs. This is useless for Petri nets but it would
allow one to use the packages for other purposes, like drawing automata.

The PDf pictures are clipped to the bounding box of the corresponding
net. I’ve seen on the newsgroups that there exists a solution, but it was
written in German which I can’t read.

When one looks at a PDF document using Acrobat Reader, small blur
points appear at the top-right and bottom-left corners of the Petri nets.
This comes from two white points added in order to force dvips to produce
the right bounding box when a net is generated alone in an EPS file. So,
this is a bug of Acrobat Reader rather than one of Petri-nets.

In a late future, I’d like to make the package independent of PSTricks,
so it would be more portable (but maybe less powerful).

1.4 Legal stuff

Petri-nets is c© 2002 Franck Pommereau (pommereau@univ-paris12.fr).
This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or any later version
(see file COPYING).

This program is distributed in the hope that it will be useful, but with-
out any warranty ; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

1.5 Contributors

I am very grateful to all the persons who contributed to my work, in par-
ticular:

5

Denis Girou, Hanna Klaudel, André Steenveld.

2 Text commands: package pntext

This section lists the commands defined in package pntext, they are all
available from TEX as well as from LATEX.

Math sets. Command \mathset{A} produces symbol A (and of course
it works for any text). Shortcuts are defined: \setN for \mathset{N} and
similarly for \setZ, \setQ, \setR and \setC.

Status of places. Commands \iplace, \eplace and \xplace produce
respectively characters i, e and x. Command \placestatus{n} typesets
character n (in the case you would like a new place type).

Operators for communication. Synchronization operator (sy) is avail-
able through command \sy, in math mode, this command is surrounded
by additional white space as usual for binary operators. Similar operators
are \rs for restriction and \tie for asynchronous links. Scoping is available
with commands \lscope and \rscope which produce respectively a left and
a right double bracket, you may also use \scope{A}{N} to produce [[A : N]].

If you use \lscope (resp. \rscope) without the corresponding \rscope
(resp. \lscope) in the same equation or array cell, TEX will complain about
some missing \right (resp. \left). In order to close (resp. open) a scope
without drawing the bracket, you may use macro \Rscope (resp. \Lscope).

Choice. Choice operator � is produced with command \choice. In math
mode, it behaves like any binary operator.

B(PN)2. The logo of B(PN)2 is typeset using command \bpn. A B(PN)2

keyword (say program) is typeset with \bpnkw{program} and for a non-
terminal in the syntax (say scope) you may use \bpnnt{scope}. Function
Mnet is defined as \mnet.

Sets of values and variables. Var and Val are typeset using commands
\Var and \Val. They are better to use than directly the text they type-
set because they adjust their spacing in math mode: compare “V ar” with
“Var”.

6

-1 0 1 2 3 4 5
-1

0

1

2

3

�(4, 2)

�(0, 0)

� (2.5,−.5)

Figure 1: The Cartesian coordinate system.

To be continued. . .

3 Drawing nets: package pndraw

3.1 Some words about PSTricks

Reading PSTricks manual could be a good idea, but if you don’t want to,
you should know a few things about it in order to use Petri-nets successfully.

In PSTricks, any point is designated by two coordinates in a grid, cen-
tered on a reference point which has coordinates (0, 0). The figure 1 shows
an example.

The distance from the origin (0, 0) to a point (x, y) depends on three
parameters. units is a global scale, if unit=1.2cm, (4, 2) becomes an abbre-
viation for (4×1.2 cm, 2×1.2 cm). There’s also xunit and yunit which act
respectively only on horizontal or vertical scale; for example, if xunit=20pt
and yunit=1in, (4, 2) stands for (4×20 pt, 2×1 in). As you can see on these
short examples, unit, xunit and yunit can be affected any value which is
a valid TEX dimen (or LATEX length).

The default value for all these three parameters is 1 cm; to change it, you
can use the \psset command as in \psset{unit=.5cm} or in a combined
way as in \psset{xunit=1cm,yunit=2cm}.

Since coordinates are formed as a comma separated couple of numbers,
you must not use comma as decimal separator here: (4.5,2.3) is correct
but (4,5,2,3) is not.

Sometime you’ll be asked to give an angle value as a macro parameter. In

7

–

–

–

–

–

–

–

–

0 = r

45 = tr/rt

90 = t

135 = tl/lt

180 = l

225 = bl/lb

270 = b

315 = br/rb

Figure 2: Translation from angle values to letter code. r is for right, t for
top, l for left and b for bottom.

Petri-nets, angles are measured in degrees; they can be given as a numerical
value or with a one/two letter(s) code as shown in the figure 2. Of course,
when you specify an angle by its numerical value, you can use any number,
even negative, and not only one of the eight values shown on figure 2.

The macro \psset is used to change PSTricks default parameters, it
takes one argument which is a comma-separated list of name=value pairs.
For example, pndraw.tex itself uses:

\psset{linewidth=.5pt,
doublesep=.5pt,
labelsep=2pt}

As you can see, blank spaces before a name are ignored. You already
know how to change units, some additional names should be useful for Petri-
nets:

• linewidth is the default width for any line drawn by PSTricks;

• doubleline can be true or false, when set to true, any line drawn
is doubled;

• doublesep is the distance between the two lines of a doubled line;

• labelsep is the distance between an arc and its label(s);

8

• linecolor is the color used to draw lines, it can be, for example,
black, darkgray, gray, lightgray, white, red, blue, green, cyan,
magenta or yellow;

• fillcolor is the color used to fill shapes; you can use for it the same
colors as for linecolor.

PSTricks recognizes many other parameters and you should refer to its
manual for all the details.

3.2 Beginning and ending nets

To begin a net, just type \beginnet for TEX or \begin{petrinet} under
LATEX; both this commands are expecting two pairs of coordinates to give
the bottom-left and up-right extrema of the net.

For example, \begin{petrinet}(-1,-2)(5,3) starts a net which should
extend in the rectangular area, which we call the bounding box, delimited
by (−1,−2) at the lower left corner and (5, 3) at the upper right. These
coordinates are sensitive to current values of unit, xunit and yunit.

The real effect of these two pairs is to fix the size of the bounding box
which carry the net drawn (it is actually a \hbox set in horizontal mode
but who cares?). If some parts of the net extends outside of the declared
bounding box, it will be drawn outside and that’s all. In other words, the
bounding box announced just reserves room for the net and the drawing
itself is invisible to TEX. This allows you to lies about the real dimension of
your drawings: you can declare a bigger or a smaller bounding box, if you
want more or less white space around your nets. This behaviour is different
when running pdfLATEX, see the section 5 for details.

Before to give the coordinates of the bounding box for a net, you can
give optional parameters inside square brackets. These parameters are inter-
preted as PSTricks options which are applied to the following net and stay
local to it. For example, if we have unit=1cm before starting a net, command
\begin{petrinet}[unit=2cm](0,0)(1,1) starts a net with unit=2cm for
its bounding box and any coordinate given inside the net. But as the net
ends, the previous value of unit is restored.

In order to have bounding boxes drawn in your nets: you may use com-
mand \showbb, optionally followed by bracketed options. For the figure 4, I
added \showbb at the beginning of the net. The starred version of \showbb
fills the background and so, command \showbb*[fillcolor=red] draws a
filled red rectangle over the bounding box.

9

p

place

t

transition

m

module

s

source store

Figure 3: The nodes available in Petri-nets.

To end the drawing, you should use \endnet or \end{petrinet} (did
you guess?). All macros between these two ones are interpreted as PSTricks
or Petri-nets commands. In the following, we call a net all the stuff inclosed
between \begin{petrinet} and \end{petrinet} (if you use LATEX). One
point has to be remembered: inside a net, the end of line has a special
meaning because it is used to end most Petri-nets drawing commands. So if
you want to use commands spread over several lines, you have to end every
line but the last with a comment (%). Also notice that if you call the \psset
command inside a net, its effect will remain local to this particular net.

If you wish something to be done every time a net begins, you may
set token list \everynet to what you want to be inserted between com-
mand \begin{petrinet} and your drawing commands. For example, with
\everynet={\small}, all the following nets will be set in small types.

Except for beginning and ending nets, all the macros are the same under
TEX or LATEX.

3.3 Drawing nodes

The available node shapes are places, transitions, modules, sources and
stores, which are drawn in figure 3. They are produced with the macros
\place, \trans, \module, \source and \store respectively. Their size
is controlled with the dimensions \placesize, \transsize, \modulesize,
\sourcesize and \storesize respectively. For instance, \transsize=8mm
sets the size of transitions to 8mm; \nodessize{5mm} sets the size of all the
nodes to 5mm.

Creating a node is possible using the command “node{name}(x, y)label”
where:

• “node” is one of the above node commands;

• “name” is the name of this node which should be unique for a given
net (if not, the new node overwrites the old one). This name is case
sensitive and should not contain any special characters (as $, \, etc.);

10

• “(x, y)” are the coordinates of the node’s center;

• “label” is the text to typeset inside the node, it extends until the end
of the line. This label is silently discarded for stores.

For instance, the nodes in figure 3 where drawn with the commands:

\place{place}(0,0) p
\trans{trans}(1,0) t
\module{module}(2,0) m
\source{source}(3,0) s
\store{store}(4,0) labels are ignored for stores

By default, labels are typeset in math mode, if you wish a label typeset
in text mode, add option " after the node command. Notice that any space
after the coordinates of the node is part of the label, it has no importance
in math mode but in text mode it leads to a label which starts with a
white space. Option = sets double-line mode and so the node is drawn with
doubled lines. Option ! sets the line width to 2pt so the node appears thicker
than usually. PSTricks options may be given between square brackets, for
instance adding [linecolor=red,linewidth=1pt] leads to a red node with
1pt lines.

For transitions, an additional option * may be used in order to have
the boundaries of the transition adjusted to the label typeset inside. By
default, the size of a node is fixed and the label overlaps outside if too long,
for transitions with option *, the size is just fine.

3.3.1 Additional labels

You can give additional outer labels to a node. Each label is typeset using
the macro1 \label which has two arguments: the first is an angle indication
and the second, which extends until the end of the line, is the text to typeset.
The angle indication is a numeric value or a code as explained earlier. Option
" explained above is also available for additional labels (and should be given
just after \label).

Before I give an example, let me explain a useful parameter for type-
setting label: the token list \everylabel is expanded before any label is
typeset. For example, command \everylabel={\scriptstyle} leads to
typeset all the following labels in script style. This works for really any

1For LATEX, this means that the well known cross-referencing macro \label is not
available inside a petrinet environment. But outside, it works as usual.

11

• transition

more text
{

1, 2, 3

4, 5, 6

}

Figure 4: Example of nodes. In the PDF, nets is clipped to its bounding
box, see section 5.

label, not only for nodes labels. If \everylabel is set inside a net, its effect
will remain local to this net.

The figure 4 has been typeset using the following commands:

\begin{petrinet}[xunit=2cm](-.5,-.5)(2.5,.5)
\showbb
\place{p1}(0,0) \bullet
\trans*="{t}(1,0)~transition~

\label"{70}more text
\place!{p2}(2,0)

\label{r} \left\{ % I can type multi-line
{\textstyle 1, 2, 3 \atop % labels, thanks to comments.
\textstyle 4, 5, 6} \right\}

\end{petrinet}

You may notice that the net is not well centered, it extends more on the
right. This is because I declared a bounding box of (−.5,−.5) to (2.5, .5)
while in fact, the label of the right-most place extends on the right, outside
of the bounding box (which is made visible by the macro \showbb).

3.3.2 Free text

Another kind of node is unboxed text. The macro \text is similar to
\trans* but without border. Like for other nodes, the text is typeset in
math mode and it can be added outer labels with the macro \label.

This macro knows only the option " which has the usual meaning.

3.4 Linking nodes

You can draw links between two arbitrary nodes. The package won’t check
if requested links are valid from Petri nets point of view, so you can draw
an arc between two places for instance. Basically, macro \link has three
parameters: the name of the starting node, that of the ending node, and the

12

text to typeset on the link (which extends until the end of the line). You
can add optional parameters, before the first node name:

• options inside square brackets are PSTricks options, as usual;

• a real number, between 0 and 1, enclosed in angle brackets (e.g., <.3>)
can be used to specify the position of the label, between starting and
ending nodes. Value 0 stands for “on the starting node” while 1 means
“on the ending node”; the default value is .5 (i.e., on the middle of
the link);

• the characters ^, _ or * may be used to specify the side of the link
where the label is typeset. For an link which extends from the left to
the right, ^ means “above”, _ means “below” and * means “over”. If
nothing is specified, the label is placed above the link;

• the options ", = and ! have their usual meanings;

• arrowheads and such can be specified between two signs /. The avail-
able values are shown in the figure 5, default is no arrow.

The order in which you use these options has no importance, provided
that all options are given before the starting node. Additionally, if you use
contradicting options, only the last used is taken into account. For instance,
the two following lines are equivalent:

\link_[linecolor=gray,linewidth=5pt]*<.2>^[linewidth=1pt]
\link^<.2>[linecolor=gray,linewidth=1pt].
To draw curved links, you should use PSTricks’ arcangle option which

is an angle in degrees (you cannot use a letter code here), measuring the
deviation from a straight line between nodes, at the starting and at the
ending of the link. Try, it’s easy.

To change the appearance of the arrowhead, you must change PSTricks’
parameters arrowsize, arrowlength and arrowinset. Petri-nets uses the
following:

\psset{arrowlength=1.4,
arrowinset=0,
arrowsize=2pt 2}

I wont explain how it works, just try, it’s easy too. (Or read the manual of
PSTricks where all the details are given.)

13

none (default)-

arrowheads<->

reverse arrowheads>-<

double arrowheads<<->>

reverse double arrowheads>>-<<

T-bar flush to endpoints|-|

T-bar centred on endpoints|*-|*

square brackets[-]

rounded brackets(-)

circles centred on endpointso-o

circles flush to endpointsoo-oo

disks centred on endpoints*-*

disks flush to endpoints**-**

extended rounded endsc-c

flush rounded endscc-cc

extended square endsC-C

Figure 5: The different types of links termination. They can be freely mixed.

14

3.4.1 Additional labels

Like for nodes, links can be added more labels. This is also made with
the macro \label, but here, its syntax is like for the macro \link, except
that you must not specify the starting and ending nodes (but the options of
\link are available).

3.4.2 Arcs

Since links are almost always draw with a single arrowhead at the end (and
then called arcs), a shortcut is provided: the macro \arc may be used
instead of \link/->/.

4 Tips, tricks and troubleshooting

Nets as macro arguments. If you try to define a net inside the argument
of a macro, you will have an error. For instance, the code

\centerline{\begin{petrinet}(0,0)(1,1)
\place{p}(0,0) p
\trans{t}(1,1) t
\arc{p}{t}
\arc{t}{p}
\end{petrinet}}

produces an error such as:

! Argument of \net:place:draw has an extra }.
<inserted text>

\par
l.11 \end{petrinet}}

The reason is that the macro \centerline reads all the net and treat
the end of lines as spaces. Similar things occur with the other characters
which are considered in a special way inside nets. The right way to produce
the desired effect is to use the macro \savenet:

\savenet
\begin{petrinet}(0,0)(1,1)
\place{p}(0,0) p
\trans{t}(1,1) t
\arc{p}{t}

15

\arc{t}{p}
\end{petrinet}
\centerline{\shownet}

the form \savenet\begin{petrinet} works as well and from plain TEX
you should use the form \savenet\beginnet. After one \savenet you may
even use \shownet several times in order to duplicate the saved net.

Error messages. Sometimes, you’ll get an error message such as:

! Argument of \net:place:draw has an extra }.
<inserted text>

\par
l.785 \place{i3}(2,0) i_3

?

This usually means that the error was just before the line for which TEX
complains (here line 785 which is correct). And usually, this error is an
omission of one of the arguments of a drawing macro.

Another kind of message occurs quite often:

PSTricks error. See User’s Guide for further information.
Type H <return> for immediate help.

! Graphics parameter ‘rcangle’ not defined..
\@pstrickserr ... immediate help.}\errmessage {#1}

\endgroup
l.794 \arc[rcangle=30]

{ab2}{i3} \bullet
?

This is because on line 794, you misspelled the word “arcangle”, giv-
ing “rcangle” instead. This error is detected by PSTricks since bracketed
arguments are sent verbatim to it.

In general, since the package pndraw uses a lot of tricks in order to read
the arguments of the commands, you should not trust too much the error
messages: just look at the line indicated in the message and seek for a
mistake in it or in the lines before. (Actually, this advice can be used for
almost any error message issued by LATEX. . .)

16

Figure 6: An arc anchored on empty texts

Drawing commands on multiple lines. Inside a net, label arguments
are delimited by the end of the line. To type an argument which extends on
more than one line, you should end each line but the last with a comment %.

Empty node. If you want to draw “floating” arcs, i.e., arcs wich are not
attached to a place or a transition, you just can anchor them on empty texts:
the following net is depicted in the figure 6.

\begin{petrinet}(0,0)(2,0)
\text{from}(0,0)
\text{to}(2,0)
\arc{from}{to}
\end{petrinet}

Text mode labels. Take care of the interaction between \everylabel
and the option " which typesets a label in text mode. For example, setting
\everylabel{\scriptstyle} leads to an error every time a text mode label
is typeset because \scriptstyle is a math command. So you should pre-
fer the longer but safer form: \everylabel{\ifmmode\scriptstyle\else
\scriptsize\fi}.

Labels at the wrong position. If the additional labels of a node ap-
pear centered on it instead of outside, this may come from the way you
visualize your document. DVI viewers usually do not interpret correctly all
of the PostScript commands used by PSTricks. Trying a PostScript viewer
(GhostView is certainly a good choice) may solve your problem.

To be continued. . .

5 Producing PDF documents

The LATEX version of pndraw provides some support for pdfLATEX through
the Perl script pn2pdf included in the archive. The usage is quite automated,

17

even completely if you run pdflatex with the option --shell. If you don’t
want to enable this option, run first pdflatex, then run pn2pdf -b document
(assuming your file is called document.tex) and finally run pdflatex again.2

Using the option --shell simply allows pdflatex to run pn2pdf for you.
Several files are produced by these different runs. You may never see

most of them since they are deleted when the become useless. Take care
that none of your files uses one of these names otherwise it will be overwrote
or deleted!

• document.sum is used to remember some information in order to avoid
recreating pictures if not necessary.

• document.d is created and deleted for test purpose when the option
--shell has been used, d is the date when pdflatex was started, as
produced by the macros \the\year\the\month\the\day\the\time
(in the current document, it leads to 200632702).

• document.bpn is created when pdflatex is run without the option
--shell, it contains the directives for producing the figures with
pn2pdf -b.

• document.pre is used by pn2pdf in order to remember the commands
(like \psset) issued outside of petrinets environments.

• document-fign.pn, document-fign.tex, document-fign.aux,
document-fign.dvi, document-fign.log, document-fign.eps are
created during the generation of document-fign.pdf which contains
the rendering of the nth net of the document.

The files document-fign.pdf should not be deleted before the final docu-
ment is produced since they are included from pdflatex. If they are not
found, a warning is issued during the compilation.

There is several important things you should notice:

1. Everything outside of the bounding box of a net is cropped during the
creation of the PDF picture. So, take care to check how your picture
is rendered (using \showbb for instance).

2. Only one pass of LATEX is made on each figure. If you need to several
passes, you may run pn2pdf manually, with the options -f and -k (see
below).

2This process was different in the previous version of the package!

18

3. LATEX and pdfLATEX do not always produce identical rendering of the
same document. However, Petri-nets pictures should be the same since
they are always typeset by LATEX.

To conclude, here is a summary of the ways to run pn2pdf:

• pn2pdf document-fign.pn
generate pn2pdf document-fign.pdf

• the option -f or --force may be used to force the creation of PDF
files even if their source did not change.

• pn2pdf -t FILES or pn2pdf --test FILES
used by pdfLATEX in order to check is the option --shell was used or
not.

• pn2pdf -b document or pn2pdf --batch document
reads the file document.bpn in order to produce the figures.

• pn2pdf -d FILES or pn2pdf --delete FILES
deletes FILES (which may be patterns like *.aux), this is use by
pdflatex in order to remove some temporary files.

• the option -k or --keep prevents pn2pdf from deleting the temporary
files.

• the option -h or --help prints a short help and exit.

19

A Reference pages

A.1 Text commands: package pntext

\bpn B(PN)2

\bpnkw{key-word} key-word
\bpnnt{non-terminal} non-terminal
\choice �
\eplace e
\iplace i
\lscope [[
\Lscope invisible version of \lscope
\mathset{A} A
\mnet Mnet
\placestatus{d} d
\pnversion 2006-03-02 (current version)
\rs rs
\rscope]]
\Rscope invisible version of \rscope
\scope{a}{N} [[a : N]]
\setC C
\setN N
\setQ Q
\setR R
\setZ Z
\sy sy
\tie tie
\Val Val
\Var Var
\xplace x

A.2 Drawing command: package pndraw

The parts placed between angle brackets 〈· · ·〉 are the optional ones, the
others are mandatory. Symbol ←↩ denotes the end of the line.

• \arc〈^_*"=![options]<pos>〉{node1}{node2}〈label〉←↩
Draws a labelled arc between node1 and node2.

20

^ label above the arc (default)
_ label below the arc
* label over the arc
" label in text mode
= double line
! thick line
[options] PSTricks options
<pos> position of the label (0 ≤ pos ≤ 1)

• \beginnet〈[options]〉(x1, y1)(x2, y2)←↩
\begin{petrinet}〈[options]〉(x1, y1)(x2, y2)←↩
Begins a net whose bounding box is defined by (x1, y1) as bottom left
corner and (x2, y2) at top right corner.

[options] PSTricks options

• \endnet
\end{petrinet}
Ends a net.

• \everylabel={〈tokens〉}
Expands tokens each time a label is typeset.

• \everynet={〈tokens〉}
Expands tokens each time a net is started.

• \label〈"{pos}label〉←↩
\label〈"<pos>label〉←↩
Draws an additional label for a node (first line) or a link (second line).

" label in text mode
{pos} position of the label, an angle (in degrees)

or a corner code (t,l,b,r,tl,tr,bl,br)
<pos> position of the label (0 ≤ pos ≤ 1)

• \link〈^_*"=![options]<pos>/arrow/〉{node1}{node2}〈label〉←↩
Draws a labelled link between node1 and node2.

21

^ label above the arc (default)
_ label below the arc
* label over the arc
" label in text mode
= double line
! thick line
[options] PSTricks options
<pos> position of the label (0 ≤ pos ≤ 1)
/arrow/ arrows specifications (see the figure 5

• \module〈"=![options]〉{name}(x, y)〈label〉←↩
Draws a labelled module centered on (x, y).

" label in text mode
= double line
! thick line
[options] PSTricks options

• \modulesize=dimen
Sets the size of the modules.

• \nodessize{dimen}
Sets the size of all nodes.

• \place〈"=![options]〉{name}(x, y)〈label〉←↩
Draws a labelled place centered on (x, y).

" label in text mode
= double line
! thick line
[options] PSTricks options

• \placesize=dimen
Sets the size of the places.

• \psset{name=value〈,...〉}
Sets PSTricks options.

22

arcangle=angle angle at the ends of links
arrowinset=real size of arrowheads insets
arrowlength=real length of arrowheads
arrowsize=dim integer size of arrowheads
doubleline=boolean double lines on/off
doublesep=dim distance between double lines
fillcolor=color background color
labelsep=dim distance between labels and nodes
linecolor=color lines color
linewidth=dim lines thickness
unit=dim global scale
xunit=dim horizontal scale
yunit=dim vertical scale

• \savenet
Just before the beginning of a net: saves it without displaying it.

• \showbb〈*[options]〉←↩
Draws the bounding box of a net.

* background filled
[options] PSTricks options

• \shownet
Displays the last net saved by \savenet.

• \source〈"=![options]〉{name}(x, y)〈label〉←↩
Draws a labelled source centered on (x, y).

" label in text mode
= double line
! thick line
[options] PSTricks options

• \sourcesize=dimen
Sets the size of sources.

• \store〈"=![options]〉{name}(x, y)←↩
Draws a store centered on (x, y).

" label in text mode
= double line
! thick line
[options] PSTricks options

23

• \storesize=dimen
Sets the size of stores.

• \text〈"〉{name}(x, y)〈label〉←↩
Draws an unboxed labelled node centered on (x, y).

" label in text mode

• \trans〈*"=![options]〉{name}(x, y)〈label〉←↩
Draws a labelled transition centered on (x, y).

* automatic size
" label in text mode
= double line
! thick line
[options] PSTricks options

• \transsize=dimen
Sets the size of transitions.

24

