
writing macros with texapi

e first motivation for this set of macros is selfish :
after rewriting the same lines over and over and wasting so
many excruciating (yes !) hours debugging intricate loops
with one typo, I decided I could use a toolkit containing
the painful code without errors (hopefully) and use it for
future packages.

e second motivation is more ambitious : I think it's
a pity so many packages are written for one format and are
thus unusable outside it, even though those packages could
be useful to anybody. is is so, I believe, because a format
mixes two different things : decisions about typesetting
(mainly) and utility macros. e former are the essence
of a format, whereas the latter are just shorthands you
can use or not, replace, or ignore completely. But the fact
is that users of a format tend to use the utility macros
shipped with it, and thus writes macros that can't be reused
elsewhere, even though nothing crucial hinges on what
utility macros one uses. us, texapi aims at providing a
good deal of this kind of macros whitout relying on any
particular format, so that one canwrite code without having
to take into account how it will be used. Moreover, texapi
is also format-aware, meaning some commands are defined
differently depending on the format being used, and one
doesn't have to create as many macros as there are formats.

ere is at least one basic assumptions, namely that
formats should contain plain TEX's allocation macros. is
the case for all formats I know.

In what follows, commands have a grey background
when they are fully expandable, e.g. they can be used inside
\csname...\endcsname, provided you don't use them with
unexpandable arguments, of course. On the other hand, all
unexpandable commands are protected.

Arguments are denoted by <text>, where `text' makes
the intended use clearer and doesn't denote any particular
type of argument, except in the case of <command>, which
denotes a control sequence (something expandable, actu-
ally), and <csname>, which denotes an argument suitable
to \csname. Braces are indicated only when mandatory, but
of course they can be used to delimit arguments as usual.

Finally, the following may be a useful indication (added
in version 1.01).

\texapiversion is a macro that holds texapi's version number. e
current version is 1.04.

Author : Paul Isambert
Version : 1.04

Date : 10/2/2011

Typeset in Chaparral Pro (Carol Twombly) and Lucida Console
(Charles Bigelow and Kris Holmes) with LuaTEX v.0.7.

engine and format detection

\texenginenumber is is a \chardef'ined number set according to the engine
used : 0 means e-TEX, or an unknown engine with e-TEX
extensions ; 1meansXeTEX (detected because \XeTeXinter-
chartoks exists) ; 2means pdfTEX (detected thanks to \pdf-
strcmp) ; 3 means LuaTEX (detected thanks to \directlua).
Numbering here allows one to detect a pdfTEX-based en-
gine with \texenginenumber>1. ConTEXt has an equivalent
\texengine, with pdfTEX=1 and XeTEX=2, though.

\formatnumber is number does the same with formats. Here, 0 means
an unknown format, 1 means plain (because \fmtname is
`plain'), 2 means eplain (because \fmtname is `eplain'), 3
means ConTEXt (because there exists an \inspectnextop-

tionalcharacter command), 4 means LaTEX2e (because
\fmtname is `LaTeX2e') and 5 means LaTEX3 (because there
exists an \ExplSyntaxOn command). ere's no distinction
yet between LaTEX3 on top of LaTEX2e and LaTEX3 as a
format per se. Since \formatnumber is set only if it doesn't
already exist, you canwrite your packagewith, say, code.tex
containing the main code and code.sty and t-code.tex

as wrapper files for LaTEX and ConTEXt respectively, with
\formatnumber already set accordingly.

\priminput

\primunexpanded

Both LaTEX and ConTEXt redefines \input, and in ConTEXt
\unexpanded has not the meaning of the e-TEX primitive.
ese two commands are thus the primitive \input and
\unexpanded respectively.

\loadmacrofile<file> e behavior of this command depends on \formatnumber.
e <file> should be given without extension, and the
following happens : in ConTEXt, \usemodule[<file>] is
executed, in LaTEX \RequirePackage{<file>} is used, and
in other formats it is simply \input<file>.tex. is makes
sense only with packages that are distributed as described
above, i.e. with the main code in one file and wrapper files
for LaTEX and ConTEXt, like TikZ or librarian.

\senderror<package><message> is sends an error message according to the format's
custom. In plain and eplain (and in an unknown format),
it produces \errmessage{<package> error : <message>}.
In LaTEX, it produces \PackageError{<package>}{<mes-

sage>}{} (no help message) and in ConTEXt \writes-

tatus{<package> error}{<message>} (which is far from
ConTEXt's sophisticated communication systembut, well...).

\def\myengine{%

\ifcase\texenginenumber

e-\or Xe\or pdf\or Lua\fi\TeX

}

\def\myformat{%

\ifcase\formatnumber

unknown\or plain\or eplain\or

ConTeXt\or LaTeX\or LaTeX3\fi

}

This documentation has been typeset

with \myformat\ under \myengine.

is documentation has been typeset with plain under LuaTEX.

a r g u m e n t m a n i p u l a t i o n

\emptycs

\spacecs

\spacechar

Pretty useful macros whose meaning is clear, but what-
ever : \emptycs is an emptily defined command, \spacecs
expands to a space, and \spacechar denotes a space, i.e. it
is an implicit space and not really a macro.

\gobbleone

\gobbleoneand<code>

ose, as you might imagine, gobble the following argu-
ment ; the second version also excutes <code> afterwards.
ere are actually nine such commands in each case, and
they are (for the sake of completeness) \gobbleone, \gob-
bletwo, \gobblethree, \gobblefour, \gobblefive, \gob-
blesix, \gobbleseven, \gobbleeight (watch out, two e's)
and \gobblenine for the first version, and \gobbleone-

and, \gobbletwoand, \gobblethreeand, \gobblefourand,
\gobblefiveand, \gobblesixand, \gobblesevenand, \gob-
bleeightand and\gobblenineand.Note that\gobblenine-
and<code> takes two expansion steps to return <code>,
instead of only one in the other cases.

\unbrace<code> is is the kind of command you probably can't see the
point of until you need it. It returns its <code> untouched,
but with outermost braces removed if any.

\swapargs <arg1><arg2>

\swapbraced <arg1><arg2>

\swapleftbraced <arg1><arg2>

\swaprightbraced<arg1><arg2>

e first of those returns <arg2><arg1> into the stream,
without any brace to delimit them. On the contrary, \swap-
braced returns {<arg2>}{<arg1>}. And, as youmight imag-
ine, \swapleftbraced returns {<arg2>}<arg1> whereas
\swaprightbraced returns <arg2>{<arg1>}.

\passexpanded <arg1><arg2>

\passexpandednobraces<arg1><arg2>

e first one returns <arg1>{<arg2 expanded once>} and
the second <arg1><arg2 expanded once>. It's some sort of
long \expandafter built on \swapargs and associates, and
if <arg1> is a single token it's faster to use \expandafter
itself. It's not a real \expandafter, though, since <arg2>

is expanded to the left of <arg1> and then moved back
to its right. Which, with e.g. an \else as <arg2>, will lead
to results you probably haven't foreseen and expected. If
<arg2> is some material you want to turn into a command
with \csname, see \passcs below.

This is \gobbletwoand{very } uninteresting.

is is very interesting.

\def\foo#1#2{\detokenize{(1=#1,2=#2)}}

\def\bar{two}

\foo{one}\bar

\passexpanded{\foo{one}}\bar

(1=one,2=\bar)(1=one,2=two)

defining & using commands

\defcs <csname><parameter text>{<definition>}

\edefcs<csname><parameter text>{<definition>}

\gdefcs<csname><parameter text>{<definition>}

\xdefcs<csname><parameter text>{<definition>}

ese work exactly like \def, \edef, \gdef and \xdef, ex-
cept they define a command with name <csname>. e
<parameter text> is the usual one, and any the space at
the beginning is significant. I.e. \defcs{foo}#1{...} and
\defcs{foo} #1{...} aren't equivalent at all. Prefixes can
be appended as with \def.

\letcs <csname><command>

\lettocs <command><csname>

\letcstocs<csname><csname>

ese \let thefirst commandor commandnamed <csname>
to the meaning of the second one. In both \lettocs and
\letcstocs, if the command with name <csname> is unde-
fined, it is not let to \relax. So these are different from
\let with \expandafter's. e \letcs command can also
be used to create an implicit character, of course.

\addleft <command><material>

\addleftcs <csname><material>

\eaddleft <command><material>

\eaddleftcs<csname><material>

is redefines <command> or a command named <csname>

to itself with <material> added at the beginning. e
e-variant performs an \edef so that <material> is fully
expanded (but not <command>). e usual prefixes can be
appended.

\addright <command><material>

\addrightcs <csname><material>

\eaddright <command><material>

\eaddrightcs<csname><material>

is is the same thing as above, but the material is added
at the end. In both the left and right version, the command
thus redefined should be a simple command working by
itself (i.e. no argument and no delimiter). In the <csname>
case, no check is performed to ensure that <csname> is
defined (but in the worst case it ends up as \relax, because
of its being called after the implicit \def (get it ?)).

\usecs <csname>

\usecsafter <csname>

\passcs <code><csname>

\passexpandedcs<code><csname>

\noexpandcs <csname>

\unexpandedcs <csname>

Various ways to use a command with name <csname> :
\usecs performs a simple \csname<csname>\endcsname

(and doesn't even check whether <csname> is defined or
not, so this might relax it a little bit), \usecsafter does
the equivalent of \expandafter\command, \passcs puts
<csname> as a real (unbraced) command after <code>,
whereas \passexpandedcs passes the expansion of the
control sequence with name <csname> to <code> ; \noex-
pandcs and \unexpandedcs return <csname> with a \noex-
pand prefix or its expansion as argument to \unexpanded

(\primunexpanded, really).

\commandtoname<command> is returns the name of <command>, i.e. <command>without
its backslash (and made of catcode-12 characters, since it's
based on \string).

\defcs{foo}#1{This is foo: #1.}

\foo{bar}

is is foo : bar.

\expandafter\let\expandafter\foo

\csname undefined\endcsname

\lettocs\bar{reallyundefined}

\letcstocs{reallyundefined}{reallyundefined}

Compare this: \meaning\foo,

and that: \meaning\bar.

And better yet: \meaning\reallyundefined.

Compare this : \relax, and that : undefined. And better yet :
undefined.

\defcs{foo}{bar}

\addleftcs{foo}{In a }

\addright\foo{ (how fascinating).}

\foo

In a bar (how fascinating).

\def\bar{whatever} \def\foo#1{[#1]}

I use it: \usecs{bar},

I use it after: \usecsafter{foo}\bar,

and I pass it: \passcs\foo{bar}.

I use it : whatever, I use it after : [w]hatever, and I pass it :
[whatever].

\def\foo{\bar}

I don't expand it:

\edef\foobar{\noexpandcs{foo}}%

\meaning\foobar.

Or just a little bit:

\edef\foobar{\unexpandedcs{foo}}%

\meaning\foobar.

I don't expand it : macro :->\foo . Or just a little bit : macro :->\bar
.

t e s t s w i t h c o m m a n d s

\reverse Conditionals in texapi (not only those on this page) can be
prefixed with \reverse, so that if they're true the <false>
argument is executed (if specified), and if they're false,
the <true> argument is executed. So this is equivalent to
\unless, to which \reverse defaults (since version 1.04)
in case the following command isn't recognized as a texapi
conditional.

\ifcommand <command><true><false>

\iffcommand<command><true>

is conditional executes <true> if <command> is defined. So
it is a straight version of \ifdefined. e \iff... version,
like all texapi's \iff..., considers only the <true> case
(which becomes the <false> case if the conditional is
prefixed with \reverse).

\ifcs <csname><true><false>

\iffcs<csname><true>

Same as above, but with an \ifcsname this time. It goes
without saying that <csname> isn't let to \relax thereafter
if it was undefined.

\ifemptycommand <command><true><false>

\iffemptycommand<command><true>

is is true if <command> is defined with an empty definition
text, i.e. it is equivalent to \emptycs. is is not true if
<command> takes arguments, though, so \gobbleone isn't
empty in this sense.

\ifemptycs <csname><true><false>

\iffemptycs<csname><true>

Same as above with a command named <csname>.

\ifxcs <csname><command><true><false>

\iffxcs<csname><command><true>

is is true if <csname> has the same definition as <com-
mand>, or they're both undefined.

\ifxcscs <csname><csname><true><false>

\iffxcscs<csname><csname><true>

is is true if both <csname>'s have the same definition, or
they're both undefined.

\reverse\iffalse

Wow, \verb"\reverse" can replace \verb"\unless"!

We must be using version 1.04 at least!

\fi

Wow, \reverse can replace \unless ! We must be using version
1.04 at least !

\ifcommand\TeX{Cool}{Too bad}.

Nothing: \iffcommand\undefined{Whatever}.

Cool. Nothing : .

\reverse\iffcs{undefined}{This command is undefined.}

is command is undefined.

\def\foo{}

\ifemptycommand\foo{Empty}{Not empty}.

\reverse\iffemptycs{gobbleone}{It ain't empty}.

Empty. It ain't empty.

\iffxcs{undefined}\undefinedtoo

{Same definitions.}

\ifxcscs{foo}{TeX}

{These are the same}

{These are different}.

Same definitions. ese are different.

v a r i o u s c o n d i t i o n a l s

\newife<command> is defines a conditional like plain TEX's \newif, except
it takes two arguments (the <true> and <false> values)
insteadof an \else... \fi structure. Besides, this conditional
is reversible with \reverse, and a `double-f' (i.e. \iff...)
version is also created, which takes the <true> part only. As
with \newif, <command> must begin with if. (e e means
expandable, although there's nothing more expandable in
the conditionals thus constructed than in those defined
with \newif, but anyway.)

\straightenif <TEX conditional><arg><true><false>

\straighteniff<TEX conditional><arg><true>

Apart from \ifdefined and \ifcsname (in the guise of \if-
command and \ifcs respectively), none of TEX's primitive
conditionals are redefined in a straight fashion, i.e. with
two arguments instead of \else... \fi. ese commands
let you use TEX's conditionals in such a way. <TEX condi-

tional> means such a primitive without a backslash (so
this construction can be used inside real conditionals), e.g.
ifnum or ifvoid. e <arg> is whatever you normally feed
to this conditional. It is brutally concatenated, and you're
the one in charge of adding space if needed, as for instance
with ifnum. Chaos will ensue if you fail to do so. With condi-
tionals that don't require anything, e.g. iftrue or ifvmode,
leave <arg> empty (but don't forget it). Finally, <true> and
<false> are executed accordingly, and the whole macro can
be prefixed with \reverse.

\ifwhatever <conditional><true><false>

\iffwhatever<conditional><true>

is command (introduced in v.1.04) takes a<conditional>
which is either a TEX conditional (normally expecting \fi

and perhaps \else before that) or a conditional whose
<true> and <false> parts are normally given as argu-
ments, like those created by \newife. In the first case, it
is equivalent to \straightenif, in the second case it is
redundant. However, it is useful when one is expecting a
conditional whose nature is unknown. If <conditional>
is a TEX conditional, you're in charge of adding space if
needed, as with \straightenif ; unlike the latter, though,
the \if... command itself is given as usual (i.e. no need
to remove the backslash), which also means it cannot be
properly nested in a TEX conditional (unless itself is em-
bedded in \straightenif). Finally, if <conditional> is an
argument-taking conditional, the iff form (in case it comes
from texapi) cannot be used, and conditionals poking at
the next token cannot be used either. e whole macro can
be prefixed with \reverse.

\newife\iffoo

\iffoo{There is foo}{There is no foo}.

\footrue

\reverse\iffoo{There is no foo}{There is foo}.

\ifffoo{With three f's in a row}.

ere is no foo. ere is foo. With three f's in a row.

% See this space?

\straightenif{ifnum}{1=1 }{Reality is preserved}

{Bad news}.

\reverse\straighteniff{if}{ab}

{Different letters, obviously.}

\straightenif{iftrue}{}{Good}{Bad}.

Reality is preserved. Different letters, obviously. Good.

% See this space too?

\ifwhatever{\ifnum5=5 }{True.}{False.}

\newife\iftest

\reverse\iffwhatever\iftest{True too.}

True. True too.

c o n d i t i o n a l e x p r e s s i o n s

\ifexpression <expression><true><false>

\iffexpression<expression><true>

is (introduced in v.1.04) evaluates <expression>, which
is made of subexpressions separated by & (and) or | (or),
a subexpression being either a conditional or a braced
expression, possibly prefixed with - (not).e `not' operator
has precedence over `and', which has precedence over `or',
braces being used to group evaluation. e conditionals
making up the expressions are the same as those passed to
\ifwhatever (which is used internally), i.e. TEX conditionals
or argument-taking ones. Space is ignored at the beginning
of an operand, but not at the end, unless the operand
is a braced expression. However, such a space is often
harmless there (if the conditional is a texapi conditional),
and sometimes useful (to delimit for instance a number
in an \ifnum, see the example on the right) ; it should be
removed in the usual cases (e.g. after \ifcat XY). emacro
can be prefixed with \reverse.

In the example on the right, the first two conditionals
(excluding negative numbers and numbers lower than
100) are logically useless, but they save time (the third
subexpression isn't evaluated in case one of the first two is
true), and they illustrate how negation and grouping work.

\ifelseif<statements> is (introduced in v.1.04) is a simple way to evaluate suc-
cessive conditionals until one is found true ; the <state-

ments> are any number of pairs <conditional><state-

ment> ; when the first true <conditional> is found, its as-
sociated <statement> is executed and the rest is discarded.
e conditionals there are the same as with \ifwhatever.
e macro can be prefixed with \reverse, in which case
the statement associated with the first false conditional
is executed. If no conditional is true (or false, if \reverse
is used), nothing happens ; a default case can nonetheless
be constructed with a last statement whose conditional is
\iftrue (or \iffalse with \reverse), as illustrated in the
example on the right. Spaces are ignored.

e construction is the same thing as embedding each
conditional into the <false> part of the previous one ;
however, it is simpler to write and to read.

\afterfi <code>

\afterdummyfi<code>

You shouldn't use these. e first one closes the current
conditional and executes <code>. e second one lets go
one \fi and executes <code>. So these are kinds of \ex-
pandafter's when <code> isn't just a command. Anything
before the incoming \fi is gobbled. e reason why you
should use one or the other should be clear to you, otherwise
you'll probably be messing with a conditional.

\def\iffibonacci#1{%

\ifexpression{%

-\ifnum#1<0 & -\ifnum#1>100 &

{ \ifnum#1=0 | \ifnum#1=1 |

\ifnum#1=2 | \ifnum#1=3 |

\ifnum#1=5 | \ifnum#1=8 |

\ifnum#1=13 | \ifnum#1=21 |

\ifnum#1=34 | \ifnum#1=55 |

\ifnum#1=89 }

}{#1 is a Fibonacci number lower than 100.}

{#1 isn't a Fibonnaci number lower than 100.}%

}

\iffibonacci{55}

55 is a Fibonacci number lower than 100.

\def\checkanswer#1{%

\ifelseif{%

{\ifexpression{ \ifstring{#1}{yes} |

\ifstring{#1}{true}} }

{You agree.}

{\ifexpression{ \ifstring{#1}{no} |

\ifstring{#1}{false}} }

{You disagree.}

\iftrue

{I don't understand your answer.}}%

}

+\checkanswer{You bet!}+

+I don't understand your answer.+

\iftrue

\afterdummyfi{\afterfi{Here we are.}}

\else

\iffalse

Whatever.

\fi

\fi

Here we are.

poking at what comes next

\skipspace<code> is gobbles any incoming space, if any, and executes
<code>. Of course it doesn't require there to be any space
to work properly. (is was called \nospace prior to version
1.02.)

All the following conditionals can be prefixed with
\reverse. And in case your head's buzzing, their names are
quite regular : take an \if, \ifcat or \ifx, add `next', and
create variants by doubling the f and/or adding nospace at
the end.

\ifnext <token><true><false>

\iffnext <token><true>

\ifnextnospace <token><true><false>

\iffnextnospace<token><true>

ese poke at the next token and see whether it has the
same character code as <token>. In other words, an \if

test is performed between <token> and the next token
in the input stream. However, neither <token> nor the
incoming token are expanded, so that they can be control
sequences and no unwanted expansion will occur. Control
sequences are all equal according to this test (which can very
well take an undefined control sequence as <token>). e
nospace version must be pretty clear : the macro discards
all incoming spaces until it finds a non-space token to test
(unfortunately, an implicit space and a space character are
undistinguishable as far as this test (and the next ones) is
concerned, so in the very unlikely case where an implicit
space was waiting in the stream, it'll be gobbled in the
nospace variant).

\ifcatnext <token><true><false>

\iffcatnext <token><true>

\ifcatnextnospace <token><true><false>

\iffcatnextnospace<token><true>

ese are the same as above with an \ifcat test instead of
\if. Again, control sequences aren't expanded and they all
have the same category code.

\ifxnext <token><true><false>

\iffxnext <token><true>

\ifxnextnospace <token><true><false>

\iffxnextnospace<token><true>

Once again like the previous commands, this time with an
\ifx, i.e. the definitions of control sequences are compared,
and in case<token> and/or thenext tokenareunexpandable
thing, both character code and category code are compared.
So these are performing real \ifx tests.

\skipspace{foo} bar

foobar

Here comes \ifnext e{an }{a }e.

Here comes \reverse\ifnext e{a }{an }b.

Here comes

\iffnextnospace\foo{a control sequence: } \TeX.

Here comes an e. Here comes a b. Here comes a control sequence :
TEX.

\def\tex{\TeX\iffcatnext a{ }}

A \tex is a \tex is a \tex.

A TEX is a TEX is a TEX.

\def\foo{not \string\TeX}

\reverse\iffxnextnospace\TeX

{The incoming command isn't \string\TeX: } \foo.

e incoming command isn't \TeX : not \TeX.

s t r i n g m a n i p u l a t i o n

\ifstring <string1><string2><true><false>

\iffstring<string1><string2><true>

ese return <true> if the two strings are identical. Category
codes aren't taken into account when strings are compared.

\ifemptystring <string><true><false>

\iffemptystring<string><true>

ese return <true> if <string> is empty.

\newstring<string> e following operations (\ifprefix, \removesuffix, etc.)
aren't fully expandable by default. However, if a string has
been previously declared with \newstring, they magically
become fully expandable.

So, in what follows, macros aren't marked as expand-
able, although they can be if the preceding condition is ful-
filled. Besides, these macro aren't \protected even though
their default behavior would require that they be. But
you can always append a \noexpand to an unprotected
command, whereas you cannot force the execution of a
protected one. (is protecting issue is of course totally
irrelevant for the \removeprefixin and \removesuffixin

commands, which aren't expandable by definition and are
thus protected.)

\ifprefix <prefix><string><true><false>

\iffprefix<prefix><string><true>

is test is true if <string> begins with <prefix>. Category
codes do matter.

\ifsuffix <suffix><string><true><false>

\iffsuffix<suffix><string><true>

True if <string> ends with <suffix>.

\ifcontains <string1><string2><true><false>

\iffcontains<string1><string2><true>

Finally, this is true if <string2> contains <string1>.

\removeprefix<prefix><string>

\removesuffix<suffix><string>

ese return <string> without <prefix> (resp. <suffix>).
No test is performed to check that <string> indeed begins
(resp. ends)with <prefix> (resp <suffix>), so thesemacros
make sense only after the adequate tests.

\removeprefixand<prefix><string><code>

\removesuffixand<suffix><string><code>

ese do the same as the previous one, but feed the resulting
string to <code>, between braces. Once again, no test is
performed beforehand.

\removeprefixin<prefix><string><command>

\removesuffixin<suffix><string><command>

ese define <command> as <string> without <prefix>

(resp. <suffix>). No test either. Sorry.

\splitstringat<string1><string2><code> is cuts <string2> in two at <string1>'s first occurrence
and passes the two parts as braced arguments to <code>.
And, again : no test. (is was called \splitstring prior to
version 1.02.)

Two \ifstring{abc}{abc}{equal}{unequal} strings

and an \reverse\iffemptystring{something}{unempty} one.

Two equal strings and an unempty one.

\newstring{abc}

\edef\foo{\ifprefix{abc}{abcd}{True}{False}.}

\edef\bar{\reverse\iffsuffix{abc}{whatever}{No suffix}.}

\edef\foobar{\ifcontains{abc}{gee}{Yes}{No}.}

\meaning\foo\par

\meaning\bar\par

\meaning\foobar

macro :->True.
macro :->No suffix.
macro :->No.

\def\record#1: #2.{%

\par\bgroup

\it\ifprefix*{#1}{\removeprefix*{#1} [live]}{#1}

\egroup

(\ifcontains/{#2}{\splitstringat/{#2}{\dodate}}{#2})

}

\def\dodate#1#2{recorded #1, released #2}

A somewhat incomplete list of fantastic

records by Frank Zappa:

\record Absolutely Free: 1967.

\record The Grand Wazoo: 1972.

\record L\"ather: 1977/1996.

\record *Make a Jazz Noise Here: 1988/1991.

A somewhat incomplete list of fantastic records by Frank Zappa :
Absolutely Free (1967)
e Grand Wazoo (1972)
Lather (recorded 1977, released 1996)
Make a Jazz Noise Here [live] (recorded 1988, released 1991)

various things on the same page

\setcatcodes{<list>} e <list> argument here means comma separated <char-

acters>=<category code>, with an s to characters because
you can concatenate them if you want them to share the
same <category code>. So, as youmight have guessed, this
set all <characters> to characters with catcode <category
code>. And it also sets \restorecatcodes accordingly. e
changes are local. e # character requires a backslash (so
do braces and the backslash itself, but that's obvious).

\restorecatcodes is restores the catcodes of the characters changed with
the previous command, which is cumulative, i.e. \restore-
catcodes restores catcodes changed by all preceding \set-

catcodes commands, not only the last one. Since changes
are local, \restorecatcodesmay be useless in a group (and
the effect of \restorecatcodes itself is local too).

e trimming macros below are adapted from Will
Robertson's trimspace package. Note that trimming on the
right is dangerous for braces : \trimright{{hello} } and
\trimright{{hello}} both result in hello, not {hello}.

\trimleft <string>

\trimright<string>

\trim <string>

ese return <string> with one space removed at the be-
ginning or end or both.ere's no need to check beforehand
whether there are indeed such spaces.

\passtrimleft <string><code>

\passtrimright<string><code>

\passtrim <string><code>

ese return <string> trimmed of spaces as a braced
argument to <code>.

\deftrimleft <command><string>

\deftrimright<command><string>

\deftrim <command><string>

e same thing again, except now those commands define
<command> to <string>, etc.

\setcatcodes{\\\#\{\}\%=12,\|=0}

Hey, were're verbatimizing:

\def\foo#1{\bar{#1}}%

|restorecatcodes

Hey, were're verbatimizing : \def\foo#1{\bar{#1}}%

\bgroup

And now in a group:\par

\setcatcodes{z=13}

\defz{ZZZZZZZZZZZZZZZZZZZZZZZZZZ}

I'm sleeping: z.\par

\egroup

And I'm not: z.

And now in a group :
I'm sleeping : ZZZZZZZZZZZZZZZZZZZZZZZZZZ.
And I'm not : z.

+\trim{ bar }+

+bar+

\deftrimleft\foo{ bar }

+\foo+

+bar +

w h i l e s t a t e m e n t s

\repeatuntil<number><code> is executes <code> <number> times. e <number> ar-
gument can be a \count register, an integer defined with
\chardef, etc., and of course a string of digits. In any case,
it is really an argument and must be surrounded by braces
if it is made of more than one token.

\dowhile<condition><code> is repeats <code> while <condition> is true. e latter
must be a `straight' if, i.e. either one of texapi's \if... or a
\straightenif{<TEX conditional>} construction, in both
cases without the <true> and <false> arguments, because
<true> is actually <code>, and <false> would make no
sense. Finally, the conditional must be a simple \if..., not
an \iff... version. Once again, this makes sense : the if and
only if clause is implicit in a while statement. If you use
an \iff..., you'll end up with many empty braces, which is
harmless unless you're in a context of expansion. You can
use \reverse in <condition>.

\newwhile<command><number><transformations><code> e \dowhile macro is not very powerful since you must
generally change something somewhere to make it stops,
and thus its expandability is somewhat perfunctory. at's
why there is \newwhile. It creates an expandable <com-

mand> which takes <number> arguments (up to 9, as usual)
and repeats <code> indefinetely. So, at first sight, it's bad
news. But the point is <code> is supposed to launch the
\breakwhilemacro below sooner or later, i.e. stop the loop.
Besides, on each iteration (barring the first), <transfor-
mations> are applied to the arguments, and this means :
the first argument is replaced by the first transformation,
the second argument by the second transformation, etc.
So there must be as many transformations as there are ar-
guments, transformations themselves being just code that
can make reference to the arguments. If you don't want to
transform an argument, just repeat it in the transformation.

\breakwhile<code> is breaks the current while loop and executes <code>,
which can make reference to the arguments of the loop.

\changewhile<new arguments> is replaces the default <transformations> defined with
\newwhile and passes the <new arguments> for the next
iteration. ere must be as many arguments as required by
the loop. e original <transformations> remain in force
for the next iterations.

We have seen \repeatuntil\pageno{I} pages.\par

\edef\foo{\repeatuntil3{.}}

\meaning\foo

We have seen IIIIIIIIIII pages.
macro :->...

\newife\ifbreakloop \def\foo{}

\dowhile{\reverse\ifbreakloop}

{\addleft\foo{a}%

\passexpanded\iffstring\foo{aaaa}

\breaklooptrue}

\foo

aaaa

\edef\foo{%

The inconvenience of iff...:

\dowhile{\straighteniff{ifnum}{4=5 }}

{whatever}

}

\meaning\foo

macro :->e inconvenience of iff...: {}

% Transformations.

\newwhile\largestsquare2{\numexpr(#1+1)}{#2}{%

\reverse\straighteniff{ifnum}{\numexpr(#1*#1)<#2 }

{The largest number whose square

is smaller than #2 is

\breakwhile{\the\numexpr(#1-1).}}}

\largestsquare{1}{50}\par

\largestsquare{1}{200}

e largest number whose square is smaller than 50 is 7.
e largest number whose square is smaller than 200 is 14.

for statements on the fly

\dofor<list><parameter text>{<definition>}<coda> is runs <definition> on each occurrence of <parameter
text> in <list>.e <parameter text> is a real one, hence
the braces around <definition>. e <coda> is executed
if and only if the loop goes to its natural end, i.e. it is not
terminated by one of the commands below. It must be
present, even if you don't want one (in which case, leave it
empty), and it can't make any reference to the arguments
of the parameter text. A loop thus executed is absolutely
not expandable. You can embed as many loops as you want
(but don't forget to double the #).

\dofornoempty is is the same as above, except <definition> is not
executed when the first argument is empty.

\breakfor<code> is breaks the current loop and executes <code> ; the
<coda> of the loop is not executed.

\retrieverest<code> is also breaks the loop, but it retrieves the remaining
arguments in the list and pass them as a braced argument
to <code>.

\pausefor<code> is interrupts the loop and executes <code> ; the loop
being interrupted means you're in the middle of the list,
and you can process it. Such a pause must be terminated
by a \resumefor if you don't want nasty internal code to
surface.

\resumefor\dofor is restarts the current loop. It is necessary to specify
\dofor, because \resumefor is more general and is used
to restart any kind of loop, especially those defined with
\newfor (see next page).

e \dofor loop does not perform any kind of normal-
isation on the list. I.e. the list must be exactly designed
to match the parameter text, including spaces and other
unwelcome guests.

e \dofor macro is useful for straightforward loops
used once or twice in a document. But for fully fledged
total-control fully expandable hey-that's-too-cool loops,
you should use the \newfor construction.

\dofor{a,b,c,}#1,{[#1]}{}

[a][b][c]

\dofor{(a=13)(b=3)(c=54)(d=33)(e=22)}(#1=#2){%

\straighteniff{ifnum}{#2>50 }

{\breakfor{There's a number larger than 50: #1=#2.}}}

{No number larger than 50.}

ere's a number larger than 50 : c=54.

\dofornoempty{dd,e,,acb,3,ee4,,,}#1,{%

\dofor{#1}##1{[##1]}{}...%

}{}

[d][d]...[e]...[a][c][b]...[3]...[e][e][4]...

for statements: first steps

\newfor<command>{<optional passed arguments>}

<parameter text>{<definition>}[<optional coda>]
is creates a recursive <command> that will consume all
input with structure <parameter text>. Let's forget {<op-
tional arguments>} for a while, since they're optional
(albeit braced). Let's forget the optional coda as well. So it
boils down to :

\newfor<command><parameter text>{<definition>}

so that basically \newfor works like \def. e <parameter
text> is a real parameter text as with \def, just like {<def-
inition>} is a real definition, hence the braces. e only
difference is there must be at least one argument, because
we need something to loop upon. I.e. <parameter text> is
at least #1.

Now you can launch <command> on an argument which
is made of as many occurrences of <parameter text> as
you wish, and on each occurrence <definition> will be
executed. So you've created a loop. And the good news is
that this loop is fully expandable.

It is your job tomake sure that what is fed to <command>
has the correct argument structure.

If <coda> is specified, it is executed when the loop ends,
if it ends naturally, i.e. by exhausting its input, and not by
some of the loop-breaking commands on the next page.
ere can be no call to arguments of <parameter text> in
the <coda>, e.g.

\newfor\foo#1{...}[...#1...]

is impossible. (You'll get raw inner code.) Such reference
to arguments in the <coda> is possible only with passed
arguments, as you'll see in two pages from here.

(Note that if there's no <coda>, any spacewill be gobbled
after {<definition>}. is is so because I thought it was
better to be able to write [<code>] after a space, e.g. a
line end, than to stick it to {<definition>}, even though
that brings this little inconvenience, which is probably
harmless since \newfor is very unlikely to end up anywhere
in horizontal mode, i.e. in a paragraph.)

Macro thus created can be freely embedded into one
another.

\newfornoempty e \newfornoempty is similar to \newfor, except <defi-
nition> is not executed in the case the first argument is
empty.

\newfor\foo#1,{(#1)}

\foo{a,b,c,}

(a)(b)(c)

\newfornoempty\foo(#1,#2){[#1/#2]}

[Input exhausted.]

\edef\bar{\foo{(a,b)(c,d)(,e)(f,)}}

\meaning\bar

macro :->[a/b][c/d][f/]Input exhausted.

\newfor\values#1=#2,{%

The value of #1 is #2.\par

}

\def\setvalues#1{%

\ifsuffix,{#1}{\values{#1}}

{\values{#1,}}%

}

\setvalues{A=12,B=45,}

\setvalues{C=34}

e value of A is 12.
e value of B is 45.
e value of C is 34.

\newstring, % \pdfliteral requires full expansion!

\def\drawline#1{

0 0 m % Initializes the path

\ifsuffix,{#1}{\drawlinefor{#1}}

{\drawlinefor{#1,}}

} % l = line

\newfor\drawlinefor#1 #2,{#1 #2 l }[S]% S = draw path

\pdfliteral{

q % kind of PDF \bgroup

1 0 0 RG \drawline{20 10, 40 -15, 100 0,}

0 1 0 RG \drawline{30 -15, 60 10, 130 0}

Q} % kind of PDF \egroup

for statements: interruptions

(e commands on this page are the same as those in-
troduced with \dofor ; they're explained more thoroughly
here.)

\breakfor<code> Used inside a loop created with \newfor, this interrupts it,
gobbles the remaining input, and executes <code>. If the
loop had a <coda>, it is not executed. Any material between
the \breakfor command and the end of the definition of
the loop is gobbled. It is especially bad with conditionals,
so you should use \afterfi, or better yet a \straightenif
version.

\retrieverest<code> is does the same thing as \breakfor, i.e. breaks the cur-
rent loop, but it passes the rest of the material initially
passed to the loop as a braced argument to <code>. Argu-
ments in that remaining material aren't extracted from
their surrounding delimiters, if any.

\pausefor <code>

\resumefor<loop command>

e \pausefor command stops the loop and executes
<code>. at means that you're in the middle of the mate-
rial being processed and you can act on it. It is useful if the
material isn't totally regular. For instance, a typical BibTEX
entry is a list of `<field>=<value>' pairs, with each pair
terminated by a comma and the <value> either between
braces or quotes. us, you can't have a simple

\newfor\bibfor#1=#2,{#1...#2}

to process the entry, because a <value> may be delimited by
quotes and still contain a comma, and quotes mean nothing
to TEX, so the comma will be mistaken for the delimiter.
An oversimplified solution with \pausefor can be seen on
the right. e loop actually works on the predictable part
only (before the equal sign), is interrupted, the value is
retrieved, and the loop is resumed. (Why one would want
to process a BibTEX entry with TEX in the first place is a
question I can personally answer.)

Once \pausefor is used, there must be somewhere
down your code a \resumefor<command> statement, to
launch the loop again, otherwise you'll end up stumbling
on some nasty internal code. It is impossible to know (in
a perfectly expandable way) the loop we're currently in,
hence the <command> as a argument to \resumefor : it is
the loop one wants to start again. Yes, it means you can
also process the rest of the material with another loop,
the consequences of which I leave it to you to ponder.
Passed arguments, if any, should follow <command> after
\resumefor.

\newfor\foo#1{%

\straighteniff{if}{\noexpand#1z}

{\breakfor{There is a `z'!}}

#1... % This will be gobbled.

}[There is no `z'...]

\foo{abcdef}\par

\foo{abzdef}

a... b... c... d... e... f... ere is no `z'...
a... b... ere is a `z' !

\def\remainder#1{(And `#1' was still to come.)}

\newfor\foo#1=#2,{%

\unless\ifnum#1=#2

\afterfi{% Thrilling...

\retrieverest{There is a false equation!

\remainder}}%

\fi}

\foo{3=3,2=2,451=451,7=4,78=78,9=0,}

ere is a false equation ! (And `78=78,9=0,' was still to come.)

\newfor\bibfor#1={%

\pausefor{\getvalue{#1}}}

\def\getvalue#1{%

\trim{#1}:

\ifnextnospace"{\getquotevalue}

{\getcommavalue}

}

\def\getquotevalue"#1",{\showvalue{#1}}

\def\getcommavalue#1,{\showvalue{#1}}

\def\showvalue#1{%

{\it\trim{#1}}.\par\resumefor\bibfor}

\bibfor{

Author = {John Doe},

Title = "Me, myself and I",

Year = 1978,}

Author : John Doe.
Title : Me, myself and I.
Year : 1978.

for statements: passed arguments

Suppose you want to retrieve the largest number in
a list a numbers. e first example on the right shows
you how to do so. But this solution won't work if you
need the loop to be expandable, because there's a number
assignment.

at's why loops defined with \newfor can pass ar-
guments from one iteration to the next. e number of
those arguments are the {<optional passed arguments>}

in the description of \newfor two pages ago. So, a typical
fully-fledged use of \newfor is :

\newfor\myloop{2}#3=#4,{...#1...#2...#3...#4...}

[...#1...#2...]

which means that \myloop takes four arguments, two of
which are actually passed arguments, the third and the four
being in the recursive list that \myloop runs on. Besides, as
you can see, passed arguments can appear in <coda>. Now
a call to \myloop looks like :

\myloop{one}{two}{a=1,b=2,...}

where one and two are passed arguments. ere can be up
to 8 passed arguments (since there must be at least one
argument to loop on), and if there are n of them, numbering
of arguments in <parameter text> must start at n+1, as
in the above example.

\passarguments<arg1><arg2>... Passed arguments are automatically retrieved from one
iteration to the next. However, if you can't change them,
they aren't very interesting. Hence this command : it passes
<arg1>, <arg2>, etc., to the next iteration, replacing the
previous ones. ere must be as many arguments to \pas-

sarguments as required by the loop, even if you don't want
to pass new values for all (in which case, just pass the
previous value). Beware : \passarguments ends the current
iteration, just like \breakfor, and any remaining material
in the definition of the loop is gobbled.

us, the second version of our \findlargest com-
mand works as follows : it takes one harmless passed ar-
gument, and loops on the following list. Obviously, 45 is
larger than 0, so it is passed as the new first argument ;
then, 33 is not larger than 45, so nothing happen, and 45 is
implicitly passed again as the first argument, and so on and
so forth, until finally the <coda> prints the largest number
in the list. And, as illustrated by the \edef, everything
expands nicely.

\newcount\largest

\newfor\findlargest#1,{%

\ifnum#1>\largest

\largest=#1

\fi}

[The largest number is \the\largest.]

\findlargest{45,33,1,4844,12,655,}

e largest number is 4844.

\newfor\findlargest{1}#2,{%

\straighteniff{ifnum}{#2>#1 }

{\passarguments{#2}}%

}

[The largest number is #1.]

\edef\foo{\findlargest{0}{45,33,1,4844,12,655,}}

\meaning\foo

macro :->e largest number is 4844.

for s t a t ement s: e x amp l e s

Loops created with \newfor are somewhat tricky to get
a hand on, so here are some examples. First of all, youmight
think that it would be nice to be able to define a loop whose
argument structure is defined but not its replacement text,
so that you can call it on similar lists but with different
operations. For instance, a generic loop that works on
all comma-separated lists. You can't do that exactly with
\newfor, but you can easily use passed arguments to do
something similar, e.g.:

\newfor\commalist{1}#2,{#1{#2}}

\commalist\tree{leaf,fruit,twig,}

\commalist\scale{b minor,f sharp,whatever lydian}

with \tree and \scale defined to process one argument :
\commalist itself has no real definition, and you don't have
to bother about passed arguments (although you can still
use them).

e first example sorts a list of numbers separated by
commas. e first loop, \sortnum, takes a passed argument
which contains the numbers already sorted (so it is empty
at the beginning) and it runs on the list to be sorted. e
second loop, \subsortnum, takes two passed arguments :
the first one is the number under investigation, the second
one is the list of numbers smaller than the number under
investigation (so it is empty too at the beginning), and
it is updated each time we find such a number as the
third, non-passed arguments to \subsortnum, which is an
element of the list of already sorted numbers as preserved
in \sortnum's first passed argument... got that ?

Let's follow some iterations. e first call is :

% incoming arguments

\sortnum{}5,12,-161,3,0,63,22,-45,

and it calls

\subsortnum{5}{}{}

so that \subsortnum terminates immediately : it has no
input. So it calls its coda :

\passarguments{5,}

(where 5 is really the first argument following the empty
second one). Since \subsortnum has terminated, this call

\newfor\sortnum{1}#2,{%

\subsortnum{#2}{}{#1}%

}[Sorted list: #1]

\newfor\subsortnum{2}#3,{%

\straightenif{ifnum}{#1<#3 }

{\retrieverest{\passtosortnum{#2#1,#3,}}}

{\passarguments{#1}{#2#3,}}%

}[\passarguments{#2#1,}]

\def\passtosortnum#1#2{\passarguments{#1#2}}

\sortnum{}{5,12,-161,3,0,63,22,-45,}

Sorted list : -161,-45,0,3,5,12,22,63,

for s t a t ement s: e x amp l e s

to \passarguments is for \sortnum, hence the following
iteration is :

% incoming arguments

\sortnum{5,}12,-161,3,0,63,22,-45,

–> \subsortnum{12}{}5,

Ah, something new. 12 is larger than 5, so the conditional
is false. So \subsortnum passes the following to itself :

\passarguments{12}{5,}

–> \subsortnum{12}{5,}{}

and once again it terminates, hence :

\passarguments{5,12,} % incoming arguments

–> \sortnum{5,12,}-161,3,0,63,22,-45,

% incoming argument

–> \subsortnum{-161}{}5,12,

and obviously -161 is smaller than 5, so the rest of the list
is retrieved with \retrieverest and passed as the second
argument of \passtosortnum. Once again, since this termi-
nates \subsortnum, \passarguments in \passtosortnum is
for \sortnum :

\passtosortnum{-161,5,}{12,}

% incoming arguments

–> \sortnum{-161,5,12,}3,0,63,22,-45,

% incoming arguments

–> \subsortnum{3}{}-161,5,12,

–> \subsortnum{3}{-161,}5,12,

–> \passarguments{161,3,5,12,}

–> \sortnum{-161,3,5,12,}0,63,22,-45,

...

and so on and so forth.
Replace the test with any other one and you have a

generic sorting function, as in the example on the right,
which sorts entries alphabetically or chronologically. It is
possible to make things both cleverer and simpler. (e
Lua code compares two strings, and it could very well have
handled the \year version.)

e next example is a palindrome detector : it returns
true if the string it is fed is made of a string followed

\newfor\sortbooks{2}#3(#4),{%

\subsortbooks#1{#3(#4)}{}{#2}

}[\bgroup\it#2\egroup]

\newfor\subsortbooks{3}#4(#5),{%

#1#2{#4}{#5}{#3}

}[\passarguments#1{#3#2,}]

\def\alpha#1(#2)#3#4#5{%

\directlua{

if "#1"<"#3" then

tex.print("\noexpand\\firstoftwo")

else

tex.print("\noexpand\\secondoftwo")

end}

{\retrieverest{%

\passtosortbooks\alpha{#5#1(#2),#3(#4),}}}

{\passarguments\alpha{#1(#2)}{#5#3(#4),}}

}

\def\year#1(#2)#3#4#5{

\straightenif{ifnum}{#2<#4 }

{\retrieverest{%

\passtosortbooks\year{#5#1(#2),#3(#4),}}}

{\passarguments\year{#1(#2)}{#5#3(#4),}}

}

\def\passtosortbooks#1#2#3{\passarguments#1{#2#3}}

\def\books{

Oblivion (2004),

Infinite Jest (1996),

Brief Interviews with Hideous Men (1999),

Girl with Curious Hair (1989),

The Broom of the System (1987),

The Pale King (2011),% No parasitic space!

}

David Foster Wallace's books in alphabetical order:\par

\passexpanded{\sortbooks\alpha{}}\books \par

David Foster Wallace's books ordered by date:\par

\passexpanded{\sortbooks\year{}}\books

David Foster Wallace's books in alphabetical order :
Brief Interviews with Hideous Men (1999), Girl with Curious Hair
(1989), Infinite Jest (1996), Oblivion (2004), e Broom of the
System (1987), e Pale King (2011),
David Foster Wallace's books ordered by date :
e Broom of the System (1987), Girl with Curious Hair (1989),
Infinite Jest (1996), Brief Interviews with Hideous Men (1999),
Oblivion (2004), e Pale King (2011),

for s t a t ement s: e x amp l e s

by itself reverse (which is not the exact definition of a
palindrome, which is a string that is its own reverse, but
we keep things simple).

e first loop, \palincount, simply counts the number
of characters in the string ; it also reaccumulates it as its
second argument, something that could be avoided if there
was a wrapper macro. Once it is finished, it passes the
original string along with half the number of characters
to \palincheck, which simply accumulates in reverse this
number of characters, by decreasing it on each iteration.
Once this number is exhausted, it compares what it has
accumulated to what there remains to be processed, and if
both strings match, the original string is a palindrome.

\newfor\palincount{2}#3{%

\passarguments{\numexpr(#1+1)}{#2#3}%

}[\palincheck{\numexpr(#1/2)}{}{#2}]

\newfor\palincheck{2}#3{%

\reverse\straightenif{ifnum}{\numexpr(#1-1)>0 }

{\retrieverest{\compare{#3#2}}}

{\passarguments{\numexpr(#1-1)}{#3#2}}%

}

\def\compare#1#2{%

\ifstring{#1}{#2}{TRUE}{FALSE}%

}

\edef\foo{\palincount{0}{}{abcdeffedcba}}

\edef\bar{\palincount{0}{}{abcdff}}

\meaning\foo, \meaning\bar

macro :->TRUE, macro :->FALSE

	Writing macros with texapi
	Engine and format detection
	Argument manipulation
	Defining & using commands
	Tests with commands
	Various conditionals
	Conditional expressions
	Poking at what comes next
	String manipulation
	Various things on the same page
	While statements
	For statements on the fly
	For statements: first steps
	For statements: interruptions
	For statements: passed arguments
	For statements: examples

