
XLOP v 0.28

User Manual

Jean-Côme Charpentier

November 11, 2020

Contents

1 Overview 1

2 xlop Instructions 4

2.1 In the Beginning Was the Number 4

2.1.1 Size . 4

2.1.2 Syntax . 5

2.2 xlop Parameters . 5

2.2.1 Symbols . 6

2.2.2 General Displaying . 6

2.2.3 Dimensions . 8

2.2.4 Figure’s Styles . 9

3 Arithmetic Operations 12

3.1 Addition . 12

3.2 Substraction . 15

3.3 Multiplication . 17

3.4 Division . 19

3.4.1 End Control . 19

3.4.2 Other Features . 22

3.4.3 Non Integer Numbers and Negative Numbers 23

4 Other Commands 25

4.1 Starred Macros . 25

4.2 Input-Output . 25

4.3 Figures of Numbers . 27

4.4 Comparisons . 28

4.5 Advanced Operations . 29

A Short Summary 35

A.1 Compilation times . 35

A.2 Macro List . 37

A.3 Parameter list . 39

B Tricks 43

B.1 xlop vs. calc and xfp . 43

B.2 Complex Operations . 44

B.3 Direct Access to Number . 47

i

C Future Versions 49

D Index 51

ii

Chapter 1

Overview

The xlop package is intended to make automatic arithmetic operations on

arbitrary sized numbers and to display result either on display mode or in-

line mode. Here is a first exemple for an overview of the syntax:

+

1

4 5.0 5

7 8.4

1 2 3.4 5

sour
e

\opadd{45,05}{78,4}

We comment this first example in order to give an idea about how use xlop.

Addition is displayed “like in school”: this is the default displaying. We have

an alignment on dots (operand’s dot and result’s dot), operator symbol is

put on the left and it is vertically centered between the operands, and the

decimal separator is a dot even though we have specified operands with

comma. Finally, note that there is a carry above the first operand.

Alignment on dot is obligatory. The other points above are deal with

options. Many macros accept an optional argument which controls some

aspects of displaying or computing operation. For that, we use a “keyval-

like” syntax: we specify a sequence of parameter’s modifications through

an affectation’s comma separated sequence. One affectation has one of the

two possible syntax below:

<parameter>=<value>

<parameter>

the second one is a shorthand for:

<parameter>=true

In this affectation sequence, we can put space(s) after comma. But don’t

put space around the equal sign nor before comma: if you put space(s) here,

that means that parameter name or value has a space.

So, if you want a comma as decimal separator , an operator symbol side

by side with the second operand, and no carry, you have just to say:

1

+
4 5,0 5

7 8,4

1 2 3,4 5

sour
e

\opadd[de
imalsepsymbol={,},

voperator=bottom,

arryadd=false℄{45.05}{78.4}

Note the trick which consists to put the comma between braces in the dec-

imal separator symbol definition. In fact, if you say:

sour
e

\opadd[de
imalsepsymbol=,,voperator=bottom,

arryadd=false℄{45.05}{78.4}

xlop drives mad! It don’t understand what is this sort of list!

Another important point, though it is less apparent, is that the figures

are put in very precise places. Each figure is put in a box of fixed width and

fixed height (user can change these values), decimal separator is put in a

null-width box (by default), and the lines have a regular interspace (with or

without horizontal rule). This allows exact spacing and to place what we

want where we want.

+

1

4 5.0 5

7 8.4

1 2 3.4 5

carry

sour
e

\psset{xunit=\op
olumnwidth,

yunit=\oplineheight}

\opadd{45.05}{78.4}

\oplput(1.5,3){
arry}

\psline{­>}(1,3.15)(­3.25,3.15)

This example uses package pstricks

We have said that xlop package is able to deal with arbitrary sized num-

bers. We come again about this subject and, for now, we just give an exam-

ple which shows what is possible. Don’t look at the code, some explanations

will be given later in this manual, for now just admire the result!

sour
e

\opdiv[style=text,period℄{1}{49}

1÷49 = 0.020408163265306122448979591836734693877551. . .

The package xlop provides some other features. It is possible to manip-

ulate numbers through variables. These variables can be created with an

assignation or as a computation result. You can also manipulate the figures

individually:

The first figure after dot of

45.05+78.4 is 4.

sour
e

\opadd

*

{45.05}{78.4}{r}%

The first figure after dot of

$45.05+78.4$ is

\opgetde
imaldigit{r}{1}{d}%

\opprint{d}.

you can make tests:

2

The sum 45.05 + 78.4 is

greater than 100.

sour
e

\opadd

*

{45.05}{78.4}{r}%

The sum $45.05+78.4$ is

\op
mp{r}{100}%

\ifopgt greater than

\else\ifoplt less than

\else equal to

\fi\fi

100.

you can use some operations and some functions:

gcd of 182 and 442 is 26

sour
e

g
d of 182 and 442 is

\opg
d{182}{442}{d}\opprint{d}

you can compute complex expression in infix form:

2+32

gcd(22,33)
= 1

sour
e

\opexpr{(2+3^2)/(g
d(22,33))}{r}%

$$\fra
{2+3^2}{\g
d(22,33)} =

\opprint{r}$$

3

Chapter 2

xlop Instructions

Except some macros which will be examined later, the xlop’s macros can

have an optional argument between brackets in order to localy modify pa-

rameter’s values. The other (mandatory) arguments are (nearly) always

numbers. The two sections of this chapter describe in details what is a num-

ber for xlop and how use parameters.

2.1 In the Beginning Was the Number

2.1.1 Size

Before we see the general syntax of number, we examin the very particular

xlop feature: the ability to deal with arbitrary sized number.

To be precise, the theoric maximum size of a number is 231 − 1 digits.

In practice, this limit can’t be reached for two essential reasons. The first

one is that a multiplication with two numbers with 225 digits needs more

than 7 000 years to be performed on the author computer! The second one

is more restrictive because it is linked to TEX stack size limits. Here is a table

showing a TEX compilation for a multiplication with two operands of same

size, on a linux computer, pentium II 600 and 256 Mb RAM:1

number of digits 100 200 300 400 425 450

compilation time (s) 2 8 18 32 36 crash

The “crash” in the table is due to an overstack for hash table. On LATEX,

the limit before crash will be reduced. These tests are made on a min-

imal file. With a typical document, this limit will be reduced too. The

spool size is another limit quickly reached. To typeset this document which

contain many calls to the xlop macros, the author has grown up the spool

size to 250000 (125 000 was insufficient) editing the line pool_size in the

texmf.
nf file. Also, the author has grown up the hash table to 1000 in the

line hash_extra.

1In fact it was the author computer in 2004. The actual author computer is more pow-

erfull but the author is lazy, and he has not remade the tests!

4

2.1.2 Syntax

Now we present the syntax using the BNF grammar. There will be human

explanations later:

〈number〉 := {〈sign〉}〈positive〉 | 〈name〉
〈sign〉 := + | ­

〈positive〉 := 〈integer〉 | 〈sep〉〈integer〉 |
〈integer〉〈sep〉 | 〈integer〉〈sep〉〈integer〉

〈sep〉 := . | ,

〈integer〉 := 〈digit〉{〈digit〉}
〈name〉 := 〈start〉{
hara
ter}

〈start〉 :=
hara
ter except 〈sign〉, 〈sep〉
, and 〈digit〉

The
hara
ter symbol means nearly any character accepted by TEX.

The exceptions are characters % and # which are completely prohibited. In

fact, the use of active characters is risked. For instance, on LATEX, the ~ defi-

nition prohibits the use of it inside a variable name. In the other hand, the

\ is always the escape char, that is, the variable name will be the name after

all is expanded. There isn’t any other restraint as the following code show

it:

4

sour
e

\new
ommand\prefix{a/b}

\opadd

*

{2}{2}{a/b_{^
}!&$}

\opprint{\prefix_{^
}!&$}

Note particullary that a/b_{^
}!&$and \prefix_{^
}!&$produce exactly

the same name. . . obviously if \prefix has the right definition! This possi-

bility to have a name using macro could seem useless but it is not true. For

instance, you can realize loops with names as r1, r2, . . . , r<n> using the

code r\the\
pt as variable name, where
pt is a counter in TEX meaning.

With LATEX, the code is more verbose with r\number\value{
pt} where

pt is now a LATEX counter. We will see an example using this syntax in the

section B.2 page 44.

In practice, what does it mean all these rules? First, they mean that

a number written in a decimal form can be preceded by any sequence of

plus or minus signs. Obviously, if there is an odd number of minus signs,

the number will be negative. Next, a decimal number admits only one dec-

imal separator symbol which can be a dot or a comma, this one can be put

anywhere in the number. Finally, a number is write in basis 10. Be carefull:

these rules mean that ­a is not valid.

The package uses some private names and it is safe to not begin a vari-

able name with the character �.

2.2 xlop Parameters

Parameter assignments are local to the macro when they are indicated in

the optional argument. To make global a parameter assignment, you have

5

to use the \opset macro. For instance:
sour
e

\opset{de
imalsepsymbol={,}}

gives the comma as decimal separator symbol for the whole document, at

least, until another redefinition with \opset.

2.2.1 Symbols

The afterperiodsymbol parameter indicates the symbol that follows a

quotient in line in a division with period search. We will see this param-

eter with the division. Its default value is \ldots

The equalsymbol parameter indicates the symbol used for equality. Its

default value is $=$. In fact, this parameter is defined with:

sour
e

\opset{equalsymbol={$=$}}

that is, with braces in order to protect the equal sign. Without theses braces,

there will be a compilation error. You have to process like that when there

is an equal sign or a comma in the value.

The parameter approxsymbol indicates the symbol used for approxi-

mations. Its default value is \approx.

The parameter de
imalsepsymbol indicates the symbol used for the

decimal separator. Its default value is a dot.

Parameters addsymbol, subsymbol, mulsymbol, and divsymbol indi-

cate the symbols used for the four arithmetic operations. The default value

are $+$, $­$, \times et \div respectively.

2.2.2 General Displaying

The voperation parameter indicates the way a dispayed operation is put

with respect to the baseline. The possible values are top,
enter, and

bottom, the latter one is the default value.

top +

1

4 5

1 7 2

2 1 7

center
+

1

4 5

1 7 2

2 1 7

bottom

+

1

4 5

1 7 2

2 1 7

sour
e

top\quad

\opadd[voperation=top℄{45}{172}

enter\quad

\opadd[voperation=
enter℄{45}{172}

bottom\quad

\opadd[voperation=bottom℄{45}{172}

6

The voperator parameter indicates how the operator symbol is put

with repect to operands. The possible values are top,
enter (default value),

and bottom.

top

+
1

4 5

1 7 2

2 1 7

center

+

1

4 5

1 7 2

2 1 7

bottom

+

1

4 5

1 7 2

2 1 7

sour
e

top\quad

\opadd[voperator=top℄{45}{172}

enter\quad

\opadd[voperator=
enter℄{45}{172}

bottom\quad

\opadd[voperator=bottom℄{45}{172}

The deletezero parameter indicates if numbers in operation should

be displayed with or whithout non-significant zeros. Exact rôle of this pa-

rameter depends of the actual operation. We will see that when we will

study the different operations.

The style parameter indicates the way an operation is displayed: dis-

play with display value (default value) or inline with text value. We will

see when we will study division because there is many possibilities with this

operation.

45+172= 217
sour
e

\opadd[style=text℄{45}{172}

In inline operations, xlop takes care to not typeset the formula in mathe-

matic mode in a direct way. This allow to specify what you want as in the

next example, and it is also for that that you have to specify the classical

values of symbols between mathematic delimiters.

42 plus 172 equal 214

sour
e

\opadd[addsymbol=plus,

equalsymbol=equal,

style=text℄{42}{172}

Meanwhile, xlop introduces exactly the same penalities and the same spaces

as for a mathematic formula.

The parenthesisnegative parameter indicates how to typeset nega-

tive numbers in inline operations. The possible values are:

• none which typesets negative numbers without parenthesis;

• all which typesets negative numbers with parenthesis;

• last which typesets negative numbers with parenthesis but the first

one.

7

−12+−23=−35

(−12)+ (−23)= (−35)

−12+ (−23)=−35

sour
e

\opadd[style=text,

parenthesisnegative=none℄

{­12}{­23}\par

\opadd[style=text,

parenthesisnegative=all℄

{­12}{­23}\par

\opadd[style=text,

parenthesisnegative=last℄

{­12}{­23}

2.2.3 Dimensions

In displayed operations, figures are put in fixed size boxes. The width and

height are given by the lineheight and lineheight parameters. The de-

fault value of lineheight is \baselineskip, that is, the interline space in

operation is the same (by default) as in the normal text. The default value

for
olumnwidth is 2ex because the “normal” width of figures would give

bad results.

+

1 1

45.89

127.5

173.39

sour
e

\opadd[
olumnwidth=0.5em℄

{45.89}{127.5}

One reason for this bad result is that the decimal separator is put in a box

which width is controlled by the de
imalsepwidth parameter and the de-

fault value of this parameter is null. You can improve this presentation giv-

ing a “normal” width to the dot.

+

1 1

45.89

127.5

173.39

sour
e

\opadd[
olumnwidth=0.5em,

de
imalsepwidth=0.27778em℄

{45.89}{127.5}

It is better but it is dangerous to give a positive width to the box which con-

tains the decimal separator. It will be more difficult to place extern object

and it is counter against the idea to have a fixed grid. You should avoid this

in normal time.

The
olumnwidth and lineheight parameters correspond to the only

dimensions that xlop provides as public ones, that is, \op
olumnwidth and

\oplineheight respectively. It is dangerous to directly modify these di-

mensions since a modification in a “normal” way doesn’t only change the

dimension value. Package xlop make these dimensions public only for read-

ing, not for writting.

The two next parameters allow to specify width of horizontal and verti-

cal rules stroked by xlop. We have hrulewidth and vrulewidth parame-

ters. The default values are both 0.4pt.

8

These rules are typeset with no change on grid. That is, with no space

added. Therefore, with great values for thickness, the rules could run over

numbers.

+

1

4 2

1 7 2

2 1 4

sour
e

\opadd[hrulewidth=8pt℄{42}{172}

There is also a parameter which allows to control the horizontal shift

of decimal separator. It is the de
imalsepoffset parameter with a default

value of ­0.35. This value indicates a length with the unit\op
olumnwidth.

We will see an example at section 3.4 page 19.

2.2.4 Figure’s Styles

The xlop package provides five types of numbers and associates five style

parameters:

• operands with operandstyle;

• result with resultstyle;

• remainders with remainderstyle;

• intermediary numbers with intermediarystyle;

• carries with
arrystyle.

+

1 1

4 5.8 9

1 2 7.5

1 7 3.3 9

sour
e

\opadd[operandstyle=\blue,

resultstyle=\red,

arrystyle=\s
riptsize\green℄

{45.89}{127.5}

Keep in mind that, in this manual, we use pstricks package.

In fact, the management of these styles is even more powerfull since

you can distingish different number of a same class. In one operation, you

have several operands, and, possibly several remainders and several inter-

mediary numbers. You can access to the style of these numbers adding an

index to the matching style.

+

1 1

4 5.8 9

1 2 7.5

1 7 3.3 9

sour
e

\opadd[operandstyle=\blue,

operandstyle.1=\lightgray,

resultstyle=\red,

arrystyle=\s
riptsize\green℄

{45.89}{127.5}

In this example, we indicate that the first operand must be typesetted with

the \lightgray style. We don’t indicate anything for the second operand,

so it takes the basic style for its class. (Then with \blue style.)

9

This mechanism is even more powerfull since you can write two levels

index for operands, carries, and intermediary numbers (one level for result

and carry) in order to access to each style figure of these numbers. To sim-

plify index, a positive index indicates the rank of a figure in the integer part

(right to left order, index 1 is for the unit figure) and a negative index indi-

cates the rank of a figure in the decimal part (left to right order, −1 is for the

tenth figure).

+

1 1

0 4 5.8 9

1 2 7.5 0

1 7 3.3 9

sour
e

\opadd[operandstyle.1.1=\white,

operandstyle.1.­2=\white,

operandstyle.2.3=\white,

resultstyle.2=\white,

deletezero=false℄

{045.89}{127.50}

You can also use a macro with one parameter as a style.

+

1 1

4 • .8 •
• 2 7.5

1 • 3.3 9

sour
e

\new
ommand\hole[1℄{\bullet}

\opadd[operandstyle.1.1=\hole,

operandstyle.1.­2=\hole,

operandstyle.2.3=\hole,

resultstyle.2=\hole℄

{45.89}{127.5}

When the style is a macro with argument, this one is the figure. Here is a

more complicated example using pst-node package of the pstricks bundle:

+

1

4 5

1 7 2

2 1 7

figure

number

sour
e

\new
ommand\OPoval[3℄{%

\dimen1=#2\op
olumnwidth

\ovalnode{#1}

{\kern\dimen1 #3\kern\dimen1}}

\opadd[voperation=top,

operandstyle.1.1=\OPoval{A}{0},

operandstyle.2.2=\OPoval{C}{0.8}℄

{45}{172}\qquad

\begin{minipage}[t℄{2
m}

\pnode(0,0.2em){B}\ figure

\n
ar
{­>}{A}{B}\par

\pnode(0,0.2em){D}\ number

\n
ar
{<­}{D}{C}

\end{minipage}

As for figures, the decimal separator take account to number style. To ac-

cess individually to the decimal separator style, you have to use d index,

numeric indexes are for figures.

10

2.4 6

3 5.7

_ _ _ _

_ _ _ _

_ _ _

_ _._ _ _

× sour
e

\new
ommand\hole[1℄{\texttt{_}}

\opmul[intermediarystyle=\hole,

resultstyle=\hole,

resultstyle.d=\white℄{2.46}{35.7}

11

Chapter 3

Arithmetic Operations

3.1 Addition

Addition is deal by the \opadd macro. When it is in display mode, it display

only nonnegative numbers. Then, it displays a substraction when one of

the operands is nonpositive.

− 2 4 5

7 2

1 7 3

sour
e

\opadd{­245}{72}

In a general manner, the principle is to display the operation that allows to

find the result as you make it “by hand”. On the contrary, the inline mode

shows always an addition since we can now write nonpositive numbers.

−245+72=−173
sour
e

\opadd[style=text℄{­245}{72}

In addition to the general parameters discussed in the section 2.2, the macro

\opadd uses parameters
arryadd, last
arry, and deletezero.

The
arryadd parameter is a boolean parameter, that is, it accepts only

the values true and false. By habit, when you don’t specify the value and

the equal sign, that is like assignment =true. This parameter indicates if

the carries must be showed or not. Its default value is true.

The last
arry parameter is also a boolean parameter. It indicates if a

carry without matching digit for the two operands must be showed or not.

Its default value is false. Take care to the exact rôle of this parameter. For

instance, if the second operand in the following example is 15307, the last

carry would be showed for any value of the last
arry parameter since

there is a matching digit in the second operand.

+

1 1

4 8 2 5

5 3 0 7

1 0 1 3 2

sour
e

\opadd{4825}{5307}

12

+ 4 8 2 5

5 3 0 7

1 0 1 3 2

sour
e

\opadd[
arryadd=false℄{4825}{5307}

+

1 1 1

4 8 2 5

5 3 0 7

1 0 1 3 2

sour
e

\opadd[last
arry℄{4825}{5307}

The deletezero parameter is also a boolean parameter. It indicates

if non-significant zeros must be deleted or not. Its default value is true.

When this parameter is false, the operands and the result has the same

number of digits. For that, xlop package adds non-significant zeros. Also,

the non-significant zeros of operands are not removed.

+

1 1 1

1 2.3 4 2 7

5.2 7 7 3

1 7.6 2

+

1 1 1

0 1 2.3 4 2 7

0 0 5.2 7 7 3

0 1 7.6 2 0 0

sour
e

\opadd{012.3427}{5.2773}

\opadd[deletezero=false℄

{012.3427}{5.2773}

This parameter has exactly the same rôle for inline mode than for dis-

played mode.

2.8+1.2= 4

02.8+1.2= 04.0

sour
e

\opadd[style=text℄{02.8}{1.2}

\opadd[style=text,

deletezero=false℄{02.8}{1.2}

Version 0.27 adds a \opmanyadd macro in order to add more than two

operands. There are some limitations:

• all the operands must be non negative;

• some parameters are useless, for instance style;

• carries aren’t displayed.

In the other hand, the vmanyoperator allows to control the operator signs.

Here is the first example with the basic syntax. The operands must be

enclosed inside braces. The number of arguments is not limited.

13

+
+
+ 1 2 3.4

3.1 4 1 6

2.7 1 8 2 8

0.0 0 1

1 2 9.2 6 0 8 8

sour
e

\opmanyadd{123.4}{3.1416}

{2.71828}{0.001}

The \opmanyadd macro accepts the style parameters for operands and

result. About the operand style, the first index is the operand’s place (top to

bottom ones) and the second index is the digit of operand. For instance:

+
+ 1 2.6

8 5 3.3

1 5 8.1

1 0 2 4

sour
e

\new
ommand\R{\
olor{red}}

\opmanyadd[operandstyle.2.3=\R,

operandstyle.3.3=\R,

resultstyle.3=\R,

resultstyle.4=\R℄

{12.6}{853.3}{158.1}

This example shows that non significant zeros are discarded. They can be

display with the deletezero parameter at false value:

+
+ 1 2.6

8 5 3.3

1 5 8.1

1 0 2 4.0

sour
e

\opmanyadd[deletezero=false℄

{12.6}{853.3}{158.1}

The \opmanyaddmacro uses also the voperationparameter as for \opadd

macro.

There is a parameter which is specific to \opmanyadd: the vmanyoperator

one. These parameter allows to display plus operator in six different ways.

sour
e

\opmanyadd{1}{12}{123}{1234}\quad

\opmanyadd[vmanyoperator=
enter℄

{1}{12}{123}{1234}\quad

\opmanyadd[vmanyoperator=top℄

{1}{12}{123}{1234}\quad

\opmanyadd[vmanyoperator=bottom℄

{1}{12}{123}{1234}

+
+
+ 1

1 2

1 2 3

1 2 3 4

1 3 7 0

+
+
+ 1

1 2

1 2 3

1 2 3 4

1 3 7 0

+
+
+ 1

1 2

1 2 3

1 2 3 4

1 3 7 0

+
+
+

1

1 2

1 2 3

1 2 3 4

1 3 7 0

We can see that the default value is center. The values with lowercase first

letter display as many operators than operands minus one. The same val-

ues with upercase first letter display one single plus operator:

14

sour
e

\opmanyadd[vmanyoperator=Center℄

{1}{12}{123}{1234}\quad

\opmanyadd[vmanyoperator=Top℄

{1}{12}{123}{1234}\quad

\opmanyadd[vmanyoperator=Bottom℄

{1}{12}{123}{1234}

+

1

1 2

1 2 3

1 2 3 4

1 3 7 0

+ 1

1 2

1 2 3

1 2 3 4

1 3 7 0

+

1

1 2

1 2 3

1 2 3 4

1 3 7 0

3.2 Substraction

Substraction is made by \opsub macro. In displayed mode, the substrac-

tion shows only nonnegative numbers. For that, it shows an addition when

one operand is nonpositive.

+

1

2 4 5

7 2

3 1 7

sour
e

\opsub{­245}{72}

In a general way, the principle is to display the operation which allow to

find the result as you make it “by hand”. On the contrary, inline mode shows

always a substraction since you can now write nonpositive numbers.

−245−72=−317
sour
e

\opsub[style=text℄{­245}{72}

This principle apply also when the first operand is less than the second one

(positive case). In this case, we have an operand inversion.

− 2.4 5

1.2

1.2 5

sour
e

\opsub{1.2}{2.45}

Of course, inline operation gives an exact result.

1.2−2.45=−1.25
sour
e

\opsub[style=text℄{1.2}{2.45}

In addition to general parameters we have seen at section 2.2, \opsub

takes account of
arrysub, last
arry, offset
arry, deletezero, and

behaviorsub parameters.

The
arrysub parameter is a boolean one which indicates if carries

must be present or not. Its default value is false. (Remember that the

default value of
arryadd parameter is true.)

15

− 1 1

1 1

1 2 3 4

5 6 7

6 6 7

sour
e

\opsub[
arrysub℄{1234}{567}

In the last example, you can see that there is no carry above the last

digit of 1234. This is quite common (at least in France). If you want dis-

play this last carry, you have to use the last
arry parameter. This param-

eter does not have the same behavior in substraction and in addition since

here, the last carry is not displayed when the second operand does not have

correspondent digit. (For addition, last carry is not displayed when all the

operands do not have correspondent digit.)

− 1 1 1

1 1 1

1 2 3 4

5 6 7

6 6 7

sour
e

\opsub[
arrysub,last
arry℄{1234}{567}

Note that, in this case, it is better to set the deletezeroparameter to false

in order to have a nicer result.

− 1 1 1

1 1 1

1 2 3 4

0 5 6 7

0 6 6 7

sour
e

\opsub[
arrysub,

last
arry,

deletezero=false℄{1234}{567}

Perhaps it seems to you that showing carries for substraction is a bit

more dense. You can enlarge the figure box with the op
olumnwidth pa-

rameter. You can also indicate the carry horizontal shift using theoffset
arry

parameter. Its default value is ­0.35.

− 1 1 1

1 1 1

1 2.3 4

0 5.6 7

0 6.6 7

− 1 1 1

1 1 1

1 2. 3 4

0 5. 6 7

0 6. 6 7

sour
e

\opsub[
arrysub,

last
arry,

deletezero=false℄{12.34}{5.67}

\bigskip

\opsub[
arrysub,

last
arry,

olumnwidth=2.5ex,

offset
arry=­0.4,

de
imalsepoffset=­3pt,

deletezero=false℄{12.34}{5.67}

It is possible that a substraction with two positive numbers and with the

first one less than the second one signs an user error. In this case, and only

in this case, the behaviorsub parameter allows a call to order. The three

possible values are:

• silent which is the default value and which gives the result;

• warning which gives also the result but shows the warning message:

16

xlop warning. Substra
tion with first operand less than se
ond one

See do
umentation for further information.

• error which shows the error message:

xlop error. See do
umentation for further information.

Type H <return> for immediate help.

! Substra
tion with first operand less than se
ond one.

and the operation is not performed.

3.3 Multiplication

The multiplication is under the control of the \opmul macro.

The parameters we will see below are hfa
tor,displayintermediary,

shiftintermediarysymbol, and deletezero. We studied the other pa-

rameters in section 2.2.

The shiftintermediarysymbol parameter indicates what is the sym-

bol used for showing the shifting of intermediary numbers (default value

is $\
dot$). The displayshiftintermediary parameter can take value

shift (default value) which shows this symbol only for shifting greater than

one level, value all which shows this symbol for all the shiftings, and the

value none which means that this symbol will be never showed.

sour
e

\opmul[displayshiftintermediary=shift℄{453}{1001205}\qquad

\opmul[displayshiftintermediary=all℄{453}{1001205}\qquad

\opmul[displayshiftintermediary=none℄{453}{1001205}

4 5 3

1 0 0 1 2 0 5

2 2 6 5

9 0 6 ·
4 5 3

4 5 3 · ·
4 5 3 5 4 5 8 6 5

× 4 5 3

1 0 0 1 2 0 5

2 2 6 5

9 0 6 · ·
4 5 3 · · ·

4 5 3 · · · · · ·
4 5 3 5 4 5 8 6 5

× 4 5 3

1 0 0 1 2 0 5

2 2 6 5

9 0 6

4 5 3

4 5 3

4 5 3 5 4 5 8 6 5

×

In fact, null intermediary numbers are not display because of the de-

fault value none of the displayintermediary parameter. The value all

shows all the intermediary numbers, even null intermediary numbers.

17

4 5 3

1 0 0 1 2 0 5

2 2 6 5

0 0 0

9 0 6

4 5 3

0 0 0

0 0 0

4 5 3

4 5 3 5 4 5 8 6 5

×

sour
e

\opmul[displayintermediary=all℄

{453}{1001205}

Note that null intermediary numbers are displayed with the same width

than the first factor width.

The displayintermediaryparameter accepts the value nonzerowhich

means the same than the none value except when second factor has only

one digit.

sour
e

\opmul{3.14159}{4}\qquad

\opmul[displayintermediary=nonzero℄{3.14159}{4}

3.1 4 1 5 9

4

1 2.5 6 6 3 6

×

3.1 4 1 5 9

4

1 2 5 6 6 3 6

1 2.5 6 6 3 6

×

Finally, parameter displayintermediaryaccepts the value Nonewhich

don’t display any intermediary numbers in all cases.

sour
e

\opmul[displayintermediary=None℄{453}{1001205}

4 5 3

1 0 0 1 2 0 5

4 5 3 5 4 5 8 6 5

×

The hfa
torparameter indicates how align operands. The default value,

right, gives a raggedleft alignment. The de
imal value gives an alignment

on dot.

sour
e

\opmul{3.1416}{12.8}\qquad\opmul[hfa
tor=de
imal℄{3.1416}{12.8}

3.1 4 1 6

1 2.8

2 5 1 3 2 8

6 2 8 3 2

3 1 4 1 6

4 0.2 1 2 4 8

× 3.1 4 1 6

1 2.8

2 5 1 3 2 8

6 2 8 3 2

3 1 4 1 6

4 0.2 1 2 4 8

×

18

For displayed multiplication, the deletezeroparameter is only for operands.

The result keeps its non-significant zeros since there are necessary in order

to make a correct dot shifting when we work “by hand”.

sour
e

\opmul[deletezero=false℄{01.44}{25}\qquad

\opmul{01.44}{25}

0 1.4 4

2 5

0 7 2 0

0 2 8 8

0 3 6.0 0

× 1.4 4

2 5

7 2 0

2 8 8

3 6.0 0

×

In the other hand, this parameter has its usual behaviour in inline multipli-

cation.

sour
e

\opmul[deletezero=false,style=text℄{01.44}{25}\qquad

\opmul[style=text℄{01.44}{25}

01.44×25= 036.00 1.44×25= 36

3.4 Division

The xlop package deals with “normal” division via \opdiv macro and with

euclidean division via \opidivmacro. Division is a very complex operation

so it is not strange that there are many parameters to control it.

Pay attention that the xlop package v. 0.28 is unable to deal with “en-

glish” division. In this package version, the division is the “french” one,

which is more or less used as it in some other countries. The xlop package

v. 0.3 will allow “enlish” division (and many more feautures).

3.4.1 End Control

In the following text, term step means the set of process which allow to get

one digit for the quotient. This number of steps is (not only) under the

control of maxdivstep, safedivstep, and period parameters. It is only

partially true because a classical division will stop automatically when a

remainder will be zero, whatever the values of these three parameters and

an euclidean division will stop with an integer quotient without attention

for these three parameters.

19

2 5

4 0

5 0

1 0

3 0

2 0

6 0

4 0

5 0

1 0

3

7

3.5 7 1 4 2 8 5 7 1

sour
e

\opdiv{25}{7}

2 5

4

7

3

sour
e

\opidiv{25}{7}

The first example stops because of the value of maxdivstep which is 10 by

default. Pay attention that the maximum step number could cause strange

result when it is too small.

1 2 4 8

0 4

1

3

4 1
sour
e

\opdiv[maxdivstep=2℄{1248}{3}

Clearly, the last result is false. In the other hand, xlop package did what we

have ask, that is, obtain two digits (maximum) for the quotient.

The inline mode differ with zero remainder or not and with the type of

division (classical or euclidean).

3.14÷2= 1.57

3.14÷3≈ 1.046666666

314= 2×157

314= 3×104+2

sour
e

\opdiv[style=text℄{3.14}{2}\par

\opdiv[style=text℄{3.14}{3}\par

\opidiv[style=text℄{314}{2}\par

\opidiv[style=text℄{314}{3}

Note the use of equalsymbol or approxsymbolparameter according to the

case. Note also that xlop displays results with floor, not with round. We will

see how obtain a round in section 4.5.

For inline mode of \opdiv, xlop take account of maxdivstep. It means

that we can obtain results very false with too small values of this parametrer

and, unlike with display mode division, inline mode don’t allow to under-

stand what is wrong.

1248÷3≈ 41

sour
e

\opdiv[maxdivstep=2,style=text℄

{1248}{3}

In addition, if the last remainder is zero, we obtain a must:

20

1208÷3= 4

sour
e

\opdiv[maxdivstep=1,style=text℄

{1208}{3}

because there is no approximation at all!

A classical division can stop with period detection. For that, you have

just to give the value true for the period parameter.

1 0 0

1 0

1 0

1

3

3 3.3 sour
e

\opdiv[period℄{100}{3}

To avoid comparizons between each remainder with all previous remain-

der, xlop calculates immediatly the period length. That allows to process

only one comparizon for each step, then to have a much more efficient pro-

cess.1 Unfortunately, these calculations are made with numbers that are

directly accesible to TEX. As consequence, you can’t use operand with abso-

lute value greater than
⌊

231−1
10

⌋

= 214748364.

In order to avoid too long calculations, xlop don’t process beyond the

value of safedivstep parameter in division with period. Its default value

is 50. However, xlop package show this problem. For instance, if you ask for

such a division with the code:

\opdiv[period℄{1}{289}

you obtain the warning message:

xlop warning. Period of division is too big (272 > safedivstep).

Division will stop before rea
h it.

See do
umentation for further information.

which indicates that this division period is 272 and that it can be achieved

because of the safedivstep value.

The inline mode for division with period has some particularities.

150÷7= 21.428571. . .
sour
e

\opdiv[period,style=text℄{150}{7}

We obtain an equality rather than an approximation, there is a rule under

the period, and there is ellipsis after the period. All these components can

be configured. The equality symbol is given by the equalsymbol parame-

ter (default value is {$=$}). The rule thickness is given by the hrulewidth

parameter (default value is 0.4pt). The vertical offset of this rule is given by

vruleperiod parameter (default value is ­0.2) which indicates a vertical

offset taking \oplineheight as unit. The ellipsis are given by the parame-

ter afterperiodsymbol (default value \ldots).

1Thanks to Olivier Viennet about mathematic precisions that allows to implement these

calculations.

21

150÷7≈ 21.428571

sour
e

\opdiv[period,style=text,

equalsymbol=\approx,

hrulewidth=0.2pt,

vruleperiod=0.7,

afterperiodsymbol=℄

{150}{7}

3.4.2 Other Features

Displayed divisions can include successive substractions which allow re-

mainder calculations. For xlop, the numbers which are substracted are in-

termediary numbers, so the different ways to represent substractions use

displayintermediaryparameter see for multiplication. The default value,

valeur none, don’t display any substraction; the value all displays all the

substractions, and the value nonzero displays substractions with non-zero

numbers

sour
e

\opdiv[displayintermediary=none,voperation=top℄

{251}{25}\quad

\opdiv[displayintermediary=nonzero,voperation=top℄

{251}{25}\quad

\opdiv[displayintermediary=all,voperation=top℄

{251}{25}

2 5 1

0 1 0 0

0

2 5

1 0.0 4

2 5 1−
2 5

0 1 0 0−
1 0 0

0

2 5

1 0.0 4

2 5 1−
2 5

0 1−
0

1 0−
0

1 0 0−
1 0 0

0

2 5

1 0.0 4

When we write a display division, we can draw a “bridge” over the part

of dividend which is taken in count for the first step of calculation. The

xlop package allow to draw this symbol thanks to the boolean parameter

dividendbridge (default value is false).

1 2 5 4

5 4

2 4 0

0

3 0

4 1.8 sour
e

\opdiv[dividendbridge℄{1254}{30}

22

3.4.3 Non Integer Numbers and Negative Numbers

The shiftde
imalsep parameter governs non integer operands aspect/

Its default value is both which indicates that decimal separator is shifted

in order to obtain integer divisor and integer dividend. The value divisor

indicates that there is the shifting that allows an integer divisor. The value

none indicates that there isn’t any shifting.

sour
e

\opdiv[shiftde
imalsep=both℄{3.456}{25.6}\quad

\opdiv[shiftde
imalsep=divisor℄{3.456}{25.6}\quad

\opdiv[shiftde
imalsep=none℄{3.456}{25.6}

3 4 5 6

3 4 5 6 0

8 9 6 0 0

1 2 8 0 0 0

0

2 5 6 0 0

0.1 3 5 3 4.5 6

8 9 6

1 2 8 0

0

2 5 6

0.1 3 5

3.4 5 6

8 9 6

1 2 8 0

0

2 5.6

0.1 3 5

Parameter strikede
imalsepsymbol gives the symbol used to show

the old place of decimal separator when this one is shifted. The default

value is empty, that is, there isn’t any symbol. This explain why you don’t

see anything on previous examples.

sour
e

\opset{strikede
imalsepsymbol={\rlap{,}\rule[­1pt℄{3pt}{0.4pt}}}

\opdiv[shiftde
imalsep=both℄{3.456}{25.6}\quad

\opdiv[shiftde
imalsep=divisor℄{3.456}{25.6}\quad

\opdiv[shiftde
imalsep=none℄{3.456}{25.6}

3 4 5 6,

3 4 5 6 0

8 9 6 0 0

1 2 8 0 0 0

0

2 5 6 0 0,

0.1 3 5 3 4.5 6,

8 9 6

1 2 8 0

0

2 5 6,

0.1 3 5

3.4 5 6

8 9 6

1 2 8 0

0

2 5.6

0.1 3 5

When there is a non empty symbol for the striked decimal separator, it

is possible to have non-significant zeros in operands.

0 0 3.4 5 6×

8 9 6

1 2 8 0

0

2 5 6×

0.0 1 3 5

sour
e

\opdiv[shiftde
imalsep=divisor,

strikede
imalsepsymbol=%

\hspa
e{­3pt}\tiny\times℄

{0.03456}{2.56}

We have already seen that \opidiv macro gives integer quotient. This

is true even with non integer operands. It is somewhere strange to perform

an euclidian division with non integer operands. The \opidiv macro will

be strict about the presentation. Parameters maxdivstep, safedivstep,

and period haven’t any effect, as for shiftde
imalsep parameter since

operands are changed to integer ones.

23

3 4 5 7×

6 5 7

7 0 0×

4

sour
e

\opidiv[strikede
imalsepsymbol=%

\hspa
e{­3pt}\tiny\times℄

{34.57}{7}

When operands are negative, the inline \opidiv numbers is different

from the displayed \opidiv ones. Remainder will be between zero (in-

clude) and absolute value of divisor (exclude).

124÷7≈ 17.71428571

124= 7×17+5

124=−7×−17+5

−124= 7×−18+2

−124=−7×18+2

sour
e

\opdiv[style=text℄{124}{7}\par

\opidiv[style=text℄{124}{7}\par

\opidiv[style=text℄{124}{­7}\par

\opidiv[style=text℄{­124}{7}\par

\opidiv[style=text℄{­124}{­7}

This condition for remainder is valid even with non integer divisor.

1.24 = 0.7×1+0.54

1.24 =−0.7×−1+0.54

−1.24= 0.7×−2+0.16

−1.24=−0.7×2+0.16

sour
e

\opidiv[style=text℄{1.24}{0.7}\par

\opidiv[style=text℄{1.24}{­0.7}\par

\opidiv[style=text℄{­1.24}{0.7}\par

\opidiv[style=text℄{­1.24}{­0.7}

24

Chapter 4

Other Commands

4.1 Starred Macros

The five macros seen in previous chapter have a starred version. These

starred macros perform the calculation and don’t display anything. Result

is record in a variable given as argument.

Since these commands don’t display anything, parameters don’t make

sens and aren’t allowed for \opadd
*

, \opsub
*

, \opmul
*

, and \opidiv
*

. In

the other hand, parameters maxdivstep, safedivstep, and period influ-

ence calculations, then \opdiv
*

macro accepts an optional argument to

take account of them.

256+1= 257

sour
e

\opmul

*

{2}{2}{a}%

\opmul

*

{a}{a}{a}\opmul

*

{a}{a}{a}%

\opadd[style=text℄{a}{1}

For macros \opdiv and \opidiv, there are two extra arguments to record

quotient and final remainder.

16×−5=−80

−80+−8=−88

sour
e

\opdiv

*

[maxdivstep=1℄{­88}{16}{q}{r}%

\opmul

*

{q}{16}{bq}%

\opmul[style=text℄{16}{q}\par

\opadd[style=text℄{bq}{r}

4.2 Input-Output

The \op
opy macro copies its first argument into its second one. Then, the

first argument is a number write in decimal form or via a variable, whereas

the second one is a variable name.

The \opprintmacro displays its argument. The following example uses

the counter \time which indicates numbers of minutes since midnight.

25

It is 18 hours 48 minutes

sour
e

\opidiv

*

{\the\time}{60}{h}{m}%

It is \opprint{h}~hours

\opprint{m}~minutes

We will see at section 4.4 how to improve this example with tests.

The \opdisplay macro also displays a number but here, each figure is

in a box. The width of this box is given by
olumnwidth and the height of

this box is given by lineheight. Style is specified by the first argument.

This macro accepts an optional argument in order to give a specific style

for individual figures.

1 2 9.1 9 2

sour
e

\opdisplay[resultstyle.1=\bfseries,

resultstyle.­2=\bfseries℄

{resultstyle}{129.192}

Macros \oplput and \oprput allow to put anything anywhere. The syn-

tax of both of them is different from the other ones of xlop since the place

is indicated with coordinates between parenthesis. The coordinates use

\op
olumnwidth and \oplineheight as units. Then user is able to build

his own “operations”.

0 1 2 3 4 5 6 7 8 9 10

1

0

-1

-2

Hello

world!

•

sour
e

\psset{xunit=\op
olumnwidth,

yunit=\oplineheight}%

\psgrid[subgriddiv=1,gridlabels=7pt,

griddots=5℄(0,1)(10,­2)

\oplput(2,0){Hello}

\oprput(8,­1){world!}

\bullet

On example above, note that these macros don’t move the reference point.

As a precaution, they kill the trailing space and then, there is no need to

protect the end of line with a %.

Macros \ophline and \opvline complete the previous ones to give all

the tools the user needs to build its own operations. \ophline allows to

draw a horizontal rule; its length is given by the parameter after coordi-

nates. \opvline does the same for vertical rules. Remember that param-

eters hrulewidth and vrulewidth indicate the thickness of these rules.

sour
e

\par\vspa
e{2\oplineheight}

\oplput(1,2){O}\oplput(2,2){N}\oplput(3,2){E}

\oplput(0,1.5){$+$}

\oplput(1,1){O}\oplput(2,1){N}\oplput(3,1){E}

\ophline(0,0.8){4}

\oplput(1,0){T}\oplput(2,0){W}\oplput(3,0){O}

O N E+
O N E

T WO

26

Macro \opexport allow to export a number in a macro. It’s an extra

to version 0.23 which is very usefull to exchange datas between xlop and

the outside world. The first argument is a number in the xlop sense, that is,

either a number write with figures, or a variable name. The number is trans-

lated in a form directly acceptable for TEX and hold in the second argument

which should be a macro name. However, note that decimal separator will

be the one specified by de
imalsepsymbol (without its possible braces).

ma
ro:­>15.70796327

sour
e

\opmul

*

{5}{3.141592654}{F}

\opexport{F}{\fivepi}

\texttt{\meaning\fivepi}

We can use this macro to typeset numbers calculated by xlop in an array

with a decimal alignment, or to initialize a counter or a length (don’t forget

the unit in the last case).

4.3 Figures of Numbers

Macros \opwidth, \opintegerwidth, and \opde
imalwidth indicate num-

ber of digits of the whole number, of its integer part, of its decimal part re-

spectively. The first argument is the examined number and the second one

indicates the variable where result will be record.

123456.1234 is written

with 10 figures (6 in the

integer part and 4 in the

decimal part).

sour
e

\op
opy{123456.1234}{a}%

\opwidth{a}{na}%

\opintegerwidth{a}{ia}%

\opde
imalwidth{a}{da}%

\opprint{a} is written with

\opprint{na} figures (\opprint{ia} in

the integer part and \opprint{da} in

the de
imal part).

Macro \opunzero delete all the non-significant zeros of the number

passed as argument.

Before : 00150.00250

After : 150.0025

sour
e

\op
opy{00150.00250}{a}%

Before : \opprint{a}\par

\opunzero{a}%

After : \opprint{a}

Macros \integer and \opde
imal give the integer part and the deci-

mal part of a number respectively. First argument is the number to process,

and the second one is the variable name which hold the result.

Integer part: 37

Decimal part: 69911

sour
e

\op
opy{­37.69911}{a}%

\opinteger{a}{ia}%

\opde
imal{a}{da}%

Integer part: \opprint{ia}\par

De
imal part: \opprint{da}

27

Six macros allow to write or read a figure of a number. You can read or

read a figure according to its place in the whole number, or in the integer

part, or in the decimal part. Figures for whole number and for decimal part

are numbered from right to left, figures for integer part are numbered from

left to right. For instance, with the number 1234.56789, the second figure

is 8, the second figure of the integer part is 3, and the second figure of the

decimal part is 6. It is now easy to guess the rôle of the six next macros:

• opgetdigit ;

• opsetdigit ;

• opgetintegerdigit ;

• opsetintegerdigit ;

• opgetde
imaldigit ;

• opsetde
imaldigit ;

Syntax is the same for these macros. The first argument is the processed

number (reading or writting), the second one is the index of the figure, and

the third one is the variable name which hold the result (figure read) or

the new figure (changed number). If index is out of the range, the reading

macros give 0 as result and writing macros extend the number in order to

reach this index (for that, zero will be created in new slots).

4.4 Comparisons

When you want complex macros, often you need to realize tests. For that,

xlop gives the macro \op
mp. The two arguments are numbers and this

macro setup the tests \ifopgt, \ifopge, \ifople, \ifoplt, \ifopeq, and

\ifopneq to indicate that first operand is greater, greater or equal, less or

equal, less, equal, or different to the second operand respectively.

For technical reasons, xlop give global definitions for the six tests above.

Then, they are not protected by groups. Since these tests are used by many

xlop macros, you must always use tests \ifop... immediately after \op
mp,

or, at least, before any use of a xlop macro. Otherwise, there will be bugs

hard to fix!

Let’s resume the hour display macro see at section 4.2. But now, we

check if argument is between 0 (include) and 1440 (exclude), then we pro-

cess tests in order to know if “hour” is plural or not, as for “minute”.

sour
e

\new
ommand\hour[1℄{%

\op
mp{#1}{0}\ifopge

\op
mp{#1}{1440}\ifoplt

\opidiv

*

{#1}{60}{h}{m}%

\opprint{h} hour%

28

\op
mp{h}{1}\ifopgt

s%

\fi

\op
mp{m}{0}\ifopneq

\spa
e\opprint{m} minute%

\op
mp{m}{1}\ifopgt

s%

\fi

\fi

\fi\fi

}

\hour{60} ­­ \hour{1080} ­­ \hour{1081} ­­ \hour{1082}

1 hour – 18 hours – 18 hours 1 minute – 18 hours 2 minutes

4.5 Advanced Operations

The macros left to be examined are either internal macros and which it will

be a shame to keep private , or macro asked for users.

Internal macros are \opg
d which gives gcd of two numbers and macro

\opdivperiod which gives the period length of quotient of two numbers.

For efficiency reason, these macros don’t use xlop number, they rather use

numbers directly understand by TEX. There are two consequences: the

numbers can’t be greater than 2147483647 for \opg
d; it can’t be greater

than 214748364 for \opdivperiod. A warning is displayed for an overflow.

Result is put in the third parameter.

There is also some checks on the two first parameters: a gcd must not

have null argument; length of period can’t be processed with null quotient.

Futhermore, if an argument is a non integer number, only the integer part

will be take account.

gcd(5376,2304)= 768

sour
e

\op
opy{5376}{a}%

\op
opy{2304}{b}%

\opg
d{a}{b}{g
d(ab)}%

$\g
d(\opprint{a},\opprint{b}) =

\opprint{g
d(ab)}$

You can play and find long period of divisions. Without going into math-

ematical details, square of prime numbers are good choices. For instance

with 2572 = 66049 you obtain:

1
66049

has a period of

length 65792.

sour
e

\opdivperiod{1}{66049}{p}%

$\fra
{1}{66049}$ has a period

of length \opprint{p}.

With macros \op
astingoutnines and \op
astingoutelevens you

can build casting out of nines and casting out of elevens. xlop don’t typeset

29

directly these “operations” since they need diagonal rules, and then, need

some particular packages. In fact, macro \op
astingoutnines calculates

the sum modulo 9 of first argument digits and put the result in second ar-

gument. Macro \op
astingoutelevens calculates the sum modulo 11 of

the even rank digits of first argument, calculates the sum moldulo 11 of the

odd rank digits of first argument, and calculates the difference of these two

sums.

4 2

8

7

sour
e

\new
ommand\
astingoutnines[3℄{%

\op
astingoutnines{#1}{
na}%

\op
astingoutnines{#2}{
nb}%

\opmul

*

{
na}{
nb}{
na

*

nb}

\op
astingoutnines{
na

*

nb}{
na

*

nb}%

\op
astingoutnines{#3}{
n(a

*

b)}%

\begin{pspi
ture}(­3.5ex,­3.5ex)%

(3.5ex,3.5ex)

\psline(­3.5ex,­3.5ex)(3.5ex,3.5ex)

\psline(­3.5ex,3.5ex)(3.5ex,­3.5ex)

\rput(­2.75ex,0){\opprint{
na}}

\rput(2.75ex,0){\opprint{
nb}}

\rput(0,2.75ex){\opprint{
na

*

nb}}

\rput(0,­2.75ex){\opprint{
n(a

*

b)}}

\end{pspi
ture}

}

\
astingoutnines{157}{317}{49669}

In passing, this example shows that 157×317 6= 49669! The right operation

is 157×317= 49769.

The two next macros are very simple. We have \opneg which calculates

the opposite of its first argument and store it in the variable indicated by the

second argument. We have also \opabs which does the same with absolute

value.

Macro \oppower calculates integer powers of numbers. This macro has

three parameters. The third one store the first argument to the power of the

second argument. When the first argument is zero: if the second argument

is zero, result is 1; if the second argument is positive, result is 0; if the second

argument is negative, there is an error. There isn’t any limitation on first

parameter. This leads to some problems, for instance:

sour
e

\op
opy{0.8}{a}\op
opy{­17}{n}%

\oppower{a}{n}{r}%

$\opprint{a}^{\opprint{n}} = \opprint{r}$

0.8−17 = 44.4089209850062616169452667236328125

With 0.7 rather than 0.8, problem is worse:

30

sour
e

\op
opy{0.7}{a}\op
opy{­8}{n}%

\oppower{a}{n}{r}%

\opde
imalwidth{r}{dr}

$\opprint{a}^{\opprint{n}}$ has \opprint{dr}

figures after dot.

0.7−8 has 72 figures after dot.

In fact, when exponent is negative, first xlop calulates inverse of the number

and after that, it calculates the power with opposite of the exponent. In this

example, if we had left −17 rather than −8, then there will be a capacity

overflow capacity of TEX.

Three macros allow a control about precision. They allow to approxi-

mate a number giving the rank of the approximation. There are \opfloor,

\op
eil, and \opround. They need three parameters which are (in order):

start number, rank of approximation, variable name to store the result.

Rank is an integer value giving number of digits after decimal separator

which must be present. If this rank is negative, approximation will be done

before the decimal separator. If rank is positive and indicates more digits

than decimal part has, then zeros will be added. If rank is negative and indi-

cates more digits than integer part has, then approximation will be locked

in order to give the first digit of the number at least.

Here is a summary table which allow to understand how these macros

work.

\op...{3838.3838}{n}{r}

n floor
eil round

6 3838.383800 3838.383800 3838.383800

4 3838.3838 3838.3838 3838.3838

3 3838.383 3838.384 3838.384

0 3838 3839 3838

−1 3830 3840 3840

−2 3800 3900 3800

−6 3000 4000 4000

\op...{­3838.3838}{n}{r}

n floor
eil round

6 −3838.383800 −3838.383800 −3838.383800

4 −3838.3838 −3838.3838 −3838.3838

3 −3838.384 −3838.383 −3838.384

0 −3839 −3838 −3838

−1 −3840 −3830 −3840

−2 −3900 −3800 −3800

−6 −4000 −3000 −4000

With version 0.26 comes the square root operation: \opsqrt. This macro

has not the same syntax as the other arithmetic macros since there is no

31

starred version. In fact, there is a way to display a processing of square root

but it’s really not current. I’m pretty old and my grandfather told me that

he saw this method when he was young! Therefore, there is an \opgfsqrt

macro to display the operation (“gf” for grandfather).

Let us see the first macro: the one which calculates the square root and

store the result in a xlop variable:

p
2 ≈ 1.4142135623

sour
e

\opsqrt{2}{sqrt2}

$\sqrt{2}\approx\opprint{sqrt2}$

This macro shares the parameter maxdivstep with division macros. For

instance:

p
2 ≈ 1.414213562373095

sour
e

\opsqrt[maxdivstep=15℄{2}{sqrt2}

$\sqrt{2}\approx\opprint{sqrt2}$

For “grandfather” display, I have not the energy to explain the processus.

It’s based on remarkable identity (a +b)2 = a2 +2ab +b2. Thanks to Jean-

Michel Sarlat who had taken time to explain this method in order that I can

write it for xlop!

Here is an example for square root of 15:

sour
e

\opgfsqrt[maxdivstep=5℄{15}

1 5

0 9
−

6 0 0

5 4 4
−

5 6 0 0

5 3 6 9
−

2 3 1 0 0

1 5 4 8 4
−

7 6 1 6 0 0

6 9 7 0 4 1
−

6 4 5 5 9 0 0

6 1 9 6 7 0 4
−

2 5 9 1 9 6

3.8 7 2 9 8

3 × 3 = 9

6 8 × 8 = 5 4 4

7 6 7 × 7 = 5 3 6 9

7 7 4 2 × 2 = 1 5 4 8 4

7 7 4 4 9 × 9 = 6 9 7 0 4 1

7 7 4 5 8 8 × 8 = 6 1 9 6 7 0 4

This method is horrible. It’s horrible for human being. It’s horrible for com-

puter. For instance, the real operation isn’t make that way: it uses Heron

method.

The very last macro we have to study is \opexpr. It calculates a com-

plex expression. This macro needs two parameters: the first one is the ex-

pression in infix form (the natural one for human), the second one is the

variable name where the result is stored.

32

Initially, expression must have been polish one (for instance, notation

used on old HP calculator, or PostScript language), but another work with

Christophe Jorssen has given the actual form for expression in xlop, more

pleasant for users.

Formulas accept usual arithmetic operators +, ­,
*

, and /. They accept

also : operator for euclidian division, and ^ for power. The ­ operator has

both rôle of substraction and unary operator for opposite. The + has also

these rôles, here the unary operator do. . . nothing! Operands are written in

decimal form or via variable name. However, \opexpr introduces a restric-

tion about variable name since variable names must be different to func-

tion names recognized by \opexpr. Accessible functions are:

• abs(a) ;

•
eil(a,i) ;

• de
imal(a) ;

• floor(a,i) ;

• g
d(a,b) ;

• integer(a) ;

• mod(a,b) gives result of a modulo b ;

• rest(a,b) gives remainder of a divide by b (difference between re-

mainider and modulo is the same as between non euclidian division

and euclidian division);

• round(a,i).

where functions that aren’t listed above ask the matching macros. (func-

tion xxx calls macro \opxxx) For functions
eil, floor, and round, the

number i indicates rank for approximation.

Macro \opexpr accept optional argument since it can realize division

which can be controlled by maxdivstep,safedivstep, and period param-

eters. Our first example is quite basic:

sour
e

\opexpr{3­­g
d(15

*

17,25

*

27)

*

2}{r}%

$3­­\g
d(15\times17,25\times27)\times2 = \opprint{r}$

3−−gcd(15×17,25×27)×2= 33

Here is another example that shows that datas can come from a macro:

33

sour
e

\new
ommand\try{2}%

\opexpr{\try+1/

(\try+1/

(\try+1/

(\try+1/

(\try+1/

(\try)))))}{r}

Continued fra
tion of base $u_n=2$ equal \opprint{r} at rank~5.

Continued fraction of base un = 2 equal 2.414285714 at rank 5.

34

Appendix A

Short Summary

A.1 Compilation times

Compilation times was measured on a computer with processor Pentium

II 600 MHz, RAM 256 MB, on linux system (Debian woody).1. The principle

is to do a minimal file .tex. The general canvas is:

\input xlop

\
ount255=0

\loop

\ifnum\
ount255<1000

<operation to test>

\advan
e\
ount255 by1

\repeat

\bye

Compilation time with <operation to test> empty was substract from

the others test. Only the user time was take account. Results are given in

millisecond and should be read with great precautions.

Next table gives operation times in milliseconds. Operands used had

decimal notation but some trails with variable has shown that times was

very closed.

First line indicates the numbers of digits for both operands. Operands

were build like this:

• A = 1 et B = 9 for one digit;

• A = 12 et B = 98 for two digits;

• A = 123 et B = 987 for three digits;

• A = 12345 et B = 98765 for five digits;

• A = 1234567890 et B = 9876543210 for ten digits;

1In fact, these measures was done in 2004, when the 0.2 version was released. Author is

somewhere lasy and he doesn’t measure with his new computer (more efficient)!

35

• A = 12345678901234567890 et B = 98765432109876543210 for twenty

digits;

Here is results, some comments follow:

1 2 3 5 10 20

\opadd

*

{A}{B}{r} 1.1 1.4 1.6 2.1 3.3 5.8

\opadd

*

{B}{A}{r} 1.1 1.4 1.6 2.1 3.3 5.8

\opsub

*

{A}{B}{r} 1.7 2.1 2.4 3.0 4.8 8.3

\opsub

*

{B}{A}{r} 1.5 1.7 2.0 2.6 4.0 7.0

\opmul

*

{A}{B}{r} 4.6 6.3 8.2 12.8 29.9 87.0

\opmul

*

{B}{A}{r} 5.0 6.6 8.5 13.2 30.3 87.8

\opdiv

*

{A}{B}{q}{r} 46.4 53.8 53.8 64.3 85.8 124.7

\opdiv

*

{B}{A}{q}{r} 12.4 48.9 55.7 58.6 72.8 111.0

\opdiv

*

[maxdivstep=5℄{A}{B}{q}{r} 26.8 30.0 32.6 37.6 49.5 73.5

\opdiv

*

[maxdivstep=5℄{B}{A}{q}{r} 12.4 29.1 32.6 35.2 43.3 67.9

\opidiv

*

{A}{B}{q}{r} 10.8 12.2 13.5 16.0 22.3 35.5

\opidiv

*

{B}{A}{q}{r} 11.6 13.0 14.2 16.6 23.0 36.7

\opidiv

*

{A}{2}{q}{r} 10.7 12.0 15.3 22.3 42.9 83.0

It is normal that inversion of operands don’t have sensible influence for

addition. Then, it could be strange that there is influence for substraction.

In fact, when the second operand is bigger than the second one, there is

additional process (double inversion, operation on the sign of the result).

It is normal that division time is greater than the multiplication one. It

could be abnormal that division seems catch up! In fact, the multiplica-

tion complexity grows quickly with the operand length. In the other hand,

division complexity is stopped by maxdivstep parameter. It is clear on ex-

ample where there is only five steps.

Some results seems odd. For instance \opdiv

*

{9}{1}{q}{r} is very

fast. These is due to the one digit quotient. \opdiv
*

{123}{987}{q}{r},

even more odd, is rather fast. Here, explanation is quite subtle: this is due

to many zeros in the quotient.

When operands have comparable length, euclidian division is much

faster than non euclidian one. This is because quotient has few digits (only

one for all the numbers A and B). The last line of the table is more relevant

for this operation time.

All these remarks are written to put the emphasis on the difficulty to

evaluate the compilation time: it depends on too many parameters. On the

other hand, this table give a pretty good idea of what can be expected.

36

A.2 Macro List

Macro Description

\opabs{n}{N} N stores the absolute value of n.

\opadd[P℄{n1}{n2} Displays result of n1+n2.

\opadd

*

{n1}{n2}{N} Calcules n1+n2 and put result in N.

\op
astingoutelevens{n}{N} Calcules difference (modulo 11) of

sum of rank odd digits and sum of

rank even digits of n and put the re-

sult in N.

\op
astingoutnines{n}{N}. Calcules sum modulo 9 of digits of n

and put result in N.

\op
eil{n}{T}{N} Places in N the approximation (ceil-

ing) of n to rank T.

\op
mp{n1}{n2} Compares numbers n1 and n2 and

setup the tests \ifopeq, \ifopneq,

\ifopgt, \ifopge, \ifople et

\ifoplt.

\op
opy{n}{N} Copy number n in N.

\opde
imal{n}{N} Copy decimal part (positive integer

number) of n in N.

\opde
imalwidth{n}{N} N stores the width of decimal part of

number n.

\opdisplay[P℄{S}{n} Display number n width style S put-

ing each figure in a box which has

a width of \op
olumnwidth and a

height of \oplineheight.

\opdiv[P℄{n1}{n2} Display result of n1/n2.

\opdiv

*

[P℄{n1}{n2}{N1}{N2} Calculates n1/n2, put the quotient

in N1 and the remainder in N2.

\opdivperiod{T1}{T2}{N} Calculates length of period of T1 di-

vide by T2 and put the result in N.

\opexport[P℄{n}\
md Copy number n in macro \
md.

\opexpr[P℄{F}{N} Evaluates formula F and put the fi-

nal result in N.

\opfloor{n}{T}{N} Put in N the apprimation (floor) of n

at rank T.

\opg
d{T1}{T2}{N} Calculates gcd of T1 and T2 and put

result in N.

\opgetde
imaldigit{n}{T}{N} Build the number N with the only

digit in slot T of decimal part of n.

\opgetdigit{n}{T}{N} Build the number N with the only

digit in slot T of number n.

. . . to be continued . . .

37

Macro Description

\opgetintegerdigit{n}{T}{N} Build the number N width the only

digit in slot T of integer part of n.

\opgfsqrt{n} Display the old timed way to calcu-

late a square root of n.

\ophline(T1,T2){T3} Draw a horizontal rule of length

T3, of thickness hrulewidth, and

which begin at (T1,T2) in relation

to reference point.

\opidiv[P℄{n1}{n2} Display the result of n1/n2. (euclid-

ian division, that is, with integer di-

vision)

\opidiv

*

{n1}{n2}{N1}{N2} Calculates n1/n2 (euclidian divi-

sion), put quotient (integer) in N1

and remainder (between 0 (include)

and |n2| (exclude)) in N2.

\opinteger{n}{N} Copy integer part (positive integer

number) of n in N.

\opintegerwidth{n}{N} Number N stores the width of integer

part of number n.

\oplput(T1,T2){<obje
t>} Put <obje
t> to the right of the

point with coordinates (T1,T2) in

relation to reference point.

opmanyadd[P℄{n1}...{np} Display result of n1+·· ·+np

\opmul[P℄{n1}{n2} Display result of n1
*

n2.

\opmul

*

{n1}{n2}{N} Calculates n1
*

n2 and put the result

in N.

\opneg{n}{N} Number N stores opposite of n.

\oppower{n}{T}{N} Calculates n to the power of T and

put the result in N.

\opprint{n} Display number n in a direct way.

\opround{n}{T}{N} Put in N the approximation of n at

rank T.

\oprput(T1,T2){<obje
t>} Put <obje
t> to the left of the point

with coordinates (T1,T2) in rela-

tion to reference point.

\opset{L} Allocates globally xlop parameters

given in the list L.

\opsetde
imaldigit{n}{T}{N} Modify the digit of rank T in decimal

part of N in order to have the value n

for this digit.

\opsetdigit{n}{T}{N} Modify the digit of rank T of N in or-

der to have the value n for this digit.

. . . to be continued . . .

38

Macro Description

\opsetintegerdigit{n}{T}{N} Modify the digit of rank T in integer

part of N in order to have the value n

for this digit.

\opsqrt{n}{N} Put square root of n in N.

\opsub[P℄{n1}{n2} Display result of n1­n2.

\opsub

*

{n1}{n2}{N} Calculates n1­n2 and put the result

in N.

\opunzero{N} Delete non-significant zeros of N.

\opvline(T1,T2){T3} Draw a vertical ruleof length T3, of

thickness hrulewidth and which

begin at (T1,T2) in relation to ref-

erence point.

\opwidth{n}{N} Number N stores number of digits of

number n.

In this table, parameters:

• n and ni (where i is an index) indicate that parameter must be a num-

ber given in decimal form or a variable name;

• N and Ni (where i is an index) indicate that parameter must be a num-

ber given in decimal form or a variable name;

• [P℄ indicates that the macro accept an optional parameter which al-

low to modify parameter of xlop;

• T and Ti (where i is an index) indicate that parameter must be a num-

ber given in decimal form or a variable name but must be less than

numbers acceptable by TEX, that is, −2147483648≤ T≤ 2147483647.

A.3 Parameter list

Parameter Default Signification

afterperiodsymbol \ldots Symbol used after a period of a division.

approxsymbol \approx Symbol used as approximation relation

in inline operations.

equalsymbol {$=$} Symbol used as equality relation in in-

line operations.

addsymbol $+$ Symbol used as addition operator.

subsymbol $­$ Symbol used as substraction operator.

mulsymbol \times Symbol used as multiplication operator.

divsymbol \div Symbol used as multiplication operator

for inline operations.

. . . to be continued . . .

39

Parameter Default Signification

de
imalsepsymbol . Symbol used as decimal separator.

strikede
imalsepsymbol Symbol used as decimal separator

moved in dividend and divisor for

display division.

shiftintermediarysymbol $\
dot$ Symbol used to show intermediary num-

bers shifting for display multiplication.

displayshiftintermediary shift Indicates that the shifting character for

multiplications will be displayed only

for additional shifting (value shift), for

all the shifting (value all), or never

(value none).

vmanyoperator
enter Vertical alignment for add symbol in dis-

played many operand addition. The

value top put operators from the level

of first operand to the level of second

to last operand. The value
enter put

operators between operands. The value

bottom put operators from the level

of second operand to the level of last

operand. The value Top put one sin-

gle operator at the level of first operand.

The value \
enter put one single oper-

ator at the vertical middle of operands.

The value Bottom put one single opera-

tor at the level of last operand.

voperation bottom Vertical alignment for displayed opera-

tion. The value bottom indicates that

the bottom of operation will be aligned

with baseline. The value top indicates

that the top of operation will be aligned

with baseline. The value
enter indi-

cates that operation will be verticaly cen-

tred with baseline.

voperator
enter Vertical alignment for operators in dis-

played operations. The value top put

operator at the level of first operand.

The value bottom put operator at the

level of second operand. The value

enter put operator between operands.

hfa
tor de
imal Sort of operands alignment for dis-

played operation. The value de
imal

indicates an alignment on decimal sep-

arator. The value right indicates a

flushright alignment.

. . . to be continued . . .

40

Parameter Default Signification

vruleperiod ­0.2 Vertical position of rule which indicates

period of quotient for inline division.

dividendbridge false Indicates if there is a “bridge” above div-

idend.

shiftde
imalsep both Indicates how shift decimal separator

into operands for a displayed division.

The value both indicates that shifting

are made on both divisor and dividend

in order to make integer numbers. The

value divisor indicates that the shifting

must give an integer divisor. The value

none indicates that there is no shifting.

maxdivstep 10 Maximal number of steps in division or

in square root operation.

safedivstep 50 Maximal number of steps in division

when there is a period to reach.

period false Indicates if division must be stoped

when a whole period is reached.

deletezero true Indicates that non-significant zeros are

displayed (false) or deleted (true).

arryadd true Indicates that carries are displayed

(true) for displayed additions.

arrysub false Indicates that carries are displayed

(true) for displayed substractions.

offset
arry ­0.35 Horizontal offset for carries into dis-

played substractions.

style display Indicates tha operation are inline (text)

or displayed (display).

displayintermediary nonzero Indicates that all intermediary results

are displayed (all), only non null ones

are displayed (nonzero), or any inter-

mediary result isn’t displayed into dis-

played multiplications and divisions.

last
arry false Indicates that carry with no figure just

below it must be displayed (true), or

not (false).

parenthesisnegative none Behavior to display negative numbers in

inline operations. The value none dis-

plays them without parenthesis. The

value all displays them always with

parenthesis. The value last display

parenthesis except for first operand of

an expression.

. . . to be continued . . .

41

Parameter Default Signification

olumnwidth 2ex With of box for one figure.

lineheight \baselineskip Height of box for one figure.

de
imalsepwidth 0pt Width of box that hold the decimal sepa-

rator.

de
imalsepoffset 0pt Horizontal offset for decimal separator.

hrulewidth 0.4pt Thickness of horizontal rules.

vrulewidth 0.4pt Thickness of vertical rules.

behaviorsub silent xlop behavior for an “impossible” sub-

straction, that is, a substraction with

two positive operands, the second

greater than the first one. The value

silent does operation swapping the

two operands in a slient way. With

the value warning, there are also a

swapping but xlop gives a warning. The

value error display an error message

and operation isn’t processed.

ountry fren
h Indicates the displayed operation behav-

ior depending of contry. Package xlop

put forward only fren
h, ameri
an,

and russian but these different ways to

display operations aren’t encoded in ver-

sion 0.28.

operandstyle Style for operands.

resultstyle Style for results.

remainderstyle Style for remainders.

intermediarystyle Style for intermediary results (interme-

diary numbers in multiplication and

number to substract in division when

successive substractions are displayed).

arrystyle \s
riptsize Style for carries. The default value when

compilation are made without LATEX is

\sevenrm.

42

Appendix B

Tricks

B.1 xlop vs. calc and xfp

You could believe that xlop can replace package such calc and xfp. In fact,

that is not so simple. Obviously xlop can do complex calculations, on ar-

bitrary long numbers but, unlike calc, it don’t allow to process directly di-

mensions. Comparison with xfp is somewhere more realistic but remember

that xlop can make memory usage too high. In fact xfp is far more powerfull

than xlop about pure calmculation!

If you want to process calculations on length, you can use that a dimen

register allocation to a counter gives a number which correspond to this

length with unit sp.

sour
e

\new
ommand\getsize[2℄{%

\dimen0=#1\relax

\
ount255=\dimen0

\op
opy{\the\
ount255}{#2}}

\getsize{1pt}{r}$1\,\mathrm{pt}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1p
}{r}$1\,\mathrm{p
}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1in}{r}$1\,\mathrm{in}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1bp}{r}$1\,\mathrm{bp}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1
m}{r}$1\,\mathrm{
m}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1mm}{r}$1\,\mathrm{mm}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1dd}{r}$1\,\mathrm{dd}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1

}{r}$1\,\mathrm{

}=\opprint{r}\,\mathrm{sp}$\quad

\getsize{1sp}{r}$1\,\mathrm{sp}=\opprint{r}\,\mathrm{sp}$\quad

1 pt= 65536 sp 1 pc= 786432 sp 1 in= 4736286 sp 1 bp= 65781 sp

1 cm= 1864679 sp 1 mm= 186467 sp 1 dd= 70124 sp 1 cc= 841489 sp

1 sp= 1 sp

However, don’t forget that the xlop main goal is to display operations.

With this \getsizemacro, it is possible to realise calculations on length.

43

Surface of spread is

106.65 cm2

sour
e

\new
ommand\getsize[2℄{%

\dimen0=#1\relax

\
ount255=\dimen0

\op
opy{\the\
ount255}{#2}}

\getsize{1
m}{u}%

\getsize{\textwidth}{w}%

\getsize{\textheight}{h}%

\opexpr{w

*

h/u^2}{S}%

\opround{S}{2}{S}%

Surfa
e of spread is

\opprint{S}\,$\mathrm{
m}^2$

B.2 Complex Operations

Use of xlop macros with loop of TEX allow to create operations as you want.

Here, we give only two examples. The first one can express a number as a

product of prime factors, the second one is a general calculation for contin-

ued fraction.
sour
e

\new
ount\primeindex

\new
ount\tryindex

\newif\ifprime

\newif\ifagain

\new
ommand\getprime[1℄{%

\op
opy{2}{P0}%

\op
opy{3}{P1}%

\op
opy{5}{try}

\primeindex=2

\loop

\ifnum\primeindex<#1\relax

\testprimality

\ifprime

\op
opy{try}{P\the\primeindex}%

\advan
e\primeindex by1

\fi

\opadd

*

{try}{2}{try}%

\ifnum\primeindex<#1\relax

\testprimality

\ifprime

\op
opy{try}{P\the\primeindex}%

\advan
e\primeindex by1

\fi

\opadd

*

{try}{4}{try}%

\fi

\repeat

}

\new
ommand\testprimality{%

\begingroup

44

\againtrue

\global\primetrue

\tryindex=0

\loop

\opidiv

*

{try}{P\the\tryindex}{q}{r}%

\op
mp{r}{0}%

\ifopeq \global\primefalse \againfalse \fi

\op
mp{q}{P\the\tryindex}%

\ifoplt \againfalse \fi

\advan
e\tryindex by1

\ifagain

\repeat

\endgroup

}

With this code, we can create a prime numbers list (here the 20 first

ones).

2, 3, . . . , 29, . . . 71.

sour
e

\getprime{20}%

\opprint{P0}, \opprint{P1}, \ldots,

\opprint{P9}, \ldots \opprint{P19}.

Note that this code is very bad: it is very slow and don’t give anything

against native TEX operations. It is only an educational example. Note also

that the tricks to put loop into loop with macro \testprimality inside a

group. xlop operations give global results.

Once you have your prime numbers “table”, you can use it to write a

number as product of prime number.

sour
e

\new
ommand\primede
omp[2℄[nil℄{%

\begingroup

\opset{#1}%

\op
opy{#2}{NbtoDe
ompose}%

\opabs{NbtoDe
ompose}{NbtoDe
ompose}%

\opinteger{NbtoDe
ompose}{NbtoDe
ompose}%

\op
mp{NbtoDe
ompose}{0}%

\ifopeq

I refuse to fa
torize zero.

\else

\setbox1=\hbox{\opdisplay{operandstyle.1}%

{NbtoDe
ompose}}%

{\setbox2=\box2{}}%

\
ount255=1

\primeindex=0

\loop

\op
mp{NbtoDe
ompose}{1}\ifopneq

\opidiv

*

{NbtoDe
ompose}{P\the\primeindex}{q}{r}%

\op
mp{0}{r}\ifopeq

45

\ifvoid2

\setbox2=\hbox{%

\opdisplay{intermediarystyle.\the\
ount255}%

{P\the\primeindex}}%

\else

\setbox2=\vtop{%

\hbox{\box2}

\hbox{%

\opdisplay{intermediarystyle.\the\
ount255}%

{P\the\primeindex}}}

\fi

\op
opy{q}{NbtoDe
ompose}%

\advan
e\
ount255 by1

\setbox1=\vtop{%

\hbox{\box1}

\hbox{%

\opdisplay{operandstyle.\the\
ount255}%

{NbtoDe
ompose}}

}%

\else

\advan
e\primeindex by1

\fi

\repeat

\hbox{\box1

\kern0.5\op
olumnwidth

\opvline(0,0.75){\the\
ount255.25}

\kern0.5\op
olumnwidth

\box2}%

\fi

\endgroup

}

\getprime{20}%

\primede
omp[operandstyle.2=\red,

intermediarystyle.2=\red℄{252}

2 5 2

1 2 6

6 3

2 1

7

1

2

2

3

3

7

Note the use of group for the whole macro in order to protect xlop param-

eter modifications. Note also that void parameter aren’t allowed. It’s not a

bug, it’s a feature. Author thinks that a user who write brackets without any-

thing between these brackets is going to make a mistake. To obviate this

46

prohibition, there is the particular parameter nil which has exactly this

rôle.

Finally, note the trick {\setbox2=\box2} to obtain a void box register,

and final manipulations to show the vertical rule in a easy-to-read way.

The second example allow to calculates a continued fraction like:

a0 +
1

a1 +
1

a2 +
1

a3 +·· ·
giving the sequence a0, a1, a2, a3, . . . to the macro. This example gives frac-

tions corresponding to gold number, and square root for 2 and 3.
sour
e

\begingroup

\long\gdef\
ontinuedfra
tion#1#2{%

\let\�mirror\relax

\�for\op�Nb:=#1\do

{%

\ifx\�mirror\relax

\edef\�mirror{\op�Nb}%

\else

\edef\�mirror{\op�Nb,\�mirror}%

\fi

}%

\let\Op�result\relax

\�for\op�Nb:=\�mirror\do

{%

\ifx\Op�result\relax

\op
opy{\op�Nb}{result}%

\else

\opexpr{\op�Nb+1/result}{result}%

\fi

}%

\op
opy{result}{#2}%

}

\endgroup

\
ontinuedfra
tion{1,1,1,1,1,1,1,1,1,1,1,1}{r}\opprint{r}\quad

\
ontinuedfra
tion{1,2,2,2,2,2,2,2,2,2,2,2}{r}\opprint{r}\quad

\
ontinuedfra
tion{1,1,2,1,2,1,2,1,2,1,2,1}{r}\opprint{r}

1.618055555 1.414213564 1.732051282

It does no harm just this once, we use LATEX commands for the loop.

B.3 Direct Access to Number

When a number is saved in a xlop variable, it is possible to process with it in

many different ways. However, in certain situations, you would creat you

own macro or use external macro giving such numbers as parameter.

47

Giving directly \opprint{var} is ineffective since this macro is a com-

plex a gives side effect. It is necessary to access directly to this number.

When a variable hold a number, xlop creates a macro \Op�var which con-

tain this number. Note the uppercase “O” and the lowercase “p”. The at

sign is here to do this definition a private one, that is, you have to enclose

it with \makeatletter and \makeatother to access it (or \
at
ode �=11

in TEX).

1234

× 56

= 69104

sour
e

\op
opy{1234}{a}\op
opy{56}{b}%

\opmul

*

{a}{b}{r}%

\makeatletter

\new
olumntype{.}{D{.}{.}{­1}}

\begin{tabular}{l.}

& \Op�a \\

\times & \Op�b \\

$=$ & \Op�r

\end{tabular}

\makeatother

Note that this way of doing don’t work when decimal separator is be-

tween braces since macro \opprint{var} contain such braces. In this

case, the simplest is to use \opexport macro (see page 27).

48

Appendix C

Future Versions

Version of xlop package is 0.28 which is only a debuging version of ver-

sion 0.2, which is itself a correcting version of version 0.1 (first public re-

lease). The next release will be version 0.3 and its “stable” version will be

version 0.4.

The features of version 0.3 aren’t definitively fixed but there are some

points planned:

• international version for posées;

• opérations from 2 to 36 basis;

• additional high level functions with roots (\oproot for any roots and

\opsqrt for square root), exponential function, logarithm, trigono-

metric functions (direct, inverse, hyperbolic);

• macro to have a formated writing, that is, write a number where length

of decimal part and integer part are given (if these widths are not the

ones of the number, there will be overflow or filling); this macro was

present in version 0.1 and allow to display numbers decimal aligned,

right aligned, or left aligned;

• parameter for scientific or engineer notation;

• macro to allow to write a multi-line number and/or with thousand

separator;

• carries for multiplications;

• make public the successive remainders of a division;

• negative values of maxdivstepand safedivstepparameters will take

acount of decimal digit of quotient.

For all requests or bug report, the author will be grateful to you to con-

tact him at:

Jean­Come.Charpentier�wanadoo.fr

49

placing the word “xlop” in the subject in order to help my spam killer.

It would be nice to have a hacker manual which explain in details the

source. This tool could be usefull in order to improve xlop. Unfortunately,

the current code has more than 4000 lines and the work to do that may well

be too long.

50

Appendix D

Index

addsymbol, 6

afterperiodsymbol, 6, 21

approxsymbol, 6, 20

behaviorsub, 16

BNF syntax, 5

calc, 43

arryadd, 12

arrystyle, 9

arrysub, 15

casting out of elevens, 29

casting out of nines, 29

olumnwidth, 8, 26

compilation time, 35–36

complex expression, 32–34

decimal part, 27

de
imalsepoffset, 9

de
imalsepsymbol, 6, 27

de
imalsepwidth, 8

deletezero, 7, 13, 14, 16, 19

displayintermediary, 17, 18, 22

displayshiftintermediary, 17

dividendbridge, 22

division

period, 6, 21, 29

divsymbol, 6

equalsymbol, 6, 20, 21

gcd, 29

\getsize, 43

global allocation, 45

hash table, 4

hfa
tor, 18

hrulewidth, 8, 21, 26

\ifopeq, 28

\ifopge, 28

\ifopgt, 28

\ifople, 28

\ifoplt, 28

\ifopneq, 28

\integer, 27

integer part, 27

intermediarystyle, 9

last
arry, 12, 16

length, 43

lineheight, 8, 26

loop, 5, 44–47

macros

table of, 37–39

\makeatletter, 48

\makeatother, 48

maxdivstep, 19, 20, 23, 25, 32, 33,

36, 49

mulsymbol, 6

nil, 47

non-significant zero, 27

number

decimal part, 27

integer part, 27

limit, 4

name, 5

51

nonpositive in displayed opera-

tion, 12

prime, 44

size, 4

valid, 5

offset
arry, 16

\opabs, 30

\opadd, 12, 14

\opadd

*

, 25

\op
astingoutelevens, 29, 30

\op
astingoutnines, 29, 30

\op
eil, 31

\op
mp, 28

\op
olumnwidth, 26

op
olumnwidth, 16

\op
olumnwidth, 8

\op
opy, 25

\opde
imal, 27

\opde
imalwidth, 27

\opdisplay, 26

\opdiv, 19, 25

\opdiv

*

, 25

\opdivperiod, 29

operandstyle, 9

operation

with hole, 10

\opexport, 27, 48

\opexpr, 32, 33

\opfloor, 31

\opg
d, 29

opgetde
imaldigit, 28

opgetdigit, 28

opgetintegerdigit, 28

\opgfsqrt, 32

\ophline, 26

\opidiv, 19, 23–25

\opidiv

*

, 25

\opintegerwidth, 27

\oplineheight, 26

\oplineheight, 8

\oplput, 26

\opmanyadd, 13, 14

\opmul, 17

\opmul

*

, 25

\opneg, 30

\oppower, 30

\opprint, 25

\oproot, 49

\opround, 31

\oprput, 26

\opset, 6

opsetde
imaldigit, 28

opsetdigit, 28

opsetintegerdigit, 28

\opsqrt, 31, 49

\opsub, 15

\opsub

*

, 25

\opunzero, 27

\Op�var, 48

\opvline, 26

\opwidth, 27

overflow, 4

package

calc, 43

xfp, 43

parameter

addsymbol, 6

afterperiodsymbol, 6, 21

approxsymbol, 6, 20

behaviorsub, 16

arryadd, 12

arrystyle, 9

arrysub, 15

olumnwidth, 8, 26

de
imalsepoffset, 9

de
imalsepsymbol, 6, 27

de
imalsepwidth, 8

deletezero, 7, 13, 14, 16, 19

displayintermediary, 17, 18,

22

displayshiftintermediary,

17

dividendbridge, 22

divsymbol, 6

equalsymbol, 6, 20, 21

hfa
tor, 18

hrulewidth, 8, 21, 26

intermediarystyle, 9

last
arry, 12, 16

lineheight, 8, 26

maxdivstep, 19, 20, 23, 25, 32,

33, 36, 49

52

mulsymbol, 6

nil, 47

offset
arry, 16

op
olumnwidth, 16

operandstyle, 9

opgetde
imaldigit, 28

opgetdigit, 28

opgetintegerdigit, 28

opsetde
imaldigit, 28

opsetdigit, 28

opsetintegerdigit, 28

parenthesisnegative, 7

period, 19, 21, 23, 25, 33

remainderstyle, 9

resultstyle, 9

safedivstep, 19, 21, 23, 25, 33,

49

shiftde
imalsep, 23

shiftintermediarysymbol,

17

strikede
imalsepsymbol, 23

style, 7, 13

subsymbol, 6

vmanyoperator, 13, 14

voperation, 6, 14

voperator, 7

vruleperiod, 21

vrulewidth, 8, 26

boolean, 12

index, 9–11

local modification, 46

syntax, 5–11

table of, 39–42

void, 47

with “=” or “,” , 6

parenthesisnegative, 7

period, 19, 21, 23, 25, 33

product of prime factors, 44

pstricks, 2, 9

remainderstyle, 9

resultstyle, 9

safedivstep, 19, 21, 23, 25, 33, 49

shiftde
imalsep, 23

shiftintermediarysymbol, 17

spool size, 4

square root, 31

strikede
imalsepsymbol, 23

style, 7, 13

subsymbol, 6

syntax (BNF), 5

\time, 25

time (calculation), 35–36

vmanyoperator, 13, 14

voperation, 6, 14

voperator, 7

vruleperiod, 21

vrulewidth, 8, 26

xfp, 43

53

	Overview
	xlop Instructions
	In the Beginning Was the Number
	Size
	Syntax

	xlop Parameters
	Symbols
	General Displaying
	Dimensions
	Figure's Styles

	Arithmetic Operations
	Addition
	Substraction
	Multiplication
	Division
	End Control
	Other Features
	Non Integer Numbers and Negative Numbers

	Other Commands
	Starred Macros
	Input-Output
	Figures of Numbers
	Comparisons
	Advanced Operations

	Short Summary
	Compilation times
	Macro List
	Parameter list

	Tricks
	xlop vs. calc and xfp
	Complex Operations
	Direct Access to Number

	Future Versions
	Index

