\dummyft@

\ifsyntax@

\syntaxonly

The file syntonly.dtx for use with ETEX2¢.*
[t contains the code for syntonly.sty

Frank Mittelbach Rainer Schopf
August 22, 2024

This file is maintained by the KTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

This package implements the \syntaxonly declaration for ITEX 2¢. This com-
mand can be used in the preamble for running a document through ITEX without
actually getting any output.

1 Identification

We identify the package and its current version.

1 (package)\ProvidesPackage{syntonly}

2 (xdtx)

3 \ProvidesFile{syntonly.dtx}

4 (/dtx)

5 (¥package | dtx)

6 [2024/02/08 v2.1le Standard LaTeX2e package]

7 (/package | dtx)

2 Implementation

8 (xpackage)

First of all we need to define the ‘dummy’ font.
9 \font\dummyft@=dummy \relax

Now we can define the ‘syntax only’ feature. We define a switch \if@syntax so
that any macro can always find out if it is really supposed to typeset text. Its
default is to run in normal mode.

10 \newif\ifsyntax@
11 \syntax@false

The \syntaxonly macro sets up everything for syntax checking.
12 \def\syntaxonly{%

*This file has version number v2.1e, dated 2024,/02/08.

https://latex-project.org/bugs.html

\nopages@

First of all it sets the syntax@ switch to true.

13 \syntax@true

Then it globally sets all fonts to the dummy font. These are: the current font
outside math mode,

14 \global\dummyft@

and the 3 x 16 math fonts for the 16 math groups. We use a loop to set these.

15 \count@\sixt@e@n

16 \loop

17 \ifnum\count@ >\z@

18 \advance\count@\m@ne

19 \global\textfont\count@\dummyft@

20 \global\scriptfont\count@\dummyftQ

21 \global\scriptscriptfont\count@\dummyft@
22 \repeat

Since all font changes occur either via \selectfont (in text) or \mathversion
(for math mode), it is sufficient to change these to no-ops. In addition we must
prevent the loading of math fonts, this is done by making \getanddefine@fonts
a no-op.

23 \globalllet\selectfont\relax

24 \global\let\mathversion\@gobble

25 \globalllet\getanddefine@fonts\@gobbletwo

We prevent TEX from complaining about the dummy font having no characters.
26 \tracinglostchars\z@
Then we disable the output routine, and set \frenchspacing (which is slightly

faster than \nonfrenchspacing). Finally we set \hbadness to 10000 to avoid
overfull box messages.

27 \nopages@

28 \frenchspacing

29 \hbadness\@M}

The \nopages@ macro disables the M TEX output routine. To this end we define a
very simple output routine that empties the output and footnote boxes (remember
that the latter are insertions).

30 \def\nopages@{’

31 \output {\setbox\z@\box\@cclv

32 \setbox\z@\box\footins

33 \deadcycles\z@}%

Then we protect it against definition by a style file.

34 \newtoks\output

But this is not enough: normally the KTEX output routine is responsible for
dealing with floating objects. We therefore also redefine the internal macros for
handling floats and marginpars.

35 \def\@xfloat##1 [##2]{

There are a few things that have to be retained: the definition of \@captype since
it is used by the \caption command,

36 \def\@captype{##1}/,

the error message issued when not in outer paragraph mode,

37 \ifinner\@parmoderr\fi

\@preamblecmds

and the \@parboxrestore command for the body of the float. This is necessary
since it restores the original definitions of important commands like \par or \\.

38 \setbox\@tempboxa\vbox\bgroup\@parboxrestorel}y,

\end@float must now only close the brace:

39 \let\end@float\egroup

The above would be enough also for two-column floats with the kernel algorithm.
However with the refined algorithm inside fixlxt2e this doesn’t any longer work,

so there we also need to explicitly overwrite the end macro for two-column floats
(the begin is still okay as it resolves to \@xfloat eventually).

40 \let\end@dblfloat\egroup

The redefinition of the \marginpar command is a bit more complicated since we
have to check for the optional argument. First we redefine the command itself:
41 \def\marginpar{\ifinner\@parmoderr\fi

We open a group so that everything gathered in a temporary box can easily be
thrown away by closing it again (see below).

42 \begingroup \@ifnextchar [\@xmpar\@ympar}

\@xmpar and \@ympar are now defined similar to \@xfloat above. If an optional

argument is present \@xmpar typesets it in a temporary box that is thrown away
later. Then it calls up \@ympar to process \marginpar’s argument.

43 \long\def\@xmpar [##1]{/

44 \setbox\@tempboxa\vbox{\@parboxrestore ##1}\@ymparl}y,

\@ympar gathers its argument in the same temporary box and throws away its
contents by closing the group opened up in \marginpar above.

45 \long\def\@ympar##1{J

46 \setbox\@tempboxa\vbox{\@parboxrestore ##1}\endgroupl}’
And that’s all we had to do.
47}

We disable the use of the \syntaxonly command after \begin{document}

48 \@onlypreamble\syntaxonly
49 (/package)

	1 Identification
	2 Implementation

