
The color package∗

D. P. Carlisle

2024/06/23

This file is maintained by the LATEX Project team.
Bug reports can be opened (category graphics) at
https://latex-project.org/bugs.html.

1 Introduction

This package implements LATEX support for colour, for those dvi drivers that can
produce coloured text.

The user level documentation of this package is contained in the document
Packages in the ‘graphics’ bundle in the file grfguide.tex.

2 Options

1 ⟨∗package⟩

First we save the catcodes of some characters, and set them to fixed values
whilst this file is being read.

2 \edef\Gin@codes{%

3 \catcode‘\noexpand\^^A\the\catcode‘\^^A\relax

4 \catcode‘\noexpand\"\the\catcode‘\"\relax

5 \catcode‘\noexpand*\the\catcode‘*\relax

6 \catcode‘\noexpand\!\the\catcode‘\!\relax

7 \catcode‘\noexpand\:\the\catcode‘\:\relax}

8 \catcode‘\^^A=\catcode‘\%

9 \catcode‘\"=12

10 \catcode‘*=11

11 \catcode‘\!=12

12 \catcode‘\:=12

\Gin@driver Initialize the macro to hold the driver file name.

13 \providecommand\Gin@driver{}

\c@lor@error Helper macro for error handling (redefined by the monochrome option to make
errors warnings).

14 \def\c@lor@error#1{%

15 \@latex@error{Undefined color #1}\@ehd}

∗This file has version number v1.3e, last revised 2024/06/23.

1

https://latex-project.org/bugs.html

\ds@monochrome The monochrome option should be used in addition to one of the standard driver
options.

16 \DeclareOption{monochrome}{%

17 \def\c@lor@error#1{\PackageInfo{color}{Undefined color #1}}%

18 \AtEndOfPackage{%

19 \colors@false

20 \def\set@color{%

21 \c@lor@special\m@ne

22 {color push \current@color}\aftergroup\reset@color}%

23 \def\reset@color{\c@lor@special\m@ne{color pop}}%

24 \def\set@page@color{%

25 \c@lor@special\m@ne{background \current@color}}%

26 \def\define@color#1#2{%

27 \c@lor@special\m@ne{define #1 #2}}}}

\ds@debugshow The debugshow option turns on debugging info (perhaps).

28 \DeclareOption{debugshow}{\catcode‘\^^A=9 \let\GDebug\typeout}

\ds@setpagesize

\ds@nosetpagesize

The setpagesize option requests that the driver option sets the page size.
(Whichever option is used, the page size is not set by this package if \mag has
been changed from its default value.)

29 \newif\ifGin@setpagesize\Gin@setpagesizetrue

30 \DeclareOption{setpagesize}{\Gin@setpagesizetrue}

31 \DeclareOption{nosetpagesize}{\Gin@setpagesizefalse}

Now the options for supported drivers.

\ds@dvips

\ds@xdvi

Tom Rokicki’s dvips driver, and the X Windows previewer, xdvi, which uses (a
subset of) the same \specials.

32 \DeclareOption{dvips}{\def\Gin@driver{dvips.def}%

33 \def\c@lor@namefile{dvipsnam.def}}

34 \DeclareOption{xdvi}{\ExecuteOptions{dvips,monochrome}}

\ds@dvipdf Sergey Lesenko’s dvipdf driver.

35 \DeclareOption{dvipdf}{\def\Gin@driver{dvipdf.def}}

\ds@dvipdfm Mark Wick’s dvipdfm driver (now merged with xdvipdfmx).

36 \DeclareOption{dvipdfm}{\def\Gin@driver{dvipdfmx.def}}

\ds@dvipdfmx The driver for the dvipdfmx project.

37 \DeclareOption{dvipdfmx}{\def\Gin@driver{dvipdfmx.def}}

\ds@pdftex Han The Thanh’s TEX variant.

38 \DeclareOption{pdftex}{\def\Gin@driver{pdftex.def}}

\ds@luatex LuaTEX TEX variant.

39 \DeclareOption{luatex}{\def\Gin@driver{luatex.def}}

\ds@luatex dvisvgm driver.

40 \DeclareOption{dvisvgm}{\def\Gin@driver{dvisvgm.def}}

\ds@xetex Jonathan Kew’s TEX variant.

41 \DeclareOption{xetex}{\def\Gin@driver{xetex.def}}

2

\ds@dvipsone

\ds@dviwindo

The drivers of the Y&Y TEX system. (Which use the same \specials.)

42 \DeclareOption{dvipsone}{\def\Gin@driver{dvipsone.def}}

43 \DeclareOption{dviwindo}{\ExecuteOptions{dvipsone}}

\ds@emtex

\ds@dviwin

Freely available drivers for PCs.

44 \DeclareOption{emtex}{\def\Gin@driver{emtex.def}}

45 \DeclareOption{dviwin}{\def\Gin@driver{dviwin.def}}

\ds@oztex The OzTEX system for a Macintosh. Since release 3 of OzTEX, merge with dvips
back end.

46 \DeclareOption{oztex}{\ExecuteOptions{dvips}}

\ds@textures Blue sky’s Textures system on a Macintosh.

47 \DeclareOption{textures}{\def\Gin@driver{textures.def}}

\ds@pctexps

\ds@pctexwin

\ds@pctexhp

\ds@pctex32

The drivers for PTI’s TEX system on PCs.

48 \DeclareOption{pctexps}{\def\Gin@driver{pctexps.def}}

49 \DeclareOption{pctexwin}{\def\Gin@driver{pctexwin.def}}

50 \DeclareOption{pctexhp}{\def\Gin@driver{pctexhp.def}}

51 \DeclareOption{pctex32}{\def\Gin@driver{pctex32.def}}

\ds@truetex

\ds@tcidvi

The drivers of the Kinch TEX system on PCs, and its version with extra \special
handling dll’s as shipped with TCI’s Scientific Word.

52 \DeclareOption{truetex}{\def\Gin@driver{truetex.def}}

53 \DeclareOption{tcidvi}{\def\Gin@driver{tcidvi.def}}

\ds@vtex VTEX driver.

54 \DeclareOption{vtex}{\def\Gin@driver{vtex.def}}

\ds@dvi2ps

\ds@dvialw

\ds@dvilaser

\ds@dvitops

\ds@psprint

\ds@pubps

\ds@ln

Old, probably obsolete, drivers commented out. See the section on ‘Driver support’
in grfguide to see how to re-enable these options in color.cfg if you need them.

55 %\DeclareOption{dvi2ps}{\def\Gin@driver{dvi2ps.def}}

56 %\DeclareOption{dvialw}{\def\Gin@driver{dvialw.def}}

57 %\DeclareOption{dvilaser}{\def\Gin@driver{dvilaser.def}}

58 %\DeclareOption{dvitops}{\def\Gin@driver{dvitops.def}}

59 %\DeclareOption{psprint}{\def\Gin@driver{psprint.def}}

60 %\DeclareOption{pubps}{\def\Gin@driver{pubps.def}}

61 %\DeclareOption{ln}{\def\Gin@driver{ln.def}}

\ds@dvipsnames

\ds@nodvipsnames

By default the named colour model has no pre-declared names. The dvipsnames

option predeclares all the names in the colour prologue of dvips. The dvips

option automatically implies dvipsnames unless this choice is overruled with the
nodvipsnames option. For other drivers, eg textures, you may use this option to
explicitly request that these names be declared.

62 \DeclareOption{dvipsnames}{\def\c@lor@namefile{dvipsnam.def}}

63 \DeclareOption{nodvipsnames}{\let\c@lor@namefile\relax}

\ds@usenames The usenames option modifies the behaviour of \DefineNamedColor so that it
declares the same name as a “user’s colour” for use in a \color command, as well
as a name in the named colour model. The normal behaviour is just to declare the
name in the named colour model.

64 \let\c@lor@usename\@gobble

3

65 \DeclareOption{usenames}{%

66 \def\c@lor@usename#1{%

67 \expandafter\color@named\csname\@backslashchar color@#1\endcsname{#1}}}

3 Using Colours

3.1 Declarative form

\color \color{declared-colour} switches to the colour declared-colour, which must previ-
ously have been defined using \definecolor. This colour will stay in effect until
the end of the current TEX group.

\color[model]{colour-specification} is similar to the above, but uses a colour
not declared by \definecolor. The allowed model ’s vary depending on the driver.
The syntax of the colour-specification argument depends on the model.

68 \DeclareRobustCommand\color{%

69 \@ifnextchar[\@undeclaredcolor\@declaredcolor}

\@undeclaredcolor Call the driver-dependent command \color@⟨model⟩ to define \current@color,
then call \set@color to change the current colour accordingly.

70 \def\@undeclaredcolor[#1]#2{%

71 \@ifundefined{color@#1}%

72 {\c@lor@error{model ‘#1’}}%

73 {\csname color@#1\endcsname\current@color{#2}%

74 \set@color}%

75 \ignorespaces}

\@declaredcolor \let \current@color to the internal representation of the colour if the colour
has been declared, otherwise generate an error. Finally call \set@color to effect
the colour change.

76 \def\@declaredcolor#1{%

77 \@ifundefined{\@backslashchar color@#1}%

78 {\c@lor@error{‘#1’}}%

79 {\expandafter\let\expandafter\current@color

80 \csname\@backslashchar color@#1\endcsname

81 \set@color}%

82 \ignorespaces}

3.2 Command (Argument) Form

\textcolor \textcolor{declared-colour}{text} and \textcolor[model]{colour-spec}{text}
are just alternative syntax for \color, in which the groups are added implicitly.
Thus text appears in the specified colour, but then the colour reverts to its previous
value. The naming is by analogy with \textrm (as opposed to \rm and \rmfamily)
although it is slightly a misnomer as the command also works in math-mode.

Since December 95, in fact this command has one other difference from \color.
It calls \leavevmode to ensure the start of horizontal mode. Specifically this means
that a construction such as

xxx\parbox[t]{1cm}{\textcolor{red}{a}.....

now works as expected, with the xxx and the red a lining up correctly.

83 \protected\def\textcolor#1#{\@textcolor{#1}}

84 \def\@textcolor#1#2#3{\protect\leavevmode{\color#1{#2}#3}}

4

3.3 Background (Page) Colour

\pagecolor \pagecolor, which has the same argument forms as \color, specifies the back-
ground colour for the current, and all following, pages. It is a global declaration
which does not respect TEX groups.

85 \protected\def\pagecolor{%

86 \begingroup

87 \let\ignorespaces\endgroup

88 \let\set@color\set@page@color

89 \color}

\nopagecolor \nopagecolor (suggested by Heiko Oberdiek) removes any currently specified page
colour returning to the default transparent background. It is not yet supported by
all driver options and so generates a warning if there is no definition in the driver
file.

90 \protected\def\nopagecolor{%

91 \@ifundefined{no@page@color}{%

92 \PackageInfo{color}{\@backslashchar nopagecolor\space is not supported}%

93 }{%

94 \no@page@color

95 }%

96 }

4 Defining Colours

\definecolor \definecolor{name}{model}{colour-spec} defines the color name, which may
then be used in subsequent \color or \textcolor commands to refer to a colour
specified by colour-spec in the colour model model.

\definecolor associates the name to a colour in model. So \color{name}
would check name then issue a \special for the colour model model.

\definecolor just calls an internal macro that defines the colour for a partic-
ular model. This macro must have been defined by the driver file that supports
the requested model.

97 \protected\def\definecolor#1#2#3{%

98 \@ifundefined{color@#2}%

99 {\c@lor@error{model ‘#2’}}%

100 {\@ifundefined{\@backslashchar color@#1}{}%

101 {\PackageInfo{color}{Redefining color #1}}%

102 \csname color@#2\expandafter\endcsname

103 \csname\@backslashchar color@#1\endcsname{#3}}}

\DefineNamedColor Driver files may opt to define a ‘named’ colour model. Placing colour names
rather than numeric specifications into the dvi file has certain advantages, in
that post processing software can tune the colour specifications to the particular
technology being used, and more easily make colour separations for that colour.
The disadvantage is that the driver must ‘know’ the colour names.

The ‘color1’ drivers (dvips) currently ignore the specification of the colour and,
once a name is defined, just put the colour name in the dvi file. For dvips, the
header file color.pro is used to give the cmyk equivalents of the names.

The ‘color2’ drivers (textures) use a special postscript operator that takes both
the name and the cmyk equivalent, so if the names are not being used, ‘fall back’

5

definitions in the cmyk model are available. These drivers also allow a numeric
value to affect the ‘density’ of the colour to use.

Drivers based on ‘color3’ do not support named colours at the dvi level, but to
ease document portability, the named model is still defined, but the \special’s
just put the colour specifications, not the names, into the dvi file.

Normally after a colour, say JungleGreen, has been declared with:
\DefineNamedColor{named}{JungleGreen}{cmyk}{1,2,3,4}

it is available in the ‘named’ colour model, for instance by
\color[named]{JungleGreen}

A user may give a more convenient name, using
\definecolor{mygreen}{named}{JungleGreen}

If however you are happy with the original names, and want to use them directly,
as in \color{JungleGreen} without specifying [named] all the time, just give
the package option usenames, which will redefine \DefineNamedColor, so that
the colour name is declared as a user-colour as well as a name in the ‘named’
model.

104 \protected\def\DefineNamedColor#1#2#3#4{%

105 \@ifundefined{define@color@#1}%

106 {\c@lor@error{model ‘#1’}}%

107 {\@ifundefined{color@#3}%

108 {\c@lor@error{model ‘#3’}}%

109 {\@ifundefined{col@#2}{}%

110 {\PackageInfo{color}{Redefining color #2 in named color model}}%

111 \csname color@#3\endcsname\@tempa{#4}%

112 \csname define@color@#1\endcsname{#2}\@tempa

113 \c@lor@usename{#2}}}}

114 \@onlypreamble\DefineNamedColor

5 Colour Switch

\ifcolors@ This boolean can be tested by higher level macros that may want to alter their
behaviour if a monochrome driver is being used.

115 \newif\ifcolors@

116 \colors@true

6 Whatsit. . .

\c@lor@special Some drivers can not support all the features of this package. They should always
put a ⟨whatsit⟩ in the current list though. The following macro has most of the
features of \special, but does not put anything into the dvi file. It does write
to the log file or the terminal (depending on the value of #1).

117 \def\c@lor@special#1#2{%

118 \edef\@tempa{\write#1{#2}}\@tempa}

7 Processing Options

A local configuration file may declare more options. It should also make one driver
option the default, by calling \ExecuteOptions with the appropriate option.

119 \InputIfFileExists{color.cfg}{}{}

6

After the options are processed, load the appropriate driver file. If a site wants
a default driver (eg dvips) it just needs to put \ExecuteOptions{dvips} in a
color.cfg file.

120 \ProcessOptions

121 \if!\Gin@driver!

122 \PackageError{color}

123 {No driver specified}

124 {You should make a default driver option in a file \MessageBreak

125 color.cfg\MessageBreak

126 eg: \protect\ExecuteOptions{dvips}%

127 }

128 \else

129 \PackageInfo{color}{Driver file: \Gin@driver}

130 \@ifundefined{ver@\Gin@driver}{\input{\Gin@driver}}{}

131 \fi

132 \@ifundefined{c@lor@namefile}{}{\input{\c@lor@namefile}}

8 Default Colour

\normalcolor Early versions of this package redefined \reset@font to reset the color as well.
Current versions do not do this (since there are too many \reset@font commands
hidden in strange places) and so they define a separate command, \normalcolor,
to reset the colour to the colour in effect at the start of the document.

\normalcolor is defined (to \relax) in the LATEX kernel, so it is safe to use
this in macros that may possibly be used in conjunction with colour. It will have
no effect until the color package is also loaded.

133 \protected\def\normalcolor{\let\current@color\default@color\set@color}

\default@color Internal macro to store the ‘default’ colour used by \normalcolor.

134 \AtBeginDocument{\let\default@color\current@color}

\current@color contains an internal representation of the colour at this point
in the document. (This can only be an approximation to the truth as the ‘macro
layer’ of TEX does not know where the output routine is going to re-insert floats.
This is why drivers must maintain their own stack of colours in order to fully
support these commands.)

For dvips, the \current@color is something like ‘Black’ or ‘rgb 0 1 0’, but
other packages should not rely on any particular format for this macro.

The driver file must initialise \current@color to a specification for Black.
This initialisation can not occur here, as the possible colour models (and thus the
syntax for ‘black’) are not known at this point.

9 Higher Level Commands

With the basic colour primitives specified above we may define a few higher level
commands for coloured boxes etc. This is still quite a low level and presumably
packages and classes making use of colour will define more appropriate document-
level commands.

7

9.1 Colour Block

\color@block \color@block{width}{height}{depth}
Should take up no space for TEX, but produce a block in the current colour of the
specified size. It is mainly used for producing box backgrounds.

The definition here works by selecting a colour, and then drawing a TEX rule
(unless \ifcolors@false). This allows the ‘driver independent’ colour specials to
be used. However it is defined using \providecommand, so that this file will not
over-write any other definition of this command. A graphics package may want to
define it using a special to produce (for example) a PostScript line. Producing the
line in the \special has the advantage that on a preview that does not understand
\specials, the line is automatically omitted, without needing to modify the source
of the document (for instance by adding the monochrome option).

135 \def\color@block#1#2#3{%

136 {\set@color\rlap{\ifcolors@\vrule\@width#1\@height#2\@depth#3\fi}}}

9.2 Coloured Boxes

\colorbox \colorbox takes the same argument forms as \textcolor, but the colour specifies
the background colour of the box.

137 \protected\def\colorbox#1#{\color@box{#1}}

\color@box

138 \def\color@box#1#2{\color@b@x\relax{\color#1{#2}}}

\fcolorbox \fcolorbox has an extra colour-spec argument, and puts a frame of the first colour
around a box with a background specified by the second colour. If an optional
argument is given, it specifies the colour model for both colours.

\fcolorbox

139 \protected\def\fcolorbox#1#{\color@fbox{#1}}

140 \def\color@fbox#1#2#3{%

141 \color@b@x{\fboxsep\z@\color#1{#2}\fbox}{\color#1{#3}}}

\color@b@x Internal macro for \colorbox and \fcolorbox.

142 \long\def\color@b@x#1#2#3{%

143 \leavevmode

144 \setbox\z@\hbox{\kern\fboxsep{\set@color#3}\kern\fboxsep}%

145 \dimen@\ht\z@\advance\dimen@\fboxsep\ht\z@\dimen@

146 \dimen@\dp\z@\advance\dimen@\fboxsep\dp\z@\dimen@

147 {#1{#2\color@block{\wd\z@}{\ht\z@}{\dp\z@}%

148 \box\z@}}}

9.3 Providing \mathcolor

This is shared coded between different packages, so external.

149 \input{mathcolor.ltx}

8

10 Extra Groups

Turning on extra groups in the standard LATEX commands, so that colour com-
mands are scoped correctly.

Like \normalcolor, the following five commands are defined in the kernel, with
empty definitions (\relax). This means that they can be used to make macros
in packages ‘colour safe’. The commands will not have any effect unless a user
also uses this colour package, when the ‘active definitions’ here will take effect and
keep colour commands correctly scoped.

\color@setgroup This is to be used in contexts (eg ‘lrbox’) where text is to be saved and used
after some other, unknown, text that may contain colour commands. A matching
\color@endgroup should be used at the end of the text.

150 \def\color@setgroup{\begingroup\set@color}

\color@begingroup This is to be used at the start of contexts that may contain colour commands, but
where it is not necessary to save the current colour. Examples of this are in the box
commands of ltboxes.dtx where user-supplied text is saved internally in a box
between \color@begingroup, \color@endgroup, but the box is used before any
other colour commands could intervene. A matching \color@endgroup should be
used at the end of the text.

151 \let\color@begingroup\begingroup

\color@endgroup To be used to close the ‘group’ started by one of the above two commands. The
\endgraf in its definition is required in the case of groups of text in vertical ‘par’
mode, but doesn’t do any harm in horizontal ‘LR’ contexts. The \@endpefalse

is required for the newer @endpe handling, again it is harmless if an older kernel
is used (because there it was a local assignment).

152 \def\color@endgroup{\endgraf\@endpefalse\endgroup}

\color@hbox To be used to open a ‘coloured hbox’

153 \def\color@hbox{\hbox\bgroup\color@begingroup}

\color@vbox To be used to open a ‘coloured vbox’

154 \def\color@vbox{\vbox\bgroup\color@begingroup}

\color@endbox To be used to close a ‘coloured hbox’

155 \def\color@endbox{\color@endgroup\egroup}

11 Predefining Colours

As long as the driver file has defined sufficient colour models, we define a few
colours, just to get people started.

black

white

Black and white ‘colours’.

156 \ifx\color@gray\@undefined

157 \ifx\color@rgb\@undefined

158 \else

159 \definecolor{black}{rgb}{0,0,0}

160 \definecolor{white}{rgb}{1,1,1}

161 \fi

9

162 \else

163 \definecolor{black}{gray}{0}

164 \definecolor{white}{gray}{1}

165 \fi

red

green

blue

Additive primaries.

166 \ifx\color@rgb\@undefined\else

167 \definecolor{red}{rgb}{1,0,0}

168 \definecolor{green}{rgb}{0,1,0}

169 \definecolor{blue}{rgb}{0,0,1}

170 \fi

cyan

magenta

yellow

Subtractive primaries.

171 \ifx\color@cmyk\@undefined\else

172 \definecolor{cyan}{cmyk}{1,0,0,0}

173 \definecolor{magenta}{cmyk}{0,1,0,0}

174 \definecolor{yellow}{cmyk}{0,0,1,0}

175 \fi

176 ⟨/package⟩

12 And Finally

Restore Catcodes

177 \Gin@codes

178 \let\Gin@codes\relax

10

	1 Introduction
	2 Options
	3 Using Colours
	3.1 Declarative form
	3.2 Command (Argument) Form
	3.3 Background (Page) Colour

	4 Defining Colours
	5 Colour Switch
	6 Whatsit…
	7 Processing Options
	8 Default Colour
	9 Higher Level Commands
	9.1 Colour Block
	9.2 Coloured Boxes
	9.3 Providing \mathcolor

	10 Extra Groups
	11 Predefining Colours
	12 And Finally

