
The bigfoot package

version 2.1

David Kastrup∗

2015/08/30

Purpose of this package is to provide a one-stop solution to almost all problems
related to footnotes. You can use it as a drop-in replacement of the manyfoot

package, but without many of its shortcomings, and quite a few features of its
own. It uses the existing document class layouts for footnotes, so you can usually
use it without having to worry about the looks.

Features are:

• You can specify and use multiple footnote apparatus. Footnotes for an ap-
paratus lower on the pagea can be anchored in an apparatus1 that is higher
on the page.

• The last footnote in each apparatus may be broken to the next page.2 Any
subordinate footnote anchors that get moved to the next page will take the
corresponding footnote with them.

• The order of footnotes in an apparatus is ‘natural’: it starts with any foot-
note that may have been broken from the next page, followed by footnotes
from the current page in the order of the appearance of their footnote marks.b

Where the order of appearance in the document differs from the order in the
source code, you will usually want to use the \MakeSorted command from
the perpage package to get the numbering fixed appropriately.

∗dak@gnu.org 1The plural of “apparatus” is actually “apparatus”c
2This will probably be interesting for footnotes that contain stuff like math equationsd or

listse.

alike this one bThis footnote appears above notes on notes.
cWell, actually “apparatūs” with a long “u”, but that’s just obvious in spoken Latin.
dLike

∞∑
k=1

1

k2
=
π2

6
(1)

eLike

• This, or

• this.

1

• Footnotes can be formatted in separate paragraphs, or be run into a single
paragraph. The choice is made per footnote apparatus, but can be overrid-
den for single footnotes.3

• If footnotes are run into one paragraph, a variety of criteria makes sure that
this formatting is only chosen when it saves noticeable space and delivers
visually attractive results.

• Parameters for footnote formatting can be specified globally, or separately
for each footnote.

• The material in footnotes can contain \verb-like material without prob-
lems.4

• You can use color in footnotes. If a footnote gets broken across pages, the
color at the point of the break will get resumed on the next page. Actually,
the whole color stack will get reinstated.

As an example of how simple the usage can be, here is the documentation driver
for this document:

1 〈∗driver〉
2 \documentclass{ltxdoc}

3 \usepackage{bigfoot}

4 \usepackage{tabularx}

5 \usepackage{hyperref}

After loading the packages, we declare two footnote blocks. One is the default
footnote block, another block is called B and is numbered with letters. The letters
start new on each page. Both footnote blocks default to in-paragraph footnotes.
Since the block B can get entries from both the main text as well as the default
footnote block, the entries are not necessarily generated in page order. So we need
to use a sorted counter to fix this (feel free to try what happens when using an
unsorted counter).

6 \DeclareNewFootnote[para]{default}

7 \DeclareNewFootnote[para]{B}[alph]

8 \MakeSortedPerPage{footnoteB}

In addition, we add an alternate footnote sequence that can be interspersed with
the normal footnotes by use of the \footnote’ command which we effectively
define here.

9 \newcounter{footalt}

10 \def\thefootalt{\fnsymbol{footalt}}

11 \MakeSortedPerPage[2]{footalt}

12 \WithSuffix\def\footnotedefault’{\refstepcounter{footalt}%

13 \Footnotedefault{\thefootalt}}

3I.e., footnotes with display matha or list environmentsb have to be done in vertical mode.
4We wrote |\verb|-like above in the main text.c

aWe had this already, right? bAnd this looks familiar, too.
cWell, this is not so impressive. But we wrote \verb+|\verb|-like+ in the footnote then.

2

Actually, that already was all. We can now start the document. The following
makes sure that we get the full documentation only by compiling the separate
driver file:

14 \begin{document}

15 \OnlyDescription

16 〈driver〉 \AlsoImplementation

17 \DocInput{bigfoot.dtx}

18 \end{document}

19 〈/driver〉
In order to be useful without additional hassle, the normal footnote level will be
called default. If no such style has been defined at the start of the document,
it will get defined and used for ordinary footnotes, fixing quite a few problems of
LATEX’s own footnote placement algorithms.

Apart from that, usage is very much like that of manyfoot, so for the cus-
tomization possibilities of bigfoot with regards to multiple footnote blocks and
rules between them, refer to manyfoot’s documentation.

bigfoot contains a lot of bells and whistles for defining your footnote formats
and can use different formats for different footnote blocks. Those expert options
are not documented separately yet: look through the code sections to see them
explained.

1 The implementation

1.1 Startup code

We declare the package and several compatibility options supposed to make
bigfoot a drop-in replacement for manyfoot.

20 〈∗style〉
21 \NeedsTeXFormat{LaTeX2e}

22 \ProvidesPackage{bigfoot}[2015/08/30 2.1 makes footnotes work]

23

24 \DeclareOption{para}{\PackageInfo{bigfoot}{Compatibility option ‘para’

25 has no effect:^^J%

26 Spacing will be guessed from ‘\string\@makefntext’ unless^^J%

27 ‘\string\@preparefnhtext’ is redefined}}

28

29 \DeclareOption{para*}{\PackageInfo{bigfoot}{Compatibility option

30 ‘para*’:^^J%

31 Redefining ‘\string\@preparefnhtext’}%

32 \def\@preparefnhtext{\ifx\@thefnmark\@empty

33 \else\@makefnmark\nobreak\fi}}

34

35 \DeclareOption{ruled}{\PassOptionsToPackage{ruled}{manyfoot}}

The normal processing makes footnote text macros allow verbatim and similar. We
call this robust processing though it is not totally accurate. This is the default.
There is also an option fragile which will not allow this, but may be required

3

for some definitions of \@makefntext. It turns out that most document classes
work with the ‘robust’ option, but there might be some that fail, and there might
be some footnote-modifying packages that also can cause failure.

36 \DeclareOption{robust}{\def\FN@makefncall{\FN@makefnrobust}}

37 \DeclareOption{fragile}{\def\FN@makefncall{\FN@makefnfragile}}

38 \ExecuteOptions{robust}

The verbose option talks about changed labels at the end of a run. It is for
debugging instable configurations that fail to converge after a number of TEX
runs. The output is probably obscure.

39 \DeclareOption{verbose}{\AtBeginDocument{%

40 \def\@testdef #1#2#3{%

41 \def\reserved@a{#3}%

42 \expandafter \ifx \csname #1@#2\endcsname

43 \reserved@a

44 \else \@tempswatrue

45 \typeout{Changed label #1/#2:

46 \csname #1@#2\endcsname->#3}%

47 \fi}}}

The trace option is only available if you used docstrip while explicitly requesting
trace functionality. If you set the trace option, the next option specifies a bit
map of trace bits.

The following bits can be set in tracing:

1 break decisions
2 horizontal box building
4 allocation stuff
8 output routine stuff

16 retained and kept boxes

48 〈trace〉\DeclareOption{trace}{%
49 〈trace〉\DeclareOption*{\ftflags=\CurrentOption\relax
50 〈trace〉 \DeclareOption*{\OptionNotUsed}}%

51 〈trace〉 \AtEndOfPackage{\RequirePackage{trace}\relax

52 〈trace〉 \errorcontextlines\maxdimen

53 〈trace〉 \showboxdepth4

54 〈trace〉 \showboxbreadth100

55 〈trace〉 \tracingonline=\@ne}%

56 〈trace〉}
The tracepage option is followed by another option specifying the page to be
traced. If you use it, tracing happens only on the specified page. Only a single
page can be specified.

57 〈trace〉\def\FN@tracepage{\c@page}
58 〈trace〉\DeclareOption{tracepage}{%
59 〈trace〉 \DeclareOption*{\edef\FN@tracepage{\CurrentOption}%

60 〈trace〉 \DeclareOption*{\OptionNotUsed}}}

61 〈trace〉\newcount\ftflags
62 〈trace〉\def\foottrace#1{\ifnum\numexpr(\ftflags+(#1))/(2*#1)*(2*#1)%
63 〈trace〉 =\numexpr(\ftflags+3*#1/2)/#1*#1\relax

64 〈trace〉 f\else t\fi\ifnum\FN@tracepage=\c@page t\else n\fi}

65 \ProcessOptions*

4

hyperref’s footnote support will just cause trouble. So if hyperref was already
loaded or is going to be loaded, we turn off its footnote support. If you think you
know what you are doing, you can use \hypersetup to turn it on again before the
start of the document. Unfortunately, it appears like \hypersetup refuses to be
called more than once, so this actually does not work unless you load hyperref

last.

66 \ifx\hypersetup\@undefined

67 \PassOptionsToPackage{hyperfootnotes=false}{hyperref}

68 \else

69 \hypersetup{hyperfootnotes=false}

70 \fi

We require the etex package because

1. We need the facilities of the ε-TEX engine; and where they are not available,
the error messages from not finding the etex package or from loading it into
the wrong engine make much more sense than what would happen otherwise.

2. We allocate quite a few registers, and the danger of running out of them
is smaller when the extra registers of ε-TEX are taken into account. Now
unfortunately the LaTeX team has decided in 2015 to do its own extended
allocation scheme incompatible with the etex package, so we need to guard
against this load in case the new LaTeX allocation scheme is detected.

We need the manyfoot package to build on. The suffix and perpage package
are needed for some small stuff.

71 \ifx\e@alloc\@undefined

72 \RequirePackage{etex}

73 \fi

74 \RequirePackage{manyfoot}

75 \RequirePackage{suffix}

76 \RequirePackage{perpage}

1.2 Fixes to the manyfoot package

While those fixes have been submitted once to the author of manyfoot, they have
not made it into its distribution at the current point of time. In the interest of
stability, it would probably be best just to incorporate the parts from manyfoot

that get used by bigfoot. This has not yet been done.

\MFL@reinsout We need the appropriate splitting parameters set for the footnote again. \MFL@realinsert
does that, but it has the disadvantage that it uses \strutbox, and that may be set
to arbitrary values at the time the output routine is invoked. manyfoot already
has this problem with minipages: the split sizes will be those of the font at the
end of the minipage instead of those at the time the footnote body was set up. So
we do this here, and see later for more info about how to do this right:

77 \def\MFL@reinsout#1#2{\ifvoid#2\else

78 \ifnum\count\@currbox>\z@

5

79 \advance\@pageht \ht#2%

80 \advance\@pageht \skip#2%

81 \advance\@pageht \dp#2%

82 \fi

83 \MFL@realinsert{#2}{\unvbox#2}%

84 \fi

85 }

\MFL@reins Actually, I don’t get the purpose of the following line in the first place. But if
we do need it for some reason, it is rather certain that we don’t want this empty
insert to float. Use \MFL@realinsert, or set the floatingpenalty the hard way.

86 \def\MFL@reins#1#2{\ifvoid#2\else\insert#2{\floatingpenalty\@MM}\fi}

\MFL@mpinsert

\MFL@minipage

The structure of the \MFL@mpinsert box is overly complicated, and it is a bad
idea to unpack the boxes put into it too early: the \lastbox command is pretty
inefficient when the list before it is long due to unpacking. So we just leave
everything packed in its own boxes, and unpack only at the moment when we are
reinserting.

87 \long\def\MFL@mpinsert#1#2{%

88 \global\setbox#1\vbox{%

89 \unvbox#1%

90 \nointerlineskip

91 \vbox{#2}%

92 }%

93 }

94

95 \def\FN@divert{%

96 \let\MFL@mpinsertsave\MFL@insert

97 \MFL@reinsert \let\MFL@insert\MFL@mpinsert}

98 \def\FN@enddivert{{\let\@elt\MFL@mpreinsert \MFL@list}}

99

100 \def\MFL@minipage{\ifinner\else \FN@divert\fi}

101 \def\MFL@endminipage{\ifinner\else \FN@enddivert\fi}

\MFL@mpreinsert When reinserting, we put all but the last insertion into one humongous blob. This
is so that the last insertion can be split by TEX’s paragraph splitting routines.
The footnote types that bigfoot supports will never get split by TEX, anyhow,
but it is conceivable that other extension packages for manyfoot work differently.
There is one difference, though: we let a slave mark escape into the main vertical
list.

102 \def\MFL@mpreinsert#1#2{%

103 \ifvoid#2\else

104 \setbox\@tempboxa\vbox\bgroup\unvbox#2%

105 \global\setbox#2\lastbox

106 \setbox\z@\lastbox

107 \ifvoid\z@

108 \egroup

109 \setbox\z@\box#2%

6

110 \else

111 \MFL@removevboxes \unvbox\z@

112 \egroup

113 \setbox\z@\box#2%

114 \MFL@mpinsertsave#2{\unvbox\@tempboxa}%

115 \fi

116 \ifvoid\z@\else

117 \MFL@mpinsertsave#2{\unvbox\z@}%

118 \fi

119 \marks\FN@slave{\number\FN@id}%

120 \fi}

\MFL@removevboxes This trick works like \removehboxes in the TEXbook’s appendix D.

121 \def\MFL@removevboxes{{\setbox\z@\lastbox

122 \ifvbox\z@ \MFL@removevboxes \unvbox\z@\fi}}

\NCC@makefnmark This provides the command in case it is not present (some versions did not have
it).

123 \ifx\NCC@makemark\@undefined

124 \ifx\NCC@makefnmark\@undefined \else

125 \def\NCC@makemark{\NCC@makefnmark}

126 \fi

127 \fi

While the above operations actually were fixes to manyfoot, now we actually
patch it for our own purposes. When allocating a new footnote, we set its max-
imum dimension to \maxdimen (since no hard limit makes sense, given that we
recalculate all respective sizes at output time) and allocate a cache box to go with
it. We also add the insertion to the list of insertions in \FN@nestlist.

\MFL@startplain

\MFL@startpara 128 \def\MFL@startplain#1{\global\dimen#1\maxdimen

129 \@cons\FN@nestlist{{}#1}%

130 \expandafter\expandafter\expandafter\newbox\FN@cache#1}

131

132 \let\MFL@startpara\MFL@startplain

\RestyleFootnote This macro gets two arguments: a footnote 〈type〉, and the style to be used for it.
It works by redefining the corresponding Footnotetext〈type〉 macro.

133 \def\RestyleFootnote#1#2{\expandafter\xdef

134 \csname Footnotetext#1\endcsname{\expandafter

135 \noexpand\csname MFL@fnote#2\endcsname{\csname footins#1\endcsname}}}

\FN@stripfootins

\FN@restylefootnote

We need the same kind of functionality for a footnote specified by its footnote
insertion. So we strip the footnote 〈type〉 from the insertion macro name. Kind of
ugly.

136 \expandafter\def\expandafter\FN@stripfootins\string\footins{}

137

138 \def\FN@restylefootnote#1#2{{\edef\next{%

7

139 \noexpand\RestyleFootnote{\expandafter\FN@stripfootins

140 \string#1}{#2}}\next}}

1.3 Dealing with footnote-specific code

The formatting of footnotes is determined by macros such as \@makefntext. For
several blocks of footnotes, we might want to have several different ways for for-
matting them. Whenever this is the case, we call them with

\FN@specific{〈insert#〉}{〈macroname〉}

This will use the default 〈macroname〉 unless a special macro has been defined
with something like

\FootnoteSpecific\marg{type}. . .

A number of other defining commands and constructs are available: those are
pretty much like the ones for the \WithSuffix command implemented by the
suffix package.

\FN@specific We use \romannumeral here just for the purpose of sustaining expansion. It ex-
pands to nothing when followed by \z@ eventually. Thus expanding the expansion
of \FN@specific again delivers the (unexpanded) final token to use.

141 \def\FN@specific#1#2{\romannumeral

142 \ifcsname FN\string#2\number#1\endcsname

143 \expandafter

144 \z@\csname FN\string#2\number#1\expandafter\endcsname

145 \else\expandafter\z@

146 \expandafter#2\fi}

\FootnoteSpecific

\FN@specific@ii

This is all a bit muddy, but quite similar to what the suffix package does, so you
might want to look there for the explanation.

147 \def\FootnoteSpecific#1{\count@\csname footins#1\endcsname\toks@{}%

148 \FN@specific@ii}

149

150 \long\def\FN@specific@ii#1#2{\toks@\expandafter{\the\toks@#1}%

151 \the\expandafter\toks@

152 \csname FN\string#2\number\count@\endcsname}

153

154 \WithSuffix\def\FN@specific@ii\long{\toks@\expandafter

155 {\the\toks@\long}\FN@specific@ii}

156

157 \WithSuffix\def\FN@specific@ii\global{\toks@\expandafter

158 {\the\toks@\global}\FN@specific@ii}

159

160 \WithSuffix\def\FN@specific@ii\expandafter{\expandafter

161 \FN@specific@ii\expandafter}

8

1.4 Putting footnotes into insertions

1.4.1 Dealing with Ids

Since we have to store additional information for each footnote as long as it is not
yet typeset, we allocate and deallocate numeric ‘id’s on an as-needed base, since
we do not want to store this sort of information indefinitely, with a large toll on
hash space. So we work with indirect ids, where the unique ids are just referenced
indirectly. We do this with ‘slots’.

\FN@slotxdef

\FN@slotget

New slots are assigned values with \FN@slotxdef, which can be retrieved again
with \FN@slotget.

162 \def\FN@slotxdef#1{%

163 \global\expandafter\xdef\csname FN@slot#1\endcsname}

164

165 \def\FN@slotget#1{\csname FN@slot#1\endcsname}

166 〈trace〉\def\FN@slotget#1{%
167 〈trace〉 \expandafter\FN@slotgetii\expandafter

168 〈trace〉 \FN@slotfreelist\expandafter

169 〈trace〉 {\number\number#1}}

170 〈trace〉\def\FN@slotgetii#1#2{%
171 〈trace〉 \ifx#1\@empty \csname FN@slot#2\endcsname\else

172 〈trace〉 \ifnum#1=#2 \errmessage{Use after freed: #1}\else

173 〈trace〉 \expandafter\FN@slotgetii

174 〈trace〉 \csname FN@slot#1\endcsname{#2}\fi\fi}

\FN@slotfreelist

\FN@nextslot

\FN@slotfreelist point to the first already allocated available id to be reused. If
it is empty, none exist. In that case, \N@nextslot contains the next slot number
to use.

175 \def\FN@slotfreelist{}

176 \def\FN@nextslot{1}

\FN@newslot This allocates a new slot by setting the given macro to a currently unused slot
number in decimal form. If there is something left in the freelist, it is assigned,
otherwise a new slot gets allocated.

177 \def\FN@newslot#1{%

178 \ifx\FN@slotfreelist\@empty

179 \edef#1{\FN@nextslot}%

180 \xdef\FN@nextslot{\number\numexpr \FN@nextslot+\@ne}%

181 \else

182 \let#1\FN@slotfreelist

183 \xdef\FN@slotfreelist{\csname FN@slot\FN@slotfreelist\endcsname}%

184 \fi

185 〈trace〉 \if\foottrace4\message{^^JAllocated #1^^J}\fi

186 }

\FN@freeslot This frees a given slot (by number) again by adding it to the freelist.

187 \def\FN@freeslot#1{%

188 〈trace〉 \if\foottrace4\message{^^JFreeing #1^^J}\fi

9

189 \global\expandafter\let\csname FN@slot#1\endcsname=\FN@slotfreelist

190 \xdef\FN@slotfreelist{#1}}

1.4.2 Dealing with footnote stacks

Footnote stacks are used for paired footnotes that refer to a text range instead of
a single text point. For example, you can use something like

Text \var<{was there}is here\var>

To have a text variant “was there” for the original passage “is here”, and mark it,
say, as “ais herea” by employing the suffix package suitably. This would anchor
the footnote at the start of the passage. It would also be imaginable to implement
the syntax

Text \var<is here\var>{was there}

for anchoring it at the end of the given passage.

191 \global\let\FN@stacklist\@empty

\DefineFootnoteStack This command is used for defining a footnote stack. It gets a single argument which
is the name of the stack and should consist just of ordinary character tokens.

192 \def\DefineFootnoteStack#1{%

193 \global\expandafter\let\csname FN@stack@#1\endcsname\@empty

194 \@cons\FN@stacklist{{#1}}%

195 }

At the end of the document, all stacks are checked to make sure they have been
used up completely.

196 \AtEndDocument{\FN@checkstacklist}

197

198 \def\FN@checkstacklist{{\let\@elt\FN@checkstack

199 \FN@stacklist}}

200

201 \def\FN@checkstack#1{{\let\@elt\FN@checkstackentry

202 \csname FN@stack#1@\endcsname}}

203

204 \def\FN@checkstackentry#1#2#3{%

205 \PackageError{bigfoot}{Unfinished #1 #2 from line #3}%

206 {The specified footnote range is uncomplete}}

\PushFootnoteMark This gets one argument, the name of the footnote stack. It pushes the current
footnote mark name stored in \@thefnmark onto the footnote stack.

207 \def\PushFootnoteMark#1{{\let\@elt\relax

208 \expandafter\unrestored@protected@xdef \csname FN@stack@#1\endcsname

209 {\@elt{#1}{\@thefnmark}{\number\inputlineno}\csname

210 FN@stack@#1\endcsname}}}

10

\PopFootnoteMark This gets one argument, the name of the footnote stack. It pops the value of
\@thefnmark from the named footnote stack.

211 \def\PopFootnoteMark#1{\expandafter

212 \ifx\csname FN@stack@#1\endcsname\@empty

213 \PackageError{bigfoot}{Empty footnote stack #1}%

214 {The specified footnote type has no uncompleted range}%

215 \else

216 {\let\@elt\FN@firstpop

217 \iffalse{\fi\csname FN@stack@#1\endcsname}}\fi}

218 \def\FN@firstpop#1#2#3{\protected@xdef\@thefnmark{#2}%

219 \let\@elt\relax

220 \expandafter\protected@xdef\csname FN@stack@#1\endcsname{%

221 \iffalse}\fi}

1.4.3 Continuation marks

We add a possibility of adding continuation marks. While the box is assembled,
immediately before the break, \FN@beforebreak gets called, and \FN@afterbreak

is called at the top of the continuing box.

222 \ifx\FN@beforebreak\@undefined

223 \let\FN@beforebreak\@empty

224 \fi

225 \ifx\FN@afterbreak\@undefined

226 \let\FN@afterbreak\@empty

227 \fi

1.4.4 The works

\FN@cache Cacheboxes cache the typeset forms of the insertion boxes for a certain configura-
tion of footnotes.

228 \def\FN@cache#1{\csname FN@cache\number#1\endcsname}

\FN@sortlist takes the current vertical list and sorts the contained boxes accord-
ing to their width (which is supposed to contain the sort key).

The algorithm is a pretty straightforward insertion sort with O(n2) steps. This
is the best one can hope for without comparisons across non-adjacent list elements.
For presorted lists, the performance will be O(n), and that’s what we expect to
see for simple cases (and when there are no sortkeys yet). Any negative width will
certainly hang the algorithm.

It also happens that TEX has a hardwired limit for grouping levels that hits at
255. Oops. We better not have a few hundred footnotes in a single block on one
page. . .

229 \def\FN@sortlist{{%

230 \setbox\z@\lastbox

231 \ifvoid\z@ \else \FN@sortlist\FN@sortlistii \fi}}

232

233 \def\FN@sortlistii{%

11

234 \setbox\tw@\lastbox

235 \ifvoid\tw@\else

236 \ifdim\wd\tw@<\wd\z@ {\FN@sortlistii}%

237 \fi\nointerlineskip\box\tw@\fi\nointerlineskip\box\z@}

\FN@sortinsert This function is an \@elt function that will sort the given insertion if it is non-
empty and if there is no cache box present (which would imply that the insertion
had already been sorted previously).

238 \def\FN@sortinsert#1#2{\ifvoid\FN@cache#2%

239 \ifvoid#2\else\global\setbox#2\vbox{\unvbox#2%

240 \FN@sortlist}\fi\fi}

\FN@maybeinvalidatecache This is called after pulling in additional material from the page. If the material
added an insertion, the cache is junk and must be regenerated.

241 \def\FN@maybeinvalidatecache#1#2{%

242 \ifvoid#2\else\global\setbox\FN@cache#2=\box\voidb@x\fi}

\FN@regeneratecache This unconditionally regenerates one cache box. The structure of a cache box is
basically a list of vertical boxes. All but the last such box are packed into a single
vertical box which is then followed by the last vertical box.

243 \def\FN@regeneratecache#1#2{%

244 \global\setbox\FN@cache#2=%

245 \ifvoid#2%

246 \box\voidb@x

247 \else

248 \vbox{\vbox{\unvcopy#2%

249 \setbox\z@\lastbox

250 \def\FN@masterinsert{#2}%

251 \FN@assembleboxes

252 \global\setbox\FN@cache#2\box\z@}%

253 \nointerlineskip \box\FN@cache#2}%

254 \fi}

\FN@mayberegeneratecache This regenerates the cache in case the cache box has been voided in order to mark
it as invalid.

255 \def\FN@mayberegeneratecache#1#2{%

256 \ifvoid\FN@cache#2%

257 \FN@regeneratecache{}#2%

258 \fi}

\FN@cachesize This calculates the size impact of a cache box on the current page as a term to be
added into a \glueexpr-type of expression.

259 \def\FN@cachesize#1#2{%

260 \ifvoid\FN@cache#2%

261 \else

262 +\skip#2+(\ht\FN@cache#2+\dp\FN@cache#2)*\count#2/\@m

263 \fi}

12

\FN@clearcache This just completely voids a cache register.

264 \def\FN@clearcache#1#2{%

265 \global\setbox\FN@cache#2=\box\voidb@x}

\@makefnvtext Ok, this is one of the parts putting together footnotes in para mode. The foot-
notes themselves have already been formatted into hboxes (placed there with
\@preparefnhtext in order to cater for proper indentation). \@makefnvtext

then formats a single footnote block from horizontal mode pieces (vertical mode
pieces are kept as-is). This takes text and typesets it in a single block. To get
correct indentation, it breaks before the first footnote and adjusts the clubpenal-
ties to move them to one line lower effectively. \@makefnvtext is called in vertical
mode, and its argument is typeset in horizontal mode right after a break, inside
of \@makefntext.

266 \def\@makefnvtext#1{%

267 \FN@specific\FN@masterinsert\@makefntext{%

268 \clubpenalties\thr@@\@MM\clubpenalty\z@

269 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break#1}}

\@preparefnhtext This creates appropriate skips to be put before the horizontal material to make
the indentation correct with a breakpoint before the footnote as well as when in
run-in text. This is run once at the start of each horizontal mode footnote when
it is first being typeset, in horizontal mode.

270 \ifx\@preparefnhtext\@undefined

271 \def\@preparefnhtext{{%

272 \setbox\z@\vbox{\FN@specific\FN@masterinsert\@makefntext{%

273 \unskip\unpenalty\setbox\z@\lastbox

274 \dimen@

275 \ifnum\parshape>\z@

276 \dimexpr\parshapeindent\tw@-\parshapeindent\@ne\relax

277 \else \ifnum\hangafter=\@ne\hangindent \else

278 \ifnum\hangafter=\m@ne -\hangindent

279 \else \z@ \fi\fi\fi

280 \dimen@ii\dimen@

281 \ifhbox\z@ \advance\dimen@-\wd\z@

282 \setbox\z@\hbox{\unhbox\z@}%

283 \advance\dimen@\wd\z@

284 \fi

285 \xdef\FN@tempinfo{\hskip\the\dimen@

286 \vadjust{}\nobreak\hskip-\the\dimen@ii\relax}}}}%

287 \FN@tempinfo}

288 \fi

Now we have in \FN@tempinfo the excess width of the label we don’t want to
preserve when doing in-paragraph footnote setting. A sequence of glue before a
label now has to consist of stuff that vanishes at a breakpoint, followed by stuff
that remains. We have to have two behaviors for the contents: behavior one is
justification at the start of a line, behavior two is justification in the line. When
we are at the start of the line, preceding interword space disappears swallowed

13

and so the natural criterion for distinguishing those cases is this initial line break.
This means that we can’t avoid articifially adding a line break at the start of such
a box. We will back up its height again. Some packages specify a \hangindent

(I know of no examples where they would actually set \hangafter to a value
different from its default of 1, or set \hangindent to a negative value which would
affect the right margin): due to our artifical line at the top, the indent will actually
be active for the first line already. We back it out of the actual labels happening
at the start of the line. Two-line parshapes have the same effect: the first line
is not actually used, and we put the relevant info for the first line into the label.
Different right indentation for the first line is something we can’t simulate, but
again, it should occur rarely. When \parshape is active, \hangindent is ignored.

289 \def\@makefnstartbox{%

290 \ifdefined\setspace@singlespace

291 \def\baselinestretch{\setspace@singlespace}%

292 \fi

293 \reset@font\footnotesize

294 \hsize\MFL@columnwidth \@parboxrestore

295 \interlinepenalty\FN@specific\FN@masterinsert\interfootnotelinepenalty

296 \widowpenalty\FN@specific\FN@masterinsert\footnotewidowpenalty

297 \clubpenalty\FN@specific\FN@masterinsert\footnoteclubpenalty

298 \advance\linepenalty500\relax}

299

300 \def\@makefnendbox{%

301 \widowpenalty\FN@specific\FN@masterinsert\finalfootnotewidowpenalty}

302

303 \newcount\footnotewidowpenalty

304 \footnotewidowpenalty=250

305 \newcount\footnoteclubpenalty

306 \footnoteclubpenalty=250

307 \newcount\finalfootnotewidowpenalty

308 \finalfootnotewidowpenalty=4000

\@makefnvbox This is the formatting code for a vertical mode footnote box from already set hor-
izontal material. It uses \@makefnstartbox for setting up the initial widow/club
penalties, and \@makefnendbox for preparing the final end. It results in a vbox.

309 \ifx\@makefnvbox\@undefined

310 \def\@makefnvbox#1{\vbox{%

311 \@makefnstartbox

312 \clubpenalties\thr@@\@MM\clubpenalty\z@

313 \let\@thefnmark\@empty

314 \FN@specific\FN@masterinsert\@makefntext{\rule\z@\footnotesep

315 \nobreak

316 #1\@finalstrut\strutbox

317 \@makefnendbox}}}

318 \fi

\hfootfraction

\vtypefraction

Those parameters govern when a footnote block is going to be set completely in
vertical mode. If a footnote block does not shrink to less than \hfootfraction

14

its size when using in-paragraph notes or has at least \vtypefraction of forcedly
vertical footnotes (specified as purely vertical, or vertical because of being large),
it is set entirely in vertical mode.

319 \def\hfootfraction{0.9}

320 \def\vtypefraction{0.7}

\FN@assembleboxes This will produce the finished product, by generating all boxes and concatenating
them except for the last vbox. It is assumed that have already set \box\z@ to
\lastbox before calling this routine (or, more likely, have already assembled and
split the last box). The last, not yet unpacked \vbox is left in \box\z@ on return.
The original id of the last box of a block is properly transferred to it.

The last box might have come about by joining several horizontal boxes, so
splitting it might separate footnotes. We deal with that problem at a different
point of time by checking the respective Ids when breaking a vbox into pieces: if
the split piece does not contain the last footnote beginning, we switch to a slow
motion decomposal. \FN@assembleboxes is supposed to be entered and exited in
vertical mode.

321 \def\FN@assembleboxes{%

322 〈trace〉 \ifhmode \PackageError{bigfoot}{Unexpected hmode}{}\fi

323 \ifhbox\z@

324 \dimen@\dp\z@

325 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

326 \dimen@ii\z@

327 \setbox\tw@\box\voidb@x

328 \loop \advance\dimen@ii\dimexpr\ht\z@+\dp\z@\relax

329 \setbox\tw@\hbox{\box\z@\unhbox\tw@}%

330 \setbox\z@\lastbox

331 \ifhbox\z@

332 \repeat

333 {\FN@assembleboxes\nointerlineskip\unvbox\z@}%

At this point of time, \box\tw@ contains a plain hbox with nothing but the un-
adorned hboxes in horizontal mode to be joined into one footnote block. All
preceding footnote blocks have been emptied into the current vertical list. We put
the \unvbox operations in a group so that the paragraph shapes will not get reset
over the break.

334 \global\setbox\FN@tempbox\copy\tw@

335 \setbox\z@\@makefnvbox{%

336 {\unhbox\FN@tempbox}%

337 \setbox\z@\lastbox\FN@joinhboxes}%

338 \ifcase

339 \ifdim\FN@vfound>\dimexpr\vtypefraction\p@*\FN@found\relax \@ne\fi

340 \ifdim\dimexpr \ht\z@+\dp\z@>\hfootfraction\dimen@ii \@ne\fi \z@

341 \or

342 \global\setbox\FN@tempbox\box\tw@

343 \setbox\z@\@makefnvbox{\let\@makefnbreak\FN@pseudofillbreak

344 {\unhbox\FN@tempbox}\setbox\z@\lastbox\FN@joinhboxes}%

345 \fi

15

346 \setbox\tw@\box\voidb@x

347 \ht\z@\dimexpr \ht\z@+\dp\z@-\dimen@\relax

348 \dp\z@\dimen@

349 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

350 \else

351 \ifvbox\z@

352 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

353 {\setbox\z@\lastbox

354 \FN@assembleboxes\nointerlineskip\unvbox\z@}%

355 \fi

356 \fi}

Ok, now follow a lot of fuzzy calculation routines. When we are considering truth
values, \p@ (1pt) corresponds to a value of “true”, and \z@ corresponds to “false”.

\FN@fuzzyeval This calculates a ratio, something with which you multiply. The first two argu-
ments of the function define an interval, and the third argument is a value in that
interval. If #3 is equal to #1, the resulting ratio is 0, if the #3 is equal to #2, the
resulting ratio is 1. Values in between are linearly interpolated. Values outside of
the interval are mapped to 0 and 1. If all three values are equal (hardly useful), 1
is returned.

357 \def\FN@fuzzyeval#1#2#3{%

358 \ifdim\dimexpr(#3)<\dimexpr(#2)\relax

359 \ifdim\dimexpr(#3)>\dimexpr(#1)\relax

360 *(\dimexpr(#3)-(#1))%

361 /(\dimexpr(#2)-(#1))%

362 \else *\z@

363 \fi

364 \fi}

\FN@fuzzyor This returns probabilistic or:

(#1 + #2− #1 · #2)

365 \def\FN@fuzzyor#1#2{(\p@-(\p@-(#1))*(\dimexpr\p@-(#2))/\p@)}

\FN@magicclue Ok, so here is the magic glue calculator. #1 and #2 give the range over which
the preceding line changes from ‘short’ to ‘long’. #3 and #4 give the range over
which the current line changes from ‘short’ to ‘long’. Both are combined with a
probabilistic or function, and then a penalty is chosen which ranges from #5 to #6

for short to long.

366 \def\FN@magicglue#1#2#3#4#5#6{%

367 〈trace〉 \if\foottrace2\traceon\fi

368 \dimen@\dimexpr\p@\FN@fuzzyeval{#1}{#2}\FN@lasthsize\relax

369 \dimen@ii\dimexpr\p@\FN@fuzzyeval{#3}{#4}{\ht\z@+\dp\z@}\relax

370 \dimen@\dimexpr\FN@fuzzyor\dimen@\dimen@ii

371 \count@\numexpr((#6)-(#5))*\dimen@/\p@+(#5)\relax

372 \xdef\FN@vfound{\the\dimexpr\FN@vfound+\dimen@}%

373 \ifnum\count@>-\@M

16

374 \penalty\count@

375 \hskip\glueexpr -\parfillskip+1em minus 0.5em\relax

376 \else

377 \FN@pseudobreak

378 \fi

379 \xdef\FN@found{\number\numexpr\FN@found+\@ne}%

380 }

\FN@pseudobreak This ends a line, but without introducing parskip and similar. It also ‘breaks in’
the next line to get proper indentation. The main difference with regard to \break

is that this restarts the reckoning of line numbers for the sake of \clubpenalty

calculation.

381 \def\FN@pseudobreak{%

382 {\parskip\z@skip\parfillskip\z@skip\parindent\z@\vadjust{}\par\noindent

383 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break}}

\FN@pseudofillbreak This is basically just for separating paragraphs by force.

384 \def\FN@pseudofillbreak{\nobreak\hskip\parfillskip\FN@pseudobreak}

\@makefnbreak This calculates the glue for the standard horizontal footnotes.

385 \def\@makefnbreak{\FN@magicglue {\footnotesep+\dp\strutbox}%

386 {\footnotesep+\dp\strutbox+\baselineskip}%

387 {\footnotesep+\dp\strutbox+0.5\baselineskip}%

388 {\footnotesep+\dp\strutbox+2\baselineskip}{-200}{-12000}}

\FN@joinhboxes is called with box 0 set to the next box to be appended to
the current list (all preceding hboxes on the current vertical list will have to go
in front). \FN@joinhboxes is entered in vertical mode, and will be exited in
horizontal mode.

389 \def\FN@joinhboxes{%

390 〈trace〉 \ifvmode \errmessage{Unexpected vertical mode.}\fi

391 \begingroup\setbox\z@\lastbox

392 \ifhbox\z@ \FN@joinhboxes

393 〈trace〉 \ifvmode \errmessage{Unexpected vertical mode.}\fi

394 \endgroup

395 \nobreak\hskip\parfillskip

396 \@makefnbreak

397 \else

398 〈trace〉 \ifvbox\z@ \errmessage{Unexpected vbox.}\fi

399 \endgroup

400 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break

401 \xdef\FN@vfound{\z@}%

402 \xdef\FN@found{\z@}%

403 \fi

404 \xdef\FN@lasthsize{\the\dimexpr \ht\z@ +\dp\z@}%

405 \unhbox\z@}

\FN@par

\FN@noindent

\FN@indent

In-paragraph footnotes are collected in horizontal mode. So \par, \noindent and
\indent simply don’t work. We replace them with something having the same

17

effect when the boxes get unhboxed. Note that this does not admit the tracking
of club/widow penalties: in a later version, it should get replaced by something
that actually allows for separate paragraphs. One possibility would be to replace
the current single hbox for an in-paragraph footnote by an hbox of hboxes and
unbox all of them in separate paragraphs. But that glosses over the fact that a
multi-paragraph footnote does not make sense in anything but vertical mode. So
a saner way would probably be to close off the hbox altogether and reinsert it into
a vbox, restarting the whole footnote in vertical mode. Both of those approaches
would require that no groups have been opened since the start of the footnote by
the time \par gets called. The below pseudosolution at least has the advantage
of not depending on the grouping structure at all.

406 \def\FN@par{\unskip\nobreak\hskip\parfillskip

407 \vadjust{\vskip\parskip}\break\null\kern\parindent\ignorespaces}

408 \def\FN@noindent{\unkern}

409 \def\FN@indent{\unkern{\setbox\z@\null\wd\z@\parindent\box\z@}}

\MFL@fnoteplain

\MFL@fnotepara

We redefine manyfoot’s basic footnote calls to use our own, versatile variant.

410 \def\MFL@fnoteplain{\FN@fnotenested{plain}}

411 \def\MFL@fnotepara{\FN@fnotenested{para}}

\FN@fnotenested This is somewhat contorted: we want \footnote+ to be in plain style and
\footnote- in para style regardless of the current footnote style. Adding a sec-
ond + or - after the first will actually restyle all footnotes coming afterwards
appropriately. This should work for all footnote commands getting footnote text.

412 \def\FN@fnotenested#1#2#3{%

413 \edef\reserved@d{#1}%

414 \FN@checkvariant{\edef\reserved@d}{%

415 \FN@checkvariant{\FN@restylefootnote{#2}}%

416 {\csname FN@fnote\reserved@d\endcsname{#2}{#3}}}}

417

418 \def\FN@checkvariant#1#2{\def\reserved@a{#1}%

419 \def\reserved@b{#2}%

420 \futurelet\reserved@c\FN@checkvariantii}

421

422 \def\FN@checkvariantii{%

423 \ifx\reserved@c+%

424 \reserved@a{plain}\expandafter\@firstoftwo

425 \else\ifx\reserved@c-%

426 \reserved@a{para}\expandafter\expandafter\expandafter

427 \@firstoftwo

428 \fi\fi

429 \reserved@b}

In order to be able to sort footnotes according to the order of their reference
points, we use a sorted counter.

430 \newcounter{FN@totalid}

431 \MakeSorted{FN@totalid}

18

\FN@fnoteplain

\FN@fnotepara

The actual commands are easy enough:

432 \def\FN@fnoteplain{\FN@fnotecommon\vbox}

433 \def\FN@fnotepara{\FN@fnotecommon\hbox}

\FN@masterinsert This contains the insert number of the insert where the footnote mark appears. If
it appears in the main text, 255 will be used.

434 \def\FN@masterinsert{\@cclv}

\FN@id

\FN@master

\FN@slave

Here is the deal with master and slave ids: each footnote has a unique master id.
This master id is larger by one than the last id of its subordinate footnotes. It is
recorded in the mark \FN@master in the footnote box at the start itself, although
with an indirection through the \FN@newslot mechanism since the actual id can
only become known after all subfootnotes have been typeset. The same id is
recorded in \FN@slave at the ultimate end of the footnote.

At the point where a \FN@master mark is placed, a default \FN@slave mark
is placed also with an id that is one less than the smallest id generated from
a footnote that is a ‘descendent’ of the current one. This makes it possible to
distinguish any split off subordinate footnotes. It must be noted that this sentinel
slave id will be the valid id of a completely unrelated footnote! Since the value
is only used for determining one end of an open interval of excluded ids, this is
no problem. All subordinate footnotes are numbered sequentially in the order of
completion, so that any subordinate footnotes have lower ids than their master.

435 \newcount\FN@id

436 \FN@id\@ne

437 \newmarks\FN@master

438 \newmarks\FN@slave

\FN@errorstack This records the history of nested footnotes in order to deliver more useful error
messages.

439 \let\FN@errorstack\@empty

\FN@fnotecommon Well, this is the work horse if the footnote macro. Really bad thing. We start off
by stepping our absolute counter and making a mark. \leavevmode is required so
that the action of perpage.sty is done smoothly.

440 \def\FN@fnotecommon#1#2#3{%

441 \leavevmode

442 \stepcounter{FN@totalid}%

443 \NCC@makemark{#3}%

It is an error if the footnote insert number of the current footnote does not corre-
spond to a block below the current insertion level.

444 \ifnum#2<\FN@masterinsert

445 \FN@colorstackbgroup\FN@divert

446 \FN@newslot\FN@masterslot

447 \count@\FN@id

\dimen@ is here set to a sorting criterion. This is designed to make the conversion
of footnote blocks as reliable as possible. If we could guarantee convergence, just

19

using \c@FN@totalid would be sufficient for sorting. It turns out that this is
too sensitive to footnotes of different blocks changing pages, so the number of
the superior footnote block is allowed to take precedence by multiplying it with
4194304 which is unlikely to get exceeded by \c@FN@totalid.

448 \dimen@=\dimexpr64\p@*\FN@masterinsert-\c@FN@totalid sp\relax

449 \def\FN@masterinsert{#2}%

450 \edef\FN@errorstack{\FN@errorstack^^J%

451 \FN@masterinsert\space entered in line \number\inputlineno}%

452 \let\FN@boxtype=#1%

453 \setbox\z@#1\bgroup

The following is for the likes of PDFTEX which has its own idea about how to
restore a color stack.

454 \let\current@color\default@color

455 \FN@@color@begingroup

456 \let\MFL@minipage\relax

457 \let\MFL@endminipage\relax

458 \@makefnstartbox

We reset the list parameters in footnotes. Strictly speaking, this is interfering with
LATEX’s standard operation, but the standard operation does not make sense.

459 \let\@listdepth\@mplistdepth \@mplistdepth\z@

460 \@itemdepth\z@ \@enumdepth\z@

461 \protected@edef\@currentlabel{\csname p@footnote%

462 \expandafter\FN@stripfootins\string#2\endcsname\@thefnmark}%

463 \ifx\FN@boxtype\vbox \normalcolor\nobreak

464 \else \FN@specific{#2}\@preparefnhtext \normalcolor

465 \fi

Ok, now we do the call to \@makefntext which may occur in one of several ways,
depending on whether the ‘robust’ or the ‘fragile’ package option got used.

466 \expandafter \FN@makefncall

467 \else

We still needed to cater for the error of badly anchored footnotes:

468 \PackageError{bigfoot}{#2 forbidden in \FN@masterinsert.}%

469 {Higher-placed footnotes can’t be anchored in inferior ones.^^J%

470 I am not putting this text in a footnote. History:%

471 \FN@errorstack}%

472 \rule{1em}{\ht\strutbox}%

473 \fi}

\FN@makefnstart This is called in the start of \@makefntext.

474 \providecommand{\FN@seitenobreak}{\nobreak}

475 \def\FN@makefnstart{%

Record the footnote specific dimensions. It is assumed that they don’t change in
the document, at least not before the footnote gets actually placed.

476 \expandafter\xdef\csname FN@ht\number\FN@masterinsert\endcsname

477 {\the\footnotesep}%

478 \expandafter\xdef\csname FN@dp\number\FN@masterinsert\endcsname

20

479 {\the\dp\strutbox}%

480 \expandafter\xdef\csname FN@wd\number\FN@masterinsert\endcsname

481 {\the\hsize}%

The footnote gets markers for identifying it and its starting block.

482 \marks\FN@master{\FN@masterslot}%

483 \marks\FN@slave{\number\FN@id}%

484 \nobreak

\FN@commonending will intervene before any tokens that are shifted in due to
switching back the color stack. Those will only be executed once we completely
relinquish control.

485 \ifx\FN@boxtype\vbox

486 \rule\z@\footnotesep

487 \else

488 \ifx\FN@par\par\else

489 \let\FN@@par\par

490 \let\FN@@noindent\noindent

491 \let\FN@@indent\indent

492 \fi

493 \everyvbox\expandafter{\expandafter\everyvbox

494 \expandafter{\the\everyvbox}%

495 \let\par\FN@@par

496 \let\noindent\FN@@noindent

497 \let\indent\FN@@indent

498 \the\everyvbox}%

499 \let\par\FN@par

500 \let\noindent\FN@noindent

501 \let\indent\FN@indent

502 \fi

503 \FN@seitenobreak

504 \afterassignment\ignorespaces}

\FN@makefnrobust After preparation, we now do the big bad trick for making footnotes cooperate
with \verb and other catcode changing things: we call \@makefntext with an
argument of \iffalse. This kills off its expansion right at the point where it
would choose to place its argument.

Furthermore, this swallows the opening brace of the footnote text and then
lets the footnote text progress. The closing group will then trigger the processing
via \aftergroup.

505 \def\FN@makefnrobust#{%

506 \FN@specific\FN@masterinsert\@makefntext

507 \iffalse\fi

508 \bgroup

509 \aftergroup\FN@robustending

510 \FN@makefnstart

511 \let\next}

\FN@robustending Here we put in the missing part of \@makefntext.

21

512 \def\FN@robustending{%

513 \expandafter\expandafter\expandafter

514 \expandafter\expandafter\expandafter\expandafter

515 \iffalse \FN@specific\FN@masterinsert\@makefntext\fi

516 \FN@commonending}

\FN@makefnfragile This is the escape route when the robust variant does not work. In that case,
\verb and similar won’t work in footnotes.

517 \long\def\FN@makefnfragile#1{%

518 \FN@specific\FN@masterinsert\@makefntext

519 {\FN@makefnstart#1\FN@commonending}}

Ok, color handling is a nuisance, to say the least. Split footnotes need to close
their color stack on the old page, and reopen it on the new one. So we record the
color stack state at each time it changes in a marks register.

520 \newmarks\FN@color

521 \def\FN@colorstackbgroup{\let\FN@savecolorstack\FN@colorstack

522 \global\let\FN@colorstack\@empty

523 \bgroup

524 \ifdefined\FN@savecolorstack\else

525 \let\FN@@set@color\set@color

526 \let\FN@@reset@color\reset@color

527 \let\FN@@color@begingroup\color@begingroup

528 \fi

529 \let\set@color\FN@set@color

530 \let\reset@color\FN@reset@color

531 \let\color@begingroup\FN@color@begingroup}

532

533 \def\FN@colorstackegroup{\egroup

534 \global\let\FN@colorstack\FN@savecolorstack}

535

536 \def\FN@colorstackfinish{\def\@elt##1##2{\FN@@reset@color##2}%

537 \FN@colorstack

538 \def\@elt##1##2{\noexpand\@elt{}{##2}}%

539 \xdef\FN@colorstack{\FN@colorstack}%

540 \let\@elt\relax

541 \marks\FN@color{}}

542

543 \def\FN@reset@color{%

544 \bgroup\def\@elt##1##2{\def\FN@next{##1}{\gdef\FN@colorstack{##2}}}%

545 \let\FN@next\@empty

546 \FN@colorstack

547 \ifx\FN@next\@empty

548 \FN@colorstackegroup

549 \else \egroup

550 \FN@@reset@color

551 \marks\FN@color{\FN@colorstack}%

552 \fi}

553

22

554 \def\FN@color@begingroup{%

555 \let\reset@color\FN@@reset@color

556 \let\color@begingroup\FN@@color@begingroup

557 \let\set@color\FN@@set@color

558 \color@begingroup}

559

560 \def\FN@set@color{\FN@@set@color

561 \xdef\FN@colorstack{\@elt{\current@color}{\FN@colorstack}}%

562 \marks\FN@color{\FN@colorstack}}

563

564 \def\FN@coloraftersplit#1{%

565 \def\@elt##1##2{##2\def\current@color{##1}\set@color}%

566 #1%

567 \let\@elt\relax}

\FN@commonending We’ll eventually arrive here at the end of the footnote. Now we again call
\@makefntext, but this time pass it \fi as its argument, and place \iffalse

before its expansion. This cuts away the start of the macro. If this start changes
the tail of the macro when executed, the whole trickery will not work. It turns out
that a large sampling of document classes (including the standard ones) happens
to work.

568 \def\FN@commonending{%

569 \@makefnendbox

570 \ifx\FN@boxtype\vbox\@finalstrut\strutbox \else \unskip \fi

571 \FN@colorstackfinish

572 \color@endgroup

573 \egroup

574 \global\advance\FN@id\@ne

575 \FN@slotxdef\FN@masterslot{\number\FN@id}%

Now we want to get an upper estimate of the size. In case of a horizontal box, we
do this by creating a vertical box of it all alone, and measuring that. Measuring the
hbox itself is plain out: TEX’s maximal dimension of something like 5 m is already
busted with about two pages of material. We put the master slot identification
into the depth of the box, and arrange for the total of depth and height of the box
to still give the total depth and height of its size on the page.

576 \ifhbox\z@

577 \global\setbox\FN@tempbox\copy\z@

578 \setbox\tw@\@makefnvbox{\unhbox\FN@tempbox}%

579 \ht\z@\dimexpr\ht\tw@+\dp\tw@-\FN@masterslot sp\relax

580 \else

581 \ht\z@\dimexpr\ht\z@+\dp\z@-\FN@masterslot sp\relax

582 \fi

Now we put the sorting criterion into the width of the box, and then put the
masterslot id into the depth.

583 \wd\z@\dimen@

584 \dp\z@\FN@masterslot sp\relax

585 〈trace〉 \ifnum\z@<0\FN@slotget{\FN@masterslot} %

23

586 〈trace〉 \else \errmessage{Inconsistent

587 〈trace〉 \string\FN@masterslot=\FN@masterslot}\fi

Now we just need to place the stuff into an insertion and record the possibly
changed slave id in order to know what subordinate footnotes belong to this one.

588 \MFL@insert\FN@masterinsert{\nointerlineskip\box\z@}%

589 \ifdim\lastkern=\z@ \let\FN@next\@empty\else

590 \edef\FN@next{\kern\the\lastkern\relax}\unkern

591 \fi

592 \marks\FN@slave{\number\FN@id}%

593 \expandafter\FN@enddivert\expandafter\FN@colorstackegroup

594 \FN@next

595 }

A lot of stuff follows. This should really be cleaned up and documented.

596 \dimen\footins\maxdimen

597 \gdef\FN@nestlist{}

598

599 \newdimen\FN@outervsize

600 \newskip\FN@vsize

601

602 \newbox\FN@insertions

603

604 〈trace〉\def\MFL@showone#1#2{\message{Box #2:}\showbox#2%

605 〈trace〉 \MFL@checkconsistency{#2}%

606 〈trace〉 \message{Cachebox #2:}\showbox\FN@cache#2}

607 〈trace〉
608 〈trace〉\def\MFL@checkconsistency#1{{%
609 〈trace〉 \setbox\z@\vbox{\unvcopy#1%

610 〈trace〉 \MFL@checkconsistencyi{#1}}}}

\MFL@checksinglebox Check box #1 for consistency. If it is bad, output box #2. Execute #3 if it was
good, #4 if it was bad.

611 〈trace〉\def\MFL@checksinglebox#1#2#3#4{%
612 〈trace〉 \ifvoid#1\else

613 〈trace〉 \ifnum\z@<0\FN@slotget{\number\dp#1} %

614 〈trace〉 #3%

615 〈trace〉 \else \errmessage{Inconsistent box #2}%

616 〈trace〉 \showboxdepth4\showboxbreadth100

617 〈trace〉 \showbox#2\relax

618 〈trace〉 #4%

619 〈trace〉 \fi\fi}

620 〈trace〉\def\MFL@checkconsistencyi#1{%
621 〈trace〉 \unpenalty\unskip\unkern

622 〈trace〉 \setbox\z@\lastbox

623 〈trace〉 \MFL@checksinglebox\z@{#1}{{\MFL@checkconsistencyi{#1}}}{}}

624 〈trace〉
625 〈trace〉\def\MFL@showall{{%
626 〈trace〉 \showboxbreadth=\maxdimen

24

627 〈trace〉 \showboxdepth=4

628 〈trace〉 \tracingonline=\@ne

629 〈trace〉 \FN@nest@iterate\MFL@showone}}

\FN@retaindelayed This is a complex macro that removes all boxes from the current list that are not
to be kept for the next page. It works on the material from the original insertions,
not the cache boxes. The slot specified by \count@ is not freed when encountered,
all others are freed upon removing the box. The last box is returned in box 0 if
any is retained. The vertical list might have an unchecked part locked off in front
by placing a \nobreak penalty there. This penalty is removed, and the list before
it not touched.

630 \def\FN@retaindelayed{%

631 \setbox\z@\lastbox

632 \ifcase

633 \ifvoid\z@\m@ne\fi \FN@config\z@

634 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

635 〈trace〉 dropping Id \FN@slotget{\number\dp\z@}}\fi

636 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

637 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

638 \ifnum\dp\z@=\count@\else \FN@freeslot{\number\dp\z@}\fi

639 〈trace〉 \ifnum\dp\z@<\@ne \errmessage{Unidentified box}\fi

640 \expandafter\FN@retaindelayed

641 \or

642 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

643 〈trace〉 retaining Id \FN@slotget{\number\dp\z@}}\fi

644 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

645 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

646 {\FN@retaindelayed \nointerlineskip \box\z@}%

647 \else \unpenalty \setbox\z@\lastbox

648 〈trace〉 \ifnum\lastnodetype>\m@ne

649 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

650 〈trace〉 \ifvoid\z@ \else

651 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

652 〈trace〉 carrying split box \FN@slotget{\number\dp\z@}}\fi

653 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

654 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi\fi

655 \fi}

\MFL@processplain This gets called for actually inserting the processed material into the footnote box.
The current state of affairs is that \FN@config contains all footnotes that should
get transferred to the next page completely. The cache boxes contain the collected
and typeset footnotes for typesetting on the current page.

The structure of a cachebox is currently as follows: it is filled with vboxes
containing the arranged material, optionally followed by another box to be carried
over to the next page flagged with a \nobreak penalty.

656 \def\MFL@processplain#1{%

657 〈trace〉 \MFL@checkconsistency#1%

658 \ifvoid\FN@cache#1%

25

Now if the cache box is void, nothing gets typeset on the current page. What we
do, however, is to collect all boxes from the original insertion that did not make
it on this page and reinsert them. \count@ is cleared to zero to retain nothing
special.

659 \global\setbox\FN@tempbox\vbox\bgroup

660 \unvbox#1%

661 \count@\z@

662 \let\@elt\FN@removecheck \FN@retaindelayed

663 \ifvoid\z@ \egroup

664 \else \nointerlineskip \box\z@ \egroup

665 \MFL@realinsert{#1}{\unvbox\FN@tempbox}%

666 \fi

The following stops in the insertion process within the manyfoot package.

667 \expandafter\expandafter

668 \fi\iffalse\fi

Ok, this is the case when we have a nonvoid cache box.

669 \global\setbox#1\vbox\bgroup%

670 \unvbox\FN@cache#1%

671 \ifnum\lastpenalty>\z@

672 \unpenalty

673 \setbox\z@\lastbox

674 \else

675 \setbox\z@\box\voidb@x

676 \fi

Ok, now box zero contains carryover material (if any). We initialize \count@ to
this so that we will keep this carryover material just once.

677 \count@\dp\z@

678 \global\setbox\FN@tempbox\vbox\bgroup

679 \box\z@

680 \nobreak

681 \unvbox#1%

682 \let\@elt\FN@removecheck \FN@retaindelayed

683 \ifvoid\z@ \egroup \MFL@removevboxes\egroup

684 \else \nointerlineskip \box\z@ \egroup

685 \MFL@removevboxes \egroup

686 \MFL@realinsert{#1}{\unvbox\FN@tempbox}%

687 \fi}

688

689 \let\MFL@processpara\MFL@processplain

Ok, here is the bit about the caches: whenever we encounter a new configuration,
we have to first update the caches since we don’t know the sizes we are dealing
with regarding the new configuration until we do so. The caches are kept up to
date globally. When we are working at several levels in the recursion, we have
a bottom active level where we may are looking for a way to find a best break
and configuration. We will return at most one configuration once we are finished.
While we are working with a returned configuration, adding more material on the

26

current list will not require another recursion as long as the totals stay underfull:
the penalty difference between underfull configurations becomes smaller while the
underfullness decreases, which means that smaller breaks that have not been cho-
sen before might become eligible if the penalties allow for that. Only when the
badness of underfullness remains infinite can’t we have any improvement.

Ok, after we recurse for removing an underfull condition, the resulting config-
uration can’t actually be used further for breaks with less remaining space. It is,
however, clear that if less space remains, there is no better break with the same
configuration leaving more space: if there were, it would already have been taken.
That means that our goal height for the next break will be chosen in order to
reach the exact size met on the last recursion. No break before that can be chosen
on the next try, but a break after it might then be taken.

available, or an overfull one. If a deeper level at any point of time returns an
overfull configuration, we are finished. The best configuration to be returned is
the least underfull. If there is none, the least overfull. The case of no underfull at
all can only happen if even splitting this and every subordinate level to minimal
height and recursing does not yield an underfull. At every level, we need to
maintain just a current split, and the previous best split at most.

When we change a configuration on recursing, we have to remember the config-
urations for the previous best split. We can manage that by sweeping the current
cache values into a local box register before recursing with a different configura-
tion: we have to rebuild the box registers for a different configuration, anyway.
We don’t save the configuration from an overfull setting: when we rework the list
in slow motion mode, we can’t help stopping the recursion by reaching an overfull
setting that is at least as good as the initial one.

When we return to a caller, we leave the cache in the configuration of the best
choice up to now: either we are returning an overfull configuration and if it is
not the best so far, the caller can restore his better choice from his copy, or we
are returning an underfull configuration in which case the caller might still want
to improve upon it before returning to its caller in turn. New: If we return an
underfull configuration, we also return an “optimal penalty estimate” that gives
the best break point penalty under the assumption that additional stretchability
is present on the page.

The purpose of this is to offer the possibility of avoiding widows and similar
by moving more material in some footnotes to the next page in exchange for other
material.

At the current grouping level we empty out our current cache and keep it for
working purposes on the vertical list until we return (nobody references it while
we are working on it). We always enter with an overfull configuration, meaning
that \FN@vsize is negative. It is calculated with the current cache/config setting.

There is a danger of overflow involved with that: if we keep a swept complete
configuration at each level of recursion, we need O(n2) of space here. The alter-
native would be to keep the history of how the configuration came about. Since
that might involve some slow-motion splitting, this is also a speed issue. Since
deep recursion with pending best data at each level is not really likely, and since
we are not going to have that many footnote levels to go around, anyway, we just

27

rely on LATEX having been started with sufficient memory.
A workable compromise would be to just store the split boxes from a configura-

tion together with the configuration data for reconstructing the rest. After all, we
don’t need to reconsider such a configuration before actually typesetting anything.
And whenever we find an acceptable fit (neither underfull/overfull), we could cut
through all the hierarchy without having to restore anything. This has not been
implemented yet: at the moment we go for the less complicated variation.

The algorithm we use here is a bit complicated. Whenever we recurse, we have
one of the following situations:

1. An overfull/underfull dilemma: including a minimal amount of material at
the current level will cause the page to become overfull. This can be the
case in connection with zero (in case of interline penalties for larger blocks),
one or more subordinate footnotes and related footnotes.

2. A pure overfull dilemma: the page was overfull to start with, we need to
reduce it.

3. an underfull dilemma: some operation in the next level made the page be-
come underfull, only too much so. We can’t make it fuller on the current
level, but we can make it even emptier, and let the next level fill it up again.

In the current implementation, we just ignore the slight probability that the
optimum choice might lie with case 3. We don’t recurse for making the page fuller
again. If we have an overfull/underfull dilemma, the recursion will either give
us a less awful overfull box, or an underfull one. An overfull box that occurs at
the highest level of recursion can’t be improved on any lower level. So we never
need to locally return an overfull box: we can compare it to the best overfull box
seen before, and if we turn out better than that, we overwrite the global best
overfull value and return the best local underfull if there is such a one. The best
local underfull will then be refilled as much as possible on the next level without
changing the configuration. Actually, if we need to change the configuration, this
would also be fine as long as we arrive at a better underfull eventually. But since
a change of configuration renders our previous split completely useless, as the
broken paragraph could look disastrously different under a changed configuration,
we would need to recurse again. We repeat this recursing operation until we don’t
get an underfull solution returned anymore. We then return the best underfull, if
any. The best overfull is stored globally, as mention before.

Does this sound complicated? Unfortunately, it does. It also sounds somewhat
slow. For that reason, we do a few assumptions that will facilitate a good average-
case behavior. The first assumption is that we will usually do fine by just splitting
in the current level (if at all) and not at all in subordinate levels.

We do this assumption on the first pass used for gathering the size information
and collect the corresponding boxes in nested lists. When the recursion tops out,
it does so either with an overfull page, or an underfull page. If it does with an
underfull page, we cache the current configuration for the next pass through the
output routine, so that we won’t need to retypeset and measure assembled boxes

28

that have not gathered any new material. If we top out with an overfull page, the
previous underfull configuration is still worth keeping as well, as it might become
the material actually chosen to be typeset.

Ok, the current best configuration of the next recursion level is gathered on
the current vertical list, in a separate box. We use box 2 for this purpose. A
saved configuration consists of the complete contents for the current cache box
without the trailing penalty indicating material from a single split box carried
over to the next page (boxes that are carried over completely to the next page
are not maintained here but rather reinserted by \MFL@processnested). This
penalty is added in case the box is actually disassembled and returned: there is
no possibility for confusion since we only save such a configuration if indeed there
is a split present.

690 \newtoks\FN@output

691 \FN@output\output

692

693 \newbox\FN@tempbox

694 \newinsert\FN@savebox

695 \count\FN@savebox\@m

696 \dimen\FN@savebox\maxdimen

697 \skip\FN@savebox\z@skip

698 \global\setbox\FN@savebox\box\voidb@x

699

700 \expandafter\expandafter\expandafter\let\FN@cache\FN@savebox=\@cclv

701

702 \expandafter\def\csname FN@ht\number\FN@savebox\endcsname{\z@skip}%

703 \expandafter\def\csname FN@dp\number\FN@savebox\endcsname{\maxdepth}

704 \expandafter\def\csname FN@wd\number\FN@savebox\endcsname{\columnwidth}

705

706 \def\FN@list{\MFL@list\@elt{}\footins}

707

708 \def\FN@sweepbox#1#2{\ifvoid#2\else

709 \nointerlineskip\box#2\penalty#2\fi}

710

711 \def\FN@sweepcachebox#1#2{\nointerlineskip

712 \box\FN@cache#2%

713 \penalty\FN@cache#2}

714

715 \def\FN@copycachebox#1#2{\nointerlineskip

716 \copy\FN@cache#2%

717 \penalty\FN@cache#2}

718

719 \def\FN@restoreboxes{\count@\lastpenalty \unpenalty

720 \ifnum\count@>\z@

721 \global\setbox\count@\lastbox

722 \expandafter\FN@restoreboxes

723 \fi}

\FN@removecheck This returns \@ne if and only if the current slot master is strictly inside of the

29

specified open interval. In this case it is not to appear on the current page.

724 \def\FN@removecheck#1#2{%

725 \ifnum#1<\FN@slotget{\number\dp\z@} %

726 \ifnum#2>\FN@slotget{\number\dp\z@} %

727 \@ne\fi\fi}

Parameter recording merely records the relevant value of the skip register and sets
it to zero. The purpose is to avoid changes of the reserved page space when we
collect additional material from a page where an insertion of the appropriate kind
had already been encountered. This is used for filling up underfull pages.

728 \def\FN@recordinsertparam#1#2{\ifvoid#2\else

729 \global\skip\number#2=\the\skip#2\relax\fi}

730

731 \def\FN@clearinsertparam#1#2{\ifvoid#2\else

732 \global\skip#2=\z@skip\fi}

\FN@insertouterspace will sum the size of the inserts manually.

733 \def\FN@insertouterspace#1#2{\ifvoid#2\else

734 +\skip#2+(\ht#2+\dp#2)*\count#2/\@m\fi}

735

736 \def\FN@list@iterate#1{\let\FN@eltsave\@elt

737 \let\@elt#1%

738 \FN@list

739 \let\@elt\FN@eltsave}

740

741 \def\FN@nest@iterate#1{\let\FN@eltsave\@elt

742 \let\@elt#1%

743 \FN@nestlist

744 \let\@elt\FN@eltsave}

1.5 The output routine stuff

Marks This is used for sweeping all marks up for reinsertion.

\FN@allmarks

745 \def\FN@allmarks#1{\@elt{#1}%

746 \ifnum#1<\count266

747 \expandafter\FN@allmarks\expandafter{\number\numexpr#1+\@ne}%

748 \fi}

\FN@sweeptopmarks

\FN@topmarkbox

This sweeps the current topmarks and places them into the global box \FN@topmarkbox.

749 \def\FN@sweeptopmarks{\global\setbox\FN@topmarkbox\vbox{%

750 \def\@elt##1{\marks##1{\unexpanded\expandafter{\topmarks##1}}}%

751 \FN@allmarks0}}

752 \newbox\FN@topmarkbox

\FN@establishmarks This sets marks from a marks sweep. The first argument is the mark number,
the second is from the first mark on the first scan, the third argument from the
bottom mark on the first scan, and the fourth argument from the bottom mark

30

on the second scan (with additional mark entries). If second and third arguments
don’t match, no mark gets placed.

753 \long\def\FN@establishmarks#1#2{\edef\reserved@a{\unexpanded{#2}}%

754 \edef\reserved@b{\unexpanded\expandafter{\splitbotmarks#1}}%

755 \ifx\reserved@a\reserved@b

756 \marks#1{\unexpanded\expandafter{\splitfirstmarks#1}}%

757 \marks#1{\unexpanded\expandafter{\reserved@b}}%

758 \fi}

\FN@markspassone This constitutes the first pass for mark collection. We do this just to check whether
there are any marks in the list.

759 \def\FN@markspassone#1{\noexpand\FN@establishmarks{#1}%

760 {\unexpanded\expandafter{\splitbotmarks#1}}}

\FN@insertmarks This routine transfers first and bottom marks from the current \box255 to the
vertical list in order to get the marks right. This is quite a bother, since we must
detect the special case where there are no marks at all in the list, and since we
might require the use of several \vsplit commands in a row, since infinite stretch
might make the optimal breakpoint lie before the end of the box in spite of its
large size.

So we need to do the splitting in a loop, and do it twice, once with artificial
marks at the start. If those artificial marks make it to \splitbotmarks, we don’t
place any actual marks.

761 \def\FN@pseudomarks#1{\marks#1{X}}

762 \def\FN@insertmarks{%

763 {\setbox\z@\copy\@cclv

764 \splittopskip-\maxdimen\relax

765 \vbadness=\@M

766 \vfuzz=\maxdimen

767 \loop

768 \ifvoid\z@\else

769 {\let\@elt\FN@pseudomarks

770 \setbox\z@\vbox{\FN@allmarks0\nobreak\unvcopy\z@}%

771 \setbox\z@\vsplit\z@ to\maxdimen}%

772 \let\@elt\FN@markspassone

773 \edef\next{\FN@allmarks0}%

774 \setbox\z@\vbox{\nobreak\unvbox\z@}%

775 {\setbox\z@\vsplit\z@ to\maxdimen}%

776 \next

777 \repeat}}

Some stuff

\FootnoteMainMinimum This specifies the minimum amount of main text. You can make this a complicated
expression if you want to, for example by checking the presence of particular
footnotes.

778 \def\FootnoteMinimum{1sp}

779 \def\FootnoteMainMinimum{0pt}

31

780 \expandafter\def\csname\string\FootnoteMinimum\number\FN@savebox

781 \endcsname{\FootnoteMainMinimum}

The output routine itself This is our own output routine that does all the
balancing stuff. If we receive a forced penalty here, we must not do any of our
output processing on our own unless this is the choice of the underlying output
routine. We do want to have the ‘real’ output routine to have a correct idea
about the size that the insertions will take up. So the steps that we will actually
perform in any case are sorting the insertions and calculating their real size. If we
have not had a forced penalty, we are free to exit the output routine for gathering
further material as there are no expections of the underlying output routine when
it should get called. If we encountered a forced penalty, things are getting more
complicated. If the current page happens to be overfull after adding the current
material, we first need to ship out the material for a regular page (after splitting
off the necessary material for the next page). We then reinsert the remaining split
insertions, any possibly split off page material and the penalty.

TEX is rather monotonous in its page break processing. Increase the available
page size, and the available page material will also increase. There is a singular
exception to that rule, and that are split and floating insertions. However, we
notice their presence by a non-zero setting of \insertpenalties, and we can
just measure the material that they have taken up in a forced pass of the output
routine, adding that much to our request size. However, this operation will change
the penalties associated with the page breaks.

Unfortunately, this is not sufficient: the penalty might have been inserted
with a box immediately preceding it. In that case the penalty would have been
guaranteed to eventually turn up in the output routine. If we now reinsert merely
all of the above stuff, the penalty will just disappear. If we protect the penalty
by placing an empty box before it when none of it had been before it before, we
will get an empty page. Since we don’t know whether the penalty was supposed
to disappear at the start of an empty page or not, we will do the following: if the
rest of \box255 is nonvoid, we just reinsert the split insertions followed by the rest
of and the penalty and return. If it is void, we call the regular output routine,
capturing its output in a \vbox of its own. If the regular output routine failed
to ship out the prepared insertions, we just keep the original data either in their
boxes or in a reinserted insertion.

It hides the relevant information from the ‘real’ output routine until such a
time that we have enough material gathered to produce a full page. The exception
to this is when we have a special penalty that gets passed through to the regular
output routine.

If we are on a material collecting spree, \FN@savebox contains all boxes from
the last output call time. At the point where we enter the output routine,
\FN@vsize contains the amount of space available for mounting footnotes, af-
ter subtracting all insertions of footnote variety. At most times in our output
routine, the variable will contain the amount of space left after everything is put
to the page including footnotes.

32

782 \savingvdiscards=\@ne

We have the following situations that can cause us to enter the output routine:

1. The page has just filled up.

2. A magic output penalty has been encountered.

3. We are filling up a previously underfull page.

4. We are looking for missing insertions that may have floated.

We are trying to do bookkeeping on the effects of page size for insertions that
fall into the footnote class. While we do basic bookkeeping for other insertions as
well, this can only be incomplete since we don’t reinsert material. In consequence,
multiple material ending up in the same insertion might cause the correspond-
ing skip register to be accounted for several times. LATEX does not really reuse
insertions in that manner except for footnotes, so we are mostly ok here.

bigfoot usually does some lookahead in the main list in order to obtain optimal
breakpoints. It explicitly undoes the effect this has on marks, but insertions are
a different matter here. So floats may appear on an earlier page than expected.

If the output routine is invoked with a penalty of −13750, then the page content
is merely used for setting the \topmarks array. In that case, we just clear out
the output box and resume. We don’t fiddle with \deadcycles in order to catch
foulups.

Also we don’t touch insertion boxes. There is a particular situation where
there are insertions, namely if we are collecting insertions after the last output
routine has ended up with a non-zero value of \insertpenalties. In this case,
all insertions we do get are floating insertions, meaning that they had a preceding
insertion of the same class already on the last page, and thus we have zeroed its
skip register already. We are assuming that a single pass with such a large \vsize

is sufficient for pulling all insertions. If that happens to be incorrect, insertions
need to get pulled in piecewise, but then we are probably in big dodo with regard
to page size accounting, anyway.

783 \newcount\FN@outputflag

784 \FN@outputflag=3158345

785 \output{%

786 \let\@elt\relax

787 \ifvoid\@cclv \PackageError{bigfoot}{Empty box 255 in \output}\fi

788 〈trace〉 \if\foottrace8%

789 〈trace〉 \message{entering output with

790 〈trace〉 \outputpenalty=\the\outputpenalty:}%

791 〈trace〉 {\showboxdepth4\showboxbreadth\maxdimen\showbox\@cclv}\fi

792 \ifnum\outputpenalty=-13750

793 〈trace〉 \if\foottrace8%

794 〈trace〉 \message{Discarding box 255.}%

795 〈trace〉 \fi

796 \ifnum\insertpenalties>\z@

797 \PackageError{bigfoot}{Too much insertion material}{%

33

798 This error means that the output routine was not able to^^J%

799 gather all floating insertions in a single pass.^^J%

800 Complain to the author if you consider this a bug}%

801 \fi

802 \global\advance\FN@outervsize\dimexpr\ht\@cclv-\vsize

803 \global\setbox\@cclv\box\voidb@x

804 \else

Note that a potential \FN@vsadjustlist will restore the previous value of
\outputpenalty. So we need to save it.

805 \edef\FN@outputpenalty{\number\outputpenalty}%

806 \ifvoid\FN@savebox

807 \ifvoid\@holdpg

808 \FN@sweeptopmarks

809 \fi

810 \FN@nest@iterate{\FN@insertouterspace\global\FN@outervsize

811 \dimexpr\z@}%

812 \global\advance\FN@outervsize\ht\@cclv

813 \global\setbox\@cclv\vbox{\unvbox\@cclv\boxmaxdepth\maxdepth}%

814 \global\let\FN@vsadjustlist\@empty

\FN@outervsize now contains the value of \pagegoal at the time of out-
put. It should be \vsize adjusted by the natural size of insertions. Note
that \FN@normaloutput is not required to return with a sensible value of
\outputpenalty.

815 \FN@normaloutput

816 \else

We now are in the situation that we already have collected material previously.
We can’t be sure that adding a special penalty does not take more than one
output routine call before delivery. For that reason, we don’t rely on special
outputs being special and always subtract any additionally demanded \vspace

from \FN@outervsize before calling a special output, so that we can afterwards
compensate for it.

817 \FN@nest@iterate{\FN@insertouterspace\global\advance\FN@outervsize

818 \dimexpr\ht\@cclv}%

819 \global\setbox\@cclv\vbox{\unvbox\@cclv\boxmaxdepth\maxdepth}%

Now we invalidate the cache boxes for all insertions that had changed due to the
recent additions to the page (this does not affect \FN@vsize).

820 \FN@nest@iterate\FN@maybeinvalidatecache

We now update all boxes by inserting the previously collected material in front of
the boxes.

821 \vskip\z@skip

822 \unvbox\FN@savebox

823 \loop

824 \count@\lastpenalty

825 \ifnum\count@>\z@

826 \unpenalty

827 \setbox\z@\lastbox

34

828 \global\setbox\count@\vbox{\unvbox\z@\unvbox\count@}%

829 \repeat

830 \ifcase

831 \ifnum\FN@outputpenalty=-13749 \@ne\fi

832 \ifnum\FN@outputpenalty=-13751 \@ne\fi \tw@

833 \or

\outputpenalty is restored to the original value before the total page is glued
together.

834 \FN@vsadjustlist

835 〈trace〉 \if\foottrace8\message{receiving special penalty

836 〈trace〉 \FN@outputpenalty, dissing box 255:}%

837 〈trace〉 {\showboxdepth4 \showboxbreadth400

838 〈trace〉 \tracingonline=\@ne\showbox\@cclv}\fi

This special penalty means that we have been collecting floated insertions right
now. So \box255 is actually empty except for filler material. We restore the old
box into it.

839 \global\setbox\@cclv\lastbox

840 \unskip

841 〈trace〉 \ifnum\lastnodetype>\m@ne

842 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

843 \ifnum\FN@outputpenalty=-13749

844 \FN@normaloutput

845 \else

846 \the\FN@output

847 \@pageht-\vsize

848 \let\@currbox\footins

849 \@reinserts

850 \global\vsize-\@pageht

851 \fi

852 \else

853 \dimen@\topskip

854 \FN@vsadjustlist

855 \setbox\z@\lastbox

856 \unskip

857 〈trace〉 \ifnum\lastnodetype>\m@ne

858 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

Ok, now we reconstruct the box from its parts. We add the material together,
taking the previous output penalty and the current page discards (if it belongs
between those boxes, otherwise we leave it on the list) for glueing the stuff together.
The previous output penalty then is irrelevant for further purposes and we replace
it again. \FN@outervsize has been adjusted by the accumulated contributions of
insertions to the page size. Fiddling with it would not appear necessary or even
prudent.

859 〈trace〉\if\foottrace8
860 〈trace〉 \message{Box 255 before reglue

861 〈trace〉 (outputpenalty=\the\outputpenalty):}%

862 〈trace〉 {\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

35

863 \global\setbox\@cclv\vbox{%

Now we might have had a \topskip value designed for requesting a given number
of lines. We need to remove anything of that kind. Splitting again achieves that.
If the current page was empty except for insertions, this means that we gain a
new breakpoint. But insertions with discardable material before them would be
unusual.

The only exception to this may happen if the current page contained only
insertions: in this case TEX has made a page break before the actually inserted
\topskip glue (which will then arrive one page later).

Note that the pagediscards contain material corresponding to the last break-
point chosen, so they will either start with a penalty of 10000 (which is what an
actual outputpenalty gets replaced with) or will start with discardable material.
We clean it for that reason.

864 \unvbox\z@

865 \global\setbox\@cclv\vbox{\break\unvbox\@cclv}%

866 {\splittopskip-\maxdimen \setbox\z@\vsplit\@cclv to\z@}%

867 \ifnum\outputpenalty=\@M

868 \setbox\z@\vbox{\pagediscards

869 \FN@cleanpagepenalty}%

870 \unvbox\z@

871 \else

872 \penalty\outputpenalty

873 \pagediscards

874 \fi

875 \unvbox\@cclv

876 \boxmaxdepth\maxdepth}%

877 〈trace〉\if\foottrace8
878 〈trace〉 \message{Box 255 reglued (outputpenalty=\FN@outputpenalty):}%

879 〈trace〉 {\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

880 \global\outputpenalty\FN@outputpenalty\relax

Ok, now if \topskip is actually positive, we have been collecting material ten-
tatively without having proper marks. We then need to fill in the marks into
the list and try again. Note that we are not reinserting anything in order to
compensate for \outputpenalty being replaced by a nobreak: this is the job of
\FN@normaloutput when it decides to place material back on the page. That is:
when code is written that will make use of pagediscards, it has to cater for their
proper structure.

881 \ifdim\dimen@>\z@

882 〈trace〉 \if\foottrace8

883 〈trace〉 \message{recycling special penalty}

884 〈trace〉 \fi

885 \hrule\@height\z@\@depth\z@

886 \unvcopy\FN@topmarkbox

887 \penalty-13750

888 \penalty\FN@outputflag

889 \hrule\@height\z@\@depth\z@

890 \FN@insertmarks

36

891 \penalty-13749

892 \penalty\FN@outputflag

893 \FN@prepareoutput

894 \global\topskip-\maxdimen

895 \global\vsize0.5\maxdimen

896 \global\advance\FN@outervsize-\vsize

897 \else

898 \FN@normaloutput

899 \fi

900 \fi

901 \fi

902 \fi}

\FN@normaloutput This is the normal output routine we use. Now we have recovered a sensible state
and glued everything together that has been necessary. All insertion parame-
ters are at their standard values, and any insertions have been collected in the
respective boxes.

903 \def\FN@normaloutput{%

904 〈trace〉 \if\foottrace8\message{^^JEntering \string\FN@normaloutput:^^J}\fi

\FN@vsize is now being set to the vertical size taken up by the insertions, ac-
cording to TEX. Note that this does not include flexibility. This much amount
of space gets available on the current page if we remove all insertions. This fig-
ures into \FN@vsize as a positive quantity since the insertion size was taken from
\pagegoal, and we reconstitute it in this manner.

905 \global\FN@vsize\FN@outervsize

906 \global\advance\FN@vsize-\ht\@cclv\relax\relax

Now we sort the inserts and regenerate the cache.

907 \FN@nest@iterate\FN@sortinsert

908 \FN@nest@iterate\FN@clearcache

909 \xdef\FN@config{\@elt{\number0\botmarks\FN@slave}%

910 {\number\maxdimen}}%

911 〈trace〉 \if\foottrace8%

912 〈trace〉 \message{\noexpand\FN@normaloutput start config: \FN@config^^J}%

913 〈trace〉 \fi

914 \FN@nest@iterate\FN@reconfig

Note that \FN@reconfig subtracts the actual size of all insertions (after para-
graphs have been combined and too early insertions moved to the next page) and
also subtracts the flexible glues associated with the insertions’ skip registers, so
this flexibility is typically negative. Since the cache registers have been explic-
itly cleared, \FN@reconfig starts from the state where indeed no insertions are
present.

915 \ifcase

916 \ifnum\insertpenalties>\z@ \@ne\fi

If we have floating insertions, we need to catch up with them. This is done in
case 1 which just places an immediate penalty and recurses.

Now here are a few cases that are only checked when we don’t have a special

37

penalty:

917 \ifnum\outputpenalty>-\@M

The first case is if the page is underfull. We need more material then.

918 \ifdim\FN@vsize>-\gluestretch\FN@vsize \tw@ \fi

Second case is when there is not enough vertical minimum material.

919 \ifdim\FootnoteMainMinimum>\ht\@cclv \tw@ \fi

920 \fi

Case 3 means page is overfull. If there are no missing insertions, try to split.

921 \ifdim\FN@vsize<\glueshrink\FN@vsize \thr@@ \fi

page has appropriate size or we have special penalty. If we have come here not the
first time, we might have arrived at a non-optimal break. So we attempt a split.

922 \ifx\FN@vsadjustlist\@empty \else \thr@@\fi\z@

Ok, now we get the default case in our big routine: case 0. We just pass the result
onto the output routine.

923 {\vbadness\@M

924 \vfuzz\maxdimen

925 \global\setbox\@cclv\vbox

926 spread\FN@vsize{\unvbox\@cclv\boxmaxdepth\maxdepth}}%

927 \the\FN@output

928 \let\@currbox\footins

929 \@pageht-\vsize

930 \@reinserts

931 \global\vsize-\@pageht

932 \FN@nest@iterate\FN@clearcache

933 \or

Case 1: We just pull in remaining insertions and are done. Note that the special
penalty here will get turned into an explicit nobreak. So if we have no record of
an actual outputpenalty, we need to insert an artificial penalty of 0 here.

934 \FN@restartoutput

935 \penalty -13749

936 \penalty \FN@outputflag

937 \or

Case 2: Now we want to gather additional material. This is somewhat weird. We
first gather our material with a ‘normal’ setting of topskip, and then we’ll have
another go at the material using proper marks. We can’t actually insert anything
right now in order not to introduce a premature breakpoint.

938 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

939 \FN@prepareoutput

940 \global\topskip \normalbaselineskip

941 \global\vsize \dimen@

942 \global\advance\FN@outervsize-\vsize

943 \global\deadcycles\z@

944 \else

This is case 3: Fake our output box into something looking like a cache box and

38

do the optimal split routine. The output cache box has a few deficiencies: its
inner box is not depth-extended to some default measurement. That means that
where page size calculations are involved, one needs to disregard its actual depth
and instead use \maxdepth. This is somewhat awkward and prone to problems.
One alternative might be to mark the box as split, extend its depth in the split
part and let it be followed by nothing as lower part of the split. But we still would
need to account for the missing depth at the end.

945 \edef\FN@masterid{\number\maxdimen}%

946 \def\FN@masterslot{-1}%

947 \global\setbox\@cclv\vbox{\box\@cclv}%

948 \xdef\FN@config{\noexpand\@elt{\number0\botmarks\FN@slave}%

949 {\number\maxdimen}}%

950 〈trace〉 \ifvoid\FN@savebox \else \PackageError{bigfoot}{\FN@savebox

951 〈trace〉 \space should be void!}{}\fi

952 \global\setbox\FN@savebox\vbox{}%

953 \gdef\FN@penalties{0}%

954 \edef\FN@defaultpenalty{\ifnum\outputpenalty<\@M

955 \number\outputpenalty

956 \else

957 0\fi}%

958 \let\@elt\FN@newlevel

959 \@elt{}\FN@savebox\FN@nestlist\FN@mainsplitreturn

960 \let\@elt\relax

961 〈trace〉 \if\foottrace8{\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

962 \global\setbox\FN@savebox\box\voidb@x

963 {%

964 \vbadness\@M

965 \vfuzz\maxdimen

966 \global\setbox\@cclv\vbox spread\FN@vsize{%

967 \unvbox\@cclv

968 \ifnum\lastpenalty>\z@

969 \unpenalty

970 \global\setbox\FN@tempbox\lastbox

971 \else

972 \global\setbox\FN@tempbox\box\voidb@x

973 \fi

974 \setbox\z@\lastbox

Now if a split has been done, \box\FN@tempbox contains the lower part of the
split. In either case, \box\z@ contains the upper part of the split (in a prepared
form with the splitdiscards in a box of their own). This may be void if there is no
main text but only footnotes. If we have carryover material, we add the current
outputpenalty there and set outputpenalty to a value indicating that we have no
outputpenalty to add at the end of the current list.

975 \ifvoid\z@

976 \ifvbox\FN@tempbox

977 \ifnum\outputpenalty<\@M

978 % The output penalty originally from below the split box gets appended

979 % to the end of the split box.

39

980 \global\setbox\FN@tempbox{\unvbox\FN@tempbox

981 \penalty\outputpenalty}%

982 \fi

983 \global\outputpenalty=\@M

984 \fi

985 \else

Ok, we have material to go to the next page. We unpack it and fish out the
break penalty from the last box. After checking it, put it in box 0. A prospective
current break penalty gets appended to the carryover material. The fished-out
break penalty becomes the new value of outputpenalty.

986 \MFL@removevboxes

987 \unvbox\z@

988 \edef\FN@defaultpenalty{\number\@M}%

989 \FN@getbreakpenalty

990 \setbox\z@\lastbox

991 \global\setbox\FN@tempbox\vbox\bgroup\unvbox\z@

992 \unvbox\FN@tempbox

993 \ifnum\lastnodetype<\z@

994 \egroup\global\setbox\FN@tempbox\box\voidb@x

995 \else

996 \ifnum\outputpenalty<\@M

997 \penalty\outputpenalty

998 \fi

999 \egroup

1000 \global\outputpenalty\FN@breakpenalty

1001 \fi

1002 \fi

1003 \boxmaxdepth\maxdepth}%

1004 }%

1005 \setbox\z@\box\FN@tempbox

1006 \let\@elt\relax

Ok, now we have in box 255 the split off stuff for the current output routine, and
in box 0 stuff that is going to follow afterwards. If box 0 is not void, we were not
able to make use of all of box 255. There is a slight probability that by taking
even more material from the main list, we might get a better result (by being able
to move footnote material to the next page instead), but we don’t make use of
this possibility here. In general, we assume that if box 0 is nonvoid, we take the
resulting split. Otherwise, if the page appears underfull, we pull in more material.
If the page is not underfull, we can pass it to the output routine. If box 0 is void,
the break was chosen at the ultimate end of the vertical list. If it was not a forced
break, and if it is not an overfull case already, we pull in more material in order
to avoid widows in the main text.

1007 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

1008 \ifcase

1009 \ifvoid\z@ \ifnum\outputpenalty>-\@M

1010 \ifdim\dimen@<\z@ \else \@ne \fi

1011 \fi

40

1012 \else \thr@@

1013 \fi

1014 \ifdim\ht\@cclv<\normalbaselineskip \@ne\fi

1015 \ifdim\dimen@<\normalbaselineskip \tw@\fi \@ne

1016 \or

1017 \FN@prepareoutput

1018 \global\topskip \normalbaselineskip

1019 \ifdim\dimen@<\normalbaselineskip \dimen@=2\baselineskip\fi

1020 \global\vsize \dimen@

1021 \global\advance\FN@outervsize-\vsize

1022 \global\deadcycles\z@

1023 \or

1024 〈trace〉 \if\foottrace8%

1025 〈trace〉 \message{^^JOutput: config is \FN@config...}\fi

1026 \setbox\tw@\vbox{%

1027 \the\FN@output

1028 〈trace〉 \if\foottrace8%

1029 〈trace〉 \ifnum\lastnodetype=\m@ne

1030 〈trace〉 \message{^^JOutput: end without carryover^^J}%

1031 〈trace〉 \else

1032 〈trace〉 \message{^^JOutput: end with carryover}}%

1033 〈trace〉 {\showboxdepth5 \showboxbreadth400

1034 〈trace〉 \tracingonline=\@ne\showbox\tw@

1035 〈trace〉 \fi

1036 〈trace〉 \fi

1037 }%

1038 \unvbox\tw@

1039 \unvbox\z@

1040 \let\@currbox\footins

1041 \@pageht-\vsize

1042 \@reinserts

1043 \global\vsize-\@pageht

1044 \FN@nest@iterate\FN@clearcache

1045 \or

1046 \FN@restartoutput

1047 \penalty -13751

1048 \penalty\FN@outputflag

1049 \unvbox\z@

1050 \ifnum\outputpenalty>\@M

1051 \else \penalty

1052 \ifnum\outputpenalty=\@M \z@ \else\outputpenalty\fi

1053 \fi

1054 \fi

1055 \fi

1056 〈trace〉 \if\foottrace8\message{^^JExiting \string\FN@normaloutput^^J}\fi

1057 }

\FN@prepareoutput This is a preparation for gathering more material. First sweep up all the infor-
mation about \vsize, \topskip and \outputpenalty. After that, record the
insertion skip parameter of all insertions that have already been started, and re-

41

set them to zero so that no additional space gets reserved for them in case more
material accumulates. We don’t reset \topskip here since the amount of newly
requested material will typically be in total lines, and \topskip might be the
only way to figure out the proper request size. If the current depth and following
height would make for a non-standard line distance, we might have a problem
here. There is no obvious way to avoid it, though.

1058 \def\FN@prepareoutput{%

1059 {\let\@elt\FN@recordinsertparam

1060 \xdef\FN@vsadjustlist{%

1061 \global\vsize=\the\vsize

1062 \global\topskip=\the\topskip

1063 \global\outputpenalty=\the\outputpenalty\relax

1064 \FN@list}%

1065 \let\@elt\FN@clearinsertparam

1066 \FN@list}%

Now we collect all boxes in the save box.

1067 〈trace〉 \ifvoid\FN@savebox \else \PackageError{bigfoot}{\FN@savebox

1068 〈trace〉 \space should be void in \string\FN@prepareoutput}{}\fi

1069 \global\setbox\FN@savebox\vbox{%

1070 \box\@cclv

1071 \FN@list@iterate\FN@sweepbox}}

\FN@restartoutput This is for the case where we are requesting additional material and have to cater
for sizes.

1072 \def\FN@restartoutput{%

Calculate the remaining size on this page:

1073 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

We just pull in remaining insertions and are done.

1074 〈trace〉 \if\foottrace8\message{sending special penalty}\fi

1075 \hrule\@height\z@\@depth\z@

1076 \unvcopy\FN@topmarkbox

1077 \penalty -13750

1078 \penalty\FN@outputflag

1079 \hrule\@height\z@\@depth\z@

1080 \FN@insertmarks

1081 \FN@prepareoutput

1082 \global\topskip-\maxdimen\relax

1083 \global\vsize 0.5\maxdimen

1084 \global\advance\FN@outervsize-\vsize

1085 \global\deadcycles\z@

1086 }

Ok, here is the deal. If the \FN@truevsize is negative, we have an overfull vbox
at our hand. We then start the splitting action. We take the first non-split lowest
footnote block and split it to size, removing subordinate footnotes that we would
not be able to maintain. We do this recursively starting by the top footnote block.
It must be noted that it would be even better to start with the highest-numbered

42

footnote (which corresponds to the latest finished footnote in logical order, that
in the source code), but then we get the problem that we might have to remove
boxes from a footnote block that has already been split, and that is troublesome
(to put it mildly) in case where the footnote block is set in paragraph mode. It’s
bad enough backtracking in a fixed order across footnote blocks, going back and
forward would be pretty tough.

So our recursion just walks the footnote blocks once top to bottom, splitting
and removing boxes that are not needed. When we recurse, we have a dichotomy
between current overfull and underfull boxes. At each recursion level, we enter with
an overfull configuration that establishes the breakable section for the footnote
block in question.

Suppose that we have already established a previous best configuration. When
we are recursing, we can only increase the badness (a non-broken insertion box
contributes nothing to the overall badness or penalties, breaking the box causes a
badness of 10000, minus the break penalty, plus the break badness). So there is no
point in recursing if entry badness and break penalty are as large as the previous
best break penalty or more.

Ok, so we construct the footnote block and try splitting it to size. If this
gives us a good underfull version, we return that (and break out of recursion
altogether). Otherwise we remember the underfull version before the break and
recurse on the overfull version. If this returns an overfull version again, we return
the underfull version before the break. If it returns an underfull version, we fill
up the underfull version as much as possible without a change of configuration,
then select the best of the last underfull and this as new local underfull. We
then take the first overfull combination (even allowing a change of configuration),
throw away the previous split in the next recursion level and recurse on the now
thoroughly overfull combination again.

When recursion tops out, we compare the current overfull with the previous
one and record the best. We prefer keeping an older overfull, all other things being
equal.

Ok, so what are the data structures we maintain when going through all this
folderol?

We let the insertion boxes themselves remain untouched: that makes it only
a bit more complicated to maintain and access the relevant boxes, but it might
come handy at one time when somebody wants to implement recursion that is not
strictly top-to-bottom.

Instead we return the relevant information in the cache boxes. The total size
of the cache boxes may not correspond to their actual contents: in case a split box
intended for the next page is stored within them, its height is deducted from the
total height of the cache box (and, consequentially, from \FN@vsize).

\FN@vsize, the amount of free space on the current page, is only updated when
changing levels of recursion. Instead we maintain score of the accumulated size in
the current insertion in \FN@myvsize.

What about the penalties and badness we collect? An unsplit footnote block
carries a penalty of 0 (so we need not take into account unsplit footnote blocks at
all during our bookkeeping, as they are neutral), a split footnote block is prepe-

43

nalized with a penalty of 10000, plus the badness of the split, plus any penalties
associated with the split (limited to the [−10000 . . . 10000] range). This means
that no operation on other footnote blocks can lower an already accumulated
score. This in turn means that we can prune any operations leading to a worse
score than the preceding best score without having to actually recurse.

This strategy will usually buy us a minimum number of split footnotes (since
the penalty of 10000 is not easy to compensate) and corresponds rather closely to
TEX’s own idea of footnote splitting.

The following routine will analyze the last box where the results from
\splitdiscards are stored and return the penalty associated with the breakpoint
in the macro \FN@breakpenalty.

\FN@getbreakpenalty

1087 \def\FN@getbreakpenalty{{\setbox\z@\lastbox

1088 \nointerlineskip\copy\z@

1089 \setbox\z@

1090 \vbox{\unvbox\z@

1091 \count@\@M

1092 \FN@getbreakpenaltyii

1093 \xdef\FN@tempinfo{\edef\noexpand\FN@breakpenalty{%

1094 \number\ifnum\count@=\@M \FN@defaultpenalty \else \count@\fi

1095 }}}}%

1096 \FN@tempinfo}

1097

1098 \def\FN@getbreakpenaltyii{%

1099 \ifcase

1100 \ifnum\lastnodetype<\z@ \m@ne\fi

1101 \ifnum\lastnodetype<11 \@ne\fi

1102 \ifnum\lastnodetype>13 \@ne\fi

1103 \numexpr\lastnodetype-9\relax

1104 \or

1105 \PackageError{bigfoot}{Illegal node type}{This can’t happen}%

1106 \or

1107 \count@\z@ \unskip \expandafter\FN@getbreakpenaltyii

1108 \or

1109 \count@\z@ \unkern \expandafter\FN@getbreakpenaltyii

1110 \or

1111 \count@\lastpenalty

1112 \unpenalty \expandafter\FN@getbreakpenaltyii

1113 \fi}

\FN@cleanpagepenalty This is used for removing initial infinite penalties from the pagediscards: those
are artifacts of the page break routine.

1114 \def\FN@cleanpagepenalty{%

1115 \ifcase

1116 \ifnum\lastnodetype<\z@ \m@ne\fi

1117 \ifnum\lastnodetype<11 \@ne\fi

1118 \ifnum\lastnodetype>13 \@ne\fi

1119 \numexpr\lastnodetype-9\relax

44

1120 \or

1121 \PackageError{bigfoot}{Illegal node type}{This can’t happen}%

1122 \or

1123 \skip@=\lastskip \unskip

1124 \expandafter \FN@cleanpagepenalty \expandafter\vskip\the

1125 \expandafter\skip@

1126 \or

1127 \dimen@=\lastkern \unkern

1128 \expandafter \FN@cleanpagepenalty \expandafter\kern\the

1129 \expandafter\dimen@

1130 \or

1131 \count@\lastpenalty \unpenalty

1132 \ifnum\count@=\FN@outputflag

1133 \unpenalty\expandafter\expandafter\expandafter\FN@cleanpagepenalty

1134 \else

1135 \expandafter\FN@cleanpagepenalty\expandafter

1136 \penalty\the\expandafter\expandafter\expandafter\count@

1137 \fi

1138 \fi

1139 \relax}

\FN@mainsplitreturn This is merely an argument delimiting control sequence to make it possible to
figure out which recursion levels still need visiting.

1140 \def\FN@mainsplitreturn{}

\FN@myvsize This is the size currently taken by this insertion.

1141 \newdimen\FN@myvsize

\bigfoottolerance This specifies what footnote arrangement penalty will be accepted without looking
for a better solution.

1142 \newcount\bigfoottolerance

1143 \bigfoottolerance=100

\FN@getbadness This takes a skip value of remaining space and negative stretchability and shrink-
ability, and then calculates \badness depending on how good the stretching ac-
commodates the remaining space.

1144 \def\FN@getbadness#1{%

1145 {\hfuzz\maxdimen\hbadness\@M\setbox\z@\hbox to\z@{\hskip-#1}}}

\FN@newlevel This is the main workhorse of bigfoot. It splits a particular footnote level, re-
cursing if necessary. The level list is delimited with \FN@mainsplitreturn. The
whole thing is looped through while the splits are being optimized. While re-
cursing, \FN@penalties contains the accumulated penalities of the current split
configuration: a penalty of 10000 for any split (except the main list), plus the
penalty at the split points plus a ‘hangover’ badness for the percentage of mate-
rial carried over to the following pages. If nothing is carried over, this is 0, if more
is carried over, we get a penalty according to the proportion of carryover material,
raised to the third power.

45

\footnotecarryratio The fractional variable \footnotecarryratio is used for scaling the leftover ma-
terial dimensions. After scaling with \footnotecarryratio, the carried material
is treated like missing material in a glue calculation, while the stretchability for
this calculation is given by the total size of material before breaking. So with
a setting of 1, there should always be enough stretchability, causing at most a
penalty of 100. That’s not very effective, so we scale this up.

The default value of 2 seems to provide a reasonable penalty for leftover mate-
rial. The actual purpose for this component of the scoring is to penalize footnote
blocks that seem to carry over disproportionally much material to later pages.

1146 \providecommand\footnotecarryratio{2}

\FN@ebadness is an augmented value, but also counting in the stretch badness for
one particular configuration. Ebadness does not make sense to evaluate more than
temporarily: it is not passed through the levels. Since \FN@penalties is globally
tampered with, its value at entry is saved in \FN@entrypenalties. Whenever
we recurse or return, \FN@vsize contains the full information about the available
space on the page, even though locally we use \FN@myvsize, a local value, to
keep track of the locally reserved space. The only time when we need to save
\FN@myvsize should be when we temporarily leave boxes in order to save the
current configuration.

1147 \def\FN@newlevel#1#2#3\FN@mainsplitreturn{%

1148 \count@\FN@cache#2%

1149 \ifvoid\count@

1150 〈trace〉 \if\foottrace1\message{Page=\thepage #2 is empty, recursing with

1151 〈trace〉 \the\FN@vsize^^J}%

1152 〈trace〉 \message{Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1153 #3\FN@mainsplitreturn

1154 〈trace〉 \if\foottrace1%

1155 〈trace〉 \message{Page=\thepage #2 was empty,

1156 〈trace〉 returning with \the\FN@vsize^^J}%

1157 〈trace〉 \message{Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1158 \else

1159 〈trace〉 \if\foottrace1\message{Entering #2 with \FN@penalties,

1160 〈trace〉 \FN@vsize=\the\FN@vsize,^^J%

1161 〈trace〉 Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1162 {\def\FN@currentinsertion{#2}%

1163 \def\FN@currentrecursion{#3}%

1164 \let\FN@entryconfig\FN@config

1165 \let\FN@entrypenalties\FN@penalties

1166 \splittopskip\csname FN@ht\number#2\endcsname\relax

1167 \splitmaxdepth\csname FN@dp\number#2\endcsname\relax

1168 \hsize\csname FN@wd\number#2\endcsname\relax

1169 \vbadness=\@M

1170 \vfuzz\maxdimen

1171 \let\@elt\relax

1172 \expandafter\FN@newleveli\expandafter}%

1173 〈trace〉 \if\foottrace1\message{Exiting #2 with \FN@penalties,

1174 〈trace〉 \FN@vsize=\the\FN@vsize,^^J%

46

1175 〈trace〉 Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1176 \fi}

\FN@newleveli

1177 \def\FN@newleveli{%

\FN@vsize already includes the size of the complete unsplit insertion. When we
recurse, it has to reflect the correct size at the time of recursion. Rounding error
problems don’t permit us to accumulate any sizes in \FN@vsize from processing
our current insertion, so we just subtract the whole insertion-related content. We’ll
add stuff into it when recursing.

1178 \dimen@\dimexpr\ht\count@

1179 \ifnum\FN@currentinsertion=\FN@savebox

1180 +\maxdepth

1181 \else

1182 +\dp\count@

1183 \fi\relax

1184 \global\advance\FN@vsize\dimexpr \dimen@

1185 *\count\FN@currentinsertion/\@m\relax\relax

Ok, now we are typesetting and collecting the best box. Notice that we don’t
exit this \setbox command until we have found the best possible split. What we
\unvbox here, stays dormant except for the last box. When we collect configu-
rations from cache boxes, we don’t collect anything from our current box that is
being assembled. So the whole action is confined within the current list that will
replace the cache box after splitting. The meaning of boxes on the various levels
are:

0 box0: where stuff gets collected as tentative material to be unboxed with
\FN@removevboxes once the insertion gets readied for shipout

0 box2: the previous best split that was found
1 box0: the material that gets worked off, the tail of the split
1 box2: where the current split is assigned

The structure of 0/box2 is the head of the split, followed by \break penalty,
followed by the tail of the split, followed by \penalty\FN@tempbox, followed by
pairs of cache boxes and penalties indicating their box number. That way, the tail
can get restored immediately into \FN@tempbox when using \FN@restoreboxes.

1186 \global\setbox\count@\vbox\bgroup\unvbox\count@

We calculate \FN@myvsize as the total space taken up by this insertion. The size
of the last box is excluded since it will be split now.

1187 \ifnum\lastpenalty=\z@

1188 \setbox\tw@\box\voidb@x

1189 \setbox\z@\lastbox

1190 \FN@myvsize=\ifnum\lastnodetype<\z@

1191 \z@

1192 \else

1193 \dimexpr\dimen@-\ht\z@-\dp\z@\relax

1194 \fi

1195 \else

47

Now if the box has been split previously, we glue it back together again. Since
the lower part of the split has been subtracted from the total in \dimen@, we need
to put it back into the equation here. \dimen@ contains the size of the box after
padding split material has been added.

1196 〈trace〉 \if\foottrace1\message{Regluing box 2}\fi

1197 \unpenalty

1198 \setbox\tw@\lastbox

1199 \setbox\z@\lastbox

1200 \FN@myvsize=\dimexpr\dimen@-\ht\z@-\dp\z@\relax

1201 \dimen@\dp\z@

1202 \setbox\z@{\unvbox\z@

1203 \setbox\z@\lastbox

1204 \unvbox\z@

1205 \unvbox\tw@}%

1206 \ht\z@=\dimexpr\ht\z@+\dp\z@-\dimen@\relax

1207 \dp\z@\dimen@

1208 \fi

Ok, size is all accounted for. Go on with optimization. Note that these defini-
tions here are made in inner level, so they can’t make it outside as the result of
the optimization. If we drop out of here without superceding them, something’s
completely rotten.

1209 \edef\FN@bestcost{\number\maxdimen}%

1210 \let\FN@bestbadness\FN@bestcost

1211 \let\FN@bestconfig\@undefined

1212 \def\FN@bestvsize{-\maxdimen}%

1213 \let\FN@splitcolors\@empty

Ok, first attempt. One interesting feature is that we will never have to rewind the
boxes from a split: we can always just glue the box together again. And apart
from tentative splits which we might revert if they cause a configuration change,
we will not have to bother about contributing too much. What we put in the box
here can stay.

First we split to the remaining size. Since we still have all subordinate footnotes
considered fully, we need at least this split size (in case of a configuration change,
we will need more). After having done the initial split, we continue splitting until
we get the necessary mark of the last footnote into our grasp: we can’t split before
that.

1214 \ifnum\FN@currentinsertion=\FN@savebox

1215 \else

1216 \edef\FN@defaultpenalty{\number-\@M}%

1217 \edef\FN@masterslot{\number\dp\z@}%

1218 \edef\FN@masterid{\FN@slotget\FN@masterslot}%

1219 \fi

Now we are building one tentative candidate for returning in \box\z@. It will
get discarded in case that a better candidate was already found before this box
completes.

1220 \setbox\z@

48

1221 \vbox\bgroup

Ok, now stuff gets complicated: for the first, tentatively ‘optimal’ split, we want
to have all available page stretchability properly taken into account. So we take
the box, and add the available page stretchability at the top. Note that the
stretchability is registered negatively. If we are on the main vertical list, an empty
page can be an acceptable option, so we add a penalty of zero to account for that.
Note that any prospective true penalties will already have disappeared into the
page break.

1222 \let\FN@splitcolors\@empty

1223 \setbox\z@\vbox{\vskip-\glueexpr(\FN@vsize-\dimexpr\FN@vsize

1224 \relax\@minus\glueshrink\FN@vsize)%

1225 *\@m/\count\FN@currentinsertion

1226 \penalty\z@

1227 \unvbox\z@

1228 \ifnum\FN@defaultpenalty>-\@M

1229 \penalty\FN@defaultpenalty\relax\nointerlineskip

1230 \vbox to\maxdimen{}%

1231 \fi}%

Ok, now we have pushed the additional available stretch onto the top of box 0.
Now we do the actual split to minimal size. That means that we don’t consider
any of the shrinkability available on the page: it might still be better employed in
some recursive level.

1232 \setbox\tw@\vsplit\z@ to%

1233 \dimexpr\FN@vsize*\@m/\count\FN@currentinsertion

1234 -\FN@myvsize-\splitmaxdepth

1235 \relax

1236 \ifnum\FN@defaultpenalty>-\@M

1237 \setbox\z@\vbox\bgroup\unvbox\z@\setbox\z@\lastbox

1238 \unskip

1239 \unpenalty

1240 \ifnum\lastnodetype<\z@

1241 \egroup \setbox\z@\box\voidb@x

1242 \else

1243 \egroup

1244 \fi

1245 \fi

Ok, now the top of box 2 contains unwanted additional stretchability. The easiest
way to get rid of it is by adding its negation.

1246 \setbox\tw@\vbox{%

1247 \vskip\glueexpr(\FN@vsize-\dimexpr\FN@vsize

1248 \relax\@minus\glueshrink\FN@vsize)%

1249 *\@m/\count\FN@currentinsertion

1250 \unvbox\tw@\boxmaxdepth\splitmaxdepth}%

Ok, now rinse and repeat if we haven’t reached the last footnote in the block.

1251 \ifnum\FN@currentinsertion=\FN@savebox

1252 \edef\FN@slaveid{\splitbotmarks\FN@slave}%

49

1253 \FN@contribute@tw@

1254 \else

1255 \ifnum0\splitbotmarks\FN@master=\FN@masterslot \else

1256 \loop

1257 \FN@contribute@tw@

1258 \setbox\tw@\vsplit\z@ to\z@

1259 \ifnum0\splitbotmarks\FN@master=\FN@masterslot

1260 \else

1261 \repeat

1262 \fi

1263 \let\FN@splitcolors\@empty

1264 \edef\FN@slaveid{\splitbotmarks\FN@slave}%

1265 \FN@contribute@tw@

1266 \fi

All of the above was necessary to ensure that we actually have the beginning of the
relevant footnote in our material. From now on, we are dealing with legal splits.
Ok, now we have to check whether the subordinate configuration has changed.

1267 \ifx\FN@slaveid\@empty

1268 〈trace〉 \ifnum\FN@currentinsertion=\FN@savebox\else

1269 〈trace〉 \errmessage{Missing slaveid in \FN@currentinsertion}\fi

1270 \edef\FN@slaveid{\number0\topmarks\FN@slave}%

1271 \fi

1272 \ifnum\numexpr\FN@slaveid+\@ne<\FN@masterid

1273 \let\FN@next\FN@slaveid

1274 \else

1275 \let\FN@next\@empty

1276 \fi

At this point of time, we have \FN@masterid set properly for our purposes. It
is to be used for returning any tail part of a box. \FN@slaveid is by necessity
not empty. If any footnote has had its mark broken off, its id must be in the
open range between \FN@slaveid and \FN@masterid. So a nonempty value of
\FN@next at this point of time indicates that we have to cater for a different
configuration rather than the currently cached one.

1277 \FN@splitfurther}

\FN@vsizerecurse This fixes the vertical size up and recurses once.

1278 \def\FN@vsizerecurse{%

1279 \global\advance\FN@vsize

1280 -\dimexpr\FN@myvsize*\count\FN@currentinsertion/\@m \relax\relax

1281 \let\@elt\FN@newlevel

1282 \FN@currentrecursion\FN@mainsplitreturn

1283 \let\@elt\relax

1284 \global\advance\FN@vsize

1285 \dimexpr\FN@myvsize*\count\FN@currentinsertion/\@m \relax\relax}

50

1.5.1 Main label for reconsideration

When we are here, then there is not yet a split in the next footnote blocks sched-
uled. We might have to restitch stuff together here, though.

\FN@splitfurther

1286 \def\FN@splitfurther{%

1287 \ifx\FN@next\@empty \else \let \FN@slaveid\FN@next \fi

Ok, if our configuration now differs from the last one for which we have cache boxes
set up, we have to reconfigure. It it doesn’t, we just stitch the boxes together again
in order to have correct size info.

1288 \let\FN@next\FN@config

1289 \xdef\FN@config{%

1290 \@elt{\FN@slaveid}%

1291 {\FN@masterid}%

1292 \FN@entryconfig}%

1293 \ifx\FN@next\FN@config

1294 \let\@elt\FN@rejoin

1295 \else

1296 \let\@elt\FN@reconfig

1297 \fi

1298 \FN@currentrecursion

1299 \let\@elt\relax

Ok, now we check whether the current configuration is a match for the best pre-
vious one. Also we calculate the badness of the current situation.

1300 \xdef\FN@penalties{\number\FN@entrypenalties}%

1301 \FN@checkcurrent

No point in recursing if we can’t beat the current best one. However, if we find a
forced break, this is considered perfect as long as we are not overfull. Note that
recursion can only increase the badness if we are still underfull here, so there is
no point in using \FN@penalties as the deciding factor of whether there may be
a point in recursing: the current ebadness (which is never less than the badness)
already is minimal.

1302 \ifnum

1303 \ifdim\skip@>\z@ \FN@ebadness \else \FN@penalties \fi

1304 >\FN@bestcost\relax

1305 〈trace〉 \if\foottrace1%

1306 〈trace〉 \message{no recursion: \skip@=\the\skip@,

1307 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1308 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

1309 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1310 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.}\fi

1311 \else

1312 〈trace〉 \if\foottrace1%

1313 〈trace〉 \message{before recursion: \skip@=\the\skip@,

1314 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1315 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

51

1316 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1317 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.^^J

1318 〈trace〉 recurse with \noexpand\FN@penalties=\number\FN@entrypenalties.}\fi

1319 \xdef\FN@penalties{\number\FN@entrypenalties}%

1320 \FN@vsizerecurse

1321 \FN@checkcurrent

1322 〈trace〉 \if\foottrace1%

1323 〈trace〉 \message{after recursion: \skip@=\the\skip@,

1324 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1325 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

1326 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1327 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.}\fi

1328 \fi

Don’t look further if we had a forced break or are overfull or are at the end of the
list.

1329 \ifcase

1330 \ifnum\FN@breakpenalty>-\@M \else \@ne \fi

1331 \ifvoid\z@ \@ne \fi

1332 \ifnum\badness<\@MM \else \@ne \fi

1333 \tw@

1334 \or

1335 \expandafter \FN@returnbest

1336 \else

1337 \FN@mayberecordbest

1338 \setbox\tw@\vsplit\z@ to\z@

1339 \edef\FN@next{\splitbotmarks\FN@slave}%

1340 \FN@contribute@tw@

1341 \expandafter \FN@splitfurther

1342 \fi}

\FN@checkcurrent Check out the badness of the current configuration. The last box on the list is the
material constituting the discardable material after a split.

1343 \def\FN@checkcurrent{%

1344 \FN@getbreakpenalty

1345 \ifnum\FN@breakpenalty<-\@M

1346 \edef\FN@breakpenalty{\number-\@M}%

1347 \fi

1348 \ifnum\FN@currentinsertion=\FN@savebox

1349 \else

1350 \ifdim\FN@specific\FN@currentinsertion\footnotecarryratio\p@>\z@

1351 \skip@

1352 \ifdim\FN@specific\FN@currentinsertion\footnotecarryratio\p@>\p@

1353 \dimexpr\ht\z@+\dp\z@\relax

1354 \@plus-\dimexpr((\FN@myvsize+\ht\z@+\dp\z@)

1355 *\p@/\dimexpr

1356 \FN@specific\FN@currentinsertion

1357 \footnotecarryratio\p@)\relax

1358 \else

1359 \FN@specific\FN@currentinsertion

52

1360 \footnotecarryratio

1361 \dimexpr\ht\z@+\dp\z@\relax

1362 \@plus-\dimexpr\FN@myvsize+\ht\z@+\dp\z@\relax

1363 \fi

1364 \relax

1365 \FN@getbadness\skip@

1366 \xdef\FN@penalties{\number\numexpr\FN@penalties+\badness}%

1367 \fi

1368 \fi

1369 \skip@\glueexpr\FN@vsize-\FN@myvsize

1370 *\count\FN@currentinsertion/\@m\relax

1371 \FN@getbadness\skip@

1372 \xdef\FN@penalties{\number\numexpr\FN@penalties+%

1373 \FN@breakpenalty+\@M}%

1374 \ifnum\badness>\@M

1375 \edef\FN@ebadness{\number\numexpr\maxdimen-\@ne}%

1376 \else

1377 \ifnum\badness=\@M

1378 \ifdim\skip@<\vsize

1379 \edef\FN@ebadness{\number\numexpr\maxdimen-\tw@}%

1380 \else

1381 \edef\FN@ebadness{\number\numexpr\maxdimen}%

1382 \fi

1383 \else

1384 \edef\FN@ebadness{\number\numexpr

1385 \FN@penalties+\badness

1386 \ifdim\FN@specific\FN@currentinsertion\FootnoteMinimum>\FN@myvsize

1387 1000000

1388 \fi

1389 }%

1390 \fi

1391 \fi

1392 \dimen@\glueexpr\FN@bestvsize\relax

1393 }

\FN@checkforbest This generates 2 if the old stored best is better, 1 if the current variation is better.

1394 \def\FN@checkforbest{%

1395 \ifnum\FN@breakpenalty>-\@M \else

1396 \ifnum\badness>\@M \else

1397 \@ne

1398 \fi

1399 \fi

Ok, so the split was not as good as to cause us to return immediately, and it
also was not the last opportunity for a split (which again would make us return
immediately). So we check if it is at least better than the last one, in which case
we need to replace the previous best.

1400 \ifnum\FN@bestcost>\FN@ebadness \@ne\fi

1401 \ifnum\FN@bestcost<\FN@ebadness \tw@\fi

1402 \ifdim\skip@<\z@

53

1403 \ifdim\dimen@<\skip@ \@ne \fi \tw@

1404 \fi

1405 \ifdim\dimen@>\skip@ \@ne\fi \tw@}

\FN@mayberecordbest This checks whether the current configuration is better than a previously saved
one. If it is, the previous configuration gets replaced. The cache boxes itself are
copied, not voided in the process for efficiency reasons.

1406 \def\FN@mayberecordbest{%

If the current break is forced and the page is not overfull, we take the break.

1407 \ifcase

1408 \FN@checkforbest

1409 \or

1410 \xdef\FN@tempinfo{\def\noexpand\FN@bestvsize{\the\skip@}%

1411 \def\noexpand\FN@bestcost{\FN@ebadness}%

1412 \def\noexpand\FN@bestbadness{\number\FN@penalties}%

1413 \def\noexpand\FN@bestconfig{\FN@config}%

1414 \def\noexpand\FN@bestslaveid{\FN@slaveid}%

1415 \def\noexpand\FN@bestsplitcolors{\FN@splitcolors}%

1416 \def\noexpand\FN@breakpenalty{\FN@breakpenalty}%

1417 \FN@myvsize=\the\FN@myvsize\relax}%

1418 \global\setbox\FN@tempbox\box\z@

1419 \egroup

1420 \FN@tempinfo

1421 \let\FN@splitcolors\FN@bestsplitcolors

1422 \let\FN@slaveid\FN@bestslaveid

Now all relevant info has been retrieved, and we collect the best box info in
\box\tw@. The structure of the information is as follows: it starts with the current
box in split form, first the tail, then the start of the current split box. This is then
followed by a zero kern, and then by pairs of boxes and penalties indicating the
swept box.

1423 \setbox\tw@\vbox{%

We don’t need to place master/slave marks here: the necessary information is
available outside in the \FN@masterslot and \FN@slaveid info and gets attached
afterwards.

1424 \copy\z@\break\nointerlineskip

1425 \copy\FN@tempbox\penalty\FN@tempbox

1426 \let\@elt\FN@copycachebox

1427 \FN@currentrecursion}%

1428 \setbox\z@

1429 \vbox\bgroup

1430 \unvbox\z@

1431 \setbox\z@\box\FN@tempbox

1432 \fi}

\FN@returnbest

1433 \def\FN@returnbest{%

1434 \ifcase\FN@checkforbest

54

1435 \or

1436 \xdef\FN@tempinfo{\def\noexpand\FN@bestvsize{\the\skip@}%

1437 \def\noexpand\FN@bestcost{\FN@ebadness}%

1438 \def\noexpand\FN@bestbadness{\number\FN@penalties}%

1439 \def\noexpand\FN@bestconfig{\FN@config}%

1440 \def\noexpand\FN@bestslaveid{\FN@slaveid}%

1441 \def\noexpand\FN@bestsplitcolors{\FN@splitcolors}%

1442 \def\noexpand\FN@breakpenalty{\FN@breakpenalty}%

1443 \FN@myvsize=\the\FN@myvsize\relax}%

1444 \global\setbox\FN@tempbox\box\z@

1445 \egroup

1446 \FN@tempinfo

1447 \let\FN@splitcolors\FN@bestsplitcolors

1448 \let\FN@slaveid\FN@bestslaveid

1449 \global\FN@vsize\FN@bestvsize\relax

Now all relevant info has been retrieved, and we collect the best box info in
\box\tw@. The structure of the information is as follows: it starts with the current
box in split form, first the tail, then the start of the current split box. This is then
followed by a zero kern, and then by pairs of boxes and penalties indicating the
swept box.

1450 \or

1451 \global\let\FN@config\FN@bestconfig

1452 \global\FN@vsize\FN@bestvsize

1453 \global\let\FN@penalties\FN@bestbadness

1454 \egroup

Restore the saved configuration.

1455 \setbox\z@\vbox{\unvbox\tw@ \FN@restoreboxes}%

1456 \let\FN@splitcolors\FN@bestsplitcolors

1457 \let\FN@slaveid\FN@bestslaveid

1458 \unvbox\z@

1459 \setbox\z@\lastbox

1460 \fi

1461 \ifnum\FN@currentinsertion=\FN@savebox

1462 \else

1463 \setbox\z@\vbox{%

1464 \prevdepth\dp\z@

1465 \unvbox\z@

1466 \ifvoid\FN@tempbox

1467 \else

1468 \global\setbox\FN@tempbox\vbox{%

1469 \marks\FN@master{\FN@masterslot}%

1470 \marks\FN@slave{\FN@slaveid}%

1471 \FN@coloraftersplit\FN@splitcolors

1472 \FN@specific\FN@currentinsertion\FN@afterbreak

1473 \nobreak

1474 \unvbox\FN@tempbox}%

1475 \FN@specific\FN@currentinsertion\FN@beforebreak

1476 \ht\FN@tempbox

55

1477 \dimexpr\ht\FN@tempbox+\dp\FN@tempbox-\FN@masterslot sp\relax

1478 \dp\FN@tempbox\FN@masterslot sp\relax

1479 \wd\FN@tempbox\maxdimen

1480 \fi

1481 \ifdim\prevdepth<\splitmaxdepth

1482 \hrule\@height-\prevdepth \@width\z@

1483 \@depth \splitmaxdepth \relax \fi}%

1484 \ht\z@=\dimexpr\ht\z@+\dp\z@-\FN@masterslot sp\relax

1485 \dp\z@=\FN@masterslot sp

1486 \fi

1487 \nointerlineskip \box\z@

If nothing is to be carried over, we just finish our assignment to the cache box and
return.

1488 \ifvoid\FN@tempbox \egroup

If not, we add the carried-over box to the list, flag it with a \nobreak, and
subtract its size from the finished box. Please note that the \expandafter chain
will expand just \cmd\dimen@, but everything following it will be evaluated only
after \egroup, thus using the new height of the box.

1489 \else

1490 \dimen@-\dimexpr\ht\FN@tempbox+\dp\FN@tempbox\relax

1491 \nointerlineskip\box\FN@tempbox

1492 \nobreak

1493 \expandafter\egroup

1494 \expandafter\ht\expandafter\count@\expandafter\dimexpr

1495 \the\dimen@+\ht\count@\relax

1496 \fi

1497 }

\FN@contribute@tw@ This will go from the state where we have the previous \splitdiscards struttified
on the current list some material split off from box 0 in box 2 to a state where
box 2 is contributed to the current list.

1498 \def\FN@contribute@tw@{%

First we change the current colors if we have any in our group. Not sure if this is
entirely correct.

1499 \begingroup\edef\FN@next{\splitbotmarks\FN@color}%

1500 \ifx\FN@next\@empty \endgroup\else \endgroup

1501 \edef\FN@splitcolors{\splitbotmarks\FN@color}\fi

If the last box is void, there is no previous split to reconstitute.

1502 \setbox4\lastbox

1503 \ifvoid4 \setbox4\vbox{\splitdiscards}%

1504 \setbox\tw@\vbox{\unvbox\tw@\boxmaxdepth\splitmaxdepth}%

1505 \else

Now the last box is a strut. We remove its outer dimensions from the total account,
and then add back its natural dimensions after which we pour it back into the
current list.

1506 \advance\FN@myvsize-\dimexpr\ht4+\dp4\relax

56

1507 \setbox4\vbox{\unvbox4}%

1508 \advance\FN@myvsize\dimexpr\ht4+\dp4\relax

1509 \unvbox4

We want to contribute box 2 back without any topskip glue, so we manually
remove any such glue by splitting an empty box off.

1510 \setbox4\vbox{\splitdiscards}%

1511 \setbox\tw@\vbox{\break\unvbox\tw@}%

1512 {\splittopskip-\maxdimen \setbox\tw@\vsplit\tw@ to\z@}%

Notice the effect of TEX’s special box scope rules: box 2 assigned just right now
will be affected by the split. The result of the split will be an empty box that will
temporarily overwrite box 2 within the group, but will be restored back to the
split result on exit. In this manner, any topskip glue will have disappeared. After
the split, box 2 is set to the natural depth and height of its contents.

We now add a sort of strut by putting all the discarded material inside of a
box that creates the proper size. If this split is taken, the box is adjusted to have
a full depth of \splitmaxdepth, and we take this into account.

1513 \fi

1514 \ht4-\dp\tw@

1515 \dp4\ifdim\dp\tw@<\splitmaxdepth \splitmaxdepth \else \dp\tw@ \fi

1516 \advance\FN@myvsize\dimexpr \ht\tw@+\dp4\relax

1517 \unvbox\tw@

1518 \nointerlineskip

1519 \box4 }

\FN@uncontribute@tw@ This is just the opposite: after a split, we revert its effects again.

1520 \def\FN@uncontribute@tw@{%

1521 \ifvoid\tw@ \else

1522 \setbox\tw@\vbox{\unvbox\tw@\splitdiscards}%

1523 \setbox\z@\vbox{\break\unvbox\z@}%

1524 {\splittopskip-\maxdimen \setbox\z@\vsplit\z@ to\z@}%

1525 \setbox\z@\vbox{\unvbox\tw@\unvbox\z@}\fi}

\FN@reconfig This reconfigures the insertion cache to contain only the boxes that belong to this
page. If the insertion box is empty, we can skip all the folderol. If it isn’t, we
empty the cache box (the number of which we place in \count@) and add its size
back to \FN@vsize.

1526 \def\FN@reconfig#1#2{\ifvoid#2%

1527 〈trace〉 \ifvoid\FN@cache#2\else

1528 〈trace〉 \errmessage{\FN@cache#2 should be void}\fi

1529 \else

1530 \count@\FN@cache#2%

1531 \ifvoid\count@\else

1532 \global\advance\FN@vsize

1533 \glueexpr(\ht\count@+\dp\count@)*\count#2/\@m+\skip#2\relax

1534 \global\setbox\count@ \box\voidb@x

1535 \fi

Ok, now we have emptied the cache and readjusted the size. We now fill the cache

57

by first copying the insertion into it.

1536 \global\setbox\count@\vbox\bgroup\vbox\bgroup\unvcopy#2%

1537 \let\@elt\FN@removecheck

1538 \FN@retainkept

Now if nothing was retained, we void the cachebox.

1539 \ifvoid\z@ \egroup\egroup \global\setbox\count@ \box\voidb@x

Otherwise, we combine all the boxes that remain on the page.

1540 \else \def\FN@masterinsert{#2}%

1541 \FN@assembleboxes\global\setbox\count@\box\z@\egroup

1542 \nointerlineskip\box\count@\egroup

Note that now all footnote boxes are collected into a single vbox, followed by the
last footnote box as another vbox. Now we just need to reduce the available size
on the page by the height of the assembled material:

1543 \global\advance\FN@vsize

1544 -\glueexpr(\ht\count@+\dp\count@)*\count#2/\@m+\skip#2\relax

1545 \fi\fi}

\FN@rejoin This glues together cache boxes that have been split, without regenerating them.
This saves a lot of time as compared to \FN@reconfig.

1546 \def\FN@rejoin#1#2{{%

1547 〈trace〉 \if\foottrace1\message{^^JRejoining #2}\fi

1548 \count@\FN@cache#2%

1549 \ifvoid\count@\else

1550 \global\advance\FN@vsize\dimexpr

1551 (\ht\count@+\dp\count@)*\count#2/\@m\relax

1552 \global\setbox\count@\vbox{%

1553 \unvbox\count@

1554 \ifnum\lastpenalty>\z@

1555 \unpenalty

1556 \setbox\tw@\lastbox

1557 \setbox\z@\lastbox

1558 \dimen@\dp\z@

1559 \setbox\z@\vbox{%

1560 \unvbox\z@

1561 \setbox\z@\lastbox

1562 \unvbox\z@

1563 \unvbox\tw@}%

1564 \ht\z@=\dimexpr\ht\z@+\dp\z@-\dimen@\relax

1565 \dp\z@=\dimen@

1566 \nointerlineskip

1567 \box\z@

1568 \fi}%

1569 \global\advance\FN@vsize-\dimexpr

1570 (\ht\count@+\dp\count@)*\count#2/\@m\relax

1571 \fi}}

\FN@retainkept This relies on \@elt being set to \FN@removecheck which expands to \@ne if \box0
is strictly between the two values from an entry of \FN@config, which means that

58

it is material that should get moved to the next page. In that case, we recurse
while dropping the box in question. Otherwise we keep it. Recursion bottoms out
when there are no boxes left. The function leaves the last retained box in box 0;
if there are no boxes to be retained, this will be void.

1572 \def\FN@retainkept{%

1573 \setbox\z@\lastbox

1574 \ifcase

1575 \ifvoid\z@\m@ne\fi \FN@config\z@

1576 〈trace〉 \if\foottrace8\message{^^J\string\FN@retainkept:

1577 〈trace〉 retaining Id \FN@slotget{\number\dp\z@}}\fi

1578 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

1579 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

1580 {\FN@retainkept \nointerlineskip \box\z@}%

1581 \or

1582 〈trace〉 \if\foottrace8\message{^^J\string\FN@retainkept:

1583 〈trace〉 dropping Id \FN@slotget{\number\dp\z@}}\fi

1584 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

1585 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

1586 \FN@retainkept

1587 〈trace〉 \else

1588 〈trace〉 \ifnum\lastnodetype>\m@ne

1589 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

1590 \fi}

Well, as the last measure, we change the output routine to our new routine.

1591 \let\output\FN@output

Ok, here is debugging code intercepting all calls of the regular output routine and
reporting its entry and exit states.

1592 〈trace〉 \newtoks\FN@tr@output

1593 〈trace〉 \FN@tr@output\output

1594 〈trace〉 \output{\if\foottrace8{%

1595 〈trace〉 \setbox\z@\vbox{%

1596 〈trace〉 \message{Calling regular output with

1597 〈trace〉 \outputpenalty=\the\outputpenalty, box255 as}%

1598 〈trace〉 \showbox\@cclv

1599 〈trace〉 \the\FN@tr@output

1600 〈trace〉 \message{Returning from regular output with

1601 〈trace〉 \ifnum\lastnodetype<\z@

1602 〈trace〉 empty vertical list.\else vlist:}}%

1603 〈trace〉 \showbox\z@

1604 〈trace〉 \unvbox\z@{{\fi}}}\else\the\FN@tr@output\fi}

1605 〈trace〉 \let\output\FN@tr@output

If the footnote type “default” has not been declared by the time the document
starts, we do so at the start of the document. Unfortunately, by this time the
initialization code in manyfoot’s own \AtBeginDocument hook has already run,
so we manually run the initialization hook just for the command we inserted
ourselves.

59

1606 \def\FN@maybestart#1#2#3{\ifx#3\relax

1607 \csname MFL@start#1\endcsname{#2}\fi#3}

1608 \@onlypreamble\FN@maybestart

1609 \AtBeginDocument{\@ifundefined{footinsdefault}%

1610 {\newfootnote[plain]{default}%

1611 {\let\@elt\FN@maybestart

1612 \MFL@list\relax}%

1613 }{}%

And since LaTeX’s macros are inferior to our own (and would probably not match
too well), we reroot them to the default footnote style.

1614 \def\@footnotetext{\Footnotetextdefault{}}%

1615 \def\p@footnotedefault{\p@footnote}%

1616 }

1617 〈/style〉

2 Various driver files

The installer, in case it is missing. If it is to be used via make, we don’t specify
an installation path, since

make install

is supposed to cater for the installation itself.

1618 〈installer〉 \input docstrip

1619 〈installer &make〉 \askforoverwritefalse \nopreamble

1620 〈installer〉 \generate{

1621 〈installer〉 \file{bigfoot.drv}{\from{bigfoot.dtx}{driver}}

1622 〈installer〉 \file{perpage.drv}{\from{perpage.dtx}{driver}}

1623 〈installer〉 \file{suffix.drv}{\from{suffix.dtx}{driver}}

1624 〈installer&!make〉 \usedir{tex/latex/bigfoot}

1625 〈installer〉 \file{bigfoot.sty}{\from{bigfoot.dtx}{style}}

1626 〈installer〉 \file{perpage.sty}{\from{perpage.dtx}{style}}

1627 〈installer〉 \file{suffix.sty}{\from{suffix.dtx}{style}}

1628 〈installer〉 }

1629 〈installer〉 \endbatchfile

60

	The implementation
	Startup code
	Fixes to the manyfoot package
	Dealing with footnote-specific code
	Putting footnotes into insertions
	Dealing with Ids
	Dealing with footnote stacks
	Continuation marks
	The works

	The output routine stuff
	Main label for reconsideration

	Various driver files

