
TUGboat, Volume 32 (2011), No. 2 193

The cals package: Multipage tables
with decorations

Oleg Parashchenko

Abstract

Tables are one of the most complicated parts of any
typesetting or publishing system, and LATEX is no
exception. There are a number of packages related
to tables, but so far the following goal has been
unreachable: to automatically typeset huge, complex
and attractive tables.

The new package cals makes this possible.

1 Introduction

I use TEX as an alternative to XSL-FO [2] for pub-
lishing XML as PDF. The customers do not care
about LATEX restrictions and guidelines (for example,
“never use vertical rules” from booktabs [4]); they
demand their specified layout. I failed to implement
their complex requirements for tables using existing
LATEX packages and decided to write my own. The
name “cals” comes from “CALS Table Model” [1], a
standard for table markup in XML.

The key features are:
• huge tables
• spanned cells
• decorations
• automatic typesetting

Different table packages implement different ap-
proaches to break a table across pages; see the TEX
FAQ [8], “Tables longer then a single page”. The
cals package typesets the current row in memory,
checks if the rest of the page is enough for the row,
forces a page break if required, and finally flushes
the row. This way, only a bit of memory is required,
and therefore tables can be long. As a downside, the
widths of columns need to be provided by the user.

The TEX code for tables is supposed to be gen-
erated automatically, therefore the syntax is not
traditional and maybe not convenient for manual
coding. Instead of dividing a row into cells using &,
each cell is introduced by a named command.

The implementation of decorations is unique
throughout TEX, to my knowledge. Table rules are:
• style-driven and
• context-sensitive.
A stylesheet defines how a typical table looks.

The user need only give cells; the decorations do or
do not appear automatically. The width of a border
depends on its location; it is different for the table
frame and for the header separator line.

The cals package has many features, but some
unusual requirements might not be supported. If

you want to make changes or just look at the im-
plementation, the source code and support files are
available at http://github.com/olpa/tex/ in the
directory cals.

2 User’s guide

This section

• provides a summary of the cals commands,
• shows how to use the commands, and
• suggests compatibility strategies.

A complete document demo.tex (demo.pdf [6],
also on CTAN) from the package documentation con-
tains examples of:

• a simple table,
• decoration control,
• cell spanning, and
• a multipage table inside a multicols

environment inside a table.

2.1 Summary

First, an overview of cals commands. Details and
examples follow.

Table elements:

\thead, \tfoot
\tbreak{\penalty-10000}
\lastrule

Alignment:

\alignL, \alignC, \alignR
\vfill

Padding (lengths):

\cals@setpadding{Ag}
\cals@paddingL, \cals@paddingT
\cals@paddingR, \cals@paddingB
\cals@setcellprevdepth{Al}
\cals@paddingD

Color:

\cals@bgcolor

Rules (macros as lengths):

\cals@cs@width, \cals@rs@width
\cals@framecs@width, \cals@framers@width
\cals@bodyrs@width
\cals@borderL, \cals@borderT
\cals@borderR, \cals@borderB

Hooks:

\cals@AtBeginCell, \cals@AtEndCell

Spanning:

\nullcell
\spancontent

The cals package: Multipage tables with decorations

http://github.com/olpa/tex/

194 TUGboat, Volume 32 (2011), No. 2

2.2 Simple tables

Sample code:
\par
\begin{calstable}
\colwidths{{50pt}{100pt}}
\brow \cell{a} \cell{b} \erow
\brow \cell{c} \cell{d} \erow
\end{calstable}
a b
c d

Basics:
• Tables are created with the environment
calstable.
• Column widths must be specified explicitly.
• Each row is marked by the \brow...\erow pair.
• Individual cells are specified by the command
\cell.

And more specifics:
• Tables must start in vertical mode.
• Cells are vboxes, i.e., TEX uses restricted vertical

mode to typeset the content.
• Changes inside \cell{...} are local.
• The macros \cals@AtBeginCell and
\cals@AtEndCell are called at the boundaries
of a cell group.
• The pair \brow...\erow does not make an
implicit group. All changes are active till the
end of the table.

2.3 Multipage tables

Cals tables are split over pages automatically. Such
tables benefit from repeatable headers and footers,
specified by the commands \thead and \tfoot.
\begin{calstable}
\colwidths{{50pt}{100pt}}
%
\thead{\bfseries\selectfont

\brow \cell{col1} \cell{col2} \erow
\mdseries\selectfont}

\tfoot{\lastrule\nointerlineskip
\textit{\strut Some table caption

(not implemented: PartKofN)}\par}
%
\brow \cell{r1,col1} \cell{r1,col2} \erow
\brow \cell{r2,col1} \cell{r2,col2} \erow
\brow \cell{r3,col1} \cell{r3,col2} \erow
\tbreak{Manual table break!\strut\par}
\brow \cell{r4,col1} \cell{r4,col2} \erow
\brow \cell{r5,col1} \cell{r5,col2} \erow
...1000 rows...
\end{calstable}

col1 col2

r1,col1 r1,col2

r2,col1 r2,col2

r3,col1 r3,col2
Some table caption (not implemented: PartKofN)
Manual table break!

col1 col2

r4,col1 r4,col2

r5,col1 r5,col2

. . . 1000 rows . . .
Some table caption (not implemented: PartKofN)
Comments:
• \thead and \tfoot must be given before the

table body.
• Small distraction: text is bold in the header and

is reset before the body starts.
• \thead and \tfoot can contain any vertical

material. In such a case, \tfoot should use the
command \lastrule where the table ends, so
the code decorates the table correctly.
• I’d like to implement “PartK ofN ” functionality,

but can’t say when it will happen.
As long as the current row plus the footer fits

on the rest of the page, there is no page break. Oth-
erwise, cals emits the footer, page break, the header,
and only then the current row.

A manual table break can be made using the
command \tbreak{〈smth〉}, where 〈smth〉 is what
to emit between the footer and the next header. Most
likely, it is \vfill\break.

2.4 Alignment

To left, center, or right-align the content of a cell,
use \alignL, \alignC or \alignR, respectively. The
default is left-alignment. To vertically align a cell to
the middle or bottom, add \vfil or \vfill before
the cell content.
\begin{calstable}
\colwidths{{60pt}{60pt}{60pt}}
\def\cals@framers@width{0.4pt}
\def\cals@framecs@width{0.4pt}
%
\brow
\alignR \cell{\vfill right, bottom}
\alignC \cell{\vfil center, middle}
\alignL \cell{left, top}

\ht\cals@current@row=50pt
\erow
\end{calstable}

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 195

right,
bottom

center,
middle

left, top

For demonstration purposes, the example sets the
height of rows. This is an undocumented and un-
planned feature. You should not rely on it.

2.5 Padding

Padding depends on the current font and is calculated
when a table starts. If you change a font inside a
table, it is a good idea to update the padding:

\cals@setpadding{Ag}
\cals@setcellprevdepth{Al}

The first command sets the left, top, right and bot-
tom padding: \cals@paddingL, \cals@paddingT,
\cals@paddingR, and \cals@paddingB, respectively.
The value is half of the height of the argument. The
second command sets the length \cals@paddingD,
which helps to align baselines in a row. More details
on the ‘Ag’ and ‘Al’ are discussed later.

\fontsize{20pt}{22pt}\selectfont
...
\begin{calstable}
\colwidths{{70pt}{70pt}{70pt}}
%
\fontsize{10pt}{12pt}\selectfont
\brow

\cell{Padding} \cell{is too} \cell{big}
\erow
%
\cals@setpadding{Ag}
\cals@setcellprevdepth{Al}
\brow

\cell{This} \cell{padding}
\cell{is better}

\erow
%
\setlength{\cals@paddingT}{0pt}
\setlength{\cals@paddingB}{0pt}
\brow

\cell{Zero padding} \cell{aaaaaa}
\setlength{\cals@paddingD}{-10000pt}
\cell{aaaaaa}

\erow
\end{calstable}

Padding is too big

This padding is better
Zero padding aaaaaa aaaaaa

In this example, we make the table font smaller then
the document font. In the first row, the padding
is too big. Then the padding is updated, and the
second row looks better. In the third row, the top
and bottom padding are set to zero. However, the
second cell has additional space at top to align the
baseline. To omit this, the length \cals@paddingD
is disabled in the third cell.

2.6 Colors and rules

Specifying a color is straightforward: if the macro
\cals@bgcolor is non-empty, its value is the name
of the cell color.

The width of a cell border (rule) depends on the
context:
• The usual borders get widths from the macros
\cals@cs@width and \cals@rs@width.
• The table frame uses \cals@framecs@width and
\cals@framers@width.
• The separation between the table body and its

header or footer is \cals@bodyrs@width.
The default settings are correspondingly 0.4pt

(the usual line for usual cells), 0pt (table frame is
absent) and 1.2pt (header and footer are delimited
by a thick line). All the borders are “phantoms” and
do not affect layout.

Border types are further divided into subtypes:
cs means “column separation” (left and right bor-
ders), and rs means “row separation” (top and bot-
tom borders).

Finally, there are overrides. If any of the macros
\cals@borderL, \cals@borderT, \cals@borderR, or
\cals@borderB are defined, they specify the width
of the left, top, right or bottom border, ignoring the
cell’s context. By default, these macros are assigned
\relax and are thus inactive.
\begin{calstable}
\colwidths{{60pt}{60pt}{60pt}}
\def\cals@cs@width{1pt}
\def\cals@rs@width{0pt}
\def\cals@framers@width{2pt}
\def\cals@framecs@width{1pt}
% background swap
\def\c{\ifx\cals@bgcolor\empty

\def\cals@bgcolor{lightgray}
\else \def\cals@bgcolor{} \fi}

%
\brow \c\cell{A}

\c\cell{B} \c\cell{C} \erow
%
\brow \c\cell{D}
\def\cals@borderL{3pt}
\def\cals@borderT{4pt}

The cals package: Multipage tables with decorations

196 TUGboat, Volume 32 (2011), No. 2

\def\cals@borderR{5pt}
\def\cals@borderB{6pt}
\c\cell{E}
\let\cals@borderL=\relax
\let\cals@borderT=\relax
\let\cals@borderR=\relax
\let\cals@borderB=\relax

\c\cell{F} \erow
%
\brow \c\cell{G}

\c\cell{H} \c\cell{I} \erow
\end{calstable}

A B C
D E F
G H I

In this example, the macro \c alternately sets and
disables a color of a cell.

2.7 Spanned cells

To define a spanning area, use the \nullcell com-
mand for each component cell. The argument of this
command specifies the location of the cell: l if on
the left edge, t on the top, r on the right and b
on the bottom. To typeset the spanning area, use
the command \spancontent, which should be given
immediately after right-bottom component cell.

The following table illustrates the words, provid-
ing an example how to typeset three spanned areas
of different shapes.
\let\nc=\nullcell
\let\sc=\spancontent

\nc{ltr} \nc{ltb} \nc{tb} \nc{tbr}
\sc{...}

\nc{lr} \nc{lt} \nc{t} \nc{tr}

\nc{lr} \nc{l} \nc{} \nc{r}

\nc{lbr}
\sc{...}

\nc{lb} \nc{b} \nc{br}
\sc{...}

As an example, here is a “spiral” in a 3× 3 table.
\begin{calstable}
\colwidths{{40pt}{40pt}{40pt}}
\def\cals@framecs@width{0.4pt}
\def\cals@framers@width{0.4pt}
\brow
\nullcell{ltr}
\nullcell{ltb}
\nullcell{trb}\spancontent{b3, c3}
\ht\cals@current@row=40pt

\erow
\brow
\nullcell{lbr}\spancontent{a2, a3}

\cell{b2}
\nullcell{ltr}
\ht\cals@current@row=40pt

\erow
\brow
\nullcell{ltb}
\nullcell{btr}\spancontent{a1, b1}
\nullcell{blr}\spancontent{c1, c2}
\ht\cals@current@row=40pt

\erow
\end{calstable}

b3, c3a2, a3

b2

a1, b1

c1, c2

2.8 User-level tricks

There are a few compatibility issues and out-of-design
uses. So far, they are:
• pdfsync compatibility,
• multicol compatibility,
• inter-row page breaks.

2.8.1 pdfsync support

The package pdfsync seems obsolete, but is still in use.
It registers \every-hooks and inserts synchronization
markers. The cals package does not expect such
interference and fails. The solution is:
• disable pdfsync inside a table,
• temporarily enable it inside a cell.

Sample code:
\makeatletter
\let\oldcalstable=\calstable
\def\calstable{\oldcalstable\pdfsyncstop}
\def\cals@AtBeginCell{\pdfsyncstart}
We use \def instead of \let for \cals@AtBeginCell
because \pdfsyncstart and \pdfsyncend do not ex-
ist in the preamble; they are defined during execution
of \begin{document}.

2.8.2 multicols compatibility

If a cell contains a multicols environment, the content
is not padded. This is a side effect of the technical
implementation:
• padding is implemented using \leftskip,
• multicols issues boxes in vertical mode. In this

case, TEX ignores \leftskip.

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 197

The solution is easy and quite unexpected: we
pretend that the cell is a list item:
\cell{
\makeatletter
\@totalleftmargin=\cals@paddingL\relax
\begin{multicols}{2}
... now ok ...
\end{multicols}
}

2.8.3 Inter-row page breaks

All the typesetting systems I have seen break long
tables between rows. But if rows are very tall, it may
be useful to break even within a row, to make full
use of the page height.

The cals package can be extended to support
inter-row breaks. A proof of concept for a simpli-
fied case (no spanned cells, no vertical alignment) is
published in comp.text.tex [7].

A complete solution is not presently available.
The hardest part is to code a generic \vsplit—di-
viding a box and its internal sub-boxes into two parts,
“before” and “after”. Contributions are welcome.

3 Technical details

�
For advanced customization and adding new
functionality, one needs to understand the in-
ternals of the cals package. The rest of the

article requires advanced TEX and LATEX knowledge.

3.1 Padding and alignment of cells

In short, a cell is a vbox.

3.1.1 Horizontal

Horizontal dimensions are applied indirectly when
the cell content switches TEX to the restricted hor-
izontal mode. Before typesetting the content, the
parameters are set:
• \hsize = width of the cell
• \leftskip = left padding
• \rightskip = right padding
If a mode switch does not occur (for example,

the content is wrapped by a box), then TEX does
not use \leftskip and \rightskip, and you get
no left and right padding. This is not a bug, this
is a feature. If the automatic width of a box is
incorrect, cals handles this case and forces the right
value (\wd\boxX=YY).

Horizontal alignment is also implemented us-
ing \leftskip and \rightskip. The command
\alignC adds plus1fill to both skips, \alignR
only to the right one, and \alignL drops the plus/
minus components.

3.1.2 Vertical

Before closing the box, cals adds:
\vfil \vskip\cals@paddingB

This code aligns the content top and sets the
bottom padding.

The start of a cell is more complicated:
\vskip -〈rowspan_compensation〉
\vskip\cals@paddingT
\vskip-\parskip
\prevdepth=\cals@paddingD

In addition to the top padding (\cals@paddingT),
there are a number of adjustments. The first is
conditional and happens only if cals typesets a row-
spanned cell. In this case, the negative skip increases
the visual height of the cell, so visually the cell starts
on the first row of spanning.

On switching from a vertical to a horizontal
mode, TEX adds \parskip glue, but we do not need
this at the beginning of a cell; therefore we annihilate
it. Finally, there is \baselineskip glue, implicitly
set by \prevdepth. The value is calculated in such
a way, that the distance between the top border and
the top of the letters “Al” is exactly \cals@paddingT.

Cell content is packed vertically twice. First, as
a normal vbox. Second, after the final height of its
row is known, the cell is unvboxed and put into a
vbox of the target height.

3.2 Decorations

A table row and its decorations are separated. To
illustrate the explanations, I use the second row from
the following sample table (normal border is 1pt, first
column right border 2pt, second column right border
3pt, right table frame 4pt, thick horizontal border
5pt, columns are 60pt, 70pt, 80pt):

a3 b3 c3
a2 b2 c2
a1 b1 c1

At some point after \erow, when \cals@issue@row
is called, the following boxes and macros are set:
• \cals@current@row
• \cals@current@cs
• \cals@current@rs@above and
\cals@current@rs@below
• \cals@last@rs@below

The row content resides in \cals@current@row:
a2 b2 c2

Here is an annotated dump:
> \box\cals@current@row=
\hbox(15.72218+0.0)x210.0 % Second row

The cals package: Multipage tables with decorations

comp.text.tex

198 TUGboat, Volume 32 (2011), No. 2

.\vbox(15.72218+0.0)x60.0 % The cell "a2"

..\glue 4.38887 % \cals@paddingT

..\glue 0.0 plus -1.0 % -\parskip

..\glue(\parskip) 0.0 plus 1.0

..\glue(\baselineskip) 0.5

..\hbox(6.44444+0.0)x60.0, glue set 41fil

...\glue(\leftskip) 4.388 % \cals@paddingL

...\hbox(0.0+0.0)x0.0

...\OT1/cmr/m/n/10 a

...\OT1/cmr/m/n/10 2

...\penalty 10000

...\glue(\parfillskip) 0.0 plus 1.0fil

...\glue(\rightskip) 4.38 % \cals@paddingR

..\glue 0.0 plus 1.0fil % \vfil

..\glue 4.38887 % \cals@paddingB

.\vbox(15.72218+0.0)x70.0 % The cell "b2"

.. ...b2 here...

.\vbox(15.72218+0.0)x80.0 % The cell "c2"

.. ...c2 here...

This dump illustrates also the structure of a cell,
with all the glue items, as described in the previous
section.

The width of a border is defined by its location,
unless the user explicitly sets the width. If the user
sets different widths for a common border of adjoined
cells, the greater value wins. (This is related to why
cals does not support border colors or styles: I have
no idea what to do if one cell wants, for example,
green border and another red.)

Background color and vertical borders are in the
box \cals@current@cs:

Horizontal rules are not yet typeset. Instead, they are
described by the macros \cals@current@rs@above
(row separation above the row) and the analogous
\cals@current@rs@below, as follows:

> \cals@current@rs@above=macro:
->{{60pt}{1pt}{2pt}\relax }

{{70pt}{2pt}{3pt}{5pt} }
{{80pt}{3pt}{4pt}\relax }.

> \cals@current@rs@below=macro:
->{{60pt}{1pt}{2pt}\relax }

{{70pt}{2pt}{3pt}\relax }
{{80pt}{3pt}{4pt}\relax }.

The macros consists of N groups of four, where N is
the number of columns. Each record contains:

• the length of the rule fragment (the width of
the column)
• the width of the left border
• the width of the right border
• the width of the rule or \relax

Unless the user manually sets the width using
\cals@borderT or \cals@borderB, the last field con-
tains \relax. It means “as yet unknown”, and the
code will decide on the width later, when the location
of the rule is clear.

The borders should be a bit longer then cell
dimensions, in order to create a closed frame instead
of leaving empty squares in the corners.

wrong: squares
in corners

correct: cals
enlarges
horizontal rules

The procedure of typesetting a rule combines
three components: 1) the default width; 2) the pre-
ceding row bottom rule description; 3) the following
row top rule description. The code tries to produce
as large a rule as possible. Instead of emitting a rule
fragment immediately, it remembers the length and
width. If the next fragment is the same width, the
recorded length is extended. If not, then the pending
rule is typeset, and the new fragment is remembered.

Let’s trace a simplified version of the algorithm
for the separation between the first and the sec-
ond rows in the sample table. The border width is
1pt, the value of \cals@current@rs@above is shown
above, and \cals@last@rs@below is the same as
\cals@current@rs@below.
• a3 border. Length 60pt, width 1pt.
→ Remember: L=60pt, W=1pt.
• a2 border. Left 60pt, length 60pt, width 1pt.
→ Nothing changed.
• b3 border. Length 70pt, width 1pt.
→ Increase: L=130pt, W=1pt.
• b2 border. Left 70pt, length 70pt, width 5pt.
→ Emit rule 130x1pt. Emit left skip 70pt.
Remember: L=70pt, W=5pt.
• c3 border. Length 80pt, width 1pt.
→ Emit rule 70x5pt. Remember: L=80pt, W=1pt.
• c2 border. Left 80pt, length 80pt, width 1pt.
→ Nothing changed.
• End of the row. → Emit rule 80x1pt.
The real procedure is a bit more complicated

because it takes into account the corrections for the
vertical borders. Still, the real result is very similar
to the simplified version:
\glue -0.5 % column 1, left border
\rule(0.5+0.5)x132.0 % columns 1 and 2
\glue -1.5 % column 2, right border
\glue -70.0 % back
\glue -1.0 % column 2, left border
\rule(2.5+2.5)x72.5 % column 2

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 199

\glue -1.5 % column 2, right border
\glue -1.5 % column 3, left border
\rule(0.5+0.5)x83.5 % column 3
\glue -2.0 % column 3, right border

The first rule is for the first and the second
column, the second for a thick border in the second
column, and the third rule for the third column. Note
that the border in the second column consists of two
overlapping rules. Such intersection is not nice, but
it happens only when the width is changing, which
should not happen often. In the usual case, when
the width is constant, the code emits only one rule.

3.3 Spanning

I made several attempts before the current imple-
mentation of spanning was developed. In my opinion,
the interface balances clarity for users and ease and
maintenance of coding.

The command \nullcell performs two main
tasks:

• calculate the dimensions of the spanned area,
\cals@span@width and \cals@span@height,
• handle decorations.

Calculation of the width of a spanned area starts
when the left-bottom \nullcell appears (the argu-
ment contains both l and b). The width is updated
while the bottom \nullcells continue to appear
(the argument contains b without l).

The height calculation is similar: start in the
left-top (both l and t) \nullcell, update in a left
(l without t) one. However, there is a complication
in that several spanning areas can interfere. To al-
low several spans at once, each right (r without t)
\nullcell adds the span height to the end of the
queue \cals@spanq@heights, and each left (l with-
out t) \nullcell takes the saved height from the
beginning of the queue. With several active spans,
the queue works like a cyclic buffer. The values rise
from the end to the beginning, and magically the
first value is always the saved height for the coming
span.

The decorations of a spanned area are composed
from independent parts. More precisely, the com-
mand \spancontent does not produce decorations
at all. Instead, each \nullcell works like a usual
\cell after some tuning. First, it temporarily dis-
ables all the borders. Then it looks at the location
and restores the corresponding areas. For example,
if the \nullcell is on the left edge (the argument
contains l), the settings for the left border are re-
stored. After the decorations are produced, all the
border settings are reverted to their original values.

3.4 Multipage

Compared to the other parts of cals, the multipage
functionality was very easy to code. On the other
hand, it required understanding of how TEX works
underneath, which is not my strength. Therefore, I
expect bugs in multipage functionality, especially in:

• detecting if a table break is required (the macro
\cals@ifbreak),
• executing a break within a table (the macro
\cals@issue@break and the end of the macro
\cals@row@dispatch@nospan)

Initially I tried to implement multipage tables in
an output procedure, which, if a page break occurred
within a table, added a footer before the break and
a header after the break. It more or less worked,
but it could not support decorations: the thickness
of a row separator depends on its context. In the
output procedure, it is very hard (if possible at all)
to remove the old in-body separation and insert a
table frame rule. My conclusion is that the main
code should know if a table break is expected before
typesetting a row, and create the break if required.

The following heuristic seems good: does the
current row plus the footer fit into the rest of the
page? If it does not, a break is required. There are
also a few special cases:

• a break is forced if the user defined the macro
\cals@tbreak@tokens (using \tbreak).
• no break in the header, in the footer, after the

header or after the first row of a table chunk.

After a row is finished and its decorations are pre-
pared, cals runs the macro \cals@row@dispatch. Its
main parameters are:

• the bottom decoration of the previous row (given
in \cals@last@rs@below) and its context (in
\cals@last@context); details in the package
documentation.
• the current row (\cals@current@row), its con-

text (\cals@current@context), and decorations
(\cals@current@cs, \cals@current@rs@above,
\cals@current@rs@below).

Depending on whether there is an active rowspan,
there are two different modes of work. First, when a
cell spans over rows, the package must avoid a table
break between. This is implemented by wrapping
the row as a vbox. The row dispatcher emits the row
not to the page, but appends it to a temporary box.
After the last spanned row is collected, the collection
becomes \cals@current@row and the collected dec-
orations constitute \cals@current@row@cs. Then
the dispatcher switches to the normal mode.

The cals package: Multipage tables with decorations

200 TUGboat, Volume 32 (2011), No. 2

In the normal mode, usually it is enough to
output the decorations and the row. But if a table
break is required, the code saves the current row,
typesets the footer, the break, the header and only
then emits the saved row.

4 TEX tricks and traps

The code in the cals package contains a few tricks,
which can be reused in other tools. There were also
a few unexpected problems, which I’d like to discuss
here.

Maybe it is time to start collecting “TEX design
patterns”, as with other programming languages [9].

4.1 Actions after an implicit parameter

A straightforward definition of a command \cell
could be:
\newcommand\cell[1]{%

...actions before...
#1%
...actions after... }
I disliked this approach because then the macro

must collect a potentially big argument, which might
degrade performance. Instead, an aftergroup-trick
is used to inject post-actions to the token stream.
Pseudo-code:
\def\cals@cell@end{...actions after...}
\def\cell{...actions before...
\bgroup\aftergroup\cals@cell@end
\let\next=% eat ’{’ of the argument

}%{ Implicit argument follows }
This trick is described by Victor Eijkhout in

“TEX by Topic” [3], section “12.3.4 \aftergroup”.
Initially, it was perhaps a premature optimiza-

tion, but later useful side-effects appeared:
• The changes inside \cell are local due to wrap-

ping in a group.
• Verbatim and other special content is supported
inside \cell. This would be impossible when
passing the content as a parameter.

4.2 \newcommand for documentation,
\def for definition

The problem with implicit arguments (as with the
\cell command in the previous section) is that such
macros confuse the readers of the code. It is very easy
to overlook that a macro requires more parameters
then expected.

To help the reader, cals defines a macro twice,
first as a prototype and then as the real thing:
\newcommand\cell[1]{}
\def\cell{...macro code...}

For me, it is an useful eye-catcher.

4.3 Nested conditions

The following code does not work:
\let\next=\iftrue
...
\if...\next...\fi...\fi

The idea is to pre-calculate some condition and
use it later. But instead of what the programmer
wants—the first \if matching the outer \fi and
\next (assigned to \iftrue here) matching the inner
\fi—TEX matches \if with the inner \fi, and the
outer \fi causes an error.

As a workaround, cals uses a variant of \iftrue
and \iffalse that drops a following token:
\def\cals@iftrue#1{\iftrue}
\def\cals@iffalse#1{\iffalse}

The nested condition now looks as:
\let\next=\cals@iftrue
...
\if...\next\iftrue...\fi...\fi

The token \iftrue (or any other if-token) after
\next:
• repairs the if-fi balance,
• is ignored when the code is executed.

4.4 The trap of brace delimiting

When a list of macro parameters ends with “#{”, it
means that the last parameter is delimited by a curly
brace:
\def\mybox#1#{\hbox#1}
\mybox to 40pt{some text}
expands to:
\hbox to 40pt{some text}

In this code fragment, the macro parameter #1
is ‘to 40pt’. The surprise is that we can’t make it
explicit:
\mybox{to 40pt}{some text}
expands to:
\hbox{to 40pt}{some text}

The macro parameter is now empty and the
box content is “to 40pt”. The text “some text” is
typeset outside the box. In retrospect and in this
simplified example, such expansion is obvious. In
the real package, however, I fell into the trap several
times.

4.5 The trap of dropped curly braces

To use a macro as a list data type, it is convenient
to put list items in groups. For example, a list with
items “aaa”, “bbb” and “ccc” can be defined as:
\def\list{{aaa}{bbb}{ccc}}

Oleg Parashchenko

TUGboat, Volume 32 (2011), No. 2 201

A straightforward definition of list de-construction
on the first element and the rest could be:

% wrong
\def\decons@helper#1#2\relax{%

\def\first{#1}%
\def\rest{#2}}

\def\decons#1{%
\expandafter\decons@helper#1\relax}

The code works in most cases:

\decons\list
\show\first
\show\rest

=>
> \first=macro:
->aaa.
> \rest=macro:
->{bbb}{ccc}.

Unfortunately, two-element lists are de-constructed
incorrectly, losing the braces:

\def\listII{{aaa}{bbb}}
\decons\listII
\show\first
\show\rest

=>
> \first=macro:
->aaa.
> \rest=macro:
->bbb.

The wrong value of \rest is ‘bbb’; the correct
result would be ‘{bbb}’. The problem is the second
parameter of the macro \decons@helper. If the
value is ‘{{bbb}{ccc}...{xxx}}’ (several items) or
empty, the parameter is not changed. But if the
value is ‘{bbb}’ (exactly one item), TEX interprets
the curly braces as a parameter delimiter and drops
them. Again, it is not a bug, but an unexpected side
effect of TEX’s rules.

4.6 Unit testing

The complexity of the cals code is above my TEX
skills. Fortunately, automated tests helped to keep
the code under control.

There are a number of tools for testing TEX
code (for example, qstest [5]), but I decided that it
would be faster to write my own framework instead
of mastering an existing one. So far, I think this was
a good decision.

I wrote my tool in Python. It is straightforward.
For each test:

• It takes the code fragment, assembles a complete
document and compiles it.

• It extracts LATEX messages and the output of
\show-commands from the log file and asserts
that the result is equal to the known master.
• If the test comes with PNG images, then the tool

asserts that the generated PDF, after conversion
to PNG, is equal to the master images.
The tests for cals and the tool itself are located

in the directory test of the cals package. To run the
tests, execute:
$ export TEXINPUTS=‘pwd‘/../cals:
$ python support/run_tests.py

To run a subset of the tests, simple filtering is
supported. For example, to run only the tests with
the names containing “cell”, execute:
$ python support/run_tests.py cell

The testing framework is generic and can be
used in other projects as well. If there is positive
feedback and use by other developers, the tool will
be extracted to a separate CTAN package.

� Oleg Parashchenko
bitplant.de GmbH, Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com
http://uucode.com/

References

[1] OASIS. TM 9502:1995 –CALS table model
DTD. http://www.oasis-open.org/specs/
a502.htm, 2001.

[2] W3C. Extensible stylesheet language
(XSL), version 1.0. W3C recommendation
15 Oct 2001. http://www.w3.org/TR/2001/
REC-xsl-20011015/, 2001.

[3] Victor Eijkhout. TEX by Topic: A TEXnician’s
Reference. Addison-Wesley, 1992.

[4] Simon Fear. Publication quality tables in LATEX.
http://mirror.ctan.org/macros/latex/
contrib/booktabs/booktabs.pdf, 2005.

[5] David Kastrup. qstest, a LATEX package for unit
tests. TUGboat, 29(1):193–198, 2008.

[6] Oleg Parashchenko. CALS tables demo.
http://mirror.ctan.org/macros/latex/
contrib/cals/examples/demo.pdf, 2011.

[7] Oleg Parashchenko. Re: Multi-page table
with inter-row page breaks. comp.text.tex,
http://groups.google.com/group/comp.
text.tex/msg/8141d45708fe85c2, 6 Dec 2010.

[8] UK TUG. TEX frequently asked questions.
http://www.tex.ac.uk/faq, 2011.

[9] Wikipedia. Design pattern (computer science).
http://en.wikipedia.org/wiki/Design_
pattern_(computer_science), 2011.

The cals package: Multipage tables with decorations

http://www.oasis-open.org/specs/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://mirror.ctan.org/macros/latex/contrib/booktabs/booktabs.pdf
http://mirror.ctan.org/macros/latex/contrib/booktabs/booktabs.pdf
http://mirror.ctan.org/macros/latex/contrib/cals/examples/demo.pdf
http://mirror.ctan.org/macros/latex/contrib/cals/examples/demo.pdf
http://groups.google.com/group/comp.text.tex/msg/8141d45708fe85c2
http://groups.google.com/group/comp.text.tex/msg/8141d45708fe85c2
http://www.tex.ac.uk/faq
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

	Introduction
	User's guide
	Summary
	Simple tables
	Multipage tables
	Alignment
	Padding
	Colors and rules
	Spanned cells
	User-level tricks
	pdfsync support
	multicols compatibility
	Inter-row page breaks

	Technical details
	Padding and alignment of cells
	Horizontal
	Vertical

	Decorations
	Spanning
	Multipage

	TeX tricks and traps
	Actions after an implicit parameter
	\newcommand for documentation, \def for definition
	Nested conditions
	The trap of brace delimiting
	The trap of dropped curly braces
	Unit testing

