
{cprotect.sty}
\verbatim in \macro arguments∗

Bruno Le Floch†

Released 2011/01/27

Contents
1 Include \verb anywhere! 2

2 List of user commands 3

3 Technical points 5

4 Known bugs/limitations 5

5 The code 7
5.1 Setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 \ReadVerbatimUntil . . . . . . . . . . . . . . . . . . . . . . 9
5.3 For macros: \cprotect and friends . . . . . . . . . . . . . . 12

5.3.1 Mandatory arguments . . . . . . . . . . . . . . . . . 13
5.3.2 Optional (o) and delimited (d**) arguments . . . . . 15

5.4 For Environments: \cprotEnv\begin and \CPTbegin . . . . 16
∗This file describes version v1.0e, last revised 2011/01/27.
†E-mail: bruno@le-floch.fr

1



1 Include \verb anywhere!
The cprotect package attempts to do something that should be impos-
sible:1 it allows you to put verbatim in footnotes2, section titles, . . . in a
straightforward way. The section above was typeset using

\cprotect\section{Include\verb-\verb- anywhere!}

and the footnote was

...tes\cprotect\footnote{Like this one: \verb-!@#$%^&*()_+-.}

More generally, let us assume that you want to use verbatim text in
the argument of some macro \cs {〈arg1 〉}, and that this macro is normally
allergic to verbatim. It probably has a good reason to be allergic, but using
an auxiliary file, we can often solve the problem: if you want {〈arg1 〉} to
contain verbatim, just write \cprotect\cs or \cprotect{\cs} instead of
\cs.3 All the examples I give use very standard macros, but it should work
with any macro.4

Nesting is supported: \cprotect cannot appear in a command argument
unless this command is itself \cprotected:

\cprotect\section{Title \cprotect\emph{emphasized} word}

The first version of this package did not support macros with several ar-
guments, nor macros with optional arguments. This new feature is accessed
by giving an optional argument to \cprotect:

\cprotect[om]\section[Short title \verb-&^-]{Long title \verb-&^%$-}

1The UK TEX FAQ http://www.tex.ac.uk/cgi-bin/texfaq2html states:

So \verb and \begin{verbatim} have to assume that they are getting the
first look at the parameter text; if they aren’t, TEX has already assigned
category codes so that the verbatim command doesn’t have a chance.

The argument is quite sound, but it can be circumvented if one can change category codes
once assigned, which we do.

2Like this one: !@#$%^&*()_+.
3This solves most problems, for instance, verbatim text in section titles written as

\cprotect\section{〈title〉} appears correctly in the table of contents. However, there
are still bugs in capitalized headers.

4If you have a macro that works when it is not preceeded by \cprotect, but breaks
down if you put \cprotect in front of it, I will be interested to know why.

2



Each o stands for an optional argument (within []), and m stands for a
mandatory argument (within {}). For example, one can write

\[
\cprotect[om]\sqrt[\verb-%c-]{\cprotect[mm]\frac{\verb-%a-}{\verb-%b-}}
\]

to typeset
%c
√

%a
%b

In fact, the [om] argument specifier is optional.
Some commands will not accept reading from a file as a valid argu-

ment. For instance, the first argument of \hyperlink cannot be \cprotect-
ed. Workaround: write \cprotect{\hyperlink{〈arg1 〉}}{〈arg2 〉}, in other
words, \cprotect the combination of \hyperlink and its first argument.
This trick can be tried when all else fails.

2 List of user commands
Possibly the single most useful command is \cprotect, used as \cprotect\cprotect
\foo {〈arg1 〉} or \cprotect {〈cslist〉} {〈arg1 〉}. As described in the pre-
vious section, the first form behaves as \foo {〈arg1 〉}, and the second as
〈cslist〉 {〈arg1 〉}. The difference is that the argument {〈arg1 〉} can now
contain \catcode changes (e.g., induced by the \verb command and the
verbatim environment). In fact, {〈arg1 〉} is written to a file, and then
read again as the argument of \foo. So using the ideas behind \cprotect,
one could in principle build weird macros that read their arguments several
times, with different \catcodes in effect each time. The e-TEX primitive
\scantokens is most probably a better way to do these things, or you can
try to use the experimental macro \ReadVerbatimUntil.

If you find yourself using a \cprotect\foo combination frequently, and\cMakeRobust
you try to define \bar to mean \cprotect\foo, you will run into trouble.
The technical point is that I made \cprotect “outer”, which prevents it from
being nested in the argument of another command.

However, the package provides \icprotect, which is a non-outer version
of \cprotect. You can write

\outer\def\bar{\icprotect\foo}

3



(I like to make \bar outer, to make sure that it does not get called from
inside a macro argument. It is not necessary.)

You can also use the typical

\let\oldfoo\foo
\outer\def\foo{\icprotect\oldfoo}

to redefine \foo itself instead of a new command \bar. The package pro-
vides a wrapper for this construction: \cMakeRobust\foo replaces \foo by
a version which accepts verbatim. As a stupid example,

\newcommand{\expon}[1]{\mathrm{#1}^{#1}}
\cMakeRobust{\expon}
\(\expon{Hel\verb+|+o}\)

produces Hel|oHel|o, and the verbatim is treated correctly.
Some5 environments do not really behave as environment in that they\cprotEnv

read their argument before acting on it. One such example is amsmath’s
align environment. For these cases, use \cprotEnv as follows. Simply put
\cprotEnv \begin {〈name〉} instead of \begin {〈name〉}. For example,

\cprotEnv\begin{align}
x&=\begin{cases}

1 &\text{if }\verb"@#%^&*"\\
2 &\text{otherwise}

\end{cases}
\end{align}

gives

x =

{
1 if @#%^&*
2 otherwise

(1)

Beware: the align environment does something weird at the measuring step,
and \cprotect will not work very easily (see Section 4 on bugs below).

You can use \CPTbegin as a short-hand for \cprotEnv\begin, but this
will fail when nesting the same environment twice (admittedly, this is rare):
the inner nesting is distinguished by precisely the characters \begin{name }.

Finally, an odd half-deprecated macro. We use all of the auxiliary macros\ReadVerbatimUntil
that are involved in its construction, but not \ReadVerbatimUntil anymore
(the code has to be rewritten to make things clearer.

5Todo: rethink \cprotEnv.

4



The aim of this command is to read a piece of text verbatim, until it
reaches an end-marker. It then writes all that it has read to an auxiliary
file for future use. The most naive approach has a major flaw when nesting
is involved: when parsing ...{}} for instance, with an end-marker of }, we
often wish to stop at the second closing bracket, not the first one. Thus,
\ReadVerbatimUntil needs to be aware of a begin-marker. Also, for some
applications we need to write things before and after the content read by
\ReadVerbatimUntil. Finally, we want to do something once the file has
been written, and possibly something before.

The syntax is thus \ReadVerbatimUntil [〈arg1 〉] {〈arg2 〉} ^begin-
text^endtext^begintag^endtag^, followed by the text in which we look for
endtag. The caret (^) can be any character. It delimits the four verbatim-
like arguments of \ReadVerbatimUntil. The strings of letters begintext
and endtext are pre- and ap-pended to the file. As mentionned before,
begintag and endtag are used when reading the content, to determine how
far \ReadVerbatimUntil should go. The mandatory argument {〈arg2 〉} is
executed once the whole text has been stored to a file. Typically, {〈arg2 〉}
involves reading the file one or more times, and acting on it in any way we
like. The optional argument can be used for hacks such as changing where
cprotect writes its files.

3 Technical points
[...] Will break if ^ does not have its usual catcode at the beginning and at
the end of the \cprotected command.

Also, will break if ^^E or ^^L change catcodes. This choice of symbols
can be changed by setting the options gobbling-escape = 〈letter〉, and
gobbling-letter = 〈letter〉. The defaults are gobbling-escape = E and
gobbling-letter = L.

4 Known bugs/limitations
Incompatibility with \pagestyle{headings}: when a chapter title is put
as a header, it gets upper-cased. If you did \cprotect\chapter{...} as
usual, the title has been stored to a file, but now, the name of the file is
capitalized, and TEX cannot find it.

Issues with nesting of \cprotect in align environments: the align
environment is being too clever with counting braces in its argument. But

5



we do nasty things to braces, such as \let\foo{. This should in fact not
be counted as a brace6, but align has no way of knowing that. Thus, it
expects a closing brace when there will ba none. A workaround is to add
\iffalse}\fi in the body of the align environment, after any \cprotect.
Also, the align environment itself should be protected. Here is an example
(three \cprotect, hence three closing braces):

\cprotEnv\begin{align*}
\sum\cprotect_{\verb"\k" = 1}\cprotect^{\verb"\N"} \verb"\k"
= \cprotect\frac{\verb"\N"(\verb"\N"+1)}{2} \iffalse}}}\fi
\end{align*}

\N∑
\k=1

\k =
\N(\N+ 1)

2

For commands with two or more arguments, it is only possible to put
verbatim in one of the arguments (and the syntax is not great).

The argument of any command that is prefixed with \cprotect has to
have balanced braces, even when hidden inside verbatim environments, or
behind a comment character. For instance,

\cprotect\footnote{On the \verb:{: character}

would fail: \cprotect would see the brace in \verb:{:, and count it as
an opening tag, which then has to be closed. This is most likely to lead
\cprotect to gobble the whole file before complaining. Similarly,

\cprotect\footnote{On the \verb:!: %should it be }?
character}

would only gobble until the closing brace in %should it be }?, and I am
not sure what error would be produced.

But we can use one ailment to cure the other! A correct way to typeset
the first example is

\cprotect\footnote{On the \verb:{: character%}
}

if % is a comment character at the time it is read. A safer solution would be
to use \iffalse}\fi instead of %}. It still requires to be sure that \ is an
escape character when this piece of code is read, and can lead to problems
if the previous token is \let for instance.

6In some sense, it defines \foo to be an opening brace.

6



5 The code
1 〈∗package〉

5.1 Setting up

We first load a few packages
2 \RequirePackage{ifthen}
3 \RequirePackage{suffix}

We borrow the idea of quark from expl3: \CPT@qend expands to itself,
useful for \ifx comparisons.
4 \def\CPT@qend{\CPT@qend}
5 \def\CPT@option@head#1=#2\CPT@qend{#1}
6 \def\CPT@option@tail#1=#2\CPT@qend{#2}
7 \DeclareOption*{%
8 \ifthenelse{%
9 \equal{gobbling-escape}{%

10 \expandafter\CPT@option@head\CurrentOption=\CPT@qend}%
11 }{%
12 \edef\CPT@gobbling@escape{%
13 \expandafter\CPT@option@tail\CurrentOption\CPT@qend
14 }%
15 }{%
16 \ifthenelse{%
17 \equal{gobbling-letter}{%
18 \expandafter\CPT@option@head\CurrentOption=\CPT@qend}%
19 }{%
20 \edef\CPT@gobbling@letter{%
21 \expandafter\CPT@option@tail\CurrentOption\CPT@qend
22 }%
23 }{%
24 \PackageError{cprotect}{Unknown option \CurrentOption}{}%
25 }%
26 }%
27 }
28 \def\CPT@gobbling@escape{E}
29 \def\CPT@gobbling@letter{L}
30 \ProcessOptions\relax

Then we introduce the commands pertaining to writing files.7

7To be rewritten. For the moment, we use a new file each time cprotect is used. Thus,
many files. But this is needed if people want to nest cprotect’s.

7



We write files \jobname-1.cpt, \jobname-2.cpt, etc. in order.
31 \newwrite\CPT@WriteOut
32 \newcounter{CPT@WriteCount}
33 \edef\CPT@filename{\jobname.cpt}
34 \newcommand{\CPT@Write}[1]{%
35 \immediate\openout\CPT@WriteOut=\CPT@filename%
36 \newlinechar‘\^^M%
37 \immediate\write\CPT@WriteOut{#1}%
38 \immediate\closeout\CPT@WriteOut%
39 \expandafter\xdef\csname CPT@\CPT@filename\endcsname{%
40 \noexpand\scantokens{#1}%
41 }%
42 %\expandafter\gdef\csname \string\CPT@\CPT@filename\expandafter\endcsname\expandafter{%
43 % \expandafter\protect\csname CPT@\CPT@filename\endcsname}%
44 %\expandafter\show\csname \string\CPT@\CPT@filename\endcsname%
45 %\expandafter\show\csname CPT@\CPT@filename\endcsname%
46 }

The next command changes all catcodes to “other”. It was adapted from
filecontents.sty.
47 \newcommand{\makeallother}{%
48 \count0=0\relax
49 \loop
50 \catcode\count0=12\relax
51 \advance\count0 by 1\relax
52 \ifnum\count0<256
53 \repeat
54 }

\CPT@gobbling@escape
\CPT@gobbling@letter

e make the active character ^^L of charcode 11 [letter...], and define it to
expand to \relax (was hoping to make it invalid most of the time, but that
fails) [...]. Also, failure if ^ is not of catcode “superscript”.

\CPT@escape@hat@hat@L contains the string of characters \^^L, with L
replaced by the value of \CPT@gobbling@letter.

\CPT@hat@hat@E@hat@hat@L contains the string of characters ^^E^^L
where ^^E is the escape character, and ^^L is the active charace.

We define \CPT@hat@hat@E@hat@hat@L to be empty: it will simply be
used to gobble the initial space at the beginning of environments and hide
the end-of-line token that eTEX inserts for every \scantokens.

55 {
56 \catcode‘\/=0

8



57 /catcode‘/\=12
58 /catcode‘/^=12
59 /xdef/CPT@escape@hat@hat@L{\^^/CPT@gobbling@letter/space}
60 /xdef/CPT@escape@hat@hat@E{\^^/CPT@gobbling@escape/space}
61 /xdef/CPT@hat@hat@E@hat@hat@L{%
62 ^^/CPT@gobbling@escape^^/CPT@gobbling@letter/space}
63 }
64 \expandafter\scantokens\expandafter{%
65 \expandafter\catcode\expandafter‘\CPT@escape@hat@hat@E=0}
66 \expandafter\scantokens\expandafter{%
67 \expandafter\catcode\expandafter‘\CPT@hat@hat@E@hat@hat@L=11}
68 \expandafter\scantokens\expandafter{%
69 \expandafter\def\CPT@hat@hat@E@hat@hat@L{}}

5.2 \ReadVerbatimUntil

Both \ReadVerbatimUntil and its starred version (which we define using the
suffix.sty package) take one optional argument [〈first-cs〉] and a manda-
tory argument {〈final-cs〉}. The 〈final-cs〉 is saved as \CPT@commandatend
to be executed when we close the file (and the group).8

70 \newcommand\ReadVerbatimUntil[2][]{%
71 \def\CPT@commandatend{#2}%
72 \begingroup #1%
73 \makeallother%
74 \CPT@setup}
75 \WithSuffix\newcommand\ReadVerbatimUntil*[2][]{%
76 \def\CPT@commandatend{#2}%
77 \begingroup #1%
78 \makeallother%
79 \CPT@starsetup}

\CPT@setup reads the four “verbatim” arguments following {〈final-cs〉},
and stores them in this order as macros \CPT@preText, \CPT@postText,
\CPT@begin, and \CPT@end. The macros which read each of these arguments
need to be defined inside \CPT@setup, because I don’t want any constraint
on the delimiter. I could write a single macro that gobbles all four arguments
at once, but this would require a crazy number of \expandafters, so instead
I do it one by one.

8It is not a straightforward \aftergroup, because I want this to be executed after
another \aftergroup that comes later.

9



If the delimiter was given, say ^, then we would define \CPT@readBegin
as \def \CPT@readBegin#1^{\def \CPT@begin{#1}\CPT@readEnd}. But
since ^ is not given explicitly, we need \expandafters to expand it before
the definition takes place. To avoid code repetition, I did it once and for all
in the auxiliary macro \CPT@def. Note that a parameter of ##1 is somehow
hidden inside \CPT@def, and that the ##1 inside the replacement text refer
to the arguments of the \CPT@read... macros.
80 \newcommand{\CPT@def}[2]{\expandafter\def\expandafter#1%
81 \expandafter##\expandafter1#2}
82 \newcommand{\CPT@setup}[1]{%
83 \def\CPT@delimiter{#1}%
84 \CPT@def\CPT@readPreText\CPT@delimiter{%
85 \def\CPT@preText{##1}\CPT@readPostText}%
86 \CPT@def\CPT@readPostText\CPT@delimiter{%
87 \def\CPT@postText{##1}\CPT@readBegin}%
88 \CPT@def\CPT@readBegin\CPT@delimiter{%
89 \def\CPT@begin{##1}\CPT@readEnd}%
90 \CPT@def\CPT@readEnd\CPT@delimiter{%
91 \def\CPT@end{##1}\CPT@readContent}%
92 \CPT@readPreText%
93 }
94 \newcommand{\CPT@starsetup}[1]{\CPT@setup#1#1#1}

We also give the variant \CPT@starsetup, which has empty \CPT@preText
and \CPT@postText.

When \CPT@setup is expanded, it will call \CPT@readPreText, \CPT@-
readPostText, \CPT@readBegin, and \CPT@readEnd, and finish with \CPT@-
readContent, which we describe now.

The counter CPT@numB will count the surplus of begin-tags compared
to end-tags when we parse the text following \CPT@readContent. And
\CPT@store is a macro that adds its argument to an other macro (I was too
lazy to learn about token lists). The storage itself will be initialized later.
95 \newcounter{CPT@numB}
96 \newcommand{\CPT@store}[1]{\edef\CPT@storage{\CPT@storage#1}}

The macro \CPT@readContent is quite tricky: if the begin-tag and
end-tag were one character, things would be easy: I would read one charac-
ter at a time, and compare it to both begin-tag and end-tag, then either
store it, and possibly increase or decrease CPT@numB, or decide that I am
done if CPT@numB becomes negative.

10



Unfortunately, I want to use \ReadVerbatimUntil for environments,
in which case the begin-tag is \begin{myenv} and the end-tag is
\end{myenv}. So two options:

• code a standard string searching algorithm... I did not feel like it, but
it might lead to a regexp package later on;

• use TEX’s delimited parameters.

I did the latter, using \CPT@def again (we want to expand the string which
delimits the parameter before doing the definition).

The details are ugly:

• gobble until the first end-tag,9 and insert a fake begin-tag, as well
as the quark guard \CPT@qend,

• inside what we gobbled, gobble begin-tags until reaching the fake one
(marked by the quark guard).

• continue until we have one more end-tag than begin-tag.

97 \newcommand{\CPT@readContent}{%
98 \CPT@def\CPT@gobbleOneB\CPT@begin##2{%
99 \ifx\CPT@qend##2\CPT@store{##1}\addtocounter{CPT@numB}{-1}%

100 \else\CPT@store{##1\CPT@begin}\stepcounter{CPT@numB}%
101 \expandafter\CPT@gobbleOneB\expandafter##2\fi}%
102 %
103 \CPT@def\CPT@gobbleUntilE\CPT@end{%
104 \edef\CPT@tempi{##1\CPT@begin}%
105 \expandafter\CPT@gobbleOneB\CPT@tempi\CPT@qend%
106 \ifthenelse{\value{CPT@numB}<0}{%
107 \CPT@store{\CPT@postText}%
108 \CPT@Write{\CPT@storage}\endgroup%
109 \CPT@commandatend%
110 }{%
111 \CPT@store{\CPT@end}\CPT@gobbleUntilE%
112 }%
113 }%
114 \setcounter{CPT@numB}{0}%
115 \def\CPT@storage{\CPT@preText}%
116 \CPT@gobbleUntilE%
117 }

9This will fail for devious cases: if begin-tag is abc and end-tag is bcd, and
\CPT@readContent is followed by abcd...: we will wrongly see bcd as an end-tag.

11



5.3 For macros: \cprotect and friends

\cprotect Equipped with \ReadVerbatimUntil, we are ready for the more practical
macros. \cprotect cheats: it uses { and } as a begin-tag and end-tag.
This works most of the time, but fails in cases such as those presented in
Section 4 (in usual cases there are workarounds10).

We define \cprotect as \outer, as a check that it is the first to read
its argument. A neat thing is that \cprotect will complain if it is nested
inside anything, except if the enclosing macro is itself \cprotected.11

118 \outer\long\def\cprotect{\icprotect}

Normally, one should always use \cprotect. In some rare cases, it can be
necessary to overcome the \outerness of \cprotect. For this we provide
\icprotect, where i stands for internal.

\icprotect [〈spec〉] {〈\cs 〉} takes as a mandatory argument the con-
trol sequence \cs that we are protecting, and as a first, optional, argument
the argument specification of \cs, in the xparse style: m for mandatory
arguments, o for optionals, etc.12 No spaces, i.e., [om], not [o m]!

119 \newtoks\CPT@commandatend@toks
120 \newcommand{\icprotect}[2][om]{%
121 \def\CPT@argsig{#1}%
122 \def\CPT@cs{#2}%
123 \CPT@commandatend@toks{#2}%
124 \def\CPT@commandatend{\CPT@read@args}% used by RVU.
125 \CPT@commandatend%
126 }
127 \def\CPT@argsig@pop{%
128 \edef\CPT@argsig{\expandafter\@gobble\CPT@argsig}%
129 }

Currently, \CPT@read@args is simply a synonym.

130 %\newcommand\CPT@read@args{\CPT@read@m}
131 \newcommand\CPT@read@args{%
132 \ifx\CPT@argsig\empty

10But I could definitely not have the contents of this .dtx file as a (huge) footnote in
some document: since { and } change \catcodes, it is unlikely that the numbers balance
correctly.

11In particular, the author of this documentation had to use a devious trick (namely,
have an ignored character in the midst of the name) to include even the name of the
macro in the left margin.

12Todo: list all the arguments that are supported: for the moment, o and m.

12



133 \expandafter\the\expandafter\CPT@commandatend@toks
134 \else
135 \expandafter\expandafter\expandafter\CPT@read@one
136 \expandafter\CPT@argsig\expandafter\CPT@qend%
137 \fi
138 }
139 \def\CPT@read@one#1#2\CPT@qend{%
140 \def\CPT@argsig{#2}%
141 \def\CPT@tempii{\csname CPT@read@#1\endcsname}% To make the \afterassignment simpler.
142 \afterassignment\CPT@tempii\let\CPT@next=%
143 }

5.3.1 Mandatory arguments

First, we learn how to parse mandatory arguments. We define \CPT@read@m
to read a mandatory (braced) argument. Note the use of \bgroup in
\CPT@read@m: if the argument of \cs starts with an opening brace, it has
been read early, and its \catcode will still be 1.13

We check whether the next token is a brace or not:

• If it is, we discard the {, and the argument of \cs stops at the matching
explicit closing brace }. (See \CPT@read@mbeg below, where beg stands
for an opening brace.)

• If it is not, the argument of \cs is this token only, and there is no need
for \cprotection (see \CPT@read@mone below).

144 \newcommand\CPT@read@m{%
145 \ifx\CPT@next\bgroup%
146 \expandafter\CPT@read@mbeg%
147 \else%
148 \expandafter\CPT@read@mone%
149 \fi%
150 }
151 \def\CPT@read@mone{\CPT@cs\CPT@next}

Since \ReadVerbatimUntilmakes everything into others, we need braces
to be others when we define most macros in this Section. We thus need a
few \catcode changes. Think of {→ ( and }→ ).

152 \begingroup

13I am not sure whether catcodes really matter in such an \ifx.

13



153 \catcode‘\{=12 \catcode‘\}=12
154 \catcode‘\(=1 \catcode‘\)=2
155 \gdef\CPT@other@bgroup({)
156 \gdef\CPT@other@egroup(})
157 \endgroup

\CPT@read@mbeg to read a braced mandatory argument once the begin-
group symbol has been read.

158 \def\CPT@read@mbeg{%
159 \stepcounter{CPT@WriteCount}%
160 \edef\CPT@filename{\jobname-\arabic{CPT@WriteCount}.cpt}%
161 \expandafter\expandafter\expandafter\CPT@commandatend@toks
162 \expandafter\expandafter\expandafter{%
163 \expandafter\the
164 \expandafter\CPT@commandatend@toks
165 % Input a file:
166 \expandafter{%
167 \expandafter\protect
168 \expandafter\input
169 \CPT@filename
170 \relax
171 }%
172 % % Using \scantokens: requires ’%’ active.
173 % \expandafter{%
174 % \csname \string\CPT@\CPT@filename\endcsname
175 % \expandafter\protect
176 % \expandafter\csname CPT@\CPT@filename\endcsname
177 % }%
178 }%
179 %\showthe\CPT@commandatend@toks%

We append {\protect \input 〈file name〉relax} at the end of the token
list \CPT@commandatend@toks. Then we set \CPT@commandatend to be this
token list. The role of \CPT@commandatend is to be executed once the match-
ing } is found. Note the \protect, necessary for things to work well inside
\section.

Since we \edefed, \CPT@filename contains the expanded version of the
filename. We then use many \expandafters in order to expand the filename
now: we are then sure that the right file will be input as an argument of
\CPT@cs (this is the \cprotected command).

180 \begingroup%
181 \makeallother%

14



182 \def\CPT@preText{}%
183 \let\CPT@postText\CPT@hat@hat@E@hat@hat@L%
184 \let\CPT@begin\CPT@other@bgroup%
185 \let\CPT@end\CPT@other@egroup%
186 \CPT@readContent%
187 }%

5.3.2 Optional (o) and delimited (d**) arguments

\CPT@read@o (for scanning standard optional arguments) is defined to be
\CPT@read@d[].

188 \def\CPT@read@o{\CPT@read@d[]}

Now for delimited arguments, \CPT@read@d takes two arguments (the
two delimiters). If the next token, \CPT@next is the same character as the
opening delimiter #1, then we read the argument with \CPT@read@d@beg.
Otherwise, we use \CPT@read@d@none.

189 \def\CPT@read@d#1#2{%
190 \if\noexpand\CPT@next#1%
191 \expandafter\CPT@read@d@beg%
192 \else%
193 \expandafter\CPT@read@d@none%
194 \fi%
195 {#1}{#2}%
196 }
197 \def\CPT@read@d@none#1#2{%
198 \CPT@read@args\CPT@next%
199 }

\CPT@read@d@beg to read a delimited argument once (if) the begin-
ning symbol \CPT@d@begin has been found. The begin-tag and end-tag
used by \ReadVerbatimUntil and its friends are here \CPT@d@begin and
\CPT@d@end. Errata: replaced by #1 and #2.

200 \def\CPT@read@d@beg#1#2{%
201 \stepcounter{CPT@WriteCount}%
202 \edef\CPT@filename{\jobname-\arabic{CPT@WriteCount}.cpt}%
203 \expandafter\expandafter\expandafter\CPT@commandatend@toks%
204 \expandafter\expandafter\expandafter{%
205 \expandafter\the%
206 \expandafter\CPT@commandatend@toks%
207 \expandafter #1%
208 \expandafter\protect%

15



209 \expandafter\input%
210 \CPT@filename%
211 \relax%
212 #2%
213 }%

Since we \edefed, \CPT@filename contains the expanded version of
the filename. We then use many \expandafters in order to expand
\CPT@d@begin, \CPT@d@end, and \CPT@filename the filename now: we are
then sure that the right file will be input as an argument of \CPT@cs (this
is the \cprotected command).

214 \begingroup%
215 \makeallother%
216 \def\CPT@preText{}%
217 \let\CPT@postText\CPT@hat@hat@E@hat@hat@L%
218 \def\CPT@begin{#1}%
219 \def\CPT@end{#2}%
220 \CPT@readContent%
221 }%

Finally, the \cMakeRobust command is a mess, and could probably be
improved, although... it works :). We make the new command \outer, and
use the inner version \icprotect of \cprotect.

222 \newcommand{\cMakeRobust}[1]{%
223 \def\CPT@cs@name{\expandafter\@gobble\string#1}%
224 \expandafter\let\csname CPT@old@\CPT@cs@name\endcsname #1%
225 \expandafter\outer\expandafter\def\csname\CPT@cs@name\endcsname{%
226 \expandafter\icprotect\csname CPT@old@\CPT@cs@name\endcsname}%
227 }

5.4 For Environments: \cprotEnv\begin and \CPTbegin

We introduce the command \CPTbegin, which has a behaviour close to the\CPTbegin
behaviour of \begin. Namely, \CPTbegin{env} gobbles its argument until
it sees the matching \end, and it writes what it gobbled to a file. It then
inputs the file between \begin{...} and \end{...}, as we can see from the
definition of \CPT@commandatend.

As for the case of \cprotect, we need to setup the values of the four
arguments of \ReadVerbatimUntil before reading the content. Since the
begin-tag and end-tag depend on a parameter, it would be incredibly
messy to try to expandafter the right things, so we define \CPT@env@setup

16



to, well, setup the values of the four arguments of \ReadVerbatimUntil,
and then skip directly to \CPT@readContent.

228 \newcommand{\CPTbegin}[1]{%
229 \stepcounter{CPT@WriteCount}%
230 \edef\CPT@filename{\jobname-\arabic{CPT@WriteCount}.cpt}%
231 \edef\CPT@commandatend{%
232 \noexpand\begin\noexpand{\noexpand#1\noexpand}%
233 \noexpand\expandafter\noexpand\protect%
234 \noexpand\expandafter\noexpand\input \CPT@filename\relax%
235 \noexpand\end\noexpand{\noexpand#1\noexpand}%
236 }%

Here, we are defining \CPT@commandatend to be \begin{#1} \expandafter
\protect \expandafter \input 〈filename〉 \end{#1}, where 〈filename〉 is
\CPT@filename, fully expanded. Is there a cleaner way of doing that, given
how far in the definition \CPT@filename is?

237 \begingroup%
238 \CPT@env@setup{#1}%
239 \makeallother%
240 \CPT@readContent%
241 }

As announced, \CPT@env@setup, defined with lots of catcode changes
[this paragraph is not up to date]. Since the catcode of \ changes, I need an
extra escape character, which I take to be /. I use two groups so each group
is opened and closed using the same escape character (this is technically
irrelevant, but seems less messy).

242 \newcommand{\CPT@otherify}[1]{%
243 \expandafter\expandafter\expandafter\@gobble
244 \expandafter\string\csname #1\endcsname
245 }
246 \newcommand{\CPT@env@setup}[1]{%
247 \def\CPT@temp{#1}%
248 \edef\CPT@temp{\CPT@otherify{#1}}%
249 \edef\CPT@temp{\expandafter\strip@prefix\meaning\CPT@temp}%
250 \expandafter\CPT@env@setup@\expandafter{\CPT@temp}%
251 }
252 \def\CPT@env@setup@#1{%
253 \let\CPT@preText\CPT@hat@hat@E@hat@hat@L%
254 \let\CPT@postText\CPT@hat@hat@E@hat@hat@L%
255 \edef\CPT@begin{\string\begin\string{#1\string}}%
256 \edef\CPT@end{\string\end\string{#1\string}}%

17



257 }

A final piece of code is needed so that \CPT-environments can be nested:
in order to be able to nest, we need \ReadVerbatimUntil to be aware that
our environment has been opened when \CPTbegin{foo} or \begin{foo}
appear in the text. Given the rules for delimited parameters in TeX, this
is quite difficult. A workaround is to replace \CPTbegin by something that
ends in \begin shuch as \cprotEnv\begin as defined below. Thus, for
nesting to work, you need to prepend every one of your env environments
with \cprotEnv.

258 \def\cprotEnv\begin{\CPTbegin}

259 〈/package〉

Change History

v1.0d
General: \cprotect [〈spec〉] to

cprotect a control sequence
with the argument specifica-
tion 〈spec〉 . . . . . . . . . . . . . 1

v1.0
General: First version with docu-

mentation . . . . . . . . . . . . . . 1
v1.0b

General: Environments names
were letter-only: now only

control sequences are forbid-
den. Fixed by switching from
\catcode=11 to 12 when pro-
cessing. . . . . . . . . . . . . . . . 1
Filenames expanded much ear-
lier: allows nesting. . . . . . . . 1

v1.0c
\cprotect: Made \cprotect

\outer, and introduced
\icprotect. . . . . . . . . . . . . 12

\CPT@gobbling@letter: W . . . . 8

Index
Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the code line of the definition;
numbers in roman refer to the code lines where the entry is used.

Symbols

\{ . . . . . . . . . . . . 153

\} . . . . . . . . . . . . 153

\^ . . . . . . . . 36, 59, 60

B

\begin . . 232, 255, 258

\bgroup . . . . . . . . 145

C
\catcode . . . . . 50,

56, 65, 67, 153, 154
\cMakeRobust . . . . 222
\cprotect . . . . . . 118

18



\cprotEnv . . . . . . 258
\CPT@ . . . . . 42, 44, 174
\CPT@argsig . 121,

128, 132, 136, 140
\CPT@argsig@pop . 127
\CPT@begin . . . . . .

. . 89, 98, 100,
104, 184, 218, 255

\CPT@commandatend
. . . . . . 71, 76,
109, 124, 125, 231

\CPT@commandatend@toks
. . . . . . . . 119,
123, 133, 161,
164, 179, 203, 206

\CPT@cs . . . . . 122, 151
\CPT@cs@name . 223–226
\CPT@def . . . 80, 84,

86, 88, 90, 98, 103
\CPT@delimiter . . .

. 83, 84, 86, 88, 90
\CPT@end . . 91, 103,

111, 185, 219, 256
\CPT@env@setup . . .

. . . . . . . 238, 246
\CPT@env@setup@ . .

. . . . . . . 250, 252
\CPT@escape@hat@hat@E

. . . . . . . . . . . 65
\CPT@filename . . . .

. . . . . . 33, 35,
39, 42–45, 160,
169, 174, 176,
202, 210, 230, 234

\CPT@gobbleOneB . .
. . . . 98, 101, 105

\CPT@gobbleUntilE
. . . . 103, 111, 116

\CPT@gobbling@escape
. . . . . . 12, 28, 55

\CPT@gobbling@letter
. . . . . . 20, 29, 55

\CPT@hat@hat@E@hat@hat@L
. . . . . . 67, 69,
183, 217, 253, 254

\CPT@next . . . 142,
145, 151, 190, 198

\CPT@option@head .
. . . . . . . 5, 10, 18

\CPT@option@tail .
. . . . . . . 6, 13, 21

\CPT@other@bgroup
. . . . . . . 155, 184

\CPT@other@egroup
. . . . . . . 156, 185

\CPT@otherify 242, 248
\CPT@postText . 87,

107, 183, 217, 254
\CPT@preText . . 85,

115, 182, 216, 253
\CPT@qend . . . . . 4–

6, 10, 13, 18, 21,
99, 105, 136, 139

\CPT@read@args . . .
124, 130, 131, 198

\CPT@read@d . 188, 189
\CPT@read@d@beg . .

. . . . . . . 191, 200
\CPT@read@d@none .

. . . . . . . 193, 197
\CPT@read@m . 130, 144
\CPT@read@mbeg . . .

. . . . . . . 146, 158
\CPT@read@mone . . .

. . . . . . . 148, 151
\CPT@read@o . . . . 188
\CPT@read@one 135, 139
\CPT@readBegin 87, 88
\CPT@readContent .

. . . . . . . . . 91,
97, 186, 220, 240

\CPT@readEnd . . 89, 90
\CPT@readPostText

. . . . . . . . . 85, 86
\CPT@readPreText .

. . . . . . . . . 84, 92
\CPT@setup . 74, 82, 94
\CPT@starsetup 79, 94
\CPT@storage . . . . .

. . . . 96, 108, 115
\CPT@store . . . 96,

99, 100, 107, 111
\CPT@temp . . . 247–250
\CPT@tempi . . 104, 105
\CPT@tempii . 141, 142
\CPT@Write . . 34, 108
\CPT@WriteOut . . . .

. . . 31, 35, 37, 38
\CPTbegin . . . 228, 258
\CurrentOption . . .

. 10, 13, 18, 21, 24

D
\DeclareOption . . . . 7

E
\empty . . . . . . . . . 132
\end . . . . . . . 235, 256
\equal . . . . . . . . 9, 17

I
\icprotect 118, 120, 226
\if . . . . . . . . . . . 190
\input . . 168, 209, 234

J
\jobname . . . . . . . .

. 33, 160, 202, 230

L
\long . . . . . . . . . . 118
\loop . . . . . . . . . . . 49

19



M
\makeallother . . . .

. . . . . . 47, 73,
78, 181, 215, 239

\meaning . . . . . . . 249

N
\newlinechar . . . . . 36
\newtoks . . . . . . . 119
\noexpand . . . . . . .

. 40, 190, 232–235

O
\outer . . . . . . 118, 225

P
\PackageError . . . . 24
\ProcessOptions . . 30
\protect . . . . . 43,

167, 175, 208, 233

R
\ReadVerbatimUntil

. . . . . . . . . 70, 75

S
\scantokens . . . . .

40, 64, 66, 68, 172

\show . . . . . . . . 44, 45
\showthe . . . . . . . 179
\strip@prefix . . . 249

T
\the . . . 133, 163, 205

W
\write . . . . . . . . . . 37

X
\xdef . . . . . . . . . . . 39

20


	cprotect-6.cpt
	List of user commands
	Technical points
	Known bugs/limitations
	The code
	Setting up
	cprotect-29.cpt
	cprotect-32.cpt
	Mandatory arguments
	cprotect-37.cpt

	cprotect-38.cpt


