
Package ecclesiastic.sty∗

Claudio Beccari Donald Goodman

v.0.3 2015/08/20

Abstract

This package extends the typesetting facilities of the latin option to the
babel package for typesetting Latin according to the tradition of ecclesiastic
documents; these documents are mainly the devotional books used by the
Roman Catholic clergy, but not limited to them, that are being published
not only by the Vatican Typography, but also by many Printing Companies
around the world. This package works only with pdfLATEX; if an attempt
is made to use it while typesetting with Xe|LuaLATEX, its input is aborted
and nothing is done. Most additions and modifications that can be achieved
with this package under pdfLATEX typesetting, are obtained thanks to clever
use of the OpenType fonts when using Xe|Lua LATEX.

1 Introduction
This small extension package extends the features of latin.ldf by adding a cer-
tain level of "frenchization" to the way of typesetting Ecclesiastical Latin; in par-
ticular all punctuation marks, except comma and full stop are preceded by a small
space. The guillemots are also accompanied by small spaces to the right of the
opening marks and to the left of the closing ones, with the provision of removing
spurious previous spaces. Footnotes are not indented and their reference number
is not an exponent, although footnote marks in the text keep being exponents.

The acute accent (actually the apostrophe sign) is made active so as to set an
acute accent over the following vowel (notice that in Latin there is no elision, so
there cannot be any conflict between the acute accent and the elision apostrophe).
Ecclesiastical Latin uses the æ and œ ligatures. Goodman asked to declare ‘a’
and ‘o’ as active characters so that the spelling ae and oe would automatically
produce the equivalent of \ae and \oe respectively.

In practice Beccari found serious programming problems with this solution and
adopted an alternative one; specifically the adopted solution was to type in "ae
and "oe respectively, and æ and œ would be inserted in the source text without

∗This document corresponds to ecclesiastic.sty v.0.3, dated 2015/08/20.
Claudio Beccari (claudio dot beccari at gmail dot com) did the programming. Donald
Goodman (dgoodmaniii at gmail dot com) asked for this extension, produced the requirements,
and tested the results.

1

the need of leaving blanks after the control sequences or the need of inserting
extra braces; therefore one types in c"aelum and this is equivalent to c\ae␣lum
or c{\ae}lum or c\ae{}lum; the saving in the input stream is evident and typos
are likely less frequent.

The active apostrophe for the acute accent behaves properly also with y and
’ae and ’oe produce the accented diphthongs.

Of course, when using the OT1 encoding all accents interfere with hyphenation
and kerning. When using the T1 encoding this interference takes place only with
the accented diphthongs æ and œ; no visible problems for the lack of kerning,
but no hyphenation takes place after the accented diphthongs until the end of the
word, even if the grammar allowed it; you can correct by hand this behavior if
you add an ascii straight double quote after the accented diphthong: (a) if the
grammar allows a line break at that point, and (b) if justification of the right
margin requires it.

2 Usage
Previous versions of this package were loaded after package babel with the latin
language option; you can still do this way because for backwards compatibility this
procedure is maintained, but we discourage it for the reasons that are explained
hereafter.

With this new version the preferred procedure is to specify the ecclesiastic
modifier to the latin language option. This very file contains le line:

\usepackage[latin.ecclesiastic,english]{babel}

Of course this new way of loading the package assures it to be loaded at the proper
moment, but it requires a babel of at least version 3.9k; the old procedure is still
usable with previous versions of the babel package.

Important notice: This package works only while using the pdfLaTeX type-
setting program and babel; if you try to use it with XeLaTeX or LuaLaTeX its
loading procedure issues an error message and the it aborts. if for any reason you
have to use XeLaTeX or LuaLaTeX you can safely run them without loading thins
package, but simply specifying the “key=value” option variant=ecclesiastic in
a similar way as you specify the ecclesiastic modifier when using babel. With
XeLaTeX you have the full functionality of the ecclesiastic Latin variant, while, at
the moment, with LuaLaTeX the functionality misses the particular spacing around
some punctuation marks and around guillemots. This functionality is under study,
but it is hopefully available with the next package version.

After in one way or another you have assured the presence of the special macros
that implement the ecclesiastic Latin style, all you have to do (with babel) is to
input your source code the usual way, except that for guillemots and accents you
are supposed to use the " and the ’ active characters. The input code

Ita enim fit, ut regn’are is "< in m’entibus h’ominum "> dic’atur non
tam ob mentis ’aciem scienti’aeque su"ae amplit’udinem, quam quod ipse est
V’eritas, et verit’atem ab eo mort’ales haur’ire atque obedi’enter acc’ipere

2

nec’esse est; "< in volunt’atibus "> item "< h’ominum ">, quia \dots

will produce the following text:

Ita enim fit, ut regnáre is «in méntibus hóminum» dicátur non tam
ob mentis áciem scientiǽque suæ amplitúdinem, quam quod ipse est
Véritas, et veritátem ab eo mortáles hauríre atque obediénter accípere
necésse est; «in voluntátibus» item «hóminum», quia . . .

Notice that the source text has spaces around the guillemots, but the typeset code
has the right small and constant space, irrespective of justification. Notice the use
of the ‘acute’ accent (actually the apostrophe) for accented vowels and diphthongs.
Notice the space in the typeset text before the semicolon; this space is gobbled
and substituted with the proper space.

3 Documented code
Some checks in order to use this package together with the one it should extend.
Firse we load the iftex package in order to have the right switch to test if we
are typesetting with the pdftex engine; inf not, an error message is issued and
loading aborted.
1 \RequirePackage{iftex}
2 \unless\ifPDFTeX
3 \PackageError{ecclesiastic}{\MessageBreak
4 ***\MessageBreak
5 * This package works only with pdfLaTeX \MessageBreak
6 * Please do not load it when typesetting with \MessageBreak
7 * XeLaTeX or LuaLaTeX. \MessageBreak
8 ***\MessageBreak
9 }{%

10 **\MessageBreak
11 * Carefully read the documentation of package \MessageBreak
12 * ecclesiastic, and understand why most functionalities \MessageBreak
13 * of this package are obtained with completely different \MessageBreak
14 * means, thanks the use of OpenType fonts. \MessageBreak
15 * \MessageBreak
16 * Input of this package is aborted. \MessageBreak
17 **\MessageBreak
18 }
19 \expandafter\endinput
20 \fi

Then we test if babel has already been loaded; if not an error message is
issued and loading aborted. Loading is aborted also if babel has been loaded
but the latin option has not been specified. Notice that with version 3.5 of the
Latin description file, it is recommended to use the ecclesiastic modifier to the
latin option; or it is possible to specify the ecclesiastic attribute after loading
babel with the latin option, or even after specifying this language option to the
\documentclass statement, where the modifiers can’t be used. By so doing you

3

are sure that the next tests will never produce unexpected results. Nevertheless we
recommend to use the first method, that is to specify the ecclesiastic modifier
to the latin option.
21 \def\CheckLatin{\unless\ifcsname captionslatin\endcsname
22 \PackageWarning{ecclesiastic}{\MessageBreak
23 latin must be specified as a global option\MessageBreak
24 or it must be passed as an option to babel\MessageBreak
25 \MessageBreak
26 Nothing done}\expandafter\endinput\fi}
27
28 \@ifpackageloaded{babel}{\CheckLatin}{%
29 \PackageError{ecclesiastic}{\MessageBreak
30 **\MessageBreak
31 Package babel must be loaded before this package\MessageBreak
32 **%
33 }{Package loading is aborted}\endinput}

In practice you can chose among one of these methods to use this package.

1. First and recommended choice:

\documentclass[...]{...}
...
\usepackage[...,latin.ecclesiastic,...]{babel}

2. Second choice:

\documentclass[...]{...}
...
\usepackage[...,latin,...]{babel}
...
\usepackage{ecclesiastic}

3. Third choice:

\documentclass[...,latin,...]{...]
...
\usepackage[...]{babel}
\languageattribute{latin}{ecclesiastic}

4. Fourth choice:

\documentclass[...]{...}
...
\usepackage[...,latin,...]{babe}
\languageattribute{latin}{ecclesiastic}

The following code was borrowed from frenchle.sty by Bernard Gaule, but there
are several modifications; in particular we avoid the horrible patch made up with

4

the shorter and wider script size math signs. The Latin Modern fonts are preferred
if they are available. When the T1 encoding is in force the guillemots are taken
from the current font; if you want to typeset ecclesiastic Latin, you’d better use
the T1 font encoding; if you don’t, you may get proper accented glyphs, but no
hyphenation after any accented glyph until the end of the word. No attempt is
made to create fake guillemots or to pick them from fonts that do not match the
current text font. In any case we provide the command \FrenchGuillemetsFrom
(and its alias \FrenchGuillemotsFrom) that allows the user to chose what font
s/he likes best.

The first macro specifies a common interface for choosing where to get guille-
mots from.
34 \let\og\empty\let\fg\empty%
35
36 \def\FrenchGuillemetsFrom#1#2#3#4{%
37 \DeclareFontEncoding{#1}{}{}%
38 \DeclareFontSubstitution{#1}{#2}{m}{n}%
39 \DeclareTextCommand{\guillemotleft}{T1}{%
40 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3}}%
41 \DeclareTextCommand{\guillemotright}{T1}{%
42 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}
43
44 \let\FrenchGuillemotsFrom\FrenchGuillemetsFrom
45

Then come the macros for selecting various type of guillemots: the \ToneGuillemets
macro selects them from the T1 encoded fonts; according to the user input
encoding, in particular the utf8 one, when this package is loaded the macros
\guillemotleft and \guillemotright should be defined; if either one is not,
then the default guillemots are taken from the T1 encoded Latin Modern fonts:
46 \AtBeginDocument{%
47 \unless\ifcsname guillemotleft\endcsname
48 \def\ToneGuillemets{\FrenchGuillemetsFrom{T1}{lmr}{19}{20}}\fi}

Having defined the symbols, we now provide to the spacing; we chose a smaller
space than in French typography, but, essentially this glue is without stretch and
shrink components, so that this space remains constant and does not stretch or
shrink for helping in line justification.
49 \def\guill@spacing{\penalty\@M\hskip.3\fontdimen2\font
50 \@plus\z@\@minus\z@}

Notice that \fontdimen2\font gets the normal inter word space of the current
font; therefore the defined spacing of the guillemots is about 1 pt, with a 10 pt
sized font.

Now we are in the position to define the opening and the closing guillemot
commands.

The spacings on the interior of the guillemots and the spacings before the
“high” punctuation marks are smaller than with the frenchle.sty settings for
the French typography. This has been made according to Robert Bringhurst’s

5

recommendation to maintain tight spacing, in particular before the punctuation
marks and within the French quotes.

Since Beccari is not used to such spacings, forbidden in Italian typography, he
finds the traditional French spacings very large, too large for his taste. Bringhurst
recommendations come in very handy to justify the chosen spacings. May be who
is used to wider spacings finds them too tight. We think we found a compromise.
51 \DeclareRobustCommand*{\begin@guill}{\leavevmode
52 \guillemotleft\penalty\@M\guill@spacing
53 \ignorespaces}
54 \DeclareRobustCommand*{\end@guill}{\ifdim\lastskip>\z@\unskip\fi
55 \penalty\@M\guill@spacing\guillemotright{}}

We add the definition of \og (ouvrir guillemets) and \fg (fermer guillemets) to
the \extraslatin list, as well as we add their ‘emptiness’ to the \noextraslatin
one.
56 \addto\extraslatin{%
57 \renewcommand{\og}{\begin@guill}\renewcommand{\fg}{\end@guill}%
58 }
59 \addto\noextraslatin{\let\og\empty\let\fg\empty}

Therefore open guillemots may be input with the \ogmacro and the closed ones
with the \fg macro. This might be inconvenient, so that the "< and "> shortcuts
should be preferred; these shortcuts assure that the spaces after these shortcuts
are really spaces and are not used to terminate the macro name. B. Gaulle uses
the \xspace macro from the xspace package, but if this package is not loaded
or is not available, the \xspace macro behaves as \relax and does not produce
what is intended to do. See below the extended definition of the " shortcut active
character.

Here we make the apostrophe an active char and define the shortcuts for Latin
that introduce the acute accent over the specified vowels, lower and upper case.
Probably upper case is useless, but it does not harm.
60 \initiate@active@char{’}%
61 \addto\extraslatin{\bbl@activate{’}}%
62 \addto\noextraslatin{\bbl@deactivate{’}}%
63
64 \declare@shorthand{latin}{’a}{\@ifnextchar e{\’\ae\@gobble}{\’a}}
65 \declare@shorthand{latin}{’e}{\’e}
66 \declare@shorthand{latin}{’i}{\’i}
67 \declare@shorthand{latin}{’o}{\@ifnextchar e{\’\oe\@gobble}{\’o}}
68 \declare@shorthand{latin}{’u}{\’u}
69 \declare@shorthand{latin}{’y}{\’y}
70 \declare@shorthand{latin}{’A}{\@ifnextchar E{\’\AE\@gobble}{\’A}}
71 \declare@shorthand{latin}{’E}{\’E}
72 \declare@shorthand{latin}{’I}{\’I}
73 \declare@shorthand{latin}{’O}{\@ifnextchar E{\’\OE\@gobble}{\’O}}
74 \declare@shorthand{latin}{’U}{\’U}
75 \declare@shorthand{latin}{’Y}{\’Y}

Here we redefine the " shortcut active character; it is borrowed from italian.ldf,

6

but a new \LT@cwm macro is added to the existing \lt@@cwm one so as to cope also
with "ae and "oe, besides the guillemot commands.

The following declaration is probably a repetition of what is already in latin.ldf
76 \declare@shorthand{latin}{"}{%
77 \textormath{\def\lt@next{\futurelet\lt@temp\lt@cwm}}%
78 {\def\lt@next{”}}\lt@next
79 }%

This also should already be in latin.ldf; it is the command that inserts a dis-
cretionary break, but does not inhibit hyphenation in the rest of the word.
80 \def\lt@@cwm{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}%

This, for what concerns Latin, is new as an interface with the definitions of
the guillemots
81 \def\lt@@ocap#1{\begin@guill}\def\lt@@ccap#1{\end@guill}%

This is completely new; it deals with \ae and \oe; since \ae is much more
frequent than \oe, we start with testing for an ‘a’ followed by an ‘e’, otherwise we
test about the presence of an ‘o’:
82 \DeclareRobustCommand\LT@cwm[2]{%
83 \ifx#1a\bbl@afterelse
84 \maybeae#1#2%
85 \else\bbl@afterfi
86 \testoe#1#2%
87 \fi}

If a sequence ae was detected, then \ae is inserted in the input stream in
place of that sequence, otherwise the two tokens are inserted in the input stream
preceded by the discretionary break implied by the presence of the " sign that
triggered the whole process.
88 \def\maybeae#1#2{%
89 \ifx#2e\bbl@afterelse
90 \ae%
91 \else\bbl@afterfi
92 \lt@@cwm#1#2%
93 \fi
94 }

The same procedure is valid for the sequence oe
95 \def\maybeoe#1#2{%
96 \ifx#2e\bbl@afterelse
97 \oe%
98 \else\bbl@afterfi
99 \lt@@cwm#1#2%

100 \fi
101 }

But the presence of an ‘o’ must be checked before activating the previous
macro:

102 \def\testoe#1#2{%
103 \ifx#1o\bbl@afterelse

7

104 \maybeoe#1#2%
105 \else\bbl@afterfi
106 \lt@@cwm#1#2%
107 \fi}

This is the real execution of the " shortcut; remember that \lt@cwm is acti-
vated by \lt@next, the action associated with " when outside the math mode;
furthermore \lt@temp contains the token following the " sign. Notice that the
category code of the \lt@temp is compared to that of a generic letter; the choice
of ‘e’ is absolutely irrelevant, because it is a generic letter; any other letter would
do the same. So, first the temporary token category code is compared to that of a
letter; if it’s a letter then \LT@cwm is executed; the latter on turn looks for an ‘a’
or an ‘o’ and possibly inserts a diphthong or a discretionary break; otherwise the
temporary token is compared to |, so that the shortcut "| is possibly executed
by inserting a discretionary break and by gobbling the bar; otherwise it checks for
a ‘less than’ sign and possibly inserts double open guillemots; otherwise it checks
for a ‘greater than’ sign and possibly inserts double closed guillemots; otherwise it
checks for the slash and possibly it inserts a breakable slash \slash; otherwise it
checks for another double straight quote sign and possibly it inserts double open
high quotes (this is useful for those keyboards that do not have the ‘back tick’
sign ‘).

108 \DeclareRobustCommand*{\lt@cwm}{\let\lt@@next\relax
109 \ifcat\noexpand\lt@temp e%
110 \def\lt@@next{\LT@cwm}%
111 \else
112 \if\noexpand\lt@temp \string|%
113 \def\lt@@next{\lt@@cwm\@gobble}%
114 \else
115 \if\noexpand\lt@temp \string<%
116 \def\lt@@next{\lt@@ocap}%
117 \else
118 \if\noexpand\lt@temp \string>%
119 \def\lt@@next{\lt@@ccap}%
120 \else
121 \if\noexpand\lt@temp\string/%
122 \def\lt@@next{\slash\@gobble}%
123 \else
124 \ifx\lt@temp"%
125 \def\lt@@next{‘‘\@gobble}%
126 \fi
127 \fi
128 \fi
129 \fi
130 \fi
131 \fi
132 \lt@@next}%

This done let’s take care of the punctuation. First we create the aliases of the
punctuation marks with their original category codes

8

133 \edef\puntoevirgola{\string;}\edef\cc@pv{\the\catcode‘;}%
134 \edef\duepunti{\string:}\edef\cc@dp{\the\catcode‘:}%
135 \edef\puntoesclamativo{\string!}\edef\cc@pe{\the\catcode‘!}%
136 \edef\puntointerrogativo{\string?}\edef\cc@pi{\the\catcode‘?}%

Then we make those punctuation marks active and add their activeness to
\extraslatin, and also their “deactiveness” to the \noextraslatin list. In this
way we are sure that there is no interference with other languages.

137 \initiate@active@char{;}
138 \initiate@active@char{:}
139 \initiate@active@char{!}
140 \initiate@active@char{?}
141 \addto\extraslatin{\bbl@activate{;}}
142 \addto\extraslatin{\bbl@activate{:}}
143 \addto\extraslatin{\bbl@activate{!}}
144 \addto\extraslatin{\bbl@activate{?}}
145 \addto\noextraslatin{\bbl@deactivate{;}}
146 \addto\noextraslatin{\bbl@deactivate{:}}
147 \addto\noextraslatin{\bbl@deactivate{!}}
148 \addto\noextraslatin{\bbl@deactivate{?}}

Here we define the space before punctuation; again the glue that is inserted in
the French typography is too large according to our taste; the glue we want to put
in front of the high punctuation marks should be smaller and we chose a smaller
compromise value, but again we fix the stretch and shrink components to zero.

149 \def\punct@spacing{\penalty\@M\hskip.3\fontdimen2\font
150 \@plus\z@\@minus\z@}

Then we give a definition to these active characters; in each definition we start
by eliminating any previous spacing inserted by the typist, then we insert our
space and finally the punctuation mark.

151 \declare@shorthand{latin}{;}{\ifdim\lastskip>\z@\unskip\fi
152 \punct@spacing\puntoevirgola}
153 \declare@shorthand{latin}{:}{\ifdim\lastskip>\z@\unskip\fi
154 \punct@spacing\duepunti}
155 \declare@shorthand{latin}{!}{\ifdim\lastskip>\z@\unskip\fi
156 \punct@spacing\puntoesclamativo}
157 \declare@shorthand{latin}{?}{\ifdim\lastskip>\z@\unskip\fi
158 \punct@spacing\puntointerrogativo}

For footnotes we require that the footnote mark be typed flush to the left
margin and that it is typed in normal size; this requires the redefinition of the
\@makefntext macro that must call a different version of \@makefnmark.

159 %
160 \let\lt@ori@makefntext\@makefntext
161 \newcommand\lt@makefntext[1]{%
162 \parindent 1em%
163 \noindent
164 \lt@Makefnmark\enspace #1}
165 \newcommand\lt@Makefnmark{\hbox{\normalfont\@thefnmark.}}

9

We add these commands to the \extraslatin and \noextraslatin lists.
166 \addto\extraslatin{\let\@makefntext\lt@makefntext}
167 \addto\noextraslatin{\let\@makefntext\lt@ori@makefntext}

Is this correct? May be not! In a mixed language text footnotes get labelled
in a different way depending on which language was in force when the \footnote
command was issued. Any solution?

In order to leave the category codes clean we re-establish the default codes
reassigning the active cars their initial meaning; we do this by executing
\noextraslatin. If Latin is the default language, or when Latin is selected, the
\extraslatin macro is automatically executed and the original category codes
reassigned to the active characters.

168 \noextraslatin

10

