Enhancements to the Picture Environment of

ETEX

Sunil Podar
Dept. of Computer Science
S.U.N.Y. at Stony Brook
Technical Report 86-17

Version 1.2: July 14, 1986.

Abstract

This document describes some new commands for the picture
environment of IXTEX. Some of the picture drawing commands
of N TEX are very low-level. New higher-level commands are im-
plemented and described here. These commands enhance the
graphic capabilities of KXITEX and provide a friendlier and more
powerful user interface than currently existent. Their imple-
mentation has been done with the aim of reducing the amount
of manual calculations required to specify the layout of objects.

With the addition of the commands described in this document,

it should be possible to draw more sophisticated pictures with

lesser effort than was previously possible.

Enhancements to the Picture Environment of BTEX

1 Introduction

IXTEX provides a reasonably powerful picture drawing capability. There are
many useful commands provided although the user-interface has room for
improvement. The commands described in this document aim to achieve a

simpler and more powerful interface.

Most picture drawing commands require explicit specification of coordi-
nates for every object. Although explicit coordinates is the basis of the pic-
ture environment, it is possible to provide higher level commands which re-
duce the amount of coordinates that need to be manually calculated. There

are basically two approaches that can be taken in designing such commands:

e providing ability to specify a set of objects such that the entire set can
be plotted by specifying one or two coordinate pairs; \shortstack

command falls into this category.

e providing commands that do most of the computation internally and
require simple coordinate pairs to be specified; \multiput command

is one example of this approach.

The obvious advantage of having commands that fall into the above cate-
gories is that not only they are easier to specify initially, but any subsequent
modification to the layout requires minimal recalculations. For instance, to
modify the coordinates in a \multiput statement plotting n objects re-
quires recalculation of at most 4 coordinates, whereas the equivalent \put

statements may require upto 2n calculations and/or recalculations.

Another frequently used command, \line has severe limitations and

drawbacks. The arguments that the \1ine command expects are very non-

intuitive and requires extensive calculations — often the thought process in

writing a \1ine command involves:

1. calculating the coordinates of the two end-points.
2. calculating the horizontal and vertical distance.

3. figuring out if the desired slope is available and if not then repeating

steps 1 and 2 till a satisfactory slope is achieved.

4. translating above into an (x,y) pair for specifying a slope and a hori-

zontal distance for specifying the length of the line.

Above mechanism is a cumbersome way of specifying a line. It also
has the drawback that the length of the shortest line of different slopes
that can be drawn is different; for instance, assuming \unitlength=1pt,
\line(1,6) {10} is the shortest line of the given slope that can be drawn; it
is considerably longer than the available line segment of this slope — 60.8pt
rather than about 11pt. It should be emphasized that this is a drawback
of only the implementation of the \line command and is not an inherent
limitation. This report describes a few line drawing commands all of which
overcome such a drawback, while providing a simpler syntax. They all take,
as arguments, only the coordinates of the end-points, thus eliminating all
other steps involved in specifying a line; it also seems to be a natural way
of perceiving a line in an environment where all the work is done in terms

of coordinates.

A few new commands are developed and described in this report. They
provide a simpler syntax and a higher-level user-interface. Also some of the
commands permit one to plot objects that were previously cumbersome or
difficult to plot. All existing commands still remain accessible. With the
new commands it should now be possible to make pictures with less effort

and make more sophisticated pictures than was possible earlier.

2 Commands

Following commands are described here:

\multiputlist \dottedline dottedjoin environment \jput
\matrixput \dashline dashjoin environment \picsquare
\grid \drawline drawjoin environment \putfile

All the examples in the following sections have been plotted with \unitlength = imm.

2.1 \multiputlist

SYNOPSIS:
\multiputlist(xz,y) (Az,Ay) [tbrl]{item],item?2,items, ... ,itemN}

This command is a variation of the regular A TEX command \multiput.
The \multiput command permits one to put the same object at regularly
spaced coordinates. Often one wishes to put different objects at coordinates
that have regular increments — \multiputlist command can be used in
those cases. This command enables one to specify a collection of objects
with a single command thus simplifying the task of calculating coordinates.
All those objects may also be plotted separately using \put commands, but
any future revision of those coordinates may involve lot of manual work.
This command also encourages certain regularity and symmetry in laying

out various objects in a picture.

In the \multiputlist, as the coordinates are incremented, the objects
to be put are picked up from the list of items, i.e., first item in first position,
second item in second position, and so on. For example, numbers along the

X-axis in a graph may be plotted by simply specifying:
\multiputlist(0,0)(10,0){1.00,1.25,1.50,1.75,2.00%}

This is almost equivalent to the sequence:

\put (0,0){1.00}
\put (10,0){1.25}
\put (20,0){1.50}
\put (30,0){1.75}
\put (40,0){2.00}

The difference is that each item is put in a \makebox(0,0) [tbrl]{...}
kind of construction which allows the specification of the reference point of
the box containing the item. The [tbrl] is optional and its absence makes
the item centered at the specified coordinate. Note that \put command

does not have such an option.

The objects in the list can be virtually anything including any \makebox,
\framebox, math characters, etc. This command can be usefully employed
in a situation where a variety of objects are to be put at coordinates that

have a regular increment along the x-axis and the y-axis.

Few comments about \multiputlist command:

@9 g

e Individual items have to be grouped in {} if they contain “’s.

e In the list of items, blanks are not ignored (of course, consecutive
blanks are coalesced into one, as always). For a list of items longer
than a line of input, put a % at the end in order to nullify the newline

if a blank is not intended to be a part of the item.

e Specifying individual items in a list format provides a powerful mecha-
nism for specifying a variety of objects in a single command. Moreover,
often real numbers need to be plotted and it is nontrivial to generate
real numbers or otherwise handle them in TEX; they need to be ex-
plicitly specified as objects in the desired format. The \multiputlist

command somewhat simplifies such a task.

e The implementation of \multiputlist uses two macros derived from
the ones given in the TpXbook, namely, \lop and \lopoff for list-

manipulation.

2.2 \matrixput

SYNOPSIS:
\matrixput (z,y) (Az1,Ay1){n1} (Azs, Ays) {no}{object}

Above command is the two-dimensional equivalent of the regular ITEX

command \multiput. The \matrixput command is equivalent to:

\multiput (x,y) (Axs, Ays) {no}{object}
\multiput (z + Ax1,y + Ayr) (Azo, Ays) {no}{objectt

\multiput (x + n1Az1,y + n1Ayr) (Azg, Ays) {na}{object}

However, it is more efficient to use \matrixput than the equivalent n
\multiput statements; first the objects along the dimension with larger
index are saved in a box and subsequently the box is copied along the other
dimension, resulting in a O(n; + ng) execution time rather than O(nj * ng)
which would be the case with the equivalent \multiput statements. This
command can be useful in making pictures where a pattern is repeated
at regular intervals in two dimensions, such as certain kinds of transition

diagrams. An illustration of the \matrixput command is presented below.

\matrixput(0,0) (10,0){6}(0,10){3}{\circle{4}}

\matrixput(2,0) (10,0){5}(0,10){3}{\1ine(1,0){6}}

\matrixput(0,2) (10,0){6}(0,10){2}{\1ine(0,1){6}}

O—0O—0
O—0O—0
O—0O—0
O—0O—0

Note: The \matrixput command does not restrict the Ax’s and the
Ay’s to be zero. The matrixz of objects can be “skewed”, i.e., with nonzero
Az’s and/or Ay’s.

2.3 \grid

SYNOPSIS:
\grid (width, height) (Awidth , Aheight) Linitial-X-integer, initial- Y-integer]

For example, the following are all valid commands:

\put (0,0){\grid(95,100) (9.5,10)}

\put (0,0){\grid(100,100) (10,5) [-10,0]1%}

\put (0,0){\tiny \grid(100,100) (5,5) [0,0]} % the numbers in \tiny font.
\put (50,50) {\makebox (0,0){\tiny \grid(20,20) (4,4)}}

The \grid command makes a grid of size width units by height units
where vertical lines are drawn at intervals of Awidth and horizontal lines
at intervals of Aheight. The major motivation for this command is that
making a grid in the picture initially can be very useful when laying out
pictures — it’s like having a graph underneath the picture which can be
eventually deleted or commented out. Moreover, one might actually want a
grid as an object in its own right! Figure 1 (on page 14) presents an example

of this command.

The width and height should be divisible by their respective A’s, oth-
erwise the grid will not be of correct dimensions. The numbers in [] at
the end are optional. Their absence makes a simple grid with lines. Their
presence makes a “numbered” grid with integers around the borders where
the numbers put have the starting value as specified in [. , .] argument
and are incremented by Awidth and Aheight respectively. If specified, then
these starting numbers must be integers. The dimensions are all in units
and do not have to be integers, although in most cases one will want integers
only. There is an additional constraint when plotting a “numbered” grid —
the “A”-dimensions have to be integers, since one cannot easily generate
real numbers from within TEX. None of the errors of this kind are caught,
hence, if the grid comes out funny, one of the above-mentioned conditions

may have been violated.

The \grid command produces a box and thus needs to be \put at the re-
quired coordinates. The reference point of the grid is the bottom-left corner
and the numbers along the borders, if any, do not affect the reference point.
If it is desired to have another reference point, then the whole grid statement

may be put in a \makebox(0,0) [..]{...\grid...} kind of construction.

2.4 \dottedline

SYNOPSIS:
\dottedline [optional dotcharacter] {dotgap in units} (x1,y1) (x2,y2)

The above command connects the specified points by drawing a dotted-
line between each pair of coordinates. At least two points must be specified.
The dotted line is drawn with inter-dot gap as specified in the second ar-
gument (in unitlengths). Note that since integral number of dots have to
be plotted, the interdot-gap may not necessarily be exactly as specified, but

very close. It really doesn’t matter in visual appearance except when the

v (T, yn)

length of dottedline is very small. By default, a little square (\picsquare,
described later) is used as the dot, and can be changed by optionally speci-
fying another character. The thickness of dots is governed by currently ef-
fective \thinlines, \thicklines or \linethickness. .. declaration when
the default character is used. Note that some characters such as “*” in

roman font do not come out centered, although most other characters do.

One can obtain a solid line by specifying a very small inter-dot gap.
Since IATEX provides for only finite number of slopes for drawing lines, this
gives a general way of making lines with arbitrary slopes. However, if solid
lines are made using above technique, there is a good chance TEX will run
out of memory, hence it is suggested that this command be used only for
“dotted” lines. Another, much more efficient, way of making solid lines is

described later in the section on \drawline.

Each “dot” in the dottedline is plotted as a centered object, including
those at the end points. Thus, a dottedline with a large-sized dotcharacter
may appear to be longer although, technically speaking, correct. To clarify
the point, below are three lines of equal length and, in the case of dottedlines,

with equal spacing;:

| \put (0,10){\1ine(1,0){70}}
---------------- \dottedline{3}(0,5) (70,5)
0000000000000 000000000 \dottedline[\bullet]{3}(0,0) (70,0)

2.5 \dashline

SYNOPSIS:
\dashline [stretch] {dash-length} Linter-dot-gap for dashl (x1,y1) (x2,y2) - . . (T, Yn)

where stretch is an integer between -100 and infinity.

The above command connects the specified points by drawing a dashline
between each pair of coordinates. At least two points must be specified. A
\dashline is a dashed line where each dash is constructed using a dotted-
line'. The dash-length is the length of the dash and inter-dot-gap is the gap

between each dot that is used to construct the dash, both in unitlengths.

By default, a solid looking dash is constructed, but by specifying an
inter-dot-gap in the third argument, different looking dashes may be con-
structed. With a large inter-dot-gap (about >0.4mm), each dash will have
the appearance of a little dotted line. One can create a variety of dashlines

where each dash looks different. Here are a few sample dashlines:

.. \dashline{4}[0.7](0,18) (60,18)
\thicklines

- - - - — — — - \dashline{4}(0,11) (60,11)

- — — — — \dashline[-30]{4}(0,7) (60,7)

The stretch in [] is an integer percentage and implies a certain “stretch”
for positive values and “shrink” for negative values; it is optional and by
default is “0” unless the default itself has been changed (described later).
The number “0” signifies that a minimum number of dashes be put such that
they are approximately equally spaced with the empty spaces between them.
A +ve number means increase the number of dashes by stretch percent, and
a —ve number means reduce by that percent. By reducing the number of
dashes, the empty space between dashes is stretched while maintaining the
symmetry. The lower limit on stretch is obviously -100 since at less than -

100% reduction one essentially gets nothing. On the upper side, the number,

Hor efficiency, in the case of horizontal and vertical dashlines, the dash is constructed

using a rule.

theoretically, can be as large as infinity (barring arithmetic overflows) and
the macro does not check for any upper bound; one should normally not
require more than 100 percent increase (100 = double the number of dashes)
since that would essentially mean a “solid line” and it is more efficient to

use the \drawline command for drawing such lines, as described later.

The idea behind the stretch percentage option is that if several dashed
lines of different lengths are being drawn, then all the dashed lines with the
same —ve or +ve stretch will have similar visual appearance, as might be
desired if one were plotting a graph — one would like a particular “curve”
to look the same between all the points on that curve. Also, it can be used
to take any corrective actions, if the appearance of the default dashline does

not meet one’s approval.

The default stretch percentage can be changed by a \renewcommand on
the parameter
\dashlinestretch any time and it takes effect immediately. The argu-
ment is the integer percentage increase or reduction that will be applied to
all \dashline commands except the ones in which the percentage is explic-
itly given using [] optional parameter. For example, all dashlines could
be reduced by 50 percent by putting the following line before using any

\dashline command:
\renewcommand{\dashlinestretch}{-50} % ONLY INTEGERS PERMITTED.

An explicit argument to the \dashline command in [] overrides any
default values, so for instance, after the above declaration, if a dashline with

“0” stretch was desired, then one would simply say:
\dashline[0]{...}(x1,y1) (x2,y2) 7 where "O" implies no stretch or shrink

A note about dashlines of small length. All dashlines always have a
dash beginning at the first coordinate and another ending at the second

coordinate, which implies that a minimum of two dashes are plotted. For

10

small lines (or larger lines with accordingly larger sized dashes) the dash-
length is reduced as much as necessary to meet above conditions; in such
cases, if necessary, the —ve stretch arguments are ignored. Such dashlines
usually do not have an acceptable appearance, and may either be omitted or

be plotted separately as a dottedline or a dashline with a small dash-length.

2.6 \drawline

SYNOPSIS:
\drawline [stretch] (x1,y1) (x2,y2) . . . (Tn,Yn)

where stretch is an integer between -100 and infinity.

The above command connects the specified points by drawing a line
between each pair of coordinates using line segments of the closest slope
available in the fonts. At the minimum two points must be specified. Since
there are only finite number of slopes available in the line segment fonts,
some lines appear jagged. A \drawline can be thick or thin depending on
the \thinlines or \thicklines declaration in effect; these are the only two
thicknesses available for such lines. This is also the most efficient, in terms

of memory and cpu usage, way of drawing lines of arbitrary slopes.

The stretch parameter has properties similar to those described earlier
in the context of dashlines. It is again a percentage and implies a certain
“stretch” or “shrink”; it is optional and by default is “0” unless the default
itself has been changed (described later). The same rules apply to the range
of the stretch value. In this case, the number “0” signifies that a minimum
number of dashes be put such that the line appears solid and each dash
“connected” at the ends. By reducing the number of dashes by specifying
a —ve stretch, one effectively gets a dashed line. On the other hand, by
specifying a +ve stretch, more dashes will be used in constructing the line,

giving a less jagged appearance.

11

A parameter, namely, \drawlinestretch, has been provided for \drawline’s
and its usage is identical to \dashlinestretch described earlier in the con-

text of \dashline.

A limitation of drawing lines using line-segment fonts is that the length
of segments is fixed and is not user-controllable. If explicit control over the
line-segment length is desired, then \dashline may be used. If the length of
the line to be drawn is smaller than the length of available line segment, then
a solid line is constructed using \dottedline with dots being very close; the
thickness of the line thus constructed is chosen appropriately. Note that in
such a case, only a solid line can be constructed between the two points,
i.e., dashed appearance can not be given to such small lines, and any —ve

stretch is ignored.

2.7 The join environments

SYNOPSIS:

\jput (x,y){object}
\begin{dottedjoin} [optional dotcharacter] {inter-dot-gap}

..... dottedlines drawn here for each \jput
statement.

\end{dottedjoin}

\begin{dashjoin} [stretch] {dash-length} Linter-dot-gap for dash]
..... dashlines drawn here for each \jput
statement.

\end{dashjoin}

\begin{drawjoin} [stretch]
..... drawlines drawn here for each \jput
statement.

\end{drawjoin}

12

Three environments, corresponding to the three kinds of lines described
earlier, are also provided. They are dottedjoin, dashjoin and drawjoin.
All the three environments use yet another new command \jput? (join and
put) which is identical to the regular \put command of BTEX except that

it behaves differently when in any of the three environments.

All objects put using a \jput command within the scope of any of the
three environments are, in addition to being plotted, joined by lines of the
respective kind; in other words, a line of the specified kind is drawn be-
tween points plotted using \jput statement in the order they are encoun-
tered; a point refers to the x and y coordinates specified in the \ jput state-
ment. Consecutive \jput statements are assumed to define adjacent points
— hence, the input should be accordingly ordered. Moreover, the plotted
point should be in a \makebox(0,0){. ..} (except, of course, centered ob-
jects such as \circle and \circlex) if it is to be centered on the specified
coordinate; without it the object’s bottom-left corner will be at the specified
coordinate. Each instance of any of the three join environments defines a
separate “curve” hence every set of points belonging to different “curves”

should be enclosed in separate join environments.

All the parameters, optional and mandatory, other than the coordinates
that go along with the line drawing commands, may be specified after the
\begin{...join} command as its arguments. Currently effective default
values are used when not specified in [], and may be changed anytime

using the \renewcommand as discussed previously.

The primary motivation for designing the join environments is for use
in plotting graphs and joining different curves by different looking lines. It
is not necessary that the \ jput statements put some object; if the object is

null then one gets only lines — in such a case it is much simpler to use the

2could have redefined the \put statement; \jput behaves identically to \put when not

in any join environment.

13

respective line drawing command directly.

2.8 \picsquare

\picsquare is a simple macro that gives a little square dot with its center as
the reference point. The size of the square is dependent on the currently ef-
fective \thinlines, \thicklines or \linethickness. .. declaration. Most
of the commands described earlier that plot little dots, use this macro3. It
has been provided primarily to be used in conjunction with \putfile com-
mand described below. Only \picsquare has been made accessible to the

user.

2.9 \putfile

\putfile{filename}{object}

The command \putfile is similar to the \put command except that
the x and y coordinates required by the \put command are read from an

external file and the same object is plotted at each of those coordinates.

The motivation behind this command is that TEX does not have the
capability to do floating point calculations which would be required if one
wished to plot any parametric curve other than straight lines. Coordinates
for such curves can be easily generated by programs in other languages
and subsequently a “dotted” curve can be plotted via TEX or HIEX. Even
if coordinates for certain curves could be generated from within TEX, it is
much more efficient to use other languages — eventually only the coordinates
of the points are required. For instance, one can use the Unix* facility spline

to generate smooth curves with equidistant “dots”.

3The \dottedline macro actually uses another similar macro \picsquare@bl, which
gives an identical square, but with the bottom-left corner as the reference point.
4 Uniz is a trademark of AT&T.

14

Format of the External File: The external file of coordinates must
have “x y” pairs, one pair on each line, with a space between them. Also,

it is suggested that some extension such as °

‘.put” be used for such data
files to distinguish them from regular text files in which case it must be
explicitly specified in the first argument so that TEX doesn’t look for a

“.tex” extension.

The “%” character remains valid as a comment character and such lines
are ignored. However, there should be at least one space after the second

entry if a comment is on the same line as data since % eats up the newline.

For example, to plot a smooth curve along a set of coordinates, one may

undertake the following steps:

1. have a file of “x y” coordinates for original data points, say, datafile.
2. run the command (for Unix systems): spline -200 datafile > data.put

3. in a picture environment in a IATEX file, put the command:
\putfile{data.put}{\picsquare}

(see previous section for explanation of \picsquare).

3 General Comments

A few remarks about efficiency and quirks:

e In most of the above commands, simply typing a [] for optional ar-
guments with nothing as the value will either cause an error or will
be interpreted as a null value; hence a [] should not be typed if an

optional argument is not meant to be specified.

e If too many “dots” are to be plotted in one picture, it is suggested

that a character other than the default be used — about 40-50% more

15

dots can be plotted in a picture using a period (.) or a \bullet (o) in
various sizes, rather than the default \picsquare, although the latter
seems to have a better visual appearance. The use a \picsquare also
enables one to have a better control over the thickness of dots and

lines.

A note on efficiency: when specifying a font or a fontsize for a charac-
ter it is more efficient to say:

{\tiny \dottedline[\bullet]{2}(0,0)(40,30)(80,10)}, rather
than

\dottedline[\tiny \bullet]{2}(0,0) (40,30) (80,10).

In the latter case, \tiny macro gets invoked for each instance of the

dotcharacter \bullet as the dottedline is plotted.

e [f it is not very important as to how accurately spaced a dashed line
appears, then it is suggested that \drawline command with a —ve
stretch be used instead of \dashline, since the former is much more

cpu- and memory-efficient.

e \dottedline and \dashline come out much too thin with \thinlines.
Moreover, the thicker the \dashline, fewer “dots” are required to con-
struct dashes resulting in lesser memory and cpu usage. Thus, it is
recommended that they be plotted with \thicklines in effect, or with
a linethickness of about 1-2pt.

e In the case of \drawline, any explicit linethickness declarations (i.e.
using \linethickness command) are ignored. The only applica-
ble declarations are \thinlines and \thicklines since line-segment

fonts are available in only two thicknesses.

Above commands are available in the picture environment only since
they use many of the IATEX’s predefined picture commands. Extensive use

of some of the internal macros and variables of I¥TEX has been made for

16

efficiency sake, even though that makes these macros vulnerable to future
revisions of KTEX.

The dottedline macro gets complicated because TEX does not have any
builtin facility for floating point calculations or for calculating square-roots
or trigonometric functions. The inter-dot-gap in a dottedline has to be
treated as the actual distance between two dots along the “hypotenuse” and
not its projected distance along x-axis or y-axis, since the latter interpre-
tation would result in a different real inter-dot-gap for different slopes; it
would be incorrect if we were joining points on a graph. The dootedline
macro treats the inter-dot-gap as the actual distance between two dots and
draws the various segments of the “curve” with this distance fixed. The
macro accomplishes this by estimating the actual length of the line and the
number of segments of the specified distance that will fit between the two
end-points; a macro, namely, \sqrtandstuff calculates this square-root.
Some algebraic relations are used in estimating this square-root and are

described in appendix A.

Beware, if far too many dots are put in one picture, INTEX will run out of
memory (box full), so be kind to it. For instance, by reducing the inter-dot-
gap to about 0.3mm in the case of a \dottedline, one can get essentially
a solid line, but that would mean a LOT of dots and it may run out of

memory.

If many lines using above-mentioned macros are drawn, then a \clearpage
ought to be put at judicious places in the document so as to tell KTEX not to
keep those figures floating — IXTEX sometimes keeps entire figures in memory
while trying to figure out how and where to lay them and it can frequently
run out of memory. A \clearpage may prevent running out of memory and
may reduce execution times. In case of such a memory-full error message,
a \clearpage in the region where the error occurred should be attempted

first and if that does not help then the number of “dots” in the picture will

17

have to be reduced.

A word about \drawline is in order. A TEX’s \1ine command takes an
ordered pair of integers to specify the slope of the line where the numbers
are between —6 and 6 such that the least common divisor is 1. For the
\drawline command, the given arbitrary slope has to be mapped to the
pair of integers representing the closest available slope. Another macro,
\lineslope is used to accomplish this task. The macro \lineslope takes
two arguments, the base and the height of the triangle whose hypotenuse
represents the line to be drawn and returns the ordered pair of integers
representing the closest slope; using a line segment of that slope, a jagged
line between the two specified end-points is then constructed. More details

can be found in the macro file epic.sty.

As noted earlier, the command \jput behaves identically as \put when
not in any of the join environments. The author considered obliterating the
\put command too radical a step. Also, there should have been a command
\jputfile corresponding to the \jput command (like the \putfile com-
mand) but that was considered unnecessary since typically the number of
coordinates plotted in a join environment would be an order less than what
might be the case with \putfile and can be easily typed explicitly in the
document using \jput commands. However, if it is desired to have all the
\put commands treated as though they were \jput, the following declara-
tion may be used:

\let\put\jput
Above declaration will make all the \put commands be treated as \jput;
in particular, \putfile command would then behave as though it were a
\jputfile when in any of the join environments. However, it is suggested

that such “tricks” be used with care.

Finally, commands to plot vectors of arbitrary slopes have not been

implemented. One way to plot them is to plot a line, and subsequently plot

18

a \vector of appropriate slopes and length zero at the required place.

Following pages contain some examples. The test-sample picture for
\drawline command (Figure 2) is also about the maximum amount of ob-
jects that one can put in one picture. Older versions of TEX and IXTEX may

not be able to print pictures of this size.

19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

100 100
95 - 95
90 - 90
1 1)
85 » = / 85
B I
80 = - 80
75 # W———— - / 75
70 AL] - : 70
65 y . - 65
| - ;
60 T 60
55 Tt : / 55
i i h
50 < (50
b ra)
45 —= # = / 45
-1 . ; /
40 - - / i 40
- A .
35 = : . / 35
30 = - —t / / 30
25 —- = i 25
20 = —— 20
. - O /
15 — = 15
10 — 10
”ﬂ‘,?,,yfﬂl—»———"""""
5 = p— 5
T
0 — 0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 1: An Example of Various Line Drawing Commands

%\newcommand{\plotchar}{\makebox(0,0){\large \otimes}}
\unitlength = 1mm

\begin{picture}(100,100) (0,0)

\put (0,0){\tiny \grid(100,100) (5,5) [0,0]}
\drawline(10,5) (60,10) (85,20) (90,60) (100,95)
\drawline[-50] (10,0) (65,5) (90,15) (95,55)
\thicklines
\dottedline{1.4}(10,10) (60,20) (75,35) (95,95)
\dashline{2}(80,90) (50,80) (30,50) (10,40)
\dashline{2}[0.5] (80,80) (50,70) (30,40) (10,30)
\dashline[-30]{2}[0.5] (80,70) (50,60) (30,30) (10,20)

20

\end{picture}

21

(-60,53)

(-60,43)

(-60,33)

(-60,23)

(-60,13)

(-60,3)

(-60,-3)

(-60,-13)

(-60,-23)

(-60,-33)

(-60,-43)

(-60,-53)

X

(0%

R

2

2

&
&

&)

&

(3,60)

(-53,60) (-43,60) (-33,60) (-23,60) (-13,60) (-3,60)
024 024 X & X P &
X X & & X X &
(3,-60)

(-53,-60) (-43,-60) (-33,-60) (-23,-60) (-13,-60) (-3,-60)

(13,60) (23,60) (33,60) (43,60) (53,60)

® @ @ &9 &
& & & & &

(13,-60) (23,-60) (33,-60) (43,-60) (53,-60)

Figure 2: Test Sample: Lines of various slopes with thinlines

22

(X) (60,53)

X) (60,43)

(X) (60,33)

(X) (60,23)

&) (60,13)

) (60,3)

£ (60,-3)

) (60,-13)

&) (60,-23)

) (60,-33)

X) (60,-43)

X) (60,-53)

(-60,53)

(-60,43)

(-60,33)

(-60,23)

(-60,13)

(-60,3)

(-60,-3)

(-60,-13)

(-60,-23)

(-60,-33)

(-60,-43)

BN
EN

AN

N
R
N

\

R % 99 ¢ 7
|

~

7

&
/

(55,60 (-43.60) (-33.60) (-23.60) (13.60) (73’6053,60) (13,60) (23,60) (33,60) (43,60) (53,60)

KRR Y Py 9 7P rprpy

NN NN Ny oy g s B
SN s S s

SNt by s 0
RSSO A s
N RN || 117, 77 m
\\ii\\\\\\\”////// ;j// - JURES
— - =X §\\\\\\n///// z -7 o
- —— —_—= __ T T — 60
- // ; 2/%/////”\\\\\\ \S i \\ T - ~&)(60,-13)
N R ZE N\ NN
7 T NN O D LT e

PV RIREE ST
a4 / A
//////II\\\\\\\\®.
A2y S B U NN
T T T U U N N N,

(60-53) & /S /7]
g & & 4 ¢ b & ® % w® W

(-53,-60) (-43,-60) (-33,-60) (-23,-60) (-13,-60) (-3, 60)

,-60) (13,-60) (23,-60) (33,-60) (43,-60) (53,-60)

Figure 3: Test Sample: Dashed lines of various slopes using \drawline com-

mand with linethickness=1pt and drawlinestretch = -50

23

#Following commands were used to produce the graph on the next page.

\newcommand{\plotcharms}{\makebox(0,0){\otimes}}
\newcommand{\plotcharscs}{\circle{1.5}}
\newcommand{\plotcharcs}{\makebox (0,0) {\diamond}}
\begin{figure}

\begin{center}

\begin{picture}(140,160) (-130,-10)

\linethickness{0.4mm}

\put (-130,0){\vector(1,0){140}}

\put (-130,0) {\vector(0,1){150}}

\thicklines

\multiput(0,-1) (-10,0){14}{\1ine(0,1){2}}

\multiput(-131,0) (0,10){15}{\1line(1,0){2}}
\multiputlist(0,-4)(-20,0){0,50,100,150,200,250,300} %numbers along X-axis
\multiputlist(-132,20) (0,20) [r]{10,20,30,40,50,60,70} %numbers along Y-axis
\put (-60,-10) {\makebox (0,0){Interarrival Times (msec.)}}

\put (-141,75) {\makebox (0,0) {\shortstack{’

N\ N\ \m\\a\\ 1\ i\ \z\\e\\d\\ [Bex]L\\I\\E\\e\\t\\i\\m\\e\\s}}}
\thinlines

\put (120, 150) {\makebox (0,0) [t1]{\fbox{\shortstack [1]{
{\makebox (4,2) [1b]{\put(2,1){\plotcharms}}}: Message Switching\\[0.5mm]
{\makebox(4,3) [1b]{\put (2,1) {\plotcharscs}}}: Staged Circuit Switching\\[O.5mm]
{\makebox(4,3) [1b]{\put(2,1){\plotcharcs}}}: Circuit Switching\\[0.5mm]
{\makebox(2,0) [b]{}}

1

%

\begin{dottedjoin}{2}

\thicklines

\jput (-120.00000, 34.44896){\plotcharms}

\jput(-60.00000, 35.55244){\plotcharms}

\jput(-40.00000, 36.57292){\plotcharms}

\jput(-30.00000, 37.71716){\plotcharms}

\jput(-20.00000, 40.15218){\plotcharms}

\jput(-12.00000, 48.16034){\plotcharms}

\jput(-8.00000, 67.75840){\plotcharms}

\jput(-7.60000, 74.27934){\plotcharms}

\jput(-7.20000, 83.02326){\plotcharms}

\end{dottedjoin}

%

\begin{dashjoin}{2}

\jput (-120.00000, 15.01202){\plotcharscs}

\jput (-60.00000, 15.95818){\plotcharscs}

\jput (-40.00000, 17.15990){\plotcharscs}

\jput(-30.00000, 18.16152){\plotcharscs}

\jput(-20.00000, 20.32388){\plotcharscs}

\jput (-12.00000, 27.05212){\plotcharscs}

\jput(-8.00000, 41.58512){\plotcharscs}

\jput(-7.60000, 45.3435){\plotcharscs}

\jput(-7.20000, 51.52414){\plotcharscs}

\end{dashjoin}

%

\begin{drawjoin}

\jput (-120.00000, 15.17960){\plotcharcs}

\jput(-80.00000, 16.71960){\plotcharcs}

\jput(-60.00000, 18.29430){\plotcharcs}

24

\jput (-56.00000, 19.81980){\plotcharcs}
\jput (-52.00000, 20.31963){\plotcharcs}
\jput (-48.00000, 50.24912){\plotcharcs}
\jput (-44.00000, 56.96844){\plotcharcs}
\end{drawjoin}

\end{picture}

\end{center}

\caption[]{A real-life example of a graph}
\end{figure}

25

poN~—E~0Z

NOB et ®h =

7071

60 T

50 T

40 1

30T

201

10+

®: Message Switching
o: Staged Circuit Switching
¢ 1 Circuit Switching

300 250 200

150

100

Interarrival Times (msec.)

Figure 4: A real-life example of a graph

26

4 Installation and Usage of the Package

This package of new commands for the picture environment has been im-
plemented as a documentstyle option “epic”. To include these commands,

“epic” should be added as an option in the \documentstyle command, e.g.:

\documentstyle[epic]{article}

For the above option to work, one of the following will have to be done

prior to its use:

1. A copy of the macro file epic.sty be put in the standard place for

such macros (typically /usr/lib/tex/macros), or

2. A copy of epic.sty be put in some other directory, and the path de-
clared in the environment variable TEXINPUTS; e.g. for C-shell on

4

unix systems, put a command similar to the following in the “.cshrc”

file:

setenv TEXINPUTS .:/usr/lib/tex/macros:/users/podar/texlib

Above environment variable is the directory search path for files specified

in an \input or an \openin command.

5 Concluding Remarks

The implementation of the new commands for the picture environment has
been done with the ITEX version 2.09 and TEX version 2. They have also
been tested to work with IXTEX version 2.08. These commands may not
work with earlier versions of TEX and IATEX.

Most of the commands have been tested fairly thoroughly. No major
revisions are anticipated in the near future, except, of course, bug fixes.

The author welcomes any comments, constructive or otherwise, suggestions

27

for improvements, any ideas for possible future revisions and, of course,
bugs. It is also requested that he be informed of any significant changes or

modifications made to these macros.

All the help and encouragement from colleagues in the Dept. of Com-
puter Science at SUNY at Stony Brook is gratefully acknowledged; in par-
ticular, Soumitra Sengupta’s and Divyakant Agrawal’s criticisms (often con-
structive), help with proofreading the numerous versions of this report and
general moral support were critical to the completion of this project and are

thankfully acknowledged.

Author’s address:

USMAIL: Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, N.Y. 11794
CSNET: podar@sbcs.csnet

ARPA: podar%suny-sb.csnet@csnet-relay.arpa

UUCP: {allegra, hocsd, philabs, ogcvax}!sbes!podar

References

[1] D. E. Knuth, “The TgXbook”, Addison-Wesley Publishing Co., 1984.

[2] L. Lamport, “IATEX: A Document Preparation System”, Addison-
Wesley Publishing Co., 1986.

Appendix A Estimating Pythagorean Square-root

For the line drawing commands described in the main sections of this doc-
ument, we need to estimate the Pythagorean square-root in order to deter-
mine the length of the line (along its slope). More precisely, we need to
estimate the number of segments of a given length needed to draw a line.
TEX does not provide for floating point calculations, and thus there are no
direct means of calculating the above square-root. Most standard numer-

ical techniques are iterative and would be too slow when used with TEX

28

for lack of floating point calculations, and in particular, real division, since

calculation of such a square-root is needed very frequently.

A simple non-iterative formula for estimating the square-root is derived

and described below.

Problem: Given a and b, to find ¢ = va? + b2 using only operations in
{+’ % /}

We can get very tight bounds on the square-root as follows. Without

loss of generality, let a > b. We seek a simple n such that:
b
VaZz+b2>a4+ —
n

Squaring both sides, we have

b2 2ab
& a’>+b* > a’+ = s
n
1 2ab
1— —)b? —
& 1-3) -
- é S 2n
a — (n?2-1)
b, o b
22 —om—(2) > 0
or (a)n n (a) >

From the quadratic equation above, we finally get an expression for n,

24./4+4(2)2 14,/1+(b)2
_ - _
a

ISHIS

Only the +ve root interests us since n has to be positive. Note that the

term under the root is bounded above and below (since g <1):

b

a

—
IN

1+ (=) < V2

29

Hence, we have two values for n,

1+v2 _ (1+V2)a
b

nl: = — nU:

ISEIS

which finally gives us a lower and an upper bound for ¢, the Pythagorean
square-root,
b2 b?
a+-———=— < ¢ <
(1++2)a 2a
These are very tight bounds. Denoting the lower bound as ¢; and upper

one ¢, below are some numerical results (¢ = exact square-root):

a b c q Cy
100.0 | 100.0 | 141.4213 | 141.4213 | 150.0
100.0 | 80.0 | 128.0642 | 126.5096 | 132.0

30.0 | 20.0 | 36.0555 | 35.5228 | 36.6667

With the above bounds, one can do a linear interpolation to get exact
values. In our case, since it is not required to be extremely accurate, for
estimating the square-root in the line drawing commands, we simply take
the midpoint of the two bounds. For small numbers, which is expected to

be the case most of the time, the error is very small.

With some algebra, we get the mid-point estimate of ¢,

a4 cu b2 x (34 /2) 0.457 b?
c=————=a+ =a+—— (a>b
2 ax4x(1++2) a (@2b)

The macro \sqrtandstuff uses the above formula for estimating the
number of points (for \dottedline macro) and number of segments (for
\dashline macro). The \sqrtandstuff macro, instead of calculating the

length of the line, directly calculates the number of segments of a given

30

length. For example, to draw a dotted line from (z1,y1) to (z2,y2) with the
inter-dot-gap as d, we estimate the number of dots n using the following
expression,

Az 0.457 (B)?

n:7+T A$:|$2—$1|andAy:|y2_yl|

d
assuming Az > Ay (otherwise they may be inter-changed).

Note that since divisions in TEX are integer-divisions, it is simpler to deal
in “number of segments” rather than actual lengths (e.g. in the expression

above, % = number of segments along X-axis).

Caveat: The approach presented here for estimation of Pythagorean square-
root is an independent effort by the author. It may already exist in the
literature — the author is neither aware of it nor has he made any serious

attempts at uncovering it.

31

