My Course	Test 1		Name: Answer Key	_
Spring, 2015			Dr. D. P. Story	
Solutions. The solutions to Test 1.				
1. (a) It is well known that <u>Normalized and the Normalized Alphane</u>	ewton and	Leibniz	_ are jointly credited as the founders of \Box	f
1. (b) <u>T</u> The area of a circle i	s πr^2 .]
1. (c) \square There is only one real root		There are two distinct real roots		
\checkmark There are two complex roots		None of these]
2. We use the quadratic formula:				
$x = \frac{3 \pm \sqrt{9 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{3 \pm \sqrt{-7}}{4} = \boxed{\frac{3 \pm \sqrt{7}i}{4}}$				

3. Ans:
$$5x + 3y = 26$$

Apparently the given line has slope $m = 3/5$, so $m_{\perp} = -5/3$. The rest is left to the reader.

Apparently the given line has slope m = 3/5, so $m_{\perp} = -5/3$. The rest is left to the reader.