
The eqparbox package∗

Scott Pakin
scott+eqp@pakin.org

September 3, 2017

Abstract
The eqparbox package makes it easy to define a group of boxes (such as

those produced by \parbox or \makebox) whose members all have the same
width, the natural width of the widest member. A document can contain
any number of groups, and each group can contain any number of members.
This simple, equal-width mechanism can be used for a variety of alignment
purposes, as is evidenced by the examples in this document.

1 Motivation
Let’s start with a little test. How would you typeset Figure 1, in which the names
of the quotations’ authors are left-justified relative to each other but as a group
abut the right margin? And second, how would you typeset the résumé excerpt
shown in Figure 2 while meeting the following requirements:

1. The header columns must be left-justified relative to each other.

2. The header columns should be evenly spaced across the page.

3. Page breaks should be allowed within the résumé.

The two questions can be answered the same way: by putting various blocks of
text into equal-widthed boxes. If the author names in Figure 1 are placed within
a flushright environment and in \parboxes as wide as the widest text (“Rosen-
crantz & Guildenstern Are Dead”), they will appear as desired. Similarly, if the
company names in Figure 2 are both put in a \parbox as wide as “Thingamabobs,
Ltd.,” the job titles in a \parbox as wide as “Senior Widget Designer,” and the
dates in a \parbox as wide as “1/95–present,” then they can be spaced evenly by
separating them with \hfills.

The problem is in choosing the width for each set of \parboxes. Considering
for now just Figure 2, the user must typeset the résumé once to see which entry
in each column is the widest and then assign lengths appropriately:

∗This document corresponds to eqparbox v4.1, dated 2017/09/03.

1

The only medicine for suffering, crime, and all other woes of mankind, is wisdom.
Teach a man to read and write, and you have put into his hands the great keys
of the wisdom box. But it is quite another thing to open the box.

— Thomas Huxley

I would like a simple life
yet all night I am laying
poems away in a long box.

It is my immortality box,
my lay-away plan,
my coffin.

— Anne Sexton
The Ambition Bird

We have four boxes with which to defend our freedom: the soap box, the ballot
box, the jury box, and the cartridge box.

— Larry McDonald

I saw the Count lying within the box upon the earth, some of which the rude
falling from the cart had scattered over him. He was deathly pale, just like a
waxen image, and the red eyes glared with the horrible vindictive look which I
knew so well.

— Bram Stoker
Dracula

Life in a box is better than no life at all, I expect. You’d have a chance, at least.
You could lie there thinking, “Well, at least I’m not dead.”

— Tom Stoppard
Rosencrantz & Guildenstern Are Dead

Alla fin del gioco tanto va nel sacco il re quanto la pedina.
(After the game, the king and pawn go into the same box.)

— Italian proverb

Figure 1: Quotations with left-aligned attributions

2

Widgets, Inc. Senior Widget Designer 1/95–present

• Supervised the development of the new orange and blue widget lines.

• Improved the design of various widgets, making them less sticky and far less
likely to explode.

• Made widget management ten times more cost-effective.

Thingamabobs, Ltd. Lead Engineer 9/92–12/94

• Found a way to make thingamabobs run on solar power.

• Drafted a blueprint for a new doohickey-compatibility module for all cool-
mint thingamabobs.

• Upgraded superthingamabob specification document from Microsoft Word
to LATEX 2ε.

Figure 2: Excerpt from a sample résumé

\newlength{\placewidth}
\settowidth{\placewidth}{Thingamabobs, Ltd.} % Employment 2
\newlength{\jobtitlewidth}
\settowidth{\jobtitlewidth}{Senior Widget Designer} % Employment 1
\newlength{\dateswidth}
\settowidth{\dateswidth}{1/95--present} % Employment 1

Every time a piece of information changes, it must be changed in two places: in the
résumé itself and in the \settowidth command. When employment information
is added or deleted, the \settowidth commands must be modified to reflect the
new maximum-widthed entry in each column. If only there were a simpler way to
keep a set of \parboxes as wide as the widest entry in the set …

That simpler way is the eqparbox package. eqparbox exports an \eqparbox
macro that works just like \parbox, except that instead of specifying the width
of the box, one specifies the group that the box belongs to. All boxes in the same
group will be typeset as wide as the widest member of the group. In that sense, an
\eqparbox behaves like a cell in an l, c, or r column in a tabular; \eqparboxes
in the same group are analogous to cells in the same column. Unlike the cells in a
tabular column, however, a group of \eqparboxes can be spread throughout the
document.

3

2 Usage

\eqparbox [〈pos〉] [〈height〉] [〈inner-pos〉] {〈tag〉} {〈text〉}
\eqmakebox [〈tag〉] [〈pos〉] {〈text〉}
\eqframebox [〈tag〉] [〈pos〉] {〈text〉}
\eqsavebox {〈cmd〉} [〈tag〉] [〈pos〉] {〈text〉}
\begin{eqminipage} [〈pos〉] [〈height〉] [〈inner-pos〉] {〈tag〉}

〈text〉
\end{eqminipage}

These are almost identical to, respectively, the \parbox, \makebox, \framebox,
and \savebox macros and the minipage environment. The key difference is that
the 〈width〉 argument is replaced by a 〈tag〉 argument. (For a description of the
remaining arguments, look up \parbox, \makebox, \framebox, \savebox, and
minipage in any LATEX 2ε book or in the usrguide.pdf file that comes with all
TEX distributions.) 〈tag〉 can be any valid identifier. All boxes produced using the
same tag are typeset in a box wide enough to hold the widest of them. Discounting
TEX’s limitations, any number of tags can be used in the same document, and any
number of boxes can share a tag. The only catch is that latex will need to be
run a second time for the various box widths to stabilize.

\eqboxwidth {〈tag〉}

It is sometimes useful to take the width of a box produced by one of the pre-
ceding commands. While the width can be determined by creating an \eqparbox
and using \settowidth to measure it, the eqparbox package defines a convenience
routine called \eqboxwidth that achieves the same result.

\eqboxwidth makes it easy to typeset something like Table 1. Table 1’s only
column expands to fit the widest cell in the column, excluding the final cell. The
final cell’s text word-wraps within whatever space is allocated to it. In a sense, the
first four cells behave as if they were typeset in an l column, while the final cell
behaves as if it were typeset in a p column. In actuality, the column is an l column;
an \eqparbox for the first four cells ensures the column stretches appropriately
while a \parbox of width \eqboxwidth{〈tag〉} in the final cell ensures that the
final cell word-wraps.

Section 3.5 presents a more general version of this approach that doesn’t require
cells to be divided explicitly into \eqparbox cells and \parbox cells.

\eqsetminwidth {〈tag〉} {〈width〉}
\eqsetmaxwidth {〈tag〉} {〈width〉}

These macros override the width calculation for boxes associated with tag 〈tag〉,
ensuring that they are no narrower than a given minimum (\eqsetminwidth) and
no wider than a given maximum (\eqsetmaxwidth).

4

Table 1: A tabular that stretches to fit some cells while forcing others to wrap

Wide
Wider
Wider than that
This is a fairly wide cell
While this cell’s text
wraps, the previous cells
(whose text doesn’t
wrap) determine the
width of the column.

\eqsetminwidthto {〈tag〉} {〈text〉}
\eqsetmaxwidthto {〈tag〉} {〈text〉}

These macros are analogous to \eqsetminwidth and \eqsetmaxwidth but au-
tomatically compute the natural width of the given text and use that as the min-
imum (\eqsetminwidthto) or maximum (\eqsetmaxwidthto) width for boxes
using tag 〈tag〉.

3 Examples
This section presents some sample uses of the macros described in Section 2.

3.1 Figures and tables from previous sections
Figure 1 was typeset using an \eqparbox-based helper macro, \showquote:

\usepackage{ifmtarg}
\makeatletter
\newcommand{\showquote}[2]{%

\begin{flushright}
---~\eqparbox{quotebox}{\sffamily#1}%
\@ifnotmtarg{#2}{\\

\mbox{}~\eqparbox{quotebox}{\sffamily\itshape#2}%
}%

\end{flushright}%
\par

}
\makeatother

...

Alla fin del gioco tanto va nel sacco il re quanto la pedina. \\
\textit{(After the game, the king and pawn go into the same box.)}

5

\showquote{Italian proverb}{}

Figure 2’s headings were typeset with the following code:

\noindent
\eqparbox{place}{\textbf{Widgets, Inc.}} \hfill
\eqparbox{title}{\textbf{Senior Widget Designer}} \hfill
\eqparbox{dates}{\textbf{1/95--present}}

...

\noindent
\eqparbox{place}{\textbf{Thingamabobs, Ltd.}} \hfill
\eqparbox{title}{\textbf{Lead Engineer}} \hfill
\eqparbox{dates}{\textbf{9/92--12/94}}

...

Finally, Table 1 was typeset using the following code:

\begin{tabular}{|@{}l@{}|}
\hline
\eqparbox[b]{wtab}{Wide} \\ \hline
\eqparbox[b]{wtab}{Wider} \\ \hline
\eqparbox[b]{wtab}{Wider than that} \\ \hline
\eqparbox[b]{wtab}{This is a fairly wide cell} \\ \hline
\parbox[b]{\eqboxwidth{wtab}}{\strut
While this cell's text wraps, the previous cells (whose text
doesn't wrap) determine the width of the column.} \\ \hline

\end{tabular}

3.2 Lists within tabulars
List environments (itemize, enumerate, etc.) cannot appear directly within a
tabular cell. Instead, they must be wrapped within a \parbox. The problem is
that the \parbox width must be specified; it can’t be determined automatically.
Fortunately, as of version 4.0 of eqparbox, the \eqparbox macro can contain list
environments, and these are automatically sized to their widest item, just like
any other \eqparbox contents. Table 2 presents an example of enumerate lists
appearing within tabular cells. The code for this is straightforward, thanks to
eqparbox:

2017-02-22 & \eqparbox{topiclist}{%
\begin{enumerate}
\item Hardware upgrades

6

Table 2: Lists within a tabular

Meeting date Topics discussed

2017-02-22

1. Hardware upgrades

2. Barbara’s retirement

3. Revised 27B/6 paperwork

2017-03-01
1. Printer low on toner

2. Message from the V.P.

2017-03-08

1. Product to ship next week

2. Floors to be recarpeted

3. Too many meetings

\item Barbara's retirement
\item Revised 27B/6 paperwork

\end{enumerate}
} \\ \hline

3.3 Hanging indentation
Consider the paragraphs depicted in Figure 3. We’d like the paragraph labels set
on the left, as shown, but we’d also like to allow both intra- and inter-paragraph
page breaks. Of course, if the labels are made wider or narrower, we’d like the
paragraph widths to adjust automatically. By using a custom list environment
that typesets its labels with \eqparbox this is fairly straightforward:

\begin{list}{}{%
\renewcommand{\makelabel}[1]{\eqparbox[b]{listlab}{#1}}%
\setlength{\labelwidth}{\eqboxwidth{listlab}}%
\setlength{\labelsep}{2em}%
\setlength{\parsep}{2ex plus 2pt minus 1pt}%
\setlength{\itemsep}{0pt}%
\setlength{\leftmargin}{\labelwidth+\labelsep}%
\setlength{\rightmargin}{0pt}}

\item[Stuff about me] I am great. Blah, blah, blah, ...

\item[More stuff] I am wonderful. Blah, blah, blah, ...

7

\item[The final exciting thing] I am fantastic. Blah,
blah, blah, ...

\end{list}

Stuff about me I am great. Blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah.

More stuff I am wonderful. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah.

Did I mention that blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah?

The final exciting thing I am fantastic. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah.

Figure 3: Paragraphs with hanging indentation

3.4 Justified, parallel text
Consider line-by-line transcription of a piece of text as illustrated by the mockup
in Figure 4. The idea is to juxtapose a scanned piece of handwritten text with its
typeset version (or, similarly, to typeset a piece of text in one language alongside
a line-by-line translation into another language). The challenge is in ensuring that
(1) the same words appear on corresponding lines of text and that (2) the typeset
text is fully justified. While the parallel package can typeset fully justified para-
graphs aligned in parallel columns, it does not support the alignment of individual
lines. tabular and minipage environments provide control of line breaks but do
not support full justification of the text when explicit line breaks are used.

One solution is to use eqparbox’s \eqmakebox macro. Like \makebox,
\eqmakebox supports the “s” (stretch) value for the 〈pos〉 argument, which causes
the 〈text〉 argument to stretch to the width of the box. However, while \makebox
requires the width to be specified explicitly, \eqmakebox automatically sizes all
boxes that use the same tag (in this case, each line of the input paragraph) to the
widest text’s natural width. Here’s how to use the array package’s \newcolumntype

8

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Phasellus volutpat, nibh sit
amet mattis convallis, metus
libero rhoncus justo, sed auctor
erat mauris sit amet tellus.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Phasellus volutpat, nibh sit
amet mattis convallis, metus
libero rhoncus justo, sed auctor
erat mauris sit amet tellus.

Figure 4: Line-by-line transcription of text with full justification

macro to define a new tabular column type, “S”, that stretches whitespace as
needed to fit the widest line in the column:

\newsavebox{\tstretchbox}
\newcolumntype{S}[1]{%

>{\begin{lrbox}{\tstretchbox}}%
l%
<{\end{lrbox}%
\eqmakebox[#1][s]{\unhcopy\tstretchbox}}}

That code works by storing the current cell’s contents within a box called
\tstretchbox then passing \tstretchbox’s contents to \eqmakebox. (The
tabular environment does not enable a cell’s contents to be passed directly to
a macro, hence the lrbox trickery.) Note that the “S” column type takes an ar-
gument, which is the tag to pass to \eqmakebox. Using the preceding definition
we can typeset Figure 4 as follows. To simulate scanned handwriting in the left
column we use the Calligra handwriting font provided by the calligra package.

\begin{tabular}{|l|l|}
\hline
\calligra
\begin{tabular}{S{handwritten}}
Lorem ipsum dolor sit amet, \\
consectetur adipiscing elit. \\
Phasellus volutpat, nibh sit \\
amet mattis convallis, metus \\
libero rhoncus justo, sed auctor \\
erat mauris sit amet tellus. \\

\end{tabular}
&
\begin{tabular}{S{typeset}}
Lorem ipsum dolor sit amet, \\
consectetur adipiscing elit. \\
Phasellus volutpat, nibh sit \\
amet mattis convallis, metus \\
libero rhoncus justo, sed auctor \\
erat mauris sit amet tellus. \\

9

\end{tabular} \\
\hline

\end{tabular}

3.5 Combining l and p column properties in a tabular

In a tabular environment, l columns, which automatically fit the column to its
contents, are good for short pieces of text. Long pieces of text are best set within
a p column, which wraps text within a specified width. But which column type
should you use to typeset text whose width is unknown (e.g., if the text is generated
programmatically)? With the help of eqparbox’s \eqsetmaxwidth macro (and the
array package’s \newcolumntype macro), it is possible to define a column type
that behaves like l for short pieces of text and like p for long pieces of text:

\newcolumntype{M}[1]{%
>{\begin{lrbox}{\csname#1box\endcsname}}%
l%
<{\end{lrbox}%
\eqparbox[t]{#1}{\unhcopy\csname#1box\endcsname\strut}}%

}

This can then be used as follows to produce the output shown in Figure 5(a):

\eqsetmaxwidth{maybebig}{0.5\linewidth}
\newsavebox{\maybebigbox}
\begin{tabular}{|M{maybebig}|l|}

\hline
Very short & Good \\
A little bit longer & Okay \\

\end{tabular}

Because the text in the first column is narrower than half the line width, the
column behaves like an l column. Now observe what happens if we add a long
piece of text to the column:

\eqsetmaxwidth{maybebig}{0.5\linewidth}
\newsavebox{\maybebigbox}
\begin{tabular}{|M{maybebig}|l|}

\hline
Very short & Good \\
A little bit longer & Okay \\
Almost certainly excessively long, even given the point we're
trying to make about box widths & Bad \\

\end{tabular}

As Figure 5(b) shows, the first column now behaves like a p column, specifically
p{0.5\linewidth}.

10

Very short Good
A little bit longer Okay

(a) Output when the text is narrow

Very short Good
A little bit longer Okay
Almost certainly excessively long, even
given the point we’re trying to make
about box widths

Bad

(b) Output when the text is wide

Figure 5: Combining the features of l and p columns

3.6 Centering a column of right-justified data
The data in each of the Sales columns in Table 3 are centered relative to their
column header. However, they are also right-justified relative to each other. To
achieve this effect we simply need to put the data in each column in a right-justified
box using \eqmakebox[〈tag〉][r]{〈text〉} and center that:

\begin{tabular}{@{}lccc@{}} \hline
& \multicolumn{3}{c}{Sales (in millions)} \\ \cline{2-4}
\multicolumn{1}{c}{\raisebox{1ex}[2ex]{Product}} &
October & November & December \\ \hline

Widgets & \eqmakebox[oct][r]{ 55.2} &
\eqmakebox[nov][r]{\bfseries 89.2} &
\eqmakebox[dec][r]{ 57.9} \\

Doohickeys & \eqmakebox[oct][r]{\bfseries 65.0} &
\eqmakebox[nov][r]{\tiny N/A} &
\eqmakebox[dec][r]{ 9.3} \\

Thingamabobs & \eqmakebox[oct][r]{ 10.4} &
\eqmakebox[nov][r]{ 8.0} &
\eqmakebox[dec][r]{\bfseries 109.7} \\ \hline

\end{tabular}

Table 3: Sample sales data

Sales (in millions)
Product October November December

Widgets 55.2 89.2 57.9
Doohickeys 65.0 N/A 9.3
Thingamabobs 10.4 8.0 109.7

11

4 Limitations
Unfortunately, eqparbox’s macros have a number of limitations not exhibited by
the corresponding LATEX 2ε commands. First, eqparbox’s macros internally type-
set the given text within a tabular environment—specifically, using “@{}l@{}”
as the template—in order to determine the text’s natural width. Consequently,
commands not valid within such a tabular (e.g., verbatim environments) are also
not valid within the 〈text〉 argument of an eqparbox macro. As a corollary, the
macros defined by the eqparbox package can appear only where a tabular is also
acceptable.

A second limitation is that eqparbox’s macros typeset their 〈text〉 argument
twice: once within a tabular to determine the natural width and again within a
box wide enough to hold all text associated with tag 〈tag〉. This approach may
cause unexpected results if 〈text〉 is non-idempotent (i.e., has side effects). For
example, if 〈text〉 increments a counter, the counter will be incremented twice per
invocation of \eqparbox.

5 Implementation
The one-sentence summary of the implementation is, “As eqparbox goes along, it
keeps track of the maximum width of each box type, and when it’s finished, it
writes those widths to the .aux file for use on subsequent runs.” If you’re satisfied
with that summary, then read no further. Otherwise, get ready to tackle the
following annotated code listing.

5.1 Preliminaries
\eqp@tempdima
\eqp@tempdimb

Define a couple temporary 〈dimen〉s for use in a variety of locations.
1 \newlength{\eqp@tempdima}
2 \newlength{\eqp@tempdimb}

\eqp@taglist Define a list of all of the tags we encountered in the author’s document.
3 \def\eqp@taglist{}

\ifeqp@must@rerun
\eqp@must@reruntrue
\eqp@must@rerunfalse

If an eqparbox is wider than the maximum-width eqparbox with the same tag,
we need to store the new maximum width and request that the user re-run latex.
We use \ifeqp@must@rerun and \eqp@must@reruntrue to assist with this.

4 \newif\ifeqp@must@rerun

The \eqp@settowidth macro requires the array package’s ability to inject code
into every cell.

5 \RequirePackage{array}

\eqp@tabular@box
\eqp@list@box

The \eqp@settowidth macro requires a box, \eqp@tabular@box, in which to store
the entire input text. \eqp@settowidth also requires a box, \eqp@list@box, in
which to store nested list environments.

12

6 \newsavebox{\eqp@tabular@box}
7 \newsavebox{\eqp@list@box}

\eqp@list@indent The \eqp@settowidth macro stores the accumulated list indentation in
\eqp@list@indent.

8 \newlength{\eqp@list@indent}

The eqminipage environment requires the environ package’s \Collect@Body,
which passes the body of an environment to a macro as a single argument.

9 \RequirePackage{environ}

5.2 Width calculation
\eqp@storefont

\eqp@restorefont
To find the natural width of a piece of text, we put it in a table and take the
width of that. The problem is that font changes are not preserved across line
breaks (table cells). We therefore define an \eqp@storefont macro which itself
defines an \eqp@restorefont macro that restores the current font and font size
to its current state.
10 \newcommand*{\eqp@storefont}{%
11 \xdef\eqp@restorefont{%
12 \noexpand\usefont{\f@encoding}{\f@family}{\f@series}{\f@shape}%
13 \noexpand\fontsize{\f@size}{\f@baselineskip}%
14 \noexpand\selectfont
15 }%
16 }

\eqp@settowidth This macro is just like \settowidth, but it puts its argument in a tabular,
which means that it can contain \\. We use the array package’s “>” and “<”
template parameters to inject an \eqp@restorefont at the start of every cell and
an \eqp@storefont at the end of every cell. Doing so preserves fonts and font
sizes across \\ boundaries, just like \parbox.

One catch is that lists cannot be included directly within a tabular. True,
they can be placed within a \parbox that itself is within a tabular cell, but the
whole point is that we’re trying to calculate how wide that \parbox should be,
The trick we use here, therefore, is to redefine the list environment as a single-
column tabular plus space for \labelwidth and \labelsep—we ignore all other
list-formatting parameters—and \item as \\. There will be an extra row at the
beginning, but all we care about here is computing a width, not a height, so that’s
acceptable.
17 \newcommand{\eqp@settowidth}[2]{%
18 \begingroup
19 \global\setbox\eqp@tabular@box=\hbox{%

\eqp@endings Unfortunately, we can’t simply redefine the list environment, which underlies
itemize, enumerate, and description lists, because their definitions in the
standard classes do not include a proper \begin{list}…\end{list}. Instead,
those parent environments call \list directly and \let\end{itemize,enumerate,

13

description}=\endlist. Our workaround is to reissue those \let bindings after
redefining \list and \endlist ourselves.
20 \def\eqp@endings{}%
21 \ifx\enditemize\endlist
22 \g@addto@macro\eqp@endings{\let\enditemize=\endlist}%
23 \fi
24 \ifx\endenumerate\endlist
25 \g@addto@macro\eqp@endings{\let\endenumerate=\endlist}%
26 \fi
27 \ifx\enddescription\endlist
28 \g@addto@macro\eqp@endings{\let\enddescription=\endlist}%
29 \fi

list As described above, we locally redefine the list environment as a single-column
tabular and the \item macro as \\. We begin by copying a block of code from
ltlists.dtx that sets the default formatting parameters for a list of the cur-
rent depth. This is important because trivlist environments (e.g., center and
flushleft) reset some of the parameters, which would otherwise screw up our
width calculation.
30 \renewenvironment{list}[2]{%
31 \ifnum \@listdepth >5\relax
32 \@toodeep
33 \else
34 \global\advance\@listdepth\@ne
35 \fi
36 \rightmargin\z@
37 \listparindent\z@
38 \itemindent\z@
39 \csname @list\romannumeral\the\@listdepth\endcsname
40 ##2\relax

\item We locally redefine \item to start a new row of the tabular, then flush any nested
lists from the previous \item at the current nesting level, and finally adjust the
current indentation based on the item’s label.
41 \renewcommand*{\item}[1][]{%
42 \mbox{}\\
43 \box\eqp@list@box\mbox{} \\
44 \sbox\@tempboxa{\makelabel{####1}}%
45 \ifdim\wd\@tempboxa>\labelwidth
46 \advance\eqp@list@indent by -\labelwidth
47 \advance\eqp@list@indent by \wd\@tempboxa
48 \fi
49 \hspace*{\eqp@list@indent}%
50 }%

To measure the width of a list we introduce a single-column tabular that in-
cludes \eqp@list@indent’s worth of padding (= \leftmargin + \rightmargin +
\itemindent) to mimic the width of the original list environment.
51 \hspace*{-\eqp@list@indent}%

14

52 \advance\eqp@list@indent by \leftmargin
53 \advance\eqp@list@indent by \rightmargin
54 \advance\eqp@list@indent by \itemindent
55 \global\setbox\eqp@list@box=\hbox\bgroup
56 \begin{tabular}{@{}l@{}}%
57 }{%
58 \item[]%
59 \end{tabular}%
60 \egroup
61 \global\advance\@listdepth\m@ne
62 }%
63 \eqp@endings

Finally, we place the given text—list or not—within a tabular so the preceding
\settowidth can measure its width. Because the text may contain paragraph
breaks we redefine \par as \\ to turn them into line breaks and restore \par’s
original definition when the tabular ends.
64 \global\let\eqp@par=\par
65 \eqp@storefont
66 \begin{tabular}{@{}>{\eqp@restorefont}l<{\eqp@storefont}@{}}%
67 \global\@setpar{\\}%
68 #2%
69 \\ \box\eqp@list@box
70 \end{tabular}%
71 \global\@restorepar
72 }%
73 \endgroup

Now that we’ve constructed a tabular with lines of the input text as cells we can
use LATEX’s \settowidth macro to take its width.
74 \settowidth{#1}{\box\eqp@tabular@box}%
75 }

\eqp@compute@width The following function does all the real work for the eqparbox package. It takes
two parameters—〈tag〉 and 〈text〉—and ensures that all boxes with the same tag
will be as wide as the widest box with that tag. It ends by passing 〈tag〉 and 〈text〉
to the \eqp@produce@box command, which was defined by the calling macro to
produce a box using one of the existing LATEX 2ε commands.

To keep track of box widths, \eqp@compute@width makes use of two global
variables for each tag: \eqp@this@〈tag〉 and \eqp@next〈tag〉. \eqp@this@〈tag〉
is the maximum width ever seen for tag 〈tag〉, including in previous latex runs.
\eqp@next@〈tag〉 works the same way but is always initialized to 0.0pt. It rep-
resents the maximum width to assume in subsequent latex runs. It is needed
to detect whether the widest text with tag 〈tag〉 has been removed/shrunk. At
the end of a run, eqparbox prepares the next run (via the .aux file) to initialize
\eqp@this@〈tag〉 to the final value of \eqp@next@〈tag〉.
76 \long\def\eqp@compute@width#1#2{%
77 \eqp@settowidth{\eqp@tempdimb}{#2}%

15

We first clamp the box width, currently in \eqp@tempdimb, to the range
[\eqp@minwd@〈tag〉, \eqp@maxwd@〈tag〉]. As these bounds are not necessarily de-
fined we first have to check for their existence.
78 \@ifundefined{eqp@minwd@#1}{}{%
79 \ifdim\eqp@tempdimb<\csname eqp@minwd@#1\endcsname
80 \eqp@tempdimb=\csname eqp@minwd@#1\endcsname
81 \fi
82 }%
83 \@ifundefined{eqp@maxwd@#1}{}{%
84 \ifdim\eqp@tempdimb>\csname eqp@maxwd@#1\endcsname
85 \eqp@tempdimb=\csname eqp@maxwd@#1\endcsname
86 \fi
87 }%
88 \expandafter
89 \ifx\csname eqp@this@#1\endcsname\relax

If we get here, then we’ve never encountered tag 〈tag〉, even in a previous latex
run. We request that the user re-run latex. This is not always necessary
(e.g., when all uses of the \eqparbox with tag 〈tag〉 are left-justified), but it’s
better to be safe than sorry.
90 \global\eqp@must@reruntrue
91 \expandafter\xdef\csname eqp@this@#1\endcsname{\the\eqp@tempdimb}%
92 \expandafter\xdef\csname eqp@next@#1\endcsname{\the\eqp@tempdimb}%
93 \else

If we get here, then we have previously seen tag 〈tag〉. We just have to keep track
of the maximum text width associated with it.
94 \eqp@tempdima=\csname eqp@this@#1\endcsname\relax
95 \ifdim\eqp@tempdima<\eqp@tempdimb
96 \expandafter\xdef\csname eqp@this@#1\endcsname{\the\eqp@tempdimb}%
97 \global\eqp@must@reruntrue
98 \fi

99 \eqp@tempdima=\csname eqp@next@#1\endcsname\relax
100 \ifdim\eqp@tempdima<\eqp@tempdimb
101 \expandafter\xdef\csname eqp@next@#1\endcsname{\the\eqp@tempdimb}%
102 \fi
103 \fi

The first time we encounter tag 〈tag〉 in the current document we ensure LATEX
will notify the user if he needs to re-run latex on account of that tag.

104 \@ifundefined{eqp@seen@#1}{%
105 \expandafter\gdef\csname eqp@seen@#1\endcsname{}%
106 \@cons\eqp@taglist{{#1}}%
107 }{}%

Finally, we can call \eqp@produce@box. We pass it \eqp@this@〈tag〉 for its
〈width〉 argument and #2 for its 〈text〉 argument.

108 \eqp@tempdima=\csname eqp@this@#1\endcsname\relax
109 \eqp@produce@box{\eqp@tempdima}{#2}%
110 }

16

\eqp@set@min@width Given a tag and a textual length, ensure that \eqp@this@〈tag〉 represents a width
of at least 〈length〉.

111 \def\eqp@set@min@width#1#2{%
112 \expandafter\ifx\csname eqp@this@#1\endcsname\relax

If we get here, then we’ve never encountered tag 〈tag〉, even in a previous latex
run. We assign a value to 〈tag〉 and request that the user re-run latex.

113 \global\eqp@must@reruntrue
114 \expandafter\xdef\csname eqp@this@#1\endcsname{#2}%
115 \expandafter\xdef\csname eqp@next@#1\endcsname{#2}%
116 \else

If we get here, then we have previously seen tag 〈tag〉. We ensure its width is at
least #2.

117 \eqp@tempdima=\csname eqp@this@#1\endcsname\relax
118 \eqp@tempdimb=#2\relax
119 \ifdim\eqp@tempdima<\eqp@tempdimb
120 \expandafter\xdef\csname eqp@this@#1\endcsname{\the\eqp@tempdimb}%
121 \fi
122 \eqp@tempdima=\csname eqp@next@#1\endcsname\relax
123 \ifdim\eqp@tempdima<\eqp@tempdimb
124 \expandafter\xdef\csname eqp@next@#1\endcsname{\the\eqp@tempdimb}%
125 \fi
126 \fi
127 \@ifundefined{eqp@seen@#1}{%
128 \expandafter\gdef\csname eqp@seen@#1\endcsname{}%
129 \@cons\eqp@taglist{{#1}}%
130 }{}%
131 }

5.3 Author macros
\eqparbox We want \eqparbox to take the same arguments as \parbox, with the same default

values for the optional arguments. The only difference in argument processing is
that \eqparbox has a 〈tag〉 argument where \parbox has 〈width〉.

Because \eqparbox has more than one optional argument, we can’t use a
single function defined by \DeclareRobustCommand. Instead, we have to split
\eqparbox into \eqparbox, \eqparbox@i, \eqparbox@ii, and \eqparbox@iii
macros, which correspond to \parbox, \@iparbox, \@iiparbox, and \@iiiparbox
in ltboxes.dtx.

\eqparbox takes an optional 〈pos〉 argument that defaults to c. It passes the
value of this argument to \eqparbox@i.

132 \DeclareRobustCommand{\eqparbox}{%
133 \@ifnextchar[%]
134 {\eqparbox@i}%
135 {\eqparbox@iii[c][\relax][s]}%
136 }

17

\eqparbox@i \eqparbox@i takes a 〈pos〉 argument followed by an optional 〈height〉 argument
that defaults to \relax. It passes both 〈pos〉 and 〈height〉 to \eqparbox@ii.

137 \def\eqparbox@i[#1]{%
138 \@ifnextchar[%]
139 {\eqparbox@ii[#1]}%
140 {\eqparbox@iii[#1][\relax][s]}%
141 }

\eqparbox@ii \eqparbox@ii takes 〈pos〉 and 〈height〉 arguments followed by an optional 〈inner-
pos〉 argument that defaults to 〈pos〉. It passes 〈pos〉, 〈height〉, and 〈inner-pos〉 to
\eqparbox@iii.

142 \def\eqparbox@ii[#1][#2]{%
143 \@ifnextchar[%]
144 {\eqparbox@iii[#1][#2]}%
145 {\eqparbox@iii[#1][#2][#1]}%
146 }

\eqparbox@iii
\eqp@produce@box

\eqparbox@iii takes 〈pos〉, 〈height〉 and 〈inner-pos〉 arguments. It defines an
\eqp@produce@box macro that takes a 〈width〉 argument and a 〈text〉 argument
and passes all of 〈pos〉, 〈height〉, 〈inner-pos〉, 〈width〉, and 〈text〉 to LATEX’s \parbox
macro. \eqparbox@iii ends by calling \eqp@compute@width, which will eventu-
ally invoke \eqp@produce@box.

147 \def\eqparbox@iii[#1][#2][#3]{%
148 \long\gdef\eqp@produce@box##1##2{%
149 \parbox[#1][#2][#3]{##1}{##2}%
150 }%
151 \eqp@compute@width
152 }

eqminipage The eqminipage environment is implemented almost exactly like the \eqparbox
macro above. Just like \eqparbox, eqminipage takes an optional 〈pos〉 argument
that defaults to c. It passes the value of this argument to \eqminipage@i.

153 \DeclareRobustCommand{\eqminipage}{%
154 \@ifnextchar[%]
155 {\eqminipage@i}%
156 {\eqminipage@iii[c][\relax][s]}%
157 }
158 \let\endeqpminipage=\relax

\eqminipage@i \eqminipage@i takes a 〈pos〉 argument followed by an optional 〈height〉 argument
that defaults to \relax. It passes both 〈pos〉 and 〈height〉 to \eqminipage@ii.

159 \long\def\eqminipage@i[#1]{%
160 \@ifnextchar[%]
161 {\eqminipage@ii[#1]}%
162 {\eqminipage@iii[#1][\relax][s]}%
163 }

18

\eqminipage@ii \eqminipage@ii takes 〈pos〉 and 〈height〉 arguments followed by an optional
〈inner-pos〉 argument that defaults to 〈pos〉. It passes 〈pos〉, 〈height〉, and 〈inner-
pos〉 to \eqminipage@iii.

164 \def\eqminipage@ii[#1][#2]{%
165 \@ifnextchar[%]
166 {\eqminipage@iii[#1][#2]}%
167 {\eqminipage@iii[#1][#2][#1]}%
168 }

\eqminipage@iii This is where eqminipage differs from \eqparbox. Like \eqparbox@iii,
\eqminipage@iii takes 〈pos〉, 〈height〉 and 〈inner-pos〉 arguments. However,
while \eqparbox@iii expects to be followed by a tag and text, \eqminipage@iii
consumes the tag itself. \eqminipage@iii then uses environ’s \Collect@Body
macro to collect everything up to the \end{eqminipage} into a single argument,
which it passes to \eqminipage@iv.

169 \def\eqminipage@iii[#1][#2][#3]#4{%

\eqminipage@iv
\eqp@produce@box

This code is a bit confusing due to the definition of a macro within a macro
within a macro. \eqminipage@iv, which is invoked by \collect@body, is passed
the body of the eqminipage environment as an argument. In then defines an
\eqp@produce@box macro with the parameter list that \eqp@compute@width
expects: a width (####1) and text (####2). \eqp@produce@box typesets
a minipage with that width and text and the formatting parameters pro-
vided to \eqminipage@iii (#1, #2, and #3). Finally, \eqminipage@iv invokes
\eqp@compute@width with the tag passed to \eqminipage@iii as #4 and the
text passed to \eqminipage@iv as ##1.

170 \long\def\eqminipage@iv##1{%
171 \long\gdef\eqp@produce@box####1####2{%
172 \begin{minipage}[#1][#2][#3]{####1}%
173 ####2%
174 \end{minipage}%
175 }%
176 \eqp@compute@width{#4}{##1}%
177 }%
178 \Collect@Body\eqminipage@iv
179 }

\eqmakebox \eqmakebox provides an automatic-width analogue to LATEX’s \makebox. It takes
the same arguments as \makebox with the same default values for the optional
arguments. The only difference in argument processing is that \eqmakebox has a
〈tag〉 argument where \makebox has 〈width〉. Note that if 〈width〉 is not specified,
\eqmakebox simply invokes \makebox.

180 \DeclareRobustCommand{\eqmakebox}{%
181 \@ifnextchar[%]
182 {\eqlrbox@i\makebox}%
183 {\makebox}%
184 }

19

\eqframebox \eqframebox provides an automatic-width analogue to LATEX’s \framebox. It
takes the same arguments as \framebox with the same default values for the op-
tional arguments. The only difference in argument processing is that \eqframebox
has a 〈tag〉 argument where \framebox has 〈width〉. Note that if 〈width〉 is not
specified, \eqframebox simply invokes \framebox.

185 \DeclareRobustCommand{\eqframebox}{%
186 \@ifnextchar[%]
187 {\eqlrbox@i\framebox}%
188 {\framebox}%
189 }

\eqsavebox \eqsavebox provides an automatic-width analogue to LATEX’s \savebox. It takes
the same arguments as \savebox with the same default values for the optional
arguments. The only difference in argument processing is that \eqsavebox has a
〈tag〉 argument where \savebox has 〈width〉. Note that if 〈width〉 is not specified,
\eqsavebox simply invokes \savebox.

190 \DeclareRobustCommand{\eqsavebox}[1]{%
191 \@ifnextchar[%]
192 {\eqlrbox@i{\savebox{#1}}}%
193 {\savebox{#1}}%
194 }

\eqlrbox@i \eqlrbox@i takes a {〈command〉} argument (one of \makebox, \framebox, or
\savebox{〈cmd〉}) and a [〈tag〉] argument and checks if those arguments are fol-
lowed by a [〈pos〉] argument. If not, then 〈pos〉 defaults to “c”. All of 〈command〉,
〈tag〉, and 〈pos〉 are passed to \eqlrbox@ii.

195 \def\eqlrbox@i#1[#2]{%
196 \@ifnextchar[%]
197 {\eqlrbox@ii{#1}[#2]}%
198 {\eqlrbox@ii{#1}[#2][c]}%
199 }

\eqlrbox@ii
\eqp@produce@box

\eqlrbox@i takes a {〈command〉} argument (one of \makebox, \framebox,
or \savebox{〈cmd〉}), a [〈tag〉] argument, and a [〈pos〉] argument. It de-
fines \eqp@produce@box to take a 〈width〉 argument and a 〈text〉 argument
and invoke 〈command〉[〈width〉][〈pos〉]{〈text〉}. \eqlrbox@ii ends by calling
\eqp@compute@width, which will eventually invoke \eqp@produce@box.

200 \def\eqlrbox@ii#1[#2][#3]{%
201 \long\gdef\eqp@produce@box##1##2{%
202 #1[##1][#3]{##2}%
203 }%
204 \eqp@compute@width{#2}%
205 }

\eqboxwidth For the times that the user wants to make something other than a box to match an
\eqparbox’s width, we provide \eqboxwidth. \eqboxwidth returns the width of
a box corresponding to a given tag. More precisely, if \eqp@this@〈tag〉 is defined,
it’s returned. Otherwise, 0pt is returned.

20

206 \newcommand*{\eqboxwidth}[1]{%
207 \@ifundefined{eqp@this@#1}{0pt}{\csname eqp@this@#1\endcsname}%
208 }

\eqsetminwidth The \eqsetminwidth macro accepts a tag and a length and records that the user
wants the associated box to be no narrower than the given length.

209 \newcommand{\eqsetminwidth}[2]{%
210 \@tempdima=#2\relax
211 \expandafter\xdef\csname eqp@minwd@#1\endcsname{\the\@tempdima}%
212 \eqp@set@min@width{#1}{\csname eqp@minwd@#1\endcsname}%
213 }

\eqsetmaxwidth The \eqsetmaxwidth macro accepts a tag and a length and records that the user
wants the associated box to be no wider than the given length.

214 \newcommand{\eqsetmaxwidth}[2]{%
215 \@tempdima=#2\relax
216 \expandafter\xdef\csname eqp@maxwd@#1\endcsname{\the\@tempdima}%
217 }

\eqsetminwidthto The \eqsetminwidthto macro accepts a tag and a piece of text and records that
the user wants the associated box to be no narrower than the text, typeset at its
natural width.

218 \newcommand{\eqsetminwidthto}[2]{%
219 \eqp@settowidth{\@tempdima}{#2}%
220 \expandafter\xdef\csname eqp@minwd@#1\endcsname{\the\@tempdima}%
221 \eqp@set@min@width{#1}{\csname eqp@minwd@#1\endcsname}%
222 }

\eqsetmaxwidthto The \eqsetmaxwidthto macro accepts a tag and a piece of text and records that
the user wants the associated box to be no wider than the text, typeset at its
natural width.

223 \newcommand{\eqsetmaxwidthto}[2]{%
224 \eqp@settowidth{\@tempdima}{#2}%
225 \expandafter\xdef\csname eqp@maxwd@#1\endcsname{\the\@tempdima}%
226 }

5.4 End-of-document processing
At the \end{document}, for each tag 〈tag〉 we see if \eqp@next@〈tag〉, which was
initialized to 0.0pt, is different from \eqp@this@〈tag〉, which was initialized to the
maximum box width from the previous run. If so, we issue an informational mes-
sage. In any case, we initialize the next run’s \eqp@this@〈tag〉 to \eqp@next@〈tag〉
and the next run’s \eqp@next@〈tag〉 to 0pt.

227 \AtEndDocument{%
228 \begingroup

21

\@elt The \eqp@taglist list is of the form “\@elt {〈tag1〉} \@elt {〈tag2〉} …”. We
therefore locally define \@elt to take the name of a tag and perform all of the
checking described above and then merely execute \eqp@taglist.

229 \def\@elt#1{%

Complain if the tag’s minimum width is greater than its maximum width.
230 \@ifundefined{eqp@minwd@#1}{}{%
231 \@ifundefined{eqp@maxwd@#1}{}{%
232 \ifdim\csname eqp@minwd@#1\endcsname>\csname eqp@maxwd@#1\endcsname
233 \PackageWarning{eqparbox}{For tag `#1',
234 minimum width (\csname eqp@minwd@#1\endcsname) >
235 maximum width (\csname eqp@maxwd@#1\endcsname)}%
236 \fi
237 }%
238 }%

Make the .aux file define \eqp@this@〈tag〉 to the current value of \eqp@next@〈tag〉
and \eqp@next@〈tag〉 to 0pt.

239 \eqp@tempdima\csname eqp@this@#1\endcsname\relax
240 \eqp@tempdimb\csname eqp@next@#1\endcsname\relax
241 \ifdim\eqp@tempdima=\eqp@tempdimb
242 \else
243 \@latex@warning@no@line{Rerun to correct the width of eqparbox `#1'}%
244 \fi
245 \immediate\write\@auxout{%
246 \string\expandafter\string\gdef\string\csname\space
247 eqp@this@#1\string\endcsname{%
248 \csname eqp@next@#1\endcsname
249 }%
250 ^^J%
251 \string\expandafter\string\gdef\string\csname\space
252 eqp@next@#1\string\endcsname{0pt}%
253 }%

Also make the .aux file define \eqp@minwd@〈tag〉 and \eqp@maxwd@〈tag〉 to their
current value, if any.

254 \@ifundefined{eqp@minwd@#1}{}{%
255 \immediate\write\@auxout{%
256 \string\expandafter\string\gdef\string\csname\space
257 eqp@minwd@#1\string\endcsname{%
258 \csname eqp@minwd@#1\endcsname
259 }%
260 }%
261 }%
262 \@ifundefined{eqp@maxwd@#1}{}{%
263 \immediate\write\@auxout{%
264 \string\expandafter\string\gdef\string\csname\space
265 eqp@maxwd@#1\string\endcsname{%
266 \csname eqp@maxwd@#1\endcsname
267 }%

22

268 }%
269 }%
270 }%
271 \eqp@taglist
272 \endgroup

We output a generic “rerun latex” message if we encountered a tag that was not
present on the previous run. (This is always the case on the first run or the first
run after deleting the corresponding .aux file.

273 \ifeqp@must@rerun
274 \@latex@warning@no@line{Rerun to correct eqparbox widths}
275 \fi
276 }

Change History

v1.0
General: Initial version 1

v2.0
\@elt: Modified to allow numbers

in tag names (suggested by
Martin Vaeth) 22

\eqp@compute@width: Removed
extraneous \globals
(suggested by David Kastrup) 15

\eqp@settowidth: Modified to
store and restore the font
across \\ boundaries
(suggested by Mike Shell) 13

General: Rewrote to use only two
〈dimen〉s total and the rest
macros (problem reported by
Gilles Pérez-Lambert and
Plamen Tanovski; solution
suggested by David Kastrup
and Donald Arseneau) 1

v2.1
\eqboxwidth: Rewrote so as to be

compatible with the calc
package’s \setlength
command (problem initially
reported by Gary L. Gray and
narrowed down by Martin
Vaeth) 20

v3.0
\eqmakebox: Included Rob

Verhoeven’s \eqmakebox macro 19

v3.1
\eqframebox: Introduced this

macro 20
\eqmakebox: Modified the

argument processing to match
\makebox’s 19

\eqp@compute@width:
Restructured the package to
make all user-callable functions
eventually call
\eqp@compute@width, which
does the bulk of the work 15

\eqsavebox: Introduced this macro 20
v4.0

\@elt: Modified to honor minimum
and maximum text widths, as
set by \eqset{max,min}width
and \eqset{max,min}widthto . 22

\eqp@settowidth: Added support
for list environments 13

Added support for
multi-paragraph input 13

\eqsetmaxwidth: Introduced this
macro 21

\eqsetmaxwidthto: Introduced
this macro 21

\eqsetminwidth: Introduced this
macro 21

\eqsetminwidthto: Introduced
this macro 21

23

eqminipage: Introduced this
environment 18

v4.1
\eqp@set@min@width: Introduced

this helper macro for
\eqsetminwidth and
\eqsetminwidthto 17

\eqsetminwidth: Define
\eqp@this@〈tag〉 and
\eqp@next@〈tag〉 appropriately 21

\eqsetminwidthto: Define
\eqp@this@〈tag〉 and
\eqp@next@〈tag〉 appropriately 21

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@elt 229
\@latex@warning@no@line

. 243, 274
\@listdepth 31, 34, 39, 61
\@restorepar 71
\@setpar 67
\@toodeep 32

A
array (package)

. 8, 10, 12, 13
\AtEndDocument 227

C
calc (package) 23
calligra (package) 9
\Collect@Body 178

E
\enddescription . 27, 28
\endenumerate . . . 24, 25
\endeqpminipage . . . 158
\enditemize 21, 22
\endlist 21,

22, 24, 25, 27, 28
environ (package) . 13, 19
environments:

eqminipage 153
list 30

\eqboxwidth 206
\eqframebox 185
\eqlrbox@i

. 182, 187, 192, 195

\eqlrbox@ii 197, 198, 200
\eqmakebox 180
\eqminipage 153
eqminipage (environ-

ment) 153
\eqminipage@i . 155, 159
\eqminipage@ii 161, 164
\eqminipage@iii 156,

162, 166, 167, 169
\eqminipage@iv 170
\eqp@compute@width

. 76, 151, 176, 204
\eqp@endings 20
\eqp@list@box

. 6, 43, 55, 69
\eqp@list@indent . .

8, 46, 47, 49, 51–54
\eqp@must@rerunfalse 4
\eqp@must@reruntrue

. . . . 4, 90, 97, 113
\eqp@par 64
\eqp@produce@box . .

. 109, 147, 170, 200
\eqp@restorefont 10, 66
\eqp@set@min@width

. . . . 111, 212, 221
\eqp@settowidth . . .

. . 17, 77, 219, 224
\eqp@storefont 10, 65, 66
\eqp@tabular@box . .

. 6, 19, 74
\eqp@taglist

. . 3, 106, 129, 271

\eqp@tempdima . 1, 94,
95, 99, 100, 108,
109, 117, 119,
122, 123, 239, 241

\eqp@tempdimb . . . 1,
77, 79, 80, 84,
85, 91, 92,
95, 96, 100,
101, 118–120,
123, 124, 240, 241

eqparbox (package) 1,
3, 4, 6, 8, 10, 12, 15

\eqparbox 132
\eqparbox@i . . 134, 137
\eqparbox@ii . 139, 142
\eqparbox@iii . . 135,

140, 144, 145, 147
\eqsavebox 190
\eqsetmaxwidth 214
\eqsetmaxwidthto . . 223
\eqsetminwidth 209
\eqsetminwidthto . . 218

F
\f@baselineskip 13
\f@encoding 12
\f@family 12
\f@series 12
\f@shape 12
\f@size 13
\fontsize 13
\framebox 187, 188

24

G
\g@addto@macro 22, 25, 28

H
\hspace 49, 51

I
\ifeqp@must@rerun 4, 273
\item 41
\itemindent 38, 54

L
\labelwidth 45, 46
\leftmargin 52
list (environment) . . 30

\listparindent 37

M
\makebox 182, 183
\makelabel 44

N
\newsavebox 6, 7

P
\PackageWarning . . . 233
\par 64
parallel (package) 8
\parbox 149

R
\RequirePackage . . . 5, 9
\rightmargin . . . 36, 53

S
\savebox 192, 193
\selectfont 14
\settowidth 74

U
\usefont 12

W
\write 245, 255, 263

25

	Motivation
	Usage
	Examples
	Figures and tables from previous sections
	Lists within tabulars
	Hanging indentation
	Justified, parallel text
	Combining l and p column properties in a tabular
	Centering a column of right-justified data

	Limitations
	Implementation
	Preliminaries
	Width calculation
	Author macros
	End-of-document processing

	Change History
	Index

