
ExPex
for linguists

Example formatting, glosses, and reference

(1) a. Maryi

Mary

ist

is

sicher,

sure

[dass

that

es

it

den

the-ACC

Hans

Hans

nicht

not

stören

annoy

würde

would

[seiner

his-DAT

Freundin

girlfriend-DAT

ihri

her-ACC

Herz

heart-ACC

auszuschütten

out to throw

]].

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

b. Maryi

Mary

ist

is

sicher,

sure

[dass

that

seiner

his-DAT

Freunden

girlfriend-DAT

ihri

her-ACC

Herz

heart-ACC

auszuchütten

out to throw

[dem

the-DAT

Hans

Hans

nicht

not

schaden

damage

würde

would

]].

‘Mary is sure that to reveal her heart to his girlfriend would not damage John.’

User’s Guide
John Frampton

j.frampton@neu.edu

January 2014

Version 5.0



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 LaTex/Tex cooperation . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Some preliminary examples . . . . . . . . . . . . . . . . . . . . . . . . 4

3 XKV parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Examples without parts . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Explicit example numbers; Formatting the example number . . . . . 13

5 Examples with labeled parts: Basics . . . . . . . . . . . . . . . . . . . 15

5.1 nopreamble . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Stipulated labels . . . . . . . . . . . . . . . . . . . . . . . . 18

6 More on examples, with and without labeled parts . . . . . . . . . . . . . 18

6.1 Anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Formatting the labels . . . . . . . . . . . . . . . . . . . . . . 19

6.3 Aligning the labels . . . . . . . . . . . . . . . . . . . . . . . 21

6.4 Relative versus fixed dimensions . . . . . . . . . . . . . . . . . 23

6.5 User designed labeling . . . . . . . . . . . . . . . . . . . . . 23

6.6 The parameter sampleexno . . . . . . . . . . . . . . . . . . . 25

6.7 IJAL style format of multiline examples . . . . . . . . . . . . . . 26

6.8 Footnotes and endnotes . . . . . . . . . . . . . . . . . . . . . 28

7 User defined styles . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Judgment marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Glosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9.2 Exceptional \gla items . . . . . . . . . . . . . . . . . . . . . 39

10 Nlevel glosses; an alternate coding syntax . . . . . . . . . . . . . . . . . 42

10.1 Parameters which modify particular lines . . . . . . . . . . . . . 44

10.2 \nogloss and the diacritics @ and + . . . . . . . . . . . . . . . 45

10.3 Line spacing inside glwords . . . . . . . . . . . . . . . . . . . 45

11 More about glosses . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.1 The parameter glwidth . . . . . . . . . . . . . . . . . . . . . 47

11.2 Comments and citations . . . . . . . . . . . . . . . . . . . . . 48

11.3 Line spacing in wrapped glosses . . . . . . . . . . . . . . . . . 49

12 Glosses; Special topics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

12.1 User defined levels . . . . . . . . . . . . . . . . . . . . . . . 51

12.2 Positioning the free translation to the right of the interlinear gloss . . 52



12.3 Glosses with a side panel . . . . . . . . . . . . . . . . . . . . 53

12.4 Cascading hanging indentation in glosses . . . . . . . . . . . . . 55

12.5 Gloss underfixes . . . . . . . . . . . . . . . . . . . . . . . . 56

12.6 Center alignment in glwords . . . . . . . . . . . . . . . . . . . 58

13 Referring to examples and labeled parts of examples . . . . . . . . . . . . 60

13.1 Unnamed reference . . . . . . . . . . . . . . . . . . . . . . . 60

13.2 Named reference . . . . . . . . . . . . . . . . . . . . . . . . 60

13.3 Proofing references . . . . . . . . . . . . . . . . . . . . . . . 62

13.4 The tag/reference file . . . . . . . . . . . . . . . . . . . . . . 62

13.5 References to references, references as values . . . . . . . . . . . 63

13.6 Extensions of the tag/reference mechanism . . . . . . . . . . . . 64

13.7 The parameter fullreformat . . . . . . . . . . . . . . . . . . 64

13.8 Reference to a part of a multipart example . . . . . . . . . . . . . 65

13.9 Support for the LaTex \label and \ref commands . . . . . . . . 66

14 Tables in examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14.1 Tables with labeled lines . . . . . . . . . . . . . . . . . . . . 68

14.2 Tagging implicit labels in tables . . . . . . . . . . . . . . . . . 69

14.3 Some useful table making tools . . . . . . . . . . . . . . . . . 70

14.4 Tables that can break between pages . . . . . . . . . . . . . . . 71

14.5 Squeezing tables into tight places . . . . . . . . . . . . . . . . 73

15 ExPex and PSTricks . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16 Control over page breaking inside examples . . . . . . . . . . . . . . . . 75

16.1 Discouraging page breaks in examples . . . . . . . . . . . . . . 76

16.2 Controlling where page breaks occur in examples (if they must) . . . 77

Index of control sequences, parameters, and special symbols . . . . . . . . . . . 78



1

1. Introduction

Many of the needs of linguists who wish to produce typographically attractive papers using Tex or

LaTex are not specific to linguistic papers. There are therefore many macro packages which deal

with tables of contents, references, section headings, font selection, indexing, etc. But linguistics

does have some special typographic needs. I addressed two of these with the macro packages

PST-JTree and PST-ASR , which typeset syntactic trees and autosegmental representations. ExPex

addresses the main remaining special Tex need in linguistics: formatting examples, examples with

multiple parts, glosses, and the like, and referring to examples and parts of examples. The name

comes from the two central macros, \ex and \pex, used to typeset examples and examples with

labeled parts.

PST-JTree and PST-ASR rely heavily on Hendri Adriaens’ XKeyVal package, which has

become the standard for PSTricks based macro packages. Although ExPex is not based on

PSTricks, it does handle parameterization the same way that PST-JTree and PST-ASR do. When

expex.tex is loaded, it immediately checks to see whether xkeyval.tex has already been loaded. If

not, it does so.

The goal in writing a macro package for general use is to make it simple to use if only simple

things need to be done, but powerful enough so that users who have complex needs can get those

needs satisfied if they are willing to deal with the complexities that complex needs inevitably

involve. If you think there are simple things that are not simple to do, or complex things that

cannot be done, please write to me at j.frampton@neu.edu. The ExPex macros have evolved over

the last 15 or so years and like anything which evolves, various features of the current state may

have more to do with history than with optimal design. Please let me know about departures from

optimal design. Perhaps the next version can be improved.

This User’s Guide begins with four examples which demonstrate ExPex in action. It serves

as a “A Quick Guide to Expex”. Each page gives some code at the top, with the product of this

code below. Its main purpose is to give a sense of how ExPex works, so that curious readers have

some basis for determining whether they want to proceed with the details. It is possible to begin

to use ExPex solely on the basis of the four demo pages and learn the more subtle capabilities as

needed. A quick survey of the index and the table of contents should give you some idea of what

is available, if you need it.

1.1. Changes

The most recent previous version of ExPex is version 4.1d. That version will still be available on

CTAN, zipped as expex41d.zip. Aside from bug fixes, the changes in this version are:

1. The gloss parameter abovemoreglskip has been deprecated (declared obsolete and slated to

be eliminated) for some time. It has now been removed from ExPex. The function it served

is now served in a more general way by extraglskip.

2. An entirely new way of coding glosses, called the nlevel style has been introduced. See

Section 10 for the many details. This style makes it much easier to keep track of words and

their associated glosses, particularly when long glosses need to be typeset.

3. A new way is introduced for including unglossed items (brackets, for instance) among the

items which are glossed. The exceptional gloss items ‘[’ and ‘]’ are now deprecated as

exceptional gloss items. Consequentially, the parameters everybrack, glbrackwordsep,

and glbrackbracksep have also been deprecated. All these deprecated items will be

removed from ExPex at some time in the future.



2

4. Control over vertical spacing in glosses has been streamlined. Two little used parameters

autoglskip (which was rarely used outside the default setting) and gllineskip have been

eliminated. Their functions have been taken over by extraglskip and strut insertion. It

is possible that this may create some problems with backwards compatibility. If there are

problems, either use Version 4.1d or contact me directly to see if there is an easy solution to

the problem.

5. Glosses now break over pages, provided they are full width.

6. Center alignment is now an option for glosses. Glosses of words can be centered under the

word they gloss.

7. ExPex example numbering is now compatible with the LaTex \includeonly mechanism.

1.2. LaTex/Tex cooperation

ExPex is designed to be used by either Plain Tex or LaTex users. LaTex users need to say

\usepackage{expex} and Tex users \input expex. All of the code for the examples in this

documentation should run equally well in either system, subject to the notes below.

1.2.1 Note to LaTex users

\it (now a deprecated LaTex command) is used in a few places. In case ExPex detects that LaTex

is being used, it executes \let\it=\itshape.

1.2.2 Note to Tex users

Three macros are used in the examples in this documentation which are defined in LaTex but not

in Plain Tex: \footnotesize, \sc, and \textsc. Assuming, for example, that text is set in 10pt

computer modern, the following would suffice for all the examples in this documentation.

\font\eightrm=cmr8

\font\eightit=cmti8

\def\footnotesize{\eightrm \let\it=\eightit \baselineskip=9pt}

\font\tensc=cmcsc10

\let\sc=\tensc

\def\textsc#1{{\sc #1}}

Most Plain Tex users will have other fonts and much more general size changing macros

at their disposal. The code above is barely sufficient to handle the examples in this is docu-

mentation, but it will do the job. For what it is worth, this documentation was typeset using

Plain Tex. \twelvepoint and \tenpoint were defined modeled on pages 414–415 in the

TeXbook and \let\footnotesize=\tenpoint was executed to define \footnotesize. The

running text is 12pt. \sc was defined by \font\twelvesc=cmcsc10 scaled\magstep11 and

\let\sc=\twelvesc2.

1. cmcsc10 scaled was used rather than cmcsc12 because Postscript fonts for cmcsc10 are more readily available than

those for cmcsc12.

2. Small caps are used only in text size



3

1.3. Acknowledgements

Many participants in the Ling-Tex discussion group have contributed to the development of ExPex,

either by posing good questions, solving problems, or providing informed discussion of desirable

features. In particular, I thank Stephen Anderson, Mario Bisiada, Noah Constant, James Crippen,

Alexis Dimitriadis, Claude Dionne, Kevin Donnely, Antonio Fortin, Jeremy Hammond, Daniel

Harbor, Joshua Jensen, Don Killian, Joost Kremers, John Lyon, Alan Munn, Christos Vlachos,

and Natalie Weber.



4

2. Some preliminary examples

1. Examples and examples with parts

Example (\nextx) is well-known from the literature on parasitic

gaps. Here we are concerned with example formatting, not with the

interesting syntax.

\ex

I wonder which article John filed {\sl t\/} without reading {\sl e}.

\xe

It is beyond the scope of this investigation to determine exactly why

John did not read the article.

Multipart examples are equally straightforward.

\pex Two examples of parasitic gaps.

\a He is the man that John did not interview {\sl e\/} before

he gave the job to {\sl e}.

\a He is someone who John expected {\sl e\/} to be successful

though believing {\sl e\/} to be incompetent.

\xe

Here, we can speculate on why John did not do an interview before

recommending the person for a job. It is likely that the person

was a crony of John. In (\lastx b), perhaps John knew that

the ‘‘someone’’ went to prep school with the owner of the

business.

Example (2) is well-known from the literature on parasitic gaps. Here we are concerned with

example formatting, not with the interesting syntax.

(2) I wonder which article John filed t without reading e.

It is beyond the scope of this investigation to determine exactly why John did not read the article.

Multipart examples are equally straightforward.

(3) Two examples of parasitic gaps.

a. He is the man that John did not interview e before he gave the job to e.

b. He is someone who John expected e to be successful though believing e to be incompetent.

Here, we can speculate on why John did not do an interview before recommending the person

for a job. It is likely that the person was a crony of John. In (3b), perhaps John knew that the

“someone” went to prep school with the owner of the business.



5

2. Named reference

If examples and parts of examples are tagged, they can be

referred to by name.

\pex<pg>

\a This is the man that John interviewed {\sl e\/} before

telling you that you should give the job to˜{\sl e}.

\a<A> This is someone who John expected {\sl e\/} to be successful

though believing {\sl e\/} to be incompetent.

\xe

Now, names can be used. The name/reference pairs can be written

to a file, making forward reference possible and backwards

reference at a distance reliable. You can refer to part

\getref{pg.A} of example (\getref{pg}), or (\getfullref{pg.A}).

If you use a tag that has not been defined, {\sl ExPex\/} will

let you know. If you try to reference a name which has no

reference, \getref{pg.B} for example, a warning will be issued

and the (bracketed) tag printed as shown at the beginning of this

sentence. If you try to tag a part of an example which has no

tag, {\sl ExPex\/} will let you know about that as well.

If examples and parts of examples are tagged, they can be referred to by name.

(4) a. This is the man that John interviewed e before telling you that you should give the job

to e.

b. This is someone who John expected e to be successful though believing e to be

incompetent.

Now, names can be used. The name/reference pairs can be written to a file, making forward

reference possible and backwards reference at a distance reliable. You can refer to part b of

example (4), or (4b).

If you use a tag that has not been defined, ExPex will let you know. If you try to reference a

name which has no reference, [pg.B] for example, a warning will be issued and the (bracketed)

tag printed as shown at the beginning of this sentence. If you try to tag a part of an example which

has no tag, ExPex will let you know about that as well.



6

3. Glosses

\ex

\begingl

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren

w\"urde seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would

his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc} heart-{\sc acc} {out to

throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her

heart to his girlfriend.’//

\endgl

\xe

(5) Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

Glossing can be done in two different coding styles. Either of the following produce the gloss

display below.

\ex

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk//

\glb Cl V Agr Neg Agr Tns Agr//

\glc 2 see {\sc 3acc} {} {\sc 2pl}

preterit {\sc 3pl}//

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

\ex

\begingl[glstyle=nlevel]

k-[Cl/2]

wapm[V/see]

-a[Agr/\sc 3acc]

-s’i[Neg]

-m[Agr/\sc 2pl]

-wapunin[Tns/preterit]

-uk[Agr/\sc 3pl]

\glft ‘you (pl) didn’t

see them’

\endgl

\xe

(6) k-

Cl

2

wapm

V

see

-a

Agr

3acc

-s’i

Neg

-m

Agr

2pl

-wapunin

Tns

preterit

-uk

Agr

3pl

‘you (pl) didn’t see them’



7

4. Parameters

\pex[interpartskip=3ex]

\a

\begingl

\gla pwa- min -kwa -pun//

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\a

\begingl[everygl=\openup.5ex,everygla=,everyglb=,

everyglft=\it,aboveglftskip=1.5ex]

\gla pwa- min -kwa -pun//

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\a

\begingl[everygl=,everygla=\bf,everyglb=\it,

everyglft=,aboveglftskip=0pt]

\gla pwa- min -kwa -pun //

\glb Neg V Agr Tns //

\glc {} give 2pl{\sc nom}.3pl{\sc acc} preterit //

\glft ‘you (pl) didn’t give them (something)’//

\endgl

\xe

(7) a. pwa-

Neg

min

V

give

-kwa

Agr

2plnom.3placc

-pun

Tns

preterit

‘you (pl) didn’t give them (something)’

b. pwa-

Neg

min

V

give

-kwa

Agr

2plnom.3placc

-pun

Tns

preterit

‘you (pl) didn’t give them (something)’

c. pwa-

Neg

min

V

give

-kwa

Agr

2plnom.3placc

-pun

Tns

preterit

‘you (pl) didn’t give them (something)’



8

3. XKV parameterization

Macro: \lingset

(Here and in following sections and subsections, an inventory of the macros, parameters, and

count registers which are described in what follows appears at the beginning of the section. “What

follows” refers to the text up to the next section or subsection heading.)

The key-value approach to parameter setting in Tex, which originated with David Carlisle’s

keyval package, is illustrated by the key textoffset. ExPex makes the distance from the

example number to the text equal to value associated with this key. Executing the command

\lingset{textoffset=1.3em}

results in the definition (or redefinition) of the macro \lingtextoffset so that it expands to

the value 1.3em. The macro \ex, which is used to typeset examples without labeled parts,

uses \lingtextoffset. But ExPex users never have to concern themselves with the macro

\lingtextoffset. If they are not satisfied with the default spacing, they simply have to know

that textoffset is the key for setting the distance from example number to the text.

The argument of \lingset can be a comma separated sequence of key/value pairs. The

syntax is:

\lingset{key1=value1, . . . ,keyn=valuen}

The comma separated key/value pairs are processed sequentially, from left to right. If a value

contains a comma, it must be hidden from the mechanism which parses the list by putting the

value in braces. The braces are removed by the parser.

Many ExPex macros take an optional argument, delimited by brackets, which is passed to

\lingset. \ex, for example, takes an optional argument. You might say, for example,

\ex[textoffset=1.4em,aboveexskip=0pt]

The argument of \ex will be passed to \lingset and the result evaluated, so that the example

will be typeset with these parameter settings. This is carried out inside a group, so the global

settings of the parameters are not affected. As we will see later, aboveexskip=0pt will cause

the example to be typeset with no vertical skip above it. This is sometimes useful in avoiding

exaggerated spacing when an example directly follows another one, with no intervening text.

ExPex has various kinds of keys. The distinctions depend on the effect of executing (8) and

the restrictions on the possible values which can appear.

(8) \lingset{key=value}

Command key: After (8) is executed, the macro \lingkey or \ling@key expands to value. It will

be made clear when the key is introduced whether it is \lingkey or \ling@key that is defined.3

Incremental dimension parameter: value must be a dimension or a dimension prefixed by !.

If value is a dimension, it is stored in \lingkey. If it is a !-prefixed dimension, the prefixed

dimension is added to its former dimension and the result stored in \lingkey. There must be

3. If there was a significant chance that some users might want easy access to the macro value, \lingkey, with no @

in the macro name, was used.



9

a dimension to increment, so a fatal error results if \lingkey does not expand to a dimension.

Incremental parameters are very useful if a minor adjustment to the format in a particular example

is desired. There are incremental skip parameters as well, which operate in an entirely parallel

manner.

In the case of command and incremental keys, the notation Val(key) is used to indicate

the value of the key. So, for example, Val(textoffset) is the value associated with the key

textoffset.

Pseudo parameter: (8) is executed for its side effects. A value is not stored. The key samplelabel

illustrates this. When \lingset{samplelabel=A.} is executed, no ExPex macro which expands

to value is defined. Instead, the parameter labelwidth is set to the width of “A.” in the current

font.

Choice parameter: Choice parameters are a kind of pseudo parameter. The value which is

assigned must be drawn from a prescribed list. ExPex choice parameters do not store value when

(8) is executed; the purpose of executing (8) is the side effects which are coded into the definition

of the key.

The parameter labelalign illustrates this. \lingset{labelalign=value} is valid only

if value is one of left, center, or right. A fatal error results otherwise. The effect is to

appropriately define the macro \@labelprint which is used to typeset the labels of subparts in

multipart examples.

When XKV keys are defined, they can be given default values, as part of their definitions. If a

key foo, for example, is given the default value 2pt, then executing \lingset{foo} is equivalent

to executing \lingset{foo=2pt}. Only a few ExPex keys have default values in the XKV sense,

but most are set to an initial value in expex.tex. This initial value will sometimes be called the

default setting of the key, even though the key does not have a default setting in the XKV sense.



10

4. Examples without parts

Sections will usually begin with an inventory of the parameters and user friendly macros and

registers that are introduced in the section, The initial settings of parameters will be given if they

are relevant. Pseudo parameters are set for their immediate effect, not to store a setting associated

with the parameter, so the initial setting of pseudo parameters is not relevant. \ex˜[] above

should be taken to mean that the macro \ex will be described, that it is optionally modified by a

following diacritical tilde ˜ (as described below), and that it optionally takes an argument. The

text will describe what arguments are permitted. A † superscript on a parameter key in these

inventories indicates a parameter whose value is accessible by the macro \lingkey. A (!) prefix

on “dimension” or “skip” indicates that the parameter is incrementable, by a dimension or a skip

as the case may be.

Macros: \ex˜[], \xe

Counter: \excnt

Parameters:

key value initial value

numoffset† (!)dimension 0pt

textoffset† (!)dimension 1em

aboveexskip† (!)skip 2.7ex plus .4ex minus .4ex

belowexskip† (!)skip 2.7ex plus .4ex minus .4ex

exskip skip (pseudo-parameter)

\ex constructions are terminated by \xe. The following sample paragraph illustrates the use of

\ex . . . \xe. The convention in this manual is that text, as it would appear in a document, is

displayed in a framed box, usually with the code immediately following or preceding. The code

assumes that the initial parameter settings are in effect at the point that the code is executed.

The following example is well-known from the literature on parasitic gaps. Here we are concerned

with example formatting, not with the interesting syntax.

(9) I wonder which article John filed t without reading e.

Various aspects of the format are controlled by parameters, which can be set either globally or via

an optional argument.

The following example is well-known from the literature on

parasitic gaps. Here we are concerned with example formatting,

not with the interesting syntax.

\ex

I wonder which article John filed {\sl t\/} without reading {\sl e}.

\xe



11

\noindent Various aspects of the format are controlled by

parameters, which can be set either globally or via an optional

argument.

Those users who try to save virtual paper can equally use:

The following example is well-known from the literature on

parasitic gaps. Here we are concerned with example formatting,

not with the interesting syntax.\ex I wonder which article John

filed {\sl t\/} without reading {\sl e}.\xe Various aspects of

the format are controlled by parameters, which can be set either

globally or via an optional argument.

With different parameter settings, we get:

The following example is well-known from the literature on parasitic gaps. Here we are concerned

with example formatting, not with the interesting syntax.

(11) I wonder which article John filed t without reading e.

Various aspects of the format are controlled by parameters, which can be set either globally or via

an optional argument.

The following example is well-known from the literature on

parasitic gaps. Here we are concerned with example formatting,

not with the interesting syntax.

\ex[numoffset=2em,textoffset=.5em,aboveexskip=1ex,belowexskip=1ex]

I wonder which article John filed {\sl t\/} without reading {\sl e}.

\xe

\noindent Various aspects of the format are controlled by

parameters, which can be set either globally or via an optional

argument.

The horizontal dimensions are illustrated below. numoffset is measured from the left

margin.

numoffset

(23)

textoffset

This is the example text.

Example numbering is automatic. The count is kept in \excnt. It is incremented when \ex is

expanded, before the number is typeset. \excnt will therefore always give the count of the next

example. Note that this means that inside \ex. . . \xe, \excnt does not give the count of the

current example. Vertical skip is inserted before and after examples, of amounts determined by

Val(aboveexskip) and Val(belowexskip).



12

Inside \ex constructions, the example text is wrapped as ordinary text, with \leftskip

set by \ex. Since \ex sets \leftskip and relies on this setting, changes in \leftskip inside

\ex . . . \xe must be made with care, but can be made after the first paragraph (i.e. after the first

explicit or implicit \par).

(13) Und hier können wir sehen was für Unfug wird gemacht wenn er einen ganz langen Satz

binnen kriegt.

(14) α governs β if α = X0 (in the sense of X-bar theory), α c-commands β, and β is not protected

by a maximal projection.

The code which was used to typeset the pair of examples above has two useful features which

are worth highlighting.

\ex

Und hier k\"onnen wir sehen was f\"ur Unfug wird gemacht

wenn er einen ganz langen Satz binnen kriegt.\par\nobreak

\xe

\ex[aboveexskip=0pt]

$\alpha$ {\it governs\/} $\beta$ if $\alpha=Xˆ0$ (in the

sense of X-bar theory), $\alpha$ c-commands $\beta$, and $\beta$

is not protected by a maximal projection.

\xe

\par\nobreak is used to illustrate how a page break between two consecutive examples can be

suppressed. This is sometimes desirable. \par puts Tex in the mode of adding lines to the page,

and \nobreak tells Tex to avoid a break (which is a page break when Tex is in the mode of adding

lines), essentially until after more text is added to the page. aboveexskip=0pt is used in the

second example to avoid double spacing between the examples. Otherwise vertical skip would be

added both below the first example and above the second example.

Since the need to suppress vertical skip above examples arises with some frequency, a

shortcut is made available to accomplish this. Simply say \ex˜. Tilde modification of \ex can be

used with parameters; \ex˜[. . . ] will be interpreted correctly.

exskip is a pseudo parameter which can be used to simultaneously set both aboveexskip

and belowexskip. The effect of \lingset{exskip=value} is

\lingset{aboveexskip=value,belowexskip=value}



13

4.1. Explicit example numbers; Formatting the example number

Parameters:

key value initial value

exno token list (pseudo parameter)

exnoformat token list of the form . . . X . . . (X)

exnotype arabic, chapter.arabic, or roman arabic

4.1.1 exno and exnoformat

Suppose that you want to repeat an example that was given earlier in your document. Something

like.

(15) This is a crucial example.

It is clear that this example is related to the earlier example (5), which is repeated below.

(5) This is an example that was given many pages earlier.

If we are on the right track, as the saying goes, we expect the next example to be grammatical. But

it is not.

(16) * . . .

\ex This is a crucial example.\xe

It is clear that this example is related to the earlier

example (14), which is repeated below.

\ex[exno=14]

This is an example that was given many pages earlier.\xe

If we are on the right track, as the saying goes,

we expect the next example to be grammatical. But it is not.

\ex * \dots\xe

excnt is not incremented if the example number is supplied by exno.

exno does not have to be set to an integer, as shown below.

\ex[exno=$\Delta$] Earlier example.\xe

(∆) Earlier example.

Sometimes, it is desirable to have an alternative to the standard formatting of example

numbers with parentheses.



14

\ex[exno={[14, repeated]},exnoformat=X] Earlier example.\xe

[14, repeated] Earlier example.

Note the use of braces to hide the comma in the setting of exno. Otherwise, the key-value parser

would get confused, interpreting [14 as the setting of exno and reporting that repeated is an

undefined key. The initial setting of exnoformat is (X), so this parameter must be reset to

prevent putting parentheses around the special exno. The label formatting mechanism is primitive.

labelformat must be of the form

〈balanced text〉 X 〈balanced text〉

The pre-X text is inserted before the label (including the material specified by everypar) and the

post-X text is inserted after the label. The balanced text cannot contain the character X. Balanced

text is a string of tokens with properly nested (explicit) braces. No error checking is done to ensure

that the format specification has the required form, so be careful. An error might lead to very

obscure error messages.

Note that

\ex[exno={14, repeated},exnoformat={[X]}] Earlier example.\xe

and

\ex[exno={[14, repeated]},exnoformat=X] Earlier example.\xe

give the same result. Note also that the brackets in key values are hidden inside braces.

Section (13.2) will show how to name example numbers, so that exno can be set by giving

the name of an example number.

4.1.2 exnotype

In articles it is usual to number examples using consecutive arabic numerals. Setting exnotype

to arabic accomplishes this. Footnotes generally use consecutive roman numerals (i), (ii), etc.,

requiring exnotype to be set to roman. See Section 6.8 for numbering in footnotes.

Some books number examples using consecutive arabic numerals, restarted at 1 in each

chapter, with the chapter number as a prefix. So (5.6), for example, would be the (6) example in

chapter 5. Setting exnotype to chapter.arabic accomplishes this, provided that the \chapter

macro which is employed cooperates and that the macro \thechapter produces the chapter

number. Minor surgery on the \chapter macro in LaTex classes which provide chapters is

necessary. It must be modified so that \excnt is reset to 1 at the start of each chapter. The file

epltxchapno.sty which is provided in this distribution provides a modification which works with

book.cls, scrbook.cls, report.cls, and memoir.cls.



15

5. Examples with labeled parts: Basics

Counter: \pexcnt

Macros: \pex [], \a[]

Parameters:

key value initial value

labeltype name of a key-value list alpha

labeloffset† (!)dimension 1em

labelwidth† (!)dimension .72em

preambleoffset† (!)dimension 1em

interpartskip† (!)skip 1ex plus .2ex minus .2ex

belowgpreambleskip† (!)skip 1ex plus .2ex minus .2ex

samplelabel token list (pseudo-parameter)

Typical examples are given below, with the initial parameter settings.

(17) a. This is the first example.

b. This is the second example.

(18) Multipart examples often have a title or preamble of some kind.

a. This is the first example.

b. This is the second example.

\pex

\a This is the first example.

\a This is the second example.

\xe

\pex˜ Multipart examples often have a title or preamble of some kind.

\a This is the first example.

\a This is the second example.

\xe

Just like \ex, \pex must be closed by \xe, can be modified by a tilde diacritic to suppress adding

vertical space above the example, and accepts parameters. The macro \a, which introduces each

labeled part, is defined only within \pex . . . \xe. It accepts certain parameters. Extra vertical

skip (set by interpartskip) is inserted between the parts; and extra vertical skip (determined

by belowpreambleskip) is inserted between the preamble and the first part. The preamble is the

visible material, if any, that appears after the example number and before the first part.

The horizontal dimensions are parameterized as pictured below, provided that the anchoring

parameters have their initial values. The parameters numoffset and textoffset are used in



16

both \ex and \pex constructions. The effects of changing the settings of the anchoring parameters

(labelanchor and textanchor) will be considered in Section 6.1.

(24) a. This is an example.

numoffset labeloffset textoffset

labelwidth

Adjustment for the width of the example number is automatic, but the width of the label slot is

a parameter setting, not adjusted to the width of the particular label which appears in the label

slot. The initial setting of labelwidth is the width of “a.” at the point that the default setting is

established. This does not automatically change if the font is changed, in a footnote for example.

It can be set by the user explicitly by setting labelwidth to the desired dimension, or as an

incremental change to its previous value (labelwidth=!3pt, for example, increases the width of

the label slot by 3pt). It can also be set indirectly by giving a sample label. labelwidth is then

set to the current width of that sample. ExPex sets the default label width by samplelabel=a..

ExPex comes with three label types predefined: alpha, caps, numeric, and roman.

\pex[labeltype=alpha]

\a First part.

\a Second part.

\xe

(19) a. First part.

b. Second part.

\pex[labeltype=caps]

\a First part.

\a Second part.

\xe

(20) A. First part.

B. Second part.

\pex[labeltype=numeric]

\a First part.

\a Second part.

\xe

(21) 1. First part.

2. Second part.

\pex[labeltype=roman]

\a First part.

\a Second part.

\xe

(22) (i) First part.

(ii) Second part.

This kind of labeling is common in footnotes.

Section 6 will detail all the parameters relevant to the label types and how additional label

types can be defined by the user.



17

5.1. nopreamble

Parameter:

key value initial value default value

nopreamble boolean (not relevant) true

In order to properly format examples with parts, there are various reasons that \pex must be

able to figure out whether or not there is a preamble. One reason is fairly obvious. If there is a

preamble, every part introduced by \a must start on a new line, otherwise only parts after the first

part start a new line. \pex tries to figure it out without help. If \a directly follows \pex(˜)([. . . ])

and perhaps a following space, \pex knows there is no preamble and acts accordingly. There are

a few other following tokens, considered later in this manual, that \pex also knows are not signals

that there is a preamble. But \pex’s preamble detection abilities are primitive. The following, for

example, will confuse \pex.

\pex \it

\a first

\a second

\xe

(23)

a. first

b. second

The \it command is interpreted as a preamble.

\pex needs some guidance in this case. It is provided by the parameter nopreamble.

\pex[nopreamble=true] \it

\a first

\a second

\xe

(24) a. first

b. second

In fact, it is a little simpler than this. XKV parametrization allows one to stipulate a default

value for each key that is defined. If the key is given to the parameter setting machinery with no

value, then the key is set to the default value. nopreamble has the default value true. So the

following is sufficient.

\pex[nopreamble] \it

\a first

\a second

\xe

(25) a. first

b. second

The global setting of nopreamble is irrelevant to \pex, which always assumes there is a

preamble unless it sees an immediately following \a or \pex or is told directly that there is no

preamble. In the following, for example, the setting of nopreamble outside \pex has no effect.

\lingset{nopreamble=true}

\pex \it

\a first

\a second

\xe

(26)

a. first

b. second



18

5.2. Stipulated labels

Parameter:

key value initial value

label token list {}

label is recognized as a key only by the \a macro. If label=value is passed to \a, that value is

inserted as the label, ignoring automatic label generation.

\pex[exno=47]

\a[label=b]

\a[label=d]

\a[label=g]

\xe

(47) b.

d.

g.

Besides label, the only other key that \a recognizes is tag. See Section 13.2.

6. More on examples, with and without labeled parts

In this section, we take up complications and fine points. Users should ignore it until they face a

problem that the earlier sections do not deal with.

6.1. Anchoring

Parameters:

key value initial value

labelanchor numright, numleft, or margin numright

preambleanchor numright, labelleft, or text numright

textanchor numleft or normal normal

Initially, the left edge of the label slot is determined by its offset from the right edge of the number,

the left edge of the preamble is also determined by its offset from the left edge of the number, and

the left edge of the text is determined by its offset from the right edge of the label slot. But the

“anchor” for an offset is parametrized. In the example below, it is useful to anchor the labeloffset

at the left edge of the example number.

\pex[exno={[47, partially repeated from

p. 32]},labelanchor=numleft,

exnoformat=X,labeloffset=1.5em]

\par

\a[label=b] first

\a[label=d] second

\a[label=g] third

\xe

[47, partially repeated from p. 32]

b. first

d. second

g. third



19

Braces are needed in the specification of the value of exno, otherwise \pex would think that the

key exno was set to the value [47 and try to set the key partially repeated from p. 32 to

its default value. exnoformat is set to X so that parentheses are not put around the special exno.

The following would work equally well:

\pex[exno={47, partially repeated from

p. 32},labelanchor=numleft,exnoformat={[X]},

labeloffset=1.5em]
...

Braces are needed around [X] so that the mechanism that reads the optional argument of \pex

does not interpret the right bracket as the right delimiter of the optional argument.

The normal setting of textanchor anchors the text at the right edge of the number for \ex

constructions and the right edge of the label slot for \pex constructions.

Here is another example:

\lingset{textanchor=numleft,

labelanchor=numleft,

labeloffset=.35in,

textoffset=.7in}

\pex[exno=9]

\a first

\a second

\xe

\bigskip

\pex[exno=10]

\a first

\a[label=aa] second

\xe

(9) a. first

b. second

(10) a. first

aa. second

Some publications demand this style, in which both the label and text offsets are measured from

the left edge of the number, or from the margin. It is a relic of typewriter days with mechanical

tabs.

6.2. Formatting the labels

Parameters:

key value initial value

everylabel token list {}

labelformat . . . A . . . A.

The token list everylabel is inserted just before labels are typeset. It is grouped so that it affects

only the label. The main use is to set the font used for the labels if it differs from the font in the

running text. For example:



20

\pex[everylabel=\it]

\a one

\a two

\xe

(27) a. one

b. two

There are other uses aside from setting the label font.

\pex[everylabel=A,labeltype=numeric,

samplelabel=A1.]

\a An example

\a An example

\a An example

\xe

(28) A1. An example

A2. An example

A3. An example

The effect of the value of labelformat is illustrated in (29).

\pex[labelformat=$\langle$A$\rangle$,

samplelabel=$\langle$a$\rangle$]

\a first

\a second

\xe

(29) 〈a〉 first

〈b〉 second

The example above is fanciful, but one sometimes sees examples in the format below.

\pex[exnoformat=X.,labeltype=roman,

labelformat=(A),samplelabel=(iii)]

\a first

\a second

\a third

\a fourth

\xe

30. (i) first

(ii) second

(iii) third

(iv) fourth

Like the example number formatting mechanism, the label formatting mechanism is primitive.

labelformat must be of the form

〈balanced text〉 A 〈balanced text〉

The pre-A text is inserted before the label (including the material specified by everylabel)

and the post-A text is inserted after the label. The balanced text cannot contain the character A.

Balanced text is a string of tokens with properly nested (explicit) braces. No error checking is

done to ensure that the format specification has the required form, so be careful. An error might

lead to very obscure error messages.

There is some redundancy. The following is an alternate way to get the effect in (27) using

labelformat instead of everylabel.

\pex[labelformat=\it A.]

\a one

\a two

\xe

(31) a. one

b. two

Another style sometimes found in footnotes is like the one in (30), except that the labels are

right aligned in the label slot.



21

6.3. Aligning the labels

Parameters:

key value initial value

labelalign left, right, or margin left

There is a choice of left, right, or center alignment of the labels in the label slot. This is chosen by

the parameter labelalign, which can be set to left, center, or right. For example,

\pex[exno=43,labeltype=roman,

labelformat=(A),labelalign=right,

samplelabel=(iii)]

\a first

\a second

\a third

\a fourth

\xe

(43) (i) first

(ii) second

(iii) third

(iv) fourth

This style looks odd to me, but this is the style for multipart examples in the main text in

Chomsky’s Lectures on Government and Binding. In footnotes, the style is:

\pex[exno=i,labeltype=alpha,

samplelabel=(a),labelformat=(A)]

\a first

\a second

\a third

\a fourth

\xe

(i) (a) first

(b) second

(c) third

(d) fourth

If you look carefully, the vertical column of parts labels in the last example looks somewhat

ragged because the width of “(b)” is slightly larger than the width of “(c)”. Center alignment of

the labels gives a neater appearance.

\pex[exno=i,labeltype=alpha,

samplelabel=(a),labelformat=(A),

labelalign=center]

\a first

\a second

\a third

\a fourth

\xe

(i) (a) first

(b) second

(c) third

(d) fourth

For more ordinary \pex constructions which use the letters or numbers which have roughly

the same width, label alignment is not a significant concern. But if labels include, for example, the

narrow letter “i” and the wide letter “m”, as below, label alignment has a noticeable effect on the

appearance. Individual tastes (and publisher’s demands) may differ, but I prefer center alignment

in these cases.



22

(32) left aligned labels

i. A typical example.

j. A typical example.

k. A typical example.

l. A typical example.

m. A typical example.

n. A typical example.

(33) center aligned labels

i. A typical example.

j. A typical example.

k. A typical example.

l. A typical example.

m. A typical example.

n. A typical example.

(34) right aligned labels

i. A typical example.

j. A typical example.

k. A typical example.

l. A typical example.

m. A typical example.

n. A typical example.

If the labels are numeric, label alignment can have an even bigger effect. Again, individual

tastes and publishers’ demands may differ. My preference is right alignment in this case.

(35) left aligned labels

7. A typical example.

8. A typical example.

9. A typical example.

10. A typical example.

11. A typical example.

12. A typical example.

(36) center aligned labels

7. A typical example.

8. A typical example.

9. A typical example.

10. A typical example.

11. A typical example.

12. A typical example.

(37) right aligned labels

7. A typical example.

8. A typical example.

9. A typical example.

10. A typical example.

11. A typical example.

12. A typical example.

The initial setting is left alignment for letters (either uppercase or lowercase) and right

alignment for numbers. Unless numbers or letters of significantly different widths appear as labels,

most users will not notice the difference and can safely ignore the issue.

It is a side issue, but the reader may have wondered how (32–34) and (35–37) were typeset.

The idea is simple. You say:

\line{\divide\hsize by 3

\vbox{\pex . . . \xe}\hss

\vbox{\pex . . . \xe}\hss

\vbox{\pex . . . \xe}}

\hss is used to give a little stretch or shrink so that dimensional rounding does not lead to an

under or overfull \line{ . . . }. It is important in examples like this that \pexcnt is incremented

globally, so that the latter vboxes see the \excnt which results from an operation inside a previous

vbox. We will see later that in some situations this behaviour is not desirable and how it can be

altered.

Variations are useful. One can easily imagine a situation in which something like the

following is appropriate for two side by side examples.

\line{%

\vbox{\hsize=.55\hsize \pex . . . \xe}\hss

\vbox{\hsize=.45\hsize \pex . . . \xe}}



23

6.4. Relative versus fixed dimensions

Tex has two kinds of dimensional units. Dimensions specified in term of “pts”, “inches”, “cm”,

etc. are fixed. Dimensions specified in terms of the units “em” or “ex” are relative to the particular

text font that is current. Historically, an em is the width of a capital M and an ex is the height of

a lowercase x. This is still more or less true, but each font is free to specify the equivalents in

any way that it sees fit. The difference has important implications for parameter setting. A value

specified in terms of em or ex units can be used without change in both the main text and footnotes,

for example. If we set textoffset=1em at the beginning of a document, the proportions will stay

the same whether we used 10pt or 12pt type, or 8 or 9 pt type in footnotes. If the document is

set in 12pt type, and 1em is specified to be 12pt in that main text font, it makes no difference for

typesetting in the main text font whether we set textoffset=1em or textoffset=12pt. But it

does make a difference in sections of the document where a font with a different em dimension is

used. If we switch to a font with a 10pt em unit, then the first specification will give a physical

offset of 10pt, but the second will give a physical offset of 12pt.

When a dimension or skip parameter is reset by incrementing the old value, the new value is

specified as a fixed dimension, which will not scale with font changes. The same is true of setting

lengths indirectly by setting labelwidth or exnowidth. Adjusting a parameter by incrementing

the old value, or using samplelabel or exnowidth to set the width of the label slot or the

effective width of the example number, should only be used to make local adjustments, not at a

level which has font size changes in its scope. For this reason, expex.tex specifies the label width

in the label type alpha by labelwidth=.72em, not by samplelabel=a..4 Setting labelwidth

via the second method would only be satisfactory if the font in force at the points that \pex is used

is the same as the font in force when expex.tex is input and the alpha style defined.

6.5. User designed labeling

Macro: \definelabeltype

Counter: \pexcnt

Parameters:

key value initial value

labelgen char, number, romannumber, or list char

pexcnt integer 97

labellist comma separated list {}

If labeltype is set to alpha, the counter \pexcnt is set to 97, the character code of lowercase

a in standard roman font sets, and labelgen is set to char. The successive labels are generated

by taking the character corresponding to \pexcnt and stepping the counter by 1. This relies on

the fact that the alphabetical sequence of characters corresponds to the numerical order of the

character codes of the characters. Setting labeltype to caps is almost the same, except that

\pexcnt is initialized to 65, the character code of uppercase A. If labeltype is set to numeric,

4. In the font that I happen to be using to write this section, the alphabetical labels (including the period) a–d have

widths varying from .694em to .75em; the capital labels A–D have widths varying from .917em to .972em; and the

integer labels for 1 to 9 all have width .75em. The label width settings for the label types alpha (.72em) and caps

(.94em) are good compromises.



24

labelgen is set to number and \pexcnt is initialized to 1. The labels are generated by taking

the number corresponding to the value of \pexcnt. If labeltype is set to roman, \pexcnt is

initialized to 1 and labelgen is set to romannumber. All of these predefined label types also set

the label format, alignment, and width appropriately. See expex.tex for examples of the use of

\definelabeltype.

Something like the following might be useful. In the format I am using, \mit selects a math

italics font which has the lowercase greek letters starting with the position 11.

\pex[labelgen=char,pexcnt=11,

everylabel=\mit]

\a

\a

\a

\a

\xe

(38) α.

β.

γ.

δ.

This scheme has a quirk if labels above ξ are needed because the correspondence between

numerical order and alphabetical order breaks down at this point. o will be missing, with π

following ξ.

This labeling scheme can be defined by:

\definelabeltype{greekmath}{labelgen=char,pexcnt=11,everylabel=\mit,

labelformat=A.}

Then \pex[labeltype=greekmath] is sufficient to invoke this labeling style.

If a sequence of character labels is needed which does not appear in sequence in a font,

it is necessary to generate the labels from a list. Documents in Greek, for example, face the

following problem. Roman letters were largely borrowed from the Greek alphabet, but Greek

alphabetical order was not. Common greek fonts place letters in the position of the borrowing, not

in their natural order in the Greek alphabet. Documents written in Greek, therefore, will have to

generate the labels in multipart examples from a list. The solution is to set labelgen to list, and

labellist to the desired list of labels.

For example, suppose the label type greek is defined by

\definelabeltype{greek}{labelgen=list,

labellist={a,b,g,d,e,z,h,j,i,k,l,m,n,x,o,p,r,sv,t,u,f,q,y,w}}

and that \gr selects one of the grmn series of fonts in the cb family of Greek fonts.

\gr

\pex[labeltype=greek]

\a {\rm a,b,g,d,e,z}

\a a,b,g,d,e,z

\a {\rm a,b,c,d,e,f}

\a a,b,c,d,e,f

\a {\rm A,B,G,D,E,Z}

\a A,B,G,D,E,Z

\xe

(39) α. a,b,g,d,e,z

β. α,β,γ,δ,ε,ζ

γ. a,b,c,d,e,f

δ. α,β,ς,δ,ε,φ

ε. A,B,G,D,E,Z

ζ. Α,Β,Γ,Δ,Ε,Ζ



25

“sv” appears in the list rather than “v” so that a nonfinal sigma is produced rather than a final

sigma. They differ. “v” produces what amounts to a vertical strut of zero width, making the sigma

nonfinal, but contributing no visible material. (Thanks to Christos Vlachos for this idea.)

Of course, if the entire document is written in Greek, then

\lingset{labeltype=greek}

should have global scope, so that parameter setting is not necessary in each \pex construction.

6.6. The parameter sampleexno

Parameter:

key value initial value

sampleexno token list {}

In some publications, if two examples are close together in the running text and the widths of

the typeset example numbers are different, the offsets are modified so that the texts in the two

examples are aligned. The following is considered, under this stringent aesthetic, to be less than

ideal.

(9) a. I consider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic

interpretations of complement subjects:

(10) a. I believe firemen to be available. (both generic and existential)

b. I believe violists to be intelligent. (generic only)

ExPex provides the parameter sampleexno to handle this formatting problem. If the

parameter is set to the empty token list, it has no effect of the formatting. If it is set to a nonempty

token list, that token list is put in an hbox and its width is taken to be the effective typeset width of

the example number.

(9) a. I consider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic

interpretations of complement subjects:

(10) a. I believe firemen to be available. (both generic and existential)

b. I believe violists to be intelligent. (generic only)



26

\pex[sampleexno=(10)]

\a I consider firemen available. (generic only)

\a I consider firemen intelligent. (generic only)

\xe

Exceptional case marking (ECM) verbs seem more or less to allow both

existential and generic interpretations of complement subjects:

\pex

\a I believe firemen to be available. (both generic and existential)

\a I believe violists to be intelligent. (generic only)

\xe

This kind of fine tuning should only be done at the immediately pre-publication point because

it depends upon the final assignment of example numbers and an aesthetic judgement of when two

multipart examples are “visually close” in the finished product.

It seems to be common for publishers to do fine tuning of this sort in footnotes. There are

two reasons for this. First, lowercase roman numerals are commonly used and their widths vary

noticeably. Second, only a few examples are involved, assuming that examples numbers in a

footnote start at (i), so the final assignments of example numbers is relatively easy to determine.

The role of sampleexno in footnotes is taken up in Section 6.8.

6.7. IJAL style format of multiline examples

Macro: \actualexno

Parameters:

key value initial value default value

avoidnumlabelclash boolean false true

appendtopexarg token list {}

The formatting demands of the International Journal of American Linguistics (IJAL) require some

additional parametrization. Multipart examples look like this:

(4a) first

(4b) second

(64) Preamble

(64a) first

(64b) second



27

(1025) Preamble

(1025a) first

(1025b) second

A first approximation is

\lingset{labelanchor=numleft,labeloffset=0pt,

textanchor=normal,textoffset=1.8em,

preambleanchor=text,preambleoffset=0pt,

labelformat=(A),everylabel=\actualexno}

\actualexno expands to the numerical value in \excnt, provided no special example number is

set by exno, otherwise to the special example number. But the results (below) have some major

problems.

(5)(5a) first

(5b) second

(65) Preamble

(65a) first

(65b) second

(102) Preamble

(102a)first

(102b)second

There are two things that need to be done. First, in order to avoid printing both the example

number and the label of the first part in examples with no preamble, as is the case in (5), printing

the example number must be suppressed if there is no preamble. Second, in order to avoid the

shrinking gap between the label and the text as more digits appear in the example number and it

gets wider, the label width must be made dependent on the example number.

ExPex provides the boolean parameter avoidnumlabelclash which, if set to true,

suppresses printing the example number in \pex constructions if there is no preamble. It has the

XKV default value true, so that it can be set by giving the key with no label. Although it has the

default value true, it has the initial value false. So, with the parameters set as above, we get:

\pex[exno=5,avoidnumlabelclash]

\a first

\a second

\xe

(5a) first

(5b) second

In order to solve the problem of the shrinking gap between the label and text, we could

try something like samplelabel=(\actualexno a). But it is considerably less than elegant

to have to write this in every \pex example. It will not produce the desired result to put

\lingset{samplelabel=(\actualexno a)} at the beginning of the document. labelwidth

will be set to whatever the current width of (\actualexno a) is, which is not likely to be what

you want for the entire document even if \actualexno happens to be defined at the point that



28

the \lingset is executed. To circumvent the global/local problem, ExPex provides the parameter

appendtopexarg. Its value (unexpanded) is appended to whatever other arguments are given to

\pex and evaluated locally.

\lingset{appendtopexarg={samplelabel=(\actualexno a)}}

accomplishes what we want.

We can summarize the discussion by defining the IJAL style.

\definelingstyle{IJAL}{labelwidth=2em,labelanchor=numleft,

labeloffset=0pt,labelformat=(A),everylabel=\actualexno,

textanchor=normal,textoffset=1em,preambleanchor=text,

preambleoffset=0pt,avoidnumlabelclash,

appendtopexarg={samplelabel=(\actualexno a)}}

Then

\lingset{lingstyle=IJAL}

\pex[exno=5]

\a first

\a second

\xe

\pex˜[exno=65]

Preamble

\a first

\a second

\xe

\pex˜[exno=1026]

Preamble

\a first

\a second

\xe

(5a) first

(5b) second

(65) Preamble

(65a) first

(65b) second

(1026) Preamble

(1026a) first

(1026b) second

6.8. Footnotes and endnotes

Macro: \keepexcntlocal

Footnotes and endnotes pose a somewhat thorny problem since many different Tex and LaTex

macros are used to typeset footnotes and endnotes. Further, there are different ways of assigning

example numbers and labels in multipart examples in footnotes. The footnote referenced at the

end of this sentence is representative. 5 It is an abbreviated version of footnote 17 in Chapter 2 of

Diesing’s Indefinites, MIT Press.This footnote style is fairly common.

The ExPex distribution contains two files, eptexfn.tex and epltxfn.sty which may be helpful

in producing footnotes in this style. They do two things. First, they each define a macro

5. The existential reading does not seem to be available for subjects of small clause complements of consider:



29

(\everyfootnote) which, if evaluated at the start of processing a footnote, ensures that examples

are correctly formatted. Second, they each perform surgery on a standard \footnote macro so

that (among other things) \everyfootnote is inserted in the appropriate place.

I intend these macro files both to be used directly or to serve as models for the creation of

variations which satisfy user needs. To the latter end, I will go through epltxfn.sty and explain how

it works. The file listing is:

1 \makeatletter

2 \def\everyfootnote{%

3 \keepexcntlocal

4 \excnt=1

5 \lingset{exskip=1ex,exnotype=roman,sampleexno=,

6 labeltype=alpha,labelanchor=numright,labeloffset=.6em,

7 textoffset=.6em}

8 }

9 \renewcommand{\@makefntext}[1]{%

10 \everyfootnote

11 \parindent=1em

12 \noindent

13 \@thefnmark.\enspace #1%

14 }

15 \resetatcatcode

Lines 2–8 define the macro \everyfootnote which will be inserted into the footnote macro.

It first ensures that changes in excnt that are made in the footnote are kept local to the footnote.

\keepexcntlocal is an ExPex macro whose execution causes changes in \exnt to be kept local

to the group in which \keepexntlocalo is executed. Without \keepexcntlocal, changes in

excnt inside a footnote would be visible outside the footnote group in which the changes occur.

excnt is then initialized. Finally, parameters are set which control the formatting of examples

in the footnote. The LaTex \footnote command uses \@makefntext to typeset the footnote.

It is defined in the cls file which is used. The redefinition in lines 9–14 is a modification of the

\@makefntext macro defined in article.cls. It first executes \everyfootnote, then prints the

footnote number flush left at full footnote size, not as a superscript.

Assuming that \usepackage{epltxfn} has been executed, the following code produces

fn. 5.

(i) a. I consider firemen available. (generic only)

b. I consider firemen intelligent. (generic only)

Exceptional case marking (ECM) verbs seem more or less to allow both existential and generic interpretations of

complement subjects:

(ii) a. I believe firemen to be available. (both generic and existential)

b. I believe violists to be intelligent. (generic only)



30

\footnote{%

\lingset{sampleexno=(ii)}

The existential reading does not seem to be available for subjects of

small clause complements of {\it consider\/}:

\pex

\a I consider firemen available. (generic only)

\a I consider firemen intelligent. (generic only)

\xe

Exceptional case marking (ECM) verbs seem more or less to allow both

existential and generic interpretations of complement subjects:

\pex

\a I believe firemen to be available. (both generic and existential)

\a I believe violists to be intelligent. (generic only)

\xe

}

The code in eptexfn.tex is somewhat more complicated because Plain Tex does not number

footnotes and uses the same font for running text and footnotes. \everyfootnote is identical.

If it is compared with the footnote macros in the TexBook (p. 363), on which it is modeled, it is

easy to see the significance of the various modifications.

I anticipate that although the footnote macros in epltxfn.sty and eptexfn.tex will be useful

to some readers without modification, other users will need to modify them for one reason or the

other. Endnotes, in particular, will require work. I hope that these two files will serve as useful

models. Of course, trivial modifications of the various dimensions can be done easily. More

extensive modification require appropriate levels of expertise. Users should feel free to write to

me directly (j.frampton@neu.edu) or post questions to the Ling-Tex discussion group, or to send

me modifications that might prove useful to others. A file epltx-endnotes.sty, for example, would

be useful.

7. User defined styles

Macro: \definelingstyle

Parameters:

key value initial value

everyex† token list {}

Everyex† token list {}

lingstyle list of key settings (see below) {}

Aside from all the ExPex parameters introduced to this point, there are numerous Tex parameters

that affect the appearance of examples: line spacing, hsize, font selection, etc. These are all

quantities that Tex itself provides mechanisms for setting to suit the user. You may want to make

adjustments of these parameters every time a particular kind of example is typeset, so that special

settings hold inside these examples independently of the contextual settings. For example, suppose

you have many examples that, for some reason, you want to format like (40), with a narrow width,



31

italic font, an oversized gap between the example number and the text, and a somewhat greater

than normal separation between baselines.

(40) Und hier können wir sehen was

für Unfug wird gemacht wenn er

einen ganz langen Satz binnen

kriegt.

One way to do this is:

\ex[textoffset=3em]

\hsize=3in \rightskip=0pt plus 2em \it \advance\baselineskip by 2pt

Und hier k\"onnen wir sehen was f\"ur Unfug wird gemacht

wenn er einen ganz langen Satz binnen kriegt.

\xe

Some rightskip is included because with such a narrow width it is otherwise difficult to avoid

overfull lines.

If you have many examples that you want to typeset in this way that are scattered throughout

a document, it is awkward to have to remember all of these settings and enter them each time an

example of this kind needs to be formatted. Furthermore, if you change your mind about some

detail of this special formatting, you need to go through the document and change each instance

of this formatting. ExPex allows you to package all the formatting changes into one named unit,

called a “style”. If this style is called “narrow italic”, then you can write the following to achieve

the format of (40).

\ex[lingstyle=narrow italic]

The various format specifications are packaged into a style by saying:

\definelingstyle{narrow italic}{textoffset=3em,

everyex={\hsize=3in \rightskip=0pt plus 2em

\it \advance\baselineskip by 2pt}}

Thereafter, setting the parameter lingstyle to narrow italic has the effect of setting all the

parameters as specified in the style definition (the two parameters textoffset and everyex in

this example). The parameter everyex works in the following way. If everyex is set to value, a

macro \lingeveryex is defined whose expansion is value. When an \ex or \pex construction is

initiated, after any parameter settings take effect, \lingeveryex is executed.

ExPex provides a second parameter, Everyex, which is similar to expex. If Expex is set

to value, a macro ling@Everypex is defined. When an \ex or \pex construction is initiated,

before after any local parameter changes take effect, \lingEveryex is executed. The reasons for

providing both everyex and Everyex are subtle. Different stages of the writing/rewriting/editing

process may call for different treatments of example formatting, particularly if the final aim is a

camera ready product. Suppose you normally make double spaced drafts with an hsize of 6.5 in

and that your final aim is to produce camera ready copy with an hsize of 4.375 in. Suppose also

that you are at editing stage where you want to see exactly how the examples will be formatted in



32

the finished product, but still want full width double spaced text. One way to accomplish this is to

say

\lingset{everyex={\hsize=4.375in \normalbaselines}}

at the beginning of your document. \normalbaselines is a standard Tex macro which establishes

the normal line spacing for the current font. This makes the hsize and line spacing inside examples

independent of the hsize and line spacing you select for the text (outside examples).

This will accomplish what you want. But it makes the further use of everyex in your

document awkward. If you want a particular example to be set in italics, for example, you might

think to use:

\ex[everyex=\it]

This will certainly produce an italicized example because \it will be evaluated early on in

typesetting the example. But it has the unfortunate consequence of overwriting the initial setting

of everyex, removing the special line spacing within examples.

Everyex is provided to accommodate situations like this. The intention is that special settings

that should hold inside examples throughout the document are assigned to Everyex, with expex

reserved for local variations. Since \lingEveryex is evaluated before local parameter changes

take effect, parameter settings specified by Expex will be overridden by any local parameter

settings.

8. Judgment marks

Macros: \judge, \ljudge

Parameter:

key value initial value default value

* sample judgment string * *

In examples without parts, not much needs to be said.

\ex *Jack and Jill wented up the hill.\xe

(41) *Jack and Jill wented up the hill.

In my view (42), with a little whitespace inserted between the asterisk and the example

sentence, looks somewhat better than (41), but the difference is slight.

\ex \judge* Jack and Jill is going up the hill.\xe

(42) *Jack and Jill wented up the hill.

ExPex provides the macro \judge to accomplish this. \judge takes one argument. A multi-

character judgment diacritic therefore needs to be surrounded in braces. \judge also ignores



33

following spaces. So \judge{??}Mary. . . and \judge{??} Mary. . . produce the same thing, as

do \judge*Mary. . . and \judge* Mary. . .

Multipart examples are more complex, if alignment is to be maintained. If you find (43)

satisfactory, what follows will not be of much interest. But it you would like the text (not including

the judgment marks) to be aligned, read on.

(43) a. There is a pair of pants on the floor.

b. ?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

ExPex provides the macro \ljudge which pushes the judgment diacritics into the gap

between the labels and the examples, instead of pushing the examples to the right to make room

for the judgment diacritics. So

\pex

\a There is a pair of pants on the floor.

\a \ljudge{?*}There are a pair of pants on the floor.

\a \ljudge*There is the pair of pants on the floor.

\xe

produces

(44) a. There is a pair of pants on the floor.

b.?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

Unfortunately, depending on the setting of textoffset, there is unlikely to be sufficient room for

judgment diacritics in between the labels and the examples. textoffset needs to be increased to

make room.

ExPex provides the pseudo parameter to facilitate adjusting the text offset. The key name

is *, which is succinct, but perhaps overly so. In the setting below, the * on the left side is the

parameter and * on the right side is a sample judgment mark. The setting below increments the

text offset by the width of ‘?*’.

\pex[*=?*]

\a There is a pair of pants on the floor.

\a \ljudge{?*}There are a pair of pants on the floor.

\a \ljudge*There is the pair of pants on the floor.

\xe

(45) a. There is a pair of pants on the floor.

b. ?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.



34

textoffset is increased by the width of the judgment diacritic which is furnished as the value of

the parameter *.

If you say \lingset{*}, with no value assigned to *, it is given a default value, which

happens to be *. So \lingset{*} is equivalent to \lingset{*=*}. So, for example:

\pex[*]

\a There is a pair of pants on the floor.

\a \ljudge* There are a pair of pants on the floor.

\a \ljudge* There is the pair of pants on the floor.

\xe

(46) a. There is a pair of pants on the floor.

b. *There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

If you think that the text offset in (45) is too large, textoffset can be further adjusted

directly, so you could write

\pex[*=?*,textoffset=!-.3em]

\a There is a pair of pants on the floor.

\a \ljudge{?*} There are a pair of pants on the floor.

\a \ljudge* There is the pair of pants on the floor.

\xe

(47) a. There is a pair of pants on the floor.

b. ?*There are a pair of pants on the floor.

c. *There is the pair of pants on the floor.

9. Glosses

Macros: \begingl[], \glpreamble[], \gla[], \glb[], \glc[], \glft[], \endgl

Before introducing the many parameters which control the visual characteristics of glosses (fonts,

line spacing, etc.), we first consider some simple glosses. They are coded in a traditional coding

syntax; another syntax for coding glosses will be discussed later.

(100) k-

CL

2

wapm

V

see

-a

AGR

3acc

-s’i

NEG

-m

AGR

2pl

-wapunin

TNS

preterit

-uk

AGR

3pl

‘you (pl) didn’t see them’



35

\ex

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glb 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

(101) Mary ist sicher, dass es den Hans nicht stören würde seiner Freundin ihr Herz auszuschütten.

Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

\ex \begingl

\glpreamble Mary ist sicher, dass es den Hans nicht st\"oren w\"urde

seiner Freundin ihr Herz auszusch\"utten.//

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren w\"urde

seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would

his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc}

heart-{\sc acc} {out to throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her

heart to his girlfriend.’//

\endgl \xe

All line wrapping is automatic. If the hsize were 4 in, for example, the code above would

produce (102).

(102) Mary ist sicher, dass es den Hans nicht stören würde

seiner Freundin ihr Herz auszuschütten.

Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal

her heart to his girlfriend.’



36

Glosses (\begingl . . . \endgl) have up to three parts, all of which are optional. They are

illustrated below.

(103) Mary ist sicher, dass es den Hans nicht stören würde

seiner Freundin ihr Herz auszuschütten.

Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal

her heart to his girlfriend.’

preamble

interlinear gloss

free translation

The code for the interlinear gloss consists of a sequence of lines of the form

\gllevelname . . . //

where levelname is a, b, or c.6 There must be one and only one \gla line, which must come first

in the interlinear gloss. \glb and \glc lines can come in any order and can be repeated arbitrarily.

The material delineated by \gllevelname and //, \glpreamble and //, or glft and // is

parsed as a sequence of space separated items. The parser only looks for spaces at the top-level.

Consequently, in (102), for example, it is not sensitive to the space in items like the-{\sc acc}

since the space is inside a group, therefore not at the top level. Spaces that directly precede

terminating // are disregarded. If a line in the interlinear gloss has more items on it than the gla

line, the excess items are discarded. If it has fewer items than the gla line, it acts as if it ended with

empty {} items.

9.1. Parameters

It is easiest to understand what the parameters do by examining how a gloss display is constructed.

Consider (104), for example, in which box outlines have been added to facilitate discussion.

(104) Mary ist sicher, dass es den Hans nicht stören würde seiner Freundin ihr Herz auszuschütten.

Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

1. The preamble is typeset as ordinary running text.

6. This will be extended later to allow the user to define new level names.



37

2. All of the items in the various lines in the interlinear gloss are accumulated, then the boxes

which make up the interlinear gloss are typeset. These vboxes, outlined in (104), will be

called glwords. A strut is inserted on each line of each glword.7 As these boxes are generated,

they are fed to Tex’s standard paragraph building machinery, with the interword space set to

Val(glspace).

3. Finally, the free translation is typeset as ordinary running text.

Before giving a systematic list of gloss parameters, an example will help clarify how the

parameter system operates. Suppose the first line for the code to (100) is replaced by:

\ex[glspace=!1em,everygla={},everyglb=\footnotesize,aboveglbskip=-.2ex]

the display below is produced. Compared to (100), the space between glwords has been increased

by 1em, the gla-line is not longer italicized, the glb-line is set in a smaller font, and it is moved

closer to the gla-line.

(105) k-
CL

2

wapm
V

see

-a
AGR

3acc

-s’i
NEG

-m
AGR

2pl

-wapunin
TNS

preterit

-uk
AGR

3pl

‘you (pl) didn’t see them’

The parameters everygla and everyglb are what are called ‘hooks’ into the coding of the

gloss. The value assigned to each of these parameters is stored as a list of tokens, and these tokens

are inserted into the code at the appropriate place. The tokens Val(everygla) are inserted at the

start of each gla-line in every glword and the tokens Val(everyglb) are inserted at the start of

each glb-line in every glword. everygla is initially set to \it, so that Val(everygla) is {\it}

initially. There are a number of hooks of this type.

(106) Hooks

initial setting

everygl {}

everyglpreamble {}

everyglilg {}

everygla \it

everyglb {}

everyglc {}

everyglft {}

The tokens Val(everygl) have scope over the entire gloss, Val(everyglilg) over the interlinear

gloss, etc.

There are a number of parameters like aboveglbskip, which was mentioned above, which

control the vertical spacing. They are all (!)skip parameters. Recall that an (!)parameter can be set

either directly, or as an increment from the present value of the parameter.

7. It is possible to turn off strut insertion inside glwords by setting the boolean parameter glstruts to false. It is

unlikely that you will use this feature, except perhaps for diagnosing a spacing problem. It was introduced as an aid

in designing and building the ExPex glossing machinary. It remains as a public option because it might be useful to

someone at some point.



38

(107) Vertical spacing

initial setting

aboveglbskip† 0pt

aboveglcskip† 0pt

belowglpreambleskip† 1ex

aboveglftskip† 1ex

extraglskip† 0pt

Except for extraglskip, the meanings should be clear. Vertical skip Val(extraglskip) is put

between the lines of glwords in the interlinear gloss. The initial setting is .5ex, but increasing it

sometimes makes the interlinear gloss sigfnificantly more readable.

Finally, there are parameters which control how the glwords are formed into a paragraph.

(108) Horizontal spacing and hanging indentation in the interlinear gloss

initial setting

glspace† (!)skip .5em plus .4em minus .15em

glrightskip skip 0pt plus .1\hsize

glhangindent dimension 1em

glhangstyle none, normal, or cascade normal

Val(glspace) is the horizontal skip between glwords and Val(glrightskip) is the right skip.

The initial settings allow considerable stretch and some shrinkage in the space between glwords

and up to 10% of the page width in whitespace at the right margin. This minimizes the chances

of overfull lines and, since interlinear glosses generally have a somewhat ragged appearance, does

not detract from their appearance. In unusual circumstances, narrow page width in particular, this

may require some adjustment to avoid overfull lines. See Section 11.3.1 for further discussion.

The choice parameter glhangstyle specifies the kind of hanging indentation which is used

in the interlinear gloss. The default is normal hanging indentation, as illustrated in (101), but

there is a choice of eliminating hanging identation. There is also the option of cascading hanging

identation See Section 12.4 for an example of cascading hanging indentation.

9.1.1 Where should parameter changes be made?

Consider (105) again. The code can be written as follows, with each parameter setting taking the

narrowest possible scope which achieves the intended effect.

\ex

\begingl[glspace=1.5em]

\gla[everygla=] k- wapm -a -s’i -m -wapunin -uk //

\glb[everyglb=\footnotesize,aboveglbskip=-.2ex]

CL V AGR NEG AGR TNS AGR //

\glb 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

Narrow scope is conceptually satisfied, but from a coding standpoint it is more convenient to

concentrate the settings in one place.



39

\ex[glspace=1.5em,everygla=,everyglb=\footnotesize,aboveglbskip=-.2ex]

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glc 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

This way of coding the gloss has the big advantage that it is much easier to see what the parameter

settings are.

If you use multiple instances of the same gloss format, a style should be defined

\definelingstyle{Potawatami}{glspace=1.5em,everygla=,

everyglb=\footnotesize,aboveglbskip=-.2ex}

Then, typesetting a gloss in that style is done simply.

\ex[lingstyle=Potawatami]

\begingl
...

\xe

If you want a sequence of glosses to all be done in this style, you can say:

\begingroup

\lingset{lingstyle=Potawatami}
...

\endgroup

9.2. Exceptional \gla items

Items on the \gla line are generally associated with items on the other lines of the interlinear

gloss. There are however a few items, called here exceptional items, which are interpreted in an

exceptional fashion. There are three kinds of exceptional items: the single character + or @, and

any item which begins with the control sequence \nogloss.8

9.2.1 +

Sometimes it is desirable to override natural wrapping and break up the gloss so that the syntax is

emphasized, as in the following.

8. Version 4 of Expex had two additional exceptional items, the single characters [ and ]. In version 5, these characters

still operate as in Version 4, but their use is discouraged and their use as exceptional \gla characters will disappear

from ExPex at some point in the future. \nogloss is more general, as explained below.



40

(109) Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not annoy John to reveal her heart to his girlfriend.’

This is accomplished by inserting ‘+’ appropriately, as shown in the code below. When +

is encountered, the line is broken and a new line started. Hanging indentation, either normal or

cascading, is preserved.

\ex

\begingl

\gla Mary$_i$ ist sicher, + dass es den Hans nicht st\"oren w\"urde

+ seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would

his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc} heart-{\sc acc} {out to

throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her

heart to his girlfriend.’//

\endgl

\xe

9.2.2 @

Sometimes it is desirable to omit the space between two entries. Below, the space between the

prefix and the verb it inflects has been omitted.

(110) wiye

two

kepi

whitemen

e-

1p:3d-

ca

found

This is accomplished by inserting ‘@’ appropriately, as shown in the code below.

\ex

\begingl

\gla wiye kepi e- @ ca//

\glb two whitemen {\sc 1p:3d}- found//

\endgl

\xe



41

In the unlikely event that you need a gla entry which would normally be entered as @, enter it as

{\relax @} so that it is not interpreted as a directive to omit a space.9 (111) below shows another

use for the @ diacritic.

9.2.3 \nogloss

Suppose you want to produce a gloss display like the one below.

(111) Fa’nu’i

show

yu’

me

ni

Obl

[[O

Op

tinaitai-mu

WH[obj].read-agr

t] na

L

lepblu].

book

Note that the brackets are not glossed.

This could be done using the @ gloss diacritic as follows.

\ex[everygla=,glhangstyle=normal]<@period>

\begingl

\gla Fa’nu’i yu’ ni {[[} @ {\it O} t{\it in\/}aitai-mu

{{\it t\/}]} na {lepblu].}//

\glb show me Obl {} Op {\it WH\/}[obj].read-agr {} L book//

\endgl

\xe

The gloss alignment is preserved by the use of dummy empty elements in the second row.

If glosses are long and/or if there are many rows, it is tedious and error prone to insert

suitable empty elements.10 \nogloss is intended to simplify constructing glosses in which there

are unglossed items on the \gla line. To produce (111), you can write:

\ex[everygla=,glhangstyle=normal]<@period>

\begingl

\gla Fa’nu’i yu’ ni \nogloss{[[} @ {\it O} t{\it in\/}aitai-mu

\nogloss{{\it t\/}]} na {lepblu].}//

\glb show me Obl Op {\it WH\/}[obj].read-agr L book//

\endgl

\xe

If you want extra space between the brackets and the words they bracket, the following is one

way to achieve this.

(112) Um-äsudda’

agr-meet

häm

we

yan

with

[ i

the

taotao

person

[ O

Op

ni

Comp

si

the

Juan

Juan

ilek-ña

say-agr

nu

Obl

guahu

me

[ malägu’

agr.want

gui

he

[ asuddä’-ña

WH[obl].meet-agr

t ]]]].

9. This is a change. In version 4, {{@}} was suggested. This no longer works because various parsing steps strip

away the grouping. {{{{@}}}} does work, but {\relax @} is more straightforward.

10. Glosses of narratives can have hundreds of elements.



42

\ex[everygla=,glhangstyle=normal]

\begingl

\gla Um-\"asudda’ h\"am yan \nogloss{$[\,$} @ i taotao \nogloss{$[\,$} @

{\it O\/} ni si Juan ilek-\˜na nu guahu \nogloss{$[\,$} @ mal\"agu’ gui

\nogloss{$[\,$} @ asudd\"a’-\˜na \nogloss{{\it t\/}$\,]]]]$.}//

\glb agr-meet we with the person Op Comp the Juan say-agr Obl me

agr.want he {\it WH\/}[obl].meet-agr//

\endgl

\xe

The Chamorro examples (111) and (112) are from Chung (1998). The Potawatami example

is from Halle and Marantz (1993). The German example in (101), and (120) in Section (11), are

from Landau (2001). The Kiowa example (110) was contributed by Daniel Harbour.

10. Nlevel glosses; an alternate coding syntax

Macro: \endpreamble

Parameter:

key value initial value

glstyle wrap or nlevel wrap

The last section assumed the default setting, ‘wrap’. The ‘nlevel’ gloss style produces identical

displays, but they are coded differently. Compare the two ways of coding the display (113), which

repeats (100).

(113) k-

CL

2

wapm

V

see

-a

AGR

3acc

-s’i

NEG

-m

AGR

2pl

-wapunin

TNS

preterit

-uk

AGR

3pl

‘you (pl) didn’t see them’

\ex[glstyle=nlevel]

\begingl

k-[CL/2]

wapm[V/see]

-a[AGR/\sc 3acc]

-s’i[NEG]

-m[AGR/\sc 2pl]

-wapunin[TNS/preterit]

-uk[AGR/\sc 3pl]

\glft ‘you (pl) didn’t see them’

\endgl

\xe

\ex[glstyle=wrap]

\begingl

\gla k- wapm -a -s’i -m

-wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glc 2 see {\sc 3acc} {}

{\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe



43

The advantage to this style of coding complex glosses is that the gloss of a word and the word

itself are adjacent in the code, just as they are in the display which is produced; vertically adjacent

in the display, horizontally adjacent in the code. This makes the code much more readable. In

effect, an aspect of WYSIWG is built into the coding. This is particularly useful if the gloss has

many words, the gloss of a narrative for example.

Putting aside consideration of the preamble and the free translation for the moment, the list

between \begingl and \endgl is processed as a space separated list. Only top level spaces are

separators. Spaces inside [. . . ] are effectively hidden from this parsing. So, for example, the

space in -a[AGR/\sc 3acc] does not mislead the parser. The material inside [. . . ] is processed

as a / separated list. Of course, / in this material must be hidden from the parser so / cannot

appear at the top level. The same is true of ], for obvious reasons.

The glossed words are written on separate lines above, but this is only for clarity. The code

below is equivalent. It saves on virtual paper, but is not as easily deciphered.

\ex[glstyle=nlevel]\begingl k-[CL/2] wapm[V/see] -a[AGR/\sc 3acc]

-s’i[NEG] -m[AGR/\sc 2pl] -wapunin[TNS/preterit] -uk[AGR/\sc 3pl] \glft

‘you (pl) didn’t see them’\endgl\xe

The preamble and free translation in the wrap style are terminated by //. In the nlevel style,

\endpreamble ends the preamble and \endgl terminates the free translation. There is no special

termination of the free translation. This is illustrated by the coding of (101) in the nlevel style.

\ex[glstyle=nlevel]

\begingl

\glpreamble Mary ist sicher, dass es den Hans nicht st\"oren w\"urde

seiner Freundin ihr Herz auszusch\"utten.\endpreamble

Mary$_i$[Mary]

ist[is]

sicher,[sure]

dass[that]

es[it]

den[the-\sc acc]

Hans[Hans]

nicht[not]

st\"oren[annoy]

w\"urde[would]

seiner[his-\sc dat]

Freundin[girlfriend-\sc dat]

ihr$_i$[her-\sc acc]

Herz[heart-\sc acc]

auszusch\"utten.[out to throw]

\glft ‘Mary is sure that it would not annoy John to reveal her heart to

his girlfriend.’

\endgl

\xe



44

10.1. Parameters which modify particular lines

The various lines in a gloss which is coded in the wrap style are identified by name, so parameters

like everygla and aboveglbskip can be used to modify the named line. everygla modifies

the \gla line and aboveglbskip modifies the \glb line. This method for modifying lines is not

available for coding in the nlevel style because the lines are not numbered. Instead, they must be

referred to positionally.

Parameters:

key value initial value

glneveryline list of token lists {\it}

glnabovelineskip list of dimensions {}

(114) k-
cl

2

wapm
v

see

-a
agr

3acc

-s’i
neg

-m
agr

2pl

-wapunin
tns

preterit

-uk
agr

3pl

\ex[glstyle=nlevel,glneveryline={\it,\sc,\sc},

glnabovelineskip={,-2pt}]

\begingl

k-[cl/2]

wapm[v/\rm see]

-a[agr/3acc]

-s’i[neg]

-m[agr/\sc 2pl]

-wapunin[tns/preterit]

-uk[agr/3pl]

\endgl

\xe

Note that a list of dimensions {,-2pt} with dimensions missing is acceptable; the missing

dimensions are assumed to be 0pt. Missing entries in the value of glneveryline, either because

the list is shorter than the number of lines in the interlinear gloss or because of null entries on the

list, are similarly assumed to be null and cause no problem. The material inside the brackets, or

material delimited by / can be missing as well, but the brackets are mandatory. Spaces after [ or

/ are ignored, so for example, wapm[v/\rm see] and wapm[ v/ \rm see] produce the same

output.

There is no parameter aboveglaskip for use in the wrap coding style since vertical skip in

the interlinear gloss makes sense only between lines. Similarly, the first item in the list specified

by glnabovelineskip, which corresponds to \aboveglaskip, is ignored.



45

10.2. \nogloss and the diacritics @ and +

A word gloss 〈word 〉[〈gloss1 〉/ . . .] can optionally be immediately followed by one of @ and +.

A @ cancels the usual space between the typeset word glosses. A + introduces a line break. This

should be compared with the different syntax in the wrap style; see Sections 9.2.2 and 9.2.1. In

the nlevel style they are diacritics; in the wrap style they are exceptional words. For example, the

following code produces the same output as the code which is given for (110).

\ex[glstyle=nlevel]

\begingl wiye[two] kepi[whitemen] e-[\sc 1p:3d-]@ ca[found] \endgl

\xe

\nogloss in nlevel style glosses works very much the same way that it works in wrap style

glosses.

(115) Fa’nu’i
show

yu’
me

ni
Obl

[[ O
Op

tinaitai-mu
WH[obj].read-agr

t ] na
L

lepblu
book

].

\ex

\begingl[glstyle=nlevel,glneveryline={}]

Fa’nu’i[show]

yu’[me]

ni[Obl]

\nogloss{[[\thinspace}@ {\it O}[Op]

t{\it in\/}aitai-mu[{\it WH\/}{[obj]}.read-agr]

\nogloss{{\it t}\thinspace ]}

na[L]

lepblu[book]@ \nogloss{].}

\endgl

\xe 11

10.3. Line spacing inside glwords

One spacing problem that is handled automatically in the wrap style must be handled by the user

in the nlevel style. It is not common, but is worth mentioning because it might cause a perplexing

problem if it does arise. Characters on lower levels which are extra tall can cause misalignment of

the baselines. Suppose, for example, that you want to use a gloss to give some information about

the morphophonological derivation of a surface form, as is attempted in (116).

(116) m-
(mo-)

wope
(aẃope)

11. Italics are used to highlight an infix in the verb in the relative clause. The spacing could be improved. Horizontal

skip should be used ; {\it \hskip.8pt in\hskip.4pt}, for example.



46

\ex[glstyle=nlevel,glneveryline={\it}]

\begingl m-[(mo-)] wope[(a\AccentedBarredW ope)] \endgl \xe

Not only is more space between the lines needed, but there is misalignment of the baselines on the

second level.

One might think to fix the problem in (116) by putting extra vertical skip between the lines of

the gloss, as in the code below.

\ex[glstyle=nlevel,glneveryline={\it},glnabovelineskip={,.5ex}]

\begingl m-[(mo-)] wope[(a\AccentedBarredW ope)] \endgl \xe

But the result is less than satisfactory:

(117) m-

(mo-)

wope

(aẃope)

There is now vertical space over the second line of the glwords, but the baselines of the

second lines of the glwords are not aligned. In wrap style coding, the material for all of the

glwords is accumulated before any of the glwords are constructed, so the presence of an extra tall

line in the second glword is known before the first glword is constructed. An adjustment is made

to preserve baseline alignment. In nlevel style coding, the first glword is boxed and contributed to

a paragraph before the material to construct the second glword is read, so there is no way for any

adjustment to be made automatically.

There are two solutions. One solution for the problem above is to insert extra tall struts on

the second line of every glword. Normal struts in the 12pt type used in this manual are 10pt high

and 4pt deep. The following code will produce (118).

\ex[glstyle=nlevel,glneveryline={\it,\vrule height14pt width0pt}]

\begingl m-[(mo-)] wope[(a\AccentedBarredW ope)] \endgl

\xe

(118) m-

(mo-)

wope

(aẃope)

Another solution is to increase the baselineskip inside glwords.

\ex[glstyle=nlevel,glneveryline={\it},everyglword={\baselineskip=18pt}]

\begingl m-[(mo-)] wope[(a\AccentedBarredW ope)] \endgl \xe

(119) m-

(mo-)

wope

(aẃope)

11. More about glosses



47

11.1. The parameter glwidth

Parameter:

key value initial value

glwidth dimension 0pt

If the parameter glwidth is set to a nonzero value, the gloss is built in a vbox whose width is the

setting of glwidth. The following example illustrates the usefulness of the explicit width option.

(120) a. Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the-acc

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his-dat

Freundin

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuschütten.

out to throw

‘Mary is sure that it would not an-

noy John to reveal her heart to his

girlfriend.’

b. Maryi

Mary

ist

is

sicher,

sure

dass

that

seiner

his-dat

Freunden

girlfriend-dat

ihri

her-acc

Herz

heart-acc

auszuchütten

out to throw

dem

the-dat

Hans

Hans

nicht

not

schaden

damage

würde.

would

‘Mary is sure that to reveal her heart to

his girlfriend would not damage John.’

\ex[glwidth=2.6in]

a.\quad

\begingl

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren w\"urde

seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it the-{\sc acc} Hans not annoy would

his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc} heart-{\sc acc} {out to

throw}//

\glft ‘Mary is sure that it would not annoy John to reveal her

heart to his girlfriend.’//

\endgl

\hfil

b.\quad

\begingl

\gla Mary$_i$ ist sicher, dass seiner Freunden ihr$_i$ Herz

auszuch\"utten dem Hans nicht schaden w\"urde.//

\glb Mary is sure that his-{\sc dat} girlfriend-{\sc dat} her-{\sc acc}

heart-{\sc acc} {out to throw} the-{\sc dat} Hans not damage would//

\glft ‘Mary is sure that to reveal her heart to his girlfriend

would not damage John.’//

\endgl

\xe



48

11.2. Comments and citations

Macros: \trailingcitation, \rightcomment

Parameters:

key value initial value

mincitesep dimension 1.5em

everytrailingcitation token list empty

The following illustrates two different ways to append a comment or citation to a gloss.

(121) [Potawatami]k-

categoryCl

2

wapm

V

see

-a

Agr1

3acc

-s’i

Neg

-m

Agr2

2pl

-wapunin

Tns

preterit

-uk

Agr3

3pl

‘you (pl) didn’t see them’ (Hockett 1948, p. 143)

\ex

\begingl

\gla \rightcomment{[Potawatami]}k- wapm -a -s’i -m -wapunin -uk //

\glb \rightcomment{category}Cl V Agr$_1$ Neg Agr$_2$ Tns Agr$_3$//

\glb 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’\trailingcitation{(Hockett 1948,

p. 143)}//

\endgl

\xe

or

\ex

\begingl[glstyle=nlevel,glneveryline={\it}]

{\rightcomment{[Potawatami]}k-}[\rightcomment{category}Cl/2]

wapm[V/see]

-a[Agr$_1$/\sc 3acc]

-s’i[Neg]

-m[Agr$_2$/\sc 2pl]

-wapunin[Tns/peterit]

-uk[Agr$_3$/\sc 3pl]

\glft ‘you (pl) didn’t see them’\trailingcitation{(Hockett 1948,

p. 143)}

\endgl

\xe

\trailingcitation will put the citation on the same line as the last line of the free translation if

there is enough room for it, otherwise at the end of the following line. The parameter mincitesep

determines the minimum whitespace between the end of the free translation and the citation that



49

is tolerated; the default is 1.5em. everytrailingcitation can be used to specify the font for

trailing citations.

\trailingcitation is useful outside the context of glosses.

(122) a. [Which pilot who shot at it1]2 hit [which MIG2 that had chased him2]1? (Barss, 2000)

b. [Which pilot who shot at it1]2 hit [which MIG2 that had chased him2]1?

(Higgenbotham and May, 1981)

\pex

\a\relax [Which pilot who shot at it$_1$]$_2$ hit [which MIG$_2$ that had

chased him$_2$]$_1$?\trailingcitation{(Barss, 2000)}

\a\relax [Which pilot who shot at it$_1$]$_2$ hit [which MIG$_2$ that had

chased him$_2$]$_1$?\trailingcitation{(Higgenbotham and May, 1981)}

\xe

\rightcomment{. . . } must come first in the first item on the line. The macro is very

primitive. It does not consider the width of the citation or the amount of whitespace at the right of

the gloss. The citation will overlap the gloss if there is not room for it at the right. For example, if

the gloss (122) is attempted with an hsize of 3.5 in and glspace=.5em, the result is (123).

(123) [Potawatami]k-

categoryCl

2

wapm

V

see

-a

Agr1

3acc

-s’i

Neg

-m

Agr2

2pl

-wapunin

Tns

preterit

-uk

Agr3

3pl

‘you (pl) didn’t see them’

(Hockett 1948, p. 143)

In spite of its limitations, \rightcomment is occasionally quite useful.

11.3. Line spacing in wrapped glosses

Users might prefer to increase Val(extraglskip). Compare (124a), which uses the default setting

of extraglskip (.5ex), to (124b), which increases this by another .5ex.

(124) a. Um-äsudda’

agr-meet

häm

we

yan

with

[ i

the

taotao

person

[ O

Op

ni

Comp

si

the

Juan

Juan

ilek-ña

say-agr

nu

Obl

guahu

me

[ malägu’

agr.want

gui

he

[ asuddä’-ña

WH[obl].meet-agr

t ]]]].

b. Um-äsudda’

agr-meet

häm

we

yan

with

[ i

the

taotao

person

[ O

Op

ni

Comp

si

the

Juan

Juan

ilek-ña

say-agr

nu

Obl

guahu

me

[ malägu’

agr.want

gui

he

[ asuddä’-ña

WH[obl].meet-agr

t ]]]].



50

\pex[everygla=]

\a \begingl

\gla Um-\"asudda’ h\"am yan \nogloss{$[\,$} @ i taotao \nogloss{$[\,$}

@ {\it O\/} ni si Juan ilek-\˜na nu guahu \nogloss{$[\,$} @ mal\"agu’

gui \nogloss{$[\,$} @ asudd\"a’-\˜na \nogloss{{\it t\/}$\,]]]]$.}//

\glb agr-meet we with the person Op Comp the Juan say-agr Obl me

agr.want he {\it WH\/}[obl].meet-agr//

\endgl

\a \begingl[extraglskip=!.5ex] . . . (same as the gloss above) \endgl

\xe

11.3.1 How to avoid overfull boxes in glosses

Parameters:

key value initial value

glrightskip skip 0pt plus .1hsize

Hopefully, you will never encounter the problem which the parameterization in this section is

designed to solve, the “overfull line” error message. The default setting puts .5em of glue between

the glwords on a line, plus .4em of stretchability and .15em of shrinkage. The interglword

spacing on a line can therefore vary from .35em up to .9em to accommodate the needs of the Tex

linebreaking algorithm.12 Further, the default settings allow up to 10% of the hsize of whitespace

to appear at the end of the line of glwords. The possible extra space at the right edge and

stretchability/shrinkability of the space between glwords means that line breaking in glosses will

rarely encounter problems with overfull lines.

In unusual cases, there may be a problem. Your publisher (or you) may be particularly fussy

and demand a particular spacing and/or better right alignment in glosses. Or you might want

to make an unusually narrow gloss, which increases the chances that there might not be enough

flexibility in the spacing.

If you do run into the problem of overfull lines in a gloss, two parameters allow for a great

deal of flexibility; glspace and glrightskip. glspace is an incremental parameter, so you

could say, for example, \lingset{glspace=!0pt plus .2em}, increasing the stretchability of

the interglword space by .2em. Or, you might want to increase the stretchability of the rightskip in

a particular troublesome gloss to allow more whitespace at the right edge. An acceptable solution

will depend on your particular typesetting aesthetics. Solving line breaking problems is often

troublesome and requires experimentation.

12. This is a much larger range than is typical in running text, but it is appropriate in glosses, which typically have

many large whitespace gaps on one line or the other.



51

12. Glosses; Special topics

12.1. User defined levels

Macro: \defineglwlevels

\glb and \glc are given definitions in expex.tex by the command \defineglwlevels{b,c}. The

command also creates the parameters everyglb, everyglc, aboveglbskip, and aboveglc-

skip. everyglb and everyglc are initialized to empty token lists and aboveglbskip and

aboveglcskip to 0pt. The user may want to use \defineglwlevels to create and name new

gloss levels.

For example, suppose more suggestive level names are desired.

\defineglwlevels{cat,gloss}

\lingset{everyglcat=\footnotesize,aboveglcatskip=-.5ex}

\ex

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glcat Cl V Agr Neg Agr Tns Agr //

\glgloss 2 see 3{\sc acc} {} {2\sc pl} preterit {3\sc pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

produces

(125) k-
Cl

2

wapm
V

see

-a
Agr

3acc

-s’i
Neg

-m
Agr

2pl

-wapunin
Tns

preterit

-uk
Agr

3pl

‘you (pl) didn’t see them’

Another instance in which the user might want to define a new gloss level or levels is if

more than 3 lines of interlinear gloss are needed and the desired flexibility cannot be obtained by

repeated use of \glb or \glc.



52

12.2. Positioning the free translation to the right of the interlinear gloss

Parameters:

key value initial value

glftpos choice (below or right) below

sssep dimension 3em

ssratio decimal .6

ssrightskip skip 0pt plus 2em

(126) Homâo

exist

sa

one

čô

clf

pô

person

tha

old

ñu

3s

nao

go

ngă

do

hmua.

field

Ñu

3s

djă

hold

gă,

machete

ñu

3s

djă

hold

čŏng

hoe

ñu,

3s

laih

and

gui

carry.on.back

rêo

back.basket

ñu.

3s

Todang

while

bboi

at

rôk

along

jolan

trail

ñu

3s

nao

go

hma,

field

ñu

3s

bbôh

see

sa

one

droi

clf

mră

peacock

dŏ

stay

bboi

at

gah,

drct

a,

–

hruh

nest

ñu.

3s

‘There was an old person who

went to work in the field. He took

along his machete, he took along

his hoe, and he carried his basket

on his back. While he was on his

way to the farm, he saw a peacock

beside its nest.’

is achieved by

\ex[glftpos=right,glhangstyle=none]

\let\\=\textsc

\begingl

\gla

Hom\ˆ{a}o sa \v{c}\ˆ{o} p\ˆ{o} tha \˜{n}u nao ng\u{a} hmua. \˜{N}u

dj\u{a} g\u{a}, \˜{n}u dj\u{a} \v{c}\u{o}ng \˜{n}u, laih gui r\ˆ{e}o

\˜{n}u. Todang bboi r\ˆ{o}k jolan \˜{n}u nao hma, \˜{n}u bb\ˆ{o}h sa

droi mr\u{a} d\u{o} bboi gah, a, hruh \˜{n}u.//

\glb

\\{exist} one \\{clf} person old \\{3s} go do field \\{3s} hold

machete \\{3s} hold hoe \\{3s} and carry.on.back back.basket \\{3s}

while at along trail \\{3s} go field \\{3s} see one \\{clf} peacock

stay at \\{drct} -- nest \\{3s}//

\glft

‘There was an old person who went to work in the field. He took

along his machete, he took along his hoe, and he carried his

basket on his back. While he was on his way to the farm, he saw a

peacock beside its nest.’//

\endgl

\xe



53

(This example, as well as (127), was contributed by Joshua Jensen. It is from Jarai, an Austronesian

language. The story teller was Hyech Ksor. The orthography here is somewhat simplified in order

to keep the font requirements for the examples in this documentation elementary.)

ss stands for “side-by-side”. sssep gives the separation of the gloss and the free translation.

ssratio gives the proportion of the available width that the gloss occupies. The point of hanging

indentation is to visually separate the free translation and the gloss, so glhangstyle=none is

completely satisfactory if the tree translation is on the right. But ExPex will happily use hanging

indentation with the free translation on the right.

Line breaking in the free translation is delicate because it will generally set in a narrow

column. The default setting of ssrightskip allows up to 2em departure from right alignment.

This usually avoids overfull lines and awkward hyphenation. ssrightskip can be increased (all

the way to 0pt plus 1fil) if there is a problem, at the cost of a more ragged appearance. This can

be done globally, or simply in troublesome examples.

12.3. Glosses with a side panel

Macros: \beginglpanel[], \endpanel

Parameter:

key value initial value

everypanel† token list {}

The mechanism for positioning the free translation to the right of the interlinear gloss can be

adapted to create a side panel for glosses which can be used for other purposes, as illustrated

below.

(127) Homâo1

exist

sa

one

čô

clf

pô

person

tha

old

ñu

3s

nao

go2

ngă

do

hmua.

field

Ñu

3s

djă

hold

gă,

machete

ñu

3s

djă

hold

čŏng

hoe

ñu,

3s

laih

and3

gui

carry.on.back

rêo

back.basket

ñu.

3s

Todang

while

bboi

at

rôk

along

jolan

trail

ñu

3s

nao

go

hma,

field

ñu

3s

bbôh

see

sa

one

droi

clf

mră

peacock

dŏ 4

stay

bboi

at

gah,

drct

a,

–

hruh

nest

ñu.

3s

1. homâo also means ‘have’, reflecting the strong

tendency across languages to use the same word

for possession and the existential. homâo is clause-

initial in existential clauses, but it comes after the

subject in possession clauses.

2. All verbs are glossed with a bare form, as Jarai

has no inflectional morphology. Although Jarai has

lexical items that encode tense, they are relatively

infrequent in text.

3. The word laih is literally ‘after; finish’, but that

is clearly not the meaning here. Probably laih here

is an abbreviation for laih anŭn, ‘after that; and’,

hence the gloss ‘and’.

4. dŏ ‘sit, stay’ is used like a copula in locative

clauses, which is what I assume here (‘a peacock

[which was] beside its nest’); however, this could

just as well mean ‘a peacock sitting beside its nest’,

retaining the posture semantics.

‘There was an old person who went to work in the field. He took along his machete, he

took along his hoe, and he carried his basket on his back. While he was on his way to the

farm, he saw a peacock beside its nest.’



54

The syntax is:

\beginglpanel . . . \endgl . . . \endpanel

The first part is the gloss, with the usual syntax. The second part is put in a vbox and set alongside

the gloss. The tokens lingeverypanel are inserted when the vbox begins. All of the parameters

which are special to positioning the free translation to the right of the gloss apply here as well,

with the obvious meanings.

The complete code for the example above is:

\ex[everypanel=\footnotesize]<panelex>

\let\\=\textsc

\beginglpanel[ssratio=.5,glhangstyle=none]

\gla Hom\ˆ{a}o$ˆ1$ sa \v{c}\ˆ{o} p\ˆ{o} tha \˜{n}u nao ng\u{a}

hmua. \˜{N}u dj\u{a} g\u{a}, \˜{n}u dj\u{a} \v{c}\u{o}ng \˜{n}u,

laih gui r\ˆ{e}o \˜{n}u. Todang bboi r\ˆ{o}k jolan \˜{n}u nao

hma, \˜{n}u bb\ˆ{o}h sa droi mr\u{a} d\u{o}$\,ˆ4$ bboi gah, a, hruh

\˜{n}u.//

\glb \\{exist} one \\{clf} person old \\{3s} go$ˆ2$ do field

\\{3s} hold machete \\{3s} hold hoe \\{3s} and$ˆ3$ carry.on.back

back.basket \\{3s} while at along trail \\{3s} go field \\{3s}

see one \\{clf} peacock stay at \\{drct} -- nest \\{3s}//

\endgl

1.\enspace {\it hom\ˆ{a}o} also means ‘have’, reflecting the

strong tendency across languages to use the same word for

possession and the existential. {\it hom\ˆ{a}o} is clause-initial

in existential clauses, but it comes after the subject in

possession clauses.

2.\enspace All verbs are glossed with a bare form, as Jarai has

no inflectional morphology. Although Jarai has lexical items that

encode tense, they are relatively infrequent in text.

3.\enspace The word {\it laih} is literally ‘after; finish’, but

that is clearly not the meaning here. Probably {\it laih} here is

an abbreviation for {\it laih an\u{u}n}, ‘after that; and’, hence

the gloss ‘and’.

4.\enspace {\it d\u{o}} ‘sit, stay’ is used like a copula in

locative clauses, which is what I assume here (‘a˜peacock [which

was] beside its nest’); however, this could just as well mean ‘a

peacock sitting beside its nest’, retaining the posture

semantics.

\endpanel

\bigskip

‘There was an old person who went to work in the field. He took

along his machete, he took along his hoe, and he carried his



55

basket on his back. While he was on his way to the farm, he saw a

peacock beside its nest.’

\xe

Note that the free translation here comes after \endpanel and is typeset the way any material

inside an \ex construction is typeset. This allows it to have full width, spanning both the gloss

and notes. It could have been part of the gloss, with a different result.

No support is given to side note numbering. It must be done “by hand”. If the construction

turns out to be sufficiently useful and hand numbering is sufficiently tedious, a more automatic

scheme might be possible. It would not be trivial, because the order in which the notes appear

inside the gloss before it is typeset is not necessarily the same as the order in which they appear

after it is typeset.

12.4. Cascading hanging indentation in glosses

(128) Homâo

exist

sa

one

čô

clf

pô

person

tha

old

ñu

3s

nao

go

ngă

do

hmua.

field

Ñu

3s

djă

hold

gă,

machete

ñu

3s

djă

hold

čŏng

hoe

ñu,

3s

laih

and

gui

carry.on.back

rêo

back.basket

ñu.

3s

Todang

while

bboi

at

rôk

along

jolan

trail

ñu

3s

nao

go

hma,

field

ñu

3s

bbôh

see

sa

one

droi

clf

mră

peacock

dŏ

stay

bboi

at

gah,

drct

a,

–

hruh

nest

ñu.

3s

‘There was an old person who went to work in the field. He took along his machete, he

took along his hoe, and he carried his basket on his back. While he was on his way to the

farm, he saw a peacock beside its nest.’

is produced by

\ex[glhangstyle=cascade]

\let\\=\textsc

\begingl

\gla

Hom\ˆ{a}o sa \v{c}\ˆ{o} p\ˆ{o} tha \˜{n}u nao ng\u{a} hmua. \˜{N}u

dj\u{a} g\u{a}, \˜{n}u dj\u{a} \v{c}\u{o}ng \˜{n}u, laih gui r\ˆ{e}o

\˜{n}u. Todang bboi r\ˆ{o}k jolan \˜{n}u nao hma, \˜{n}u bb\ˆ{o}h sa

droi mr\u{a} d\u{o} bboi gah, a, hruh \˜{n}u.//

\glb

\\{exist} one \\{clf} person old \\{3s} go do field \\{3s} hold

machete \\{3s} hold hoe \\{3s} and carry.on.back back.basket \\{3s}

while at along trail \\{3s} go field \\{3s} see one \\{clf} peacock

stay at \\{drct} -- nest \\{3s}//

\glft

‘There was an old person who went to work in the field. He took

along his machete, he took along his hoe, and he carried his

basket on his back. While he was on his way to the farm, he saw a



56

peacock beside its nest.’//

\endgl

\xe

12.5. Gloss underfixes

Macro: \gluf

Parameters:

key value initial value

glufcloseup dimension .4ex

everygluf token list {}

Sometimes, gloss displays like the following are desired, with grammatical markings written

below the gloss.

(129) Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the
ACC

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his
DAT

Freundin

girlfriend
DAT

ihri

her
ACC

Herz

heart
ACC

auszuschütten.

out to throw

‘Mary is sure that to reveal her heart to his girlfriend would not damage John.’

ExPex provides the macro \gluf which can be used to construct such a display.

\ex[glufcloseup=.4ex,everygluf=\footnotesize]

\begingl

\gla Mary$_i$ ist sicher, dass es den Hans nicht st\"oren

w\"urde seiner Freundin ihr$_i$ Herz auszusch\"utten.//

\glb Mary is sure that it \gluf/the/ACC/ Hans not annoy would

\gluf/his/DAT/ \gluf/girlfriend/DAT/ \gluf/her/ACC/

\gluf/heart/ACC/ {out to throw}//

\glft ‘Mary is sure that to reveal her heart to his girlfriend

would not damage John.’//

\endgl

\xe

The grammatical markings are essentially “underfixes” (rather than prefixes or suffixes),

hence the name “gluf” (gl underfix). When the underfix is typeset, the value of everygluf is

first inserted. It is provided so that the user has control of the font used to typeset the underfixes.

The value of glufcloseup determines how much the baselineskip between the underfix and the

underfixed word is closed up. Without some closeup, the underfixes are not positioned close

enough to the glosses they modify (in my opinion). The macro \gluf centers the underfix below

the word it annotates. Its syntax should be clear from the example above.



57

The introduction of the nlevel gloss style makes \gluf unnecessary. Its use should be

avoided in the future because it will be removed from ExPex in some future version. The code

below shows (129) would be coded in the nlevel style.

\ex[glstyle=nlevel,glneveryline={\it,,\footnotesize},

glnabovelineskip={,,-.4ex},extraglskip=0pt]

\begingl

Mary$_i$[Mary]

ist[is]

sicher,[sure]

dass[that]

es[it]

den[the/ACC]

Hans[Hans]

nicht[not]

st\"oren[annoy]

w\"urde[would]

seiner[his/DAT]

Freundin[girlfriend/DAT]

ihr$_i$[her/ACC]

Herz[heart/ACC]

auszusch\"utten.[out to throw]

\glft ‘Mary is sure that to reveal her heart to his girlfriend

would not damage John.’

\endgl

\xe

The result is almost, but not quite, identical to (129). The underfixes are positioned somewhat

differently, not center aligned under the word above them.

(130) Maryi

Mary

ist

is

sicher,

sure

dass

that

es

it

den

the
ACC

Hans

Hans

nicht

not

stören

annoy

würde

would

seiner

his
DAT

Freundin

girlfriend
DAT

ihri

her
ACC

Herz

heart
ACC

auszuschütten.

out to throw

‘Mary is sure that to reveal her heart to his girlfriend would not damage John.’

See (105) below for a gloss display in the nlevel style which is closer to (129).



58

12.6. Center alignment in glwords

Parameter:

key value initial value

glwordalign left or center left

When glwords are assembled, in either the wrap or nlevel styles, an alignment inside a vbox is

constructed. The alignments use an \hfil on the right, so that the text on the various lines of a

glword is left aligned. The parameter glwordalign allows the choice of center alignment. This

is occasionally useful. Compare, for example, (131) with (105).

(131) k-
CL

2

wapm
V

see

-a
AGR

3acc

-s’i
NEG

-m
AGR

2pl

-wapunin
TNS

preterit

-uk
AGR

3pl

‘you (pl) didn’t see them’

\ex[glspace=1.5em,everygla=\hfil,glwordalign=center,

everyglc=\hfil,aboveglbskip=-.2ex]

\begingl

\gla k- wapm -a -s’i -m -wapunin -uk //

\glb CL V AGR NEG AGR TNS AGR //

\glc 2 see {\sc 3acc} {} {\sc 2pl} preterit {\sc 3pl} //

\glft ‘you (pl) didn’t see them’//

\endgl

\xe

Center alignment in glwords is useful if you need to number the glwords; to facilitate

discussion, for example.

(132) 13
(1)

Homâo

exist

(2)

sa

one

(3)

čô

clf

(4)

pô

person

(5)

tha

old

(6)

ñu

3s

(7)

nao

go

(8)

ngă

do

(9)

hmua.

field

(10)

Ñu

3s

(11)

djă

hold

(12)

gă,

machete

(13)

ñu

3s

(14)

djă

hold

(15)

čŏng

hoe

(16)

ñu,

3s

(17)

laih

and

(18)

gui

carry.on.back

(19)

rêo

back.basket

(20)

ñu.

3s

(21)

Todang

while

(22)

bboi

at

(23)

rôk

along

(24)

jolan

trail

(25)

ñu

3s

(26)

nao

go

(27)

hma,

field

(28)

ñu

3s

(29)

bbôh

see

(30)

sa

one

(31)

droi

clf

(32)

mră

peacock

(33)

dŏ

stay

(34)

bboi

at

(35)

gah,

drct

(36)

a,

–

(37)

hruh

nest

(38)

ñu.

3s

‘There was an old person who went to work in the field. He took along his machete, he

took along his hoe, and he carried his basket on his back. While he was on his way to the

farm, he saw a peacock beside its nest.’



59

\ex[glstyle=nlevel,glhangstyle=cascade,

glneveryline={\insertno,\it,},glwordalign=center,

glnabovelineskip={,-1pt},glspace=!.4em]

\begingl

(1)[Hom\ˆ{a}o/\textsc{exist}]

(2)[sa/one]

(3)[\v{c}\ˆ{o}/\textsc{clf}]

(4)[p\ˆ{o}/person]
...

(35)[gah,/\textsc{drct}]

(36)[a,/--]

(37)[hruh/nest]

(38)[\˜{n}u./\textsc{3s}]

\glft . . .

\endgl

\xe

Numbering can be automated. One way to do this is below.

\ex[glstyle=nlevel,glhangstyle=cascade,glneveryline={\hfil\insertno,\it,},

glnabovelineskip={,-1pt},glspace=!.4em]

\count255=114

\def\insertno{\eightrm(\the\count255)\global\advance\count255 by 1}%

\begingl[]

[Hom\ˆ{a}o/\textsc{exist}]

[sa/one]

[\v{c}\ˆ{o}/\textsc{clf}]

[p\ˆ{o}/person]

[tha/old]

[\˜{n}u/\textsc{3s}]
...

Note carefully that \begingl has been supplied with an empty argument. Otherwise the parser

would have been confused and [Hom. . . would have been interpreted as an optional argument. An

alternative would have been \begingl{}[Hom. . . or \begingl\relax[Hom. . . .

14. Tex reserves \count255 for scratchwork. Since the assignment needs to be global, it is important to use a count

register that does not serve another purpose. If a named count register is available, it would be better to use that

register.



60

13. Referring to examples and labeled parts of examples

13.1. Unnamed reference

Macros: \lastx, \nextx, \blastx, \anextx, \bblastx

If x is the value of \excnt, these macros produce x−1, x, x−2, x+1, x−3, respectively, expressed

as an either an arabic or roman numeral, depending on the setting of exnotype. The example

number counter is incremented early in the expansion of \ex and \pex, so if one of these macros

is used inside an example, “last example” has the meaning “current example number”. Although

\excnt is incremented early, it is incremented after local parameters are set. Consequently, if any

of these macros is used in setting parameters in the optional argument of \ex or \pex, it acts as if

it were being evaluated just before \ex or \pex.

It is potentially dangerous to use macros like \bblastx or \anextx for reference to an

example because later additions or deletions in the document can throw off the reference. This

kind of misreference is particularly easy to overlook in proofing a document. It is better to assign

names to the things you want to refer to and to refer to them by name, particularly in a document

that will undergo a lot of rewriting. If reference by name is used and an intervening example is

deleted or added, no problem arises. If the example which is referred to is deleted, then Tex will

report a missing reference.

13.2. Named reference

Macros: \deftag, \deftagex, \deftaglabel, \deftagpage, \getref, \getfullref

Parameter:

key value initial value

tag character string (none)

The core macros are \deftag and \getref. \deftag takes two (obligatory) arguments.

After \deftag{reference}{ tag} is executed, \getref{ tag} expands to reference, where

the value of the reference is determined at the point the \deftag command was evaluated.

\deftagex{ tag} expands to \deftag{\the\exno}{ tag}. \deftagpage{ tag} expands to

\deftag{\the\pageno}{ tag}, but the expansion is delayed until after Tex’s page breaking

mechanism has decided what page the \deftag command appears on. The tag/page pair which is

generated in this case is written to a file only, so \getref cannot recover a page number until a

tag-ref file is read.

The evaluation of \deftaglabel{ tag} is more complex. \pexcnt, the setting of label-

type, and the setting of everylabel are used to construct the reference (either a letter or a

number). The tag which is submitted to \deftag is tag′.tag, where tag′ is the example number

tag.

The code below produces (133).



61

\pex[interpartskip=0pt]

\a First\deftag{the first part of example \lastx}{FP}

\a Second\deftagex{snoopy}\deftaglabel{dog}

\a Third\deftaglabel{a}

\xe

(133) a. First

b. Second

c. Third

Afterwards, assuming that the tag snoopy has not been redefined in the interim

\getref{snoopy} → 133

\getref{snoopy.dog} → b

\getfullref{snoopy.dog} → 133b

\getref{snoopy.a} → c

\getfullref{snoopy.a} → 133c

\getref{dog} → undefined tag warning, or spurious reference

\getref{FP} → the first part of example 133

\getref{dog} will produce a spurious reference if the tag dog is defined somewhere else in your

document. \deftaglabel must know, at the point that it is expanded, what tag has been attached

to the example number. If the example number has not been tagged at that point, a warning

message is issued.

There are two alternatives to the explicit use of \deftagex and \deftaglabel. One is the

use of the parameter tag. After

\pex[interpartskip=0pt,labeltype=alpha,tag=snoopy]

\a First

\a[tag=dog] Second

\a Third\deftaglabel{A}

\xe

\getref{snoopy}, \getref{snoopy.dog}, and \getref{snoopy.A} are interpreted as

expected, as are \getfullref{snoopy.dog} and \getfullref{snoopy.A}.

The other alternative is a special “tagging notation” which, unlike most shortcuts, makes the

code easier to read as well. After

\pex[interpartskip=0pt,labeltype=alpha]<snoopy>

\a First

\a<dog> Second

\a[tag=A] Third

\xe

\getref{snoopy}, \getref{snoopy.dog}, and \getref{snoopy.A} are interpreted as

expected, as are \getfullref{snoopy.dog} and \getfullref{snoopy.A}.

If \getref{sometag} is evaluated and the tag is undefined, a warning message to this effect

is generated and •sometag is typeset instead of the intended reference.



62

13.3. Proofing references

Macro: \refproofing

It is tedious to check that references to example numbers and the like are correct (i.e. refer to what

you think they refer to). ExPex provides a little help. If you execute \refproofing, then all

the references that are generated by \bblastx, \blastx, \lastx, \nextx, \anextx, \getref,

and \getfullref are highlighted. If PSTricks is loaded at the point that \refproofing is

evaluated, the highlighting consists of a box around the reference. If not, the reference is under-

and overlined. Highlighting is helpful in copy editing. The difference is illustrated below.

(134) a. Consider (133b), for example. default behavior

b. Consider (133b), for example. \refproofing, PSTricks available

c. Consider (133b), for example. \refproofing, PSTricks not available

13.4. The tag/reference file

Macros: \gathertags, \tagfilesuffix

Forward references require writing tag/reference associations to a file in one run, then reading

this file in a second run. Forward reference is only one reason for such a system. If you work

on a document in pieces, say one section at a time, and need to refer to things in prior sections,

then the tag/reference pairs from previous sections must be stored in a file so that they can be

used in the section that you are working on. If you say \gathertags, the tag/reference pairs will

be written to a file as they are established. If your main file is named foop.tex, for example, the

default is to write the tag/ref pairs to foop-tags.tex. But you can modify this by using the command

\tagfilesuffix. expex.texcontains \tagfilesuffix{-tags}, but you can overrule this with

\tagfilesuffix{your suffix}.

When the first \getref, \getfullref, or \gathertags command is encountered, ExPex

checks to see if there is a tag file. If the file does exist, it is read and all the tag/reference pairs it

encodes are established. No testing is done for conflicting tag/reference pairs with the same tag,

so it is the responsibility of the user to see that this does not occur to a bad effect. If the user wants

to be absolutely sure that bad references have not accidentally occurred because of using the same

tag twice, he/she can look directly at the tag file in a text editor. If the lines are alphabetized,

it is relatively easy to find tags for which multiple references have been established. If you are

a careful copy editor, this may be worth doing in a complex project (a book length manuscript)

during final copy editing. Of course, the printed final manuscript should be checked in any event

to make sure that the references refer to what you want them to refer to.

For what it is worth, my own style of work is to break up projects into multiple pieces and

have a main file which calls the various pieces. Then I simply comment out the calls to pieces that

I am not working on. From time to time I will run the main file calling on all the various pieces,

invoking \gathertags. Then I comment out \gathertags. The tag-ref file which is created

then remains intact until \gathertags is invoked at some future time. All of the tag/reference

pairs it encodes are available in subsequent work until a new tags file is created.



63

13.5. References to references, references as values

Macro: \lastlabel

If, for some reason, you want to refer to a specific part of a multipart example without tagging the

example number, it can be done as follows, assuming that the part labels are alphabetical.

\pex[everylabel=\it]

\a First Example.

\a Second Example.\deftag{\lastx\lastlabel}{snoopy}

\a Third Example.

\xe

(135) a. First Example.

b. Second Example.

c. Third Example.

You can then use \getref{snoopy} to retrieve 135b. \lastlabel expands to the most recent

label, in the form in which it is printed (i.e. containing the expansion of \everylabel). If the

part labels are numerical, then \deftag{\lastx.\lastlabel} is required.

You can also say:

\ex[exno=\getref{snoopy}] Second example.\xe

(135b) Second example.

Or you can say:

\ex[exno={\getref{snoopy}, repeated},exnoformat={[X]}]

Second example.\xe

[135b, repeated] Second example.

Braces must hide the comma in the value which sets the key.

If you say



64

\pex[labeltype=numeric]<dog>

\a First Example.

\a<G> Second Example.

\a Third Example.

\xe

(136) 1. First Example.

2. Second Example.

3. Third Example.

then, if you want to repeat (136.2) at some point, you can use:

\ex[exno=\getfullref{dog.G}] Second example\xe

(136.2) Second example

13.6. Extensions of the tag/reference mechanism

The tag/reference mechanism can easily be extended to reference to chapters, sections, and

subsections. Suppose, for example, that there are counters for the chapter number, section number,

subsection number, and subsubsection number. One might define:

\def\currsec{\the\chapterno

\ifnum\secno>0 .\the\secno

\ifnum\subsecno>0 .\the\subsecno

\ifnum\subsubsecno>0 .\the\subsubsecno \fi\fi\fi}

\def\deftagsec#1{\deftag\currsec{#1}}

This assumes that there are counters \chapterno, \secno, \subsecno, and \subsecsecno and

that when a chapter is initiated, \secno is set to 0, when a section is initiated, \secsecno is set to

0, and that when a subsection is initiated, \subsubsecno is set to 0. (Lines 1–5, commented out,

are included at the end of expex.tex for the user to use, modify, or ignore.)

13.7. The parameter fullreformat

Parameter:

key value initial value

fullrefformat . . . X . . . A . . . XA

1. labelformat (see page 19) determines how the labels are formatted. Generally they are

followed by a period, but this parameter allows other possibilities.

2. fullrefformat determines how references retrieved by \getfullref are formatted.

Generally, example numbers and labels are concatenated if the labels are characters and

separated by a period if the labels are numbers. This parameter allows other possibilities.



65

The format specification is primitive. Val(fullrefformat) is analyzed as #1X#2A#3, with X

preceding A. Then the full reference is found by substituting the example number for X and the

part label for A.

Consider the artificial example below, with unusual formatting for illustrative purposes.

\pex[labeltype=numeric,labelformat={[A]},

fullrefformat=X-A,samplelabel={[1]}]<K>

\a first

\a<A> second

\xe

(137) [1] first

[2] second

\getref{K.A} produces 2 and \getfullref{K.A} produces 137-2.

13.8. Reference to a part of a multipart example

Suppose there is a multipart example which you want to partially repeat at a later point, giving

only some of the parts. There are many opportunities to make a mistake. The reference to the

example number may be wrong, the references to the part labels my be wrong, or a particular part

may not be repeated the way it originally appeared. Here is one way to (partially) automate the

references to avoid most of the possible reference errors.

\deftag{Someone loves everyone.}{1st}

\deftag{Everyone loves someone.}{2nd}

\pex<A>

\a \dots

\a<X> \getref{1st}

\a \dots

\a<Z> \getref{2nd}

\xe

\ex An intervening example.\xe

The two crucial examples in

(\getref{A}) are repeated below:

\pex[exno=\getref{A}]

\a[label=\getref{A.X}] \getref{1st}

\a[label=\getref{A.Z}] \getref{2nd}

\xe

\ex Numbering resumes.\xe

(138) a. . . .

b. Someone loves everyone.

c. . . .

d. Everyone loves someone.

(139) An intervening example.

The two crucial examples in (138) are

repeated below:

(138) b. Someone loves everyone.

d. Everyone loves someone.

(140) Numbering resumes.

Important limitation: Inside an example that sets exno to a nonempty value, the use of

\deftaglabel or \deftagex, or their implicit versions using the <. . . > notation, or \label, will

result in an error or (more dangerously) an unexpected outcome. This is a minor limitation because

there should be no need to tag items which themselves are referenced by tags. It is important only

because violating it can generate Tex errors.



66

13.9. Support for the LaTex \label and \ref commands

LaTex users, if so inclined, may wish to use the LaTex \label-\ref mechanism to tag example

numbers and example part labels.

Assuming that LaTex is in use,

\pex \label{A}

\a Tom\label{B}

\a Dick\label{C}

\a Harry\label{D}, etc.

\xe

\ex˜ Intervening example.\xe

\noindent Consider example (\ref{A}).

Tom is in example (\ref{B}), Dick is

in example (\ref{C}), and Harry is in

example (\ref{D}).

(141) a. Tom

b. Dick

c. Harry, etc.

(142) Intervening example

Consider example (141). Tom

is in example (141a), Dick is in

example (141b), and Harry is in

example (141c).

There are important differences between the LaTex mechanism and the \deftag-\getref

mechanism.

1. \ref{tag} cannot be used as a special example number, nor can it be given as an optional

argument to \a.

2. The \label name space is flat. No distinction is made between names of examples and names

of parts of examples. This makes it much harder to remember and manage the names, at least for

me.

3. LaTex provides no control over the generation of the file containing the tag-reference pairs.

One cannot work on Chapter 5 (for example) and have all the tag-reference information for the

earlier chapters available without actually submitting all of the Chapters 1 to 4 to LaTex while you

are working on Chapter 5.

14. Tables in examples

Macro: \hwit

Most of the difficulty of formatting example displays which contain tables comes from formatting

the table itself. This manual will not teach the reader how to use Tex to format tables. It will be

assumed that the reader knows how to use the Tex primitive \halign or the LaTex macros based

on \halign. But this section might contribute something to understanding how to use the table

making tools in linguistics examples.

Many tabular examples have the form



67

\ex \vtop{\halign{ . . . }}\xe

For example:

(143) baudh bu-baudh know, wake

smai si-smai smile

suap su-suap sleep

miaks mi-miaks glitter

auc u-auc please

\ex \vtop{\halign{%

#\hfil&& \qquad #\hfil\cr

baudh& bu-baudh& know, wake\cr

smai& si-smai& smile\cr

suap& su-suap& sleep\cr

miaks& mi-miaks& glitter\cr

auc& u-auc& please\cr

}}\xe

A more elaborate version of (143), with a title and labeled columns, is given below. \hwit is

described below.

(144) The perfect stems of some roots with a high vowel in their nucleus

root perfect stem gloss

baudh bu-baudh ‘know, wake’

smai si-smai ‘smile’

suap su-suap ‘sleep’

miaks mi-miaks ‘glitter’

auc u-auc ‘please’

\ex The perfect stems of some roots with a

high vowel in their nucleus\par\nobreak\medskip

\quad\vbox{\halign{%

#\hfil&& \hskip3em #\hfil\cr

\hfil\hwit{root}& \hfil\hwit{perfect stem}&

\hfil\hwit{gloss}\cr

\noalign{\smallskip}

baudh& bu-baudh& ‘know, wake’\cr

smai& si-smai& ‘smile’\cr

suap& su-suap& ‘sleep’\cr

miaks& mi-miaks& ‘glitter’\cr

auc& u-auc& ‘please’\cr

}}\xe



68

\hwit (hidewidth italics) inserts the italicized label into the alignment in such a way that it is

centered over the nonwhite portion of the column it heads. It hangs over equally on both sides if

necessary. Hiding the width of column labels is often important so that the column labels do not

affect the column widths.

\par\nobreak appears after the title so that page breaking does not detach the title from the

table that follows.

14.1. Tables with labeled lines

Macros: \labels[], \tl, \nl

If reference must be made to particular lines in (144), the lines need labels of some sort. One

approach is to explicitly enter the line labels a–e:

(145) The perfect stems of some roots with a high vowel in their nucleus

root perfect stem gloss

a. baudh bu-baudh ‘know, wake

b. smai si-smai ‘smile’

c. suap su-suap ‘sleep’

d. miaks mi-miaks ‘glitter’

e. auc u-auc ‘please’

\ex The perfect stems of some roots with a

high vowel in their nucleus\par\nobreak\medskip

\quad\vbox{\halign{%

#\hfil& \quad #\hfil&& \hskip3em #\hfil\cr

& \hfil\hwit{root}& \hfil\hwit{perfect stem}&

\hfil\hwit{gloss}\cr

\noalign{\smallskip}

a.& baudh& bu-baudh& ‘know, wake’\cr

b.& smai& si-smai& ‘smile’\cr

c.& suap& su-suap& ‘sleep’\cr

d.& miaks& mi-miaks& ‘glitter’\cr

e.& auc& u-auc& ‘please’\cr

}}\xe

If a line is deleted or added, or if lines are interchanged for some reason, considerable relabeling

may be required.

ExPex provides some macros which simplify this code and make it easier to manipulate.

They are used in the alternate code for (145) below and described below. \labels initializes

the counter \pexcnt, which is then used to generate the labels. It also activates the macros

\tl (table label) and \nl (no label). \tl inserts the appropriate label, with following period,

and increments the counter. \nl abbreviates \omit\hfil, so that it can be used to prevent

the appearance of a label in a cell. \labels takes parameters, so you can say things like



69

\labels[labeltype=caps,everylabel=\it]. Of course, these parameters can also be set at

the \ex level, if desired, or even globally.

\ex The perfect stems of some roots with a

high vowel in their nucleus\par\nobreak\medskip

\quad\vbox{\labels\halign{%

\tl #\hfil& #\hfil& \quad #\hfil&& \hskip3em #\hfil\cr

\nl & \hfil\hwit{root}& \hfil\hwit{perfect stem}&

\hfil\hwit{gloss}\cr

\noalign{\smallskip}

& baudh& bu-baudh& ‘know, wake’\cr

& smai& si-smai& ‘smile’\cr

& suap& su-suap& ‘sleep’\cr

& miaks& mi-miaks& ‘glitter’\cr

& auc& u-auc& ‘please’\cr

}}\xe

The advantages of implicit line label insertion should be obvious. One often decides to

insert another entry, or to delete an entry. If the labels are inserted explicitly, this usually requires

changing multiple labels. If the table has many lines, this is particularly onerous. References in

the text to particular lines also need to changed to match the new labeling. We will see below that

lines in tables can be named and reference made by name, using implicit line numbering.

14.2. Tagging implicit labels in tables

\deftaglabel can be used to associate a tag with a label that is introduced into a table by

\tl (“table label”). \tl can also read an optional tag using the <. . . > mechanism.

\ex<Washo>

\vtop{\labels\halign{\tl #\hfil&& \quad #\hfil\cr

\nl & \hwit{Root}& \hwit{Plural}& \hwit{Gloss}\cr

& baloxat& baloxaxat& bows\cr

& moya& moyaya& shoulder\cr

<A>& nent’us& net’unt’us& old women\cr

<B>& mokgo& mogokgo& shoes\cr

}}

\xe

Examples (\getfullref{Washo.A}) and (\getfullref{Washo.B}) are the most

complex, and therefore the most revealing. Examples

(\getref{Washo}\getref{Washo.A},\getref{Washo.B}) are the most complex,

and therefore the most revealing.



70

(146) Root Plural Gloss

a. baloxat baloxaxat bows

b. moya moyaya shoulder

c. nent’us net’unt’us old women

d. mokgo mogokgo shoes

Examples (146c) and (146d) are the most complex, and therefore the most revealing. Examples

(146c,d) are the most complex, and therefore the most revealing.

14.3. Some useful table making tools

Macro: \tspace[], \crs

Parameters:

key value initial value

dima† dimension 2.4em

dimb† dimension (not set)

dimc† dimension (not set)

crskip\user skip 1.2ex

Tables often need considerable adjustment in order to balance the needs of readability, space

limitations, and matching the typographic structure to the conceptual structure. Sometimes this

requires a delicate balancing act. ExPex provides three parameters (scratch dimensions) dima,

dimb, and dimc, and corresponding macros which expand to their settings, which can be used

for this. Additionally, \tspace[key] expands to \hskip\ling tag, so that horizontal skip like

\tspace[dima] or \tspace[textoffset] can be easily used in table construction. The code

for (146) could be written:

\ex[textoffset=1em,dima=1em,dimb=3em]

The perfect stems of some roots with a high vowel in their

nucleus\par\nobreak\medskip

\tspace[dima]\vbox{\labels\halign{%

\tl #\hfil& \tspace[textoffset]#\hfil&& \tspace[dimb]#\hfil\cr

\nl & \hfil\hwit{root}& \hfil\hwit{perfect stem}&

\hfil\hwit{gloss}\cr

...

Localizing all the parameters which might need adjustment in the optional argument of \ex helps

organize the adjustment process.

If no optional argument is supplied to \tspace, it expands to \hskip\lingdima.

The macro \crs and command key crskip are provided to assist in fine tuning the vertical

spacing inside an alignment. \lingcrskip expands to the setting of crskip, and

\crs → \cr \noalign{\vskip\lingcrskip}



71

14.4. Tables that can break between pages

Macros: \exdisplay[], \noexno, \exnoprint, \crnb

Up to this point, only tables that are typeset in a vbox have been considered. The Tex page

breaking algorithm does not split a box between pages. Sometimes, an especially tall table is

needed and one has the choice of floating the table to the top of the next page (using Tex’s

\topinsert) or constructing a breakable table. The latter choice is often preferable and can be

implemented using Tex’s primitive \halign.

The example number must be part of the \halign, not inserted by \ex. \exdisplay is

designed to accommodate an unboxed \halign. Like \ex, \exdisplay must be closed by

\xe. \exdisplay . . . \xe is just like \ex . . . \xe except that an example number is not printed

and the horizontal dimensions \numoffset and \textoffset are irrelevant. aboveexskip

and belowexskip play the same role, paragraph indentation is cancelled, \lingeveryex and

\lingEveryex are executed, and \excnt is advanced.

\noexno is provided in case the user wants to use \exdisplay for something other

than a numbered example. It cancels the automatic advancement of \excnt. You can say

\exdisplay\noexno or \exdisplay[ . . . ]\noexno to cancel \excnt advancement.

Now consider the ‘tall display’ (147). It is sufficiently tall that it either must be put in an

insertion or typeset so that it can be split by a page break.

(147) High vowel in the nucleus of the root

root perfect stem gloss

a. baudh bu-baudh ‘know, wake’

b. stau tu-stau ‘praise’

c. smai si-smai ‘smile’

d. suap su-suap ‘sleep’

e. miaks mi-miaks ‘glitter’

f. auc u-auc ‘please’

No high vowel in the nucleus of the root

g. suaj sa-suaj ‘embrace’

h. krand ka-krand ‘cry out’

i. skand ka-skand ‘leap’

j. mard ma-mard ‘rub, crush’

k. mnaa ma-mnaa ‘note’

The example number in the code below is inserted by \exnoprint, which is how \ex

inserts example numbers. If, by the way, you don’t like the way example numbers are inserted

(surrounded by parentheses), you can redefine \exnoprint. The code uses \crnb, which expands

to \cr\noalign{\par\nobreak}, to prevent a page break between a heading and the remainder

of the table which follows. Page breaks are encouraged by \exbreak at a few points where it

is judged that the logic of the table can tolerate it. \exbreak encourages a page break at the



72

cost of allowing a certain amount of white space at the bottom of the broken page.15 A negative

horizontal skip \tspace[dimc] is used to highlight the subheadings (and to show the reader that

it is a possibility, if you need it).

\exdisplay[labeloffset=2em,dima=2em,dimb=1em,dimc=-.8em]

\def\\#1-{{\bf #1}-}%

\labels

\openup1pt

\halign{%

#\tspace[labeloffset]\hfil& % example number

#\tl\tspace[textoffset]\hfil& % line label

#\tspace \hfil& % root

#\tspace \hfil& % perfect stem

‘#’\hfil\cr % gloss

(\the\excnt)& \omit\tspace[dimc] High vowel in the nucleus of the

root\hidewidth\crnb

& \nl & \hwit{root}& \hwit{perfect stem}&

\omit\tspace\hwit{gloss}\crnb

&& baudh& \\bu-baudh& know, wake\cr

&& stau& \\tu-stau& praise\cr

&& smai& \\si-smai& smile\cr

\noalign{\exbreak}

&& suap& \\su-suap& sleep\cr

&& miaks& \\mi-miaks& glitter\cr

&& auc& \\u-auc& please\cr

\noalign{\exbreak\smallskip}

& \omit\tspace[dimc] No high vowel in the nucleus of the

root\hidewidth\crnb

&& suaj& \\sa-suaj& embrace\cr

&& krand& \\ka-krand& cry out\cr

\noalign{\exbreak}

&& skand& \\ka-skand& leap\cr

&& mard& \\ma-mard& rub, crush\cr

&& mnaa& \\ma-mnaa& note\cr

}\xe

15. See page 76 for a more complete discussion of \exbreak. The amount of encouragement and the amount of

whitespace are parametrized.



73

14.5. Squeezing tables into tight places

Foregoing \ex and directly using \halign inside \exdisplay . . . \xe has other uses besides

constructing tables in numbered examples which can be broken between pages. The technique is

also sometimes useful in fitting a table in a numbered example into a narrow page width. The table

below was constructed to fit on a page of width 4.3 in, with no room to spare. It gives the present

indicative conjunction of the Sanskrit verb root dves. /dvis. ‘hate’.

(148) Present Indicative

active middle

sg du pl sg du pl

1 dvés.-mi dvis.-vás dvis.-más dvis.-é dvis.-váhe dvis.-máhe

2 dvék-s.i dvis.-t.hás dvis.-t.há dviks.-é dvis.-´̄athe dvid. -d.hvé

3 dvés.-t.i dvis.-t.ás dvis.-ánti dvis.-t.é dvis.-´̄ate dvis.-áte

Assuming that the page width has been set to 4.3 in (\hsize=4.3in), the following code

produces (148), which is precisely 4.3 in wide.

\exdisplay[dima=.5em,dimb=.4em,textoffset=.5em]

\def\\#1{$\acute{\hbox{\=#1}}$}%

\tabskip=0pt

\openup.4ex

\halign to \hsize{\tspace[dima]#\tspace[textoffset]\hfil&

#\hfil\tabskip=0pt plus 1fil&

#\hfil& #\hfil& \tspace[dimb]#\hfil&

#\hfil & #\hfil\tabskip=0pt\cr

\omit\exnoprint\hidewidth&

\multispan6 \hwit{Present Indicative}\crnb

&\multispan3 \hwit{active}& \multispan3 \hwit{middle}\cr

& \hwit{sg}& \hwit{du}& \hwit{pl}&

\hwit{sg}& \hwit{du}& \hwit{pl}\cr

\it 1& {\bf dv\’e\.s}-mi& dvi\.s-v\’as& dvi\.s-m\’as&

dvi\.s-\’e& dvi\.s-v\’ahe& dvi\.s-m\’ahe\cr

\it 2& {\bf dv\’ek}-\.si& dvi\.s-\.th\’as& dvi\.s-\.th\’a&

dvik\.s-\’e& dvi\.s-\\athe& dvi\.d-\.dhv\’e\cr

\it 3& {\bf dv\’e\.s}-\.ti& dvi\.s-\.t\’as& dvi\.s-\’anti&

dvi\.s-\.t\’e& dvi\.s-\\ate& dvi\.s-\’ate\cr

}

\xe



74

15. ExPex and PSTricks

Macro: \Lingset

Several features of ExPex, listed in (149), come into play only if pstricks.tex has been loaded at

the point that expex.tex is loaded. They are intended to make it easier to use PSTricks in examples.

(149) 1. \Lingset is activated. It works like \lingset, but if there are parameters which are

not in the family ling, they are passed to \psset.

2. The family ling is added to the set of parameter families which \psset can set.

3. The optional argument of \ex, \pex, and \exdisplay is passed to \Lingset.

\Lingset first scans its argument from left to right and sets all the parameters from the family

ling. The remaining keys are then passed to \psset. If PSTricks has not been loaded, \Lingset

is defined, but its meaning is the meaning of \lingset.

This is illustrated by (150).

(150) Whom did John persuade t [ PRO to visit whom ]

Msp = 2
Msp = 6

(The example is from Juan Uriagereka, in The Role of Economy Principles in Linguistic Theory.)

In the code below, note that the optional argument of \ex is used to set the PSTricks

parameters angle, arrows, nodesep, labelsep, and linearc, and the ExPex parameter dima.

Note also that the ExPex scratch dimension \lingdima is used seamlessly by the PST-Node

macros.

1 \ex[angle=-90,nodesep=0pt,arrows=->,dima=.2em, labelsep=.25ex,

2 linearc=.7ex]

3 \def\\#1(#2){\rnode{#2}{\strut #1}}%

4 %

5 \vrule height0pt depth5.3ex width0pt

6 \\Whom(A) did John persuade \\t(B) [ PRO to visit \\whom(C) ]

7 \ncbar[armA=3.5ex,offsetB=\lingdima]{B}{A}

8 \bput{0}{$M_{sp}=2$}

9 \ncbar[armA=4.5ex,offsetB=-\lingdima]{C}{A}

10 \bput{0}(1.2){$M_{sp}=6$}

11 \xe

Since the connections which PSTricks draws are dimensionless, a zero width \vrule is used to

give correct spacing. (The width can first be made nonzero so it is visible, and the depth adjusted.)

The following gives the same result.



75

1 \ex

2 \psset{angle=-90,nodesep=0pt,arrows=->,dima=.2em,labelsep=.25ex,

3 linearc=.7ex}
...

\Lingset and \psset are not entirely equivalent, even when PSTricks is active. If a key

name in the family ling is the same as a key name in another family which has also been added as

part of the PSTricks extended family, \Lingset will treat it unambiguously as in the ling family.

\psset, on the other hand, does not give priority to keys in the ling family. Exactly how \psset

establishes priority is a complex matter, depending on the history of the formation of the PSTricks

extended family.

16. Control over page breaking inside examples
Page breaking is generally much more disruptive if it occurs inside an example than if it occurs in

a paragraph of text. Steps can be taken to minimize the possibility that examples are disrupted by

page breaks. Avoiding disruption can mean either that a page break does not occur, or if it does,

it happens at a “good place”. If the parts of a multi-part example naturally form subgroups, it is

desirable to encourage a break between subgroups and discourage a break inside a subgroup.

ExPex attempts to provide tools to help avoid breaking examples between pages and, if they

must be split, making it easy to specify where in the example splitting should be encouraged or

discouraged. This must be balanced with limitations on how much white space at the bottom of

pages is allowable.

The amount of whitespace at the bottom of pages and how much variability in the vertical

skip between examples and the surrounding text is acceptable will probably vary between different

intended purposes: handout, draft, paper, camera-ready paper, lecture notes, camera-ready book

manuscript, etc. It will also vary between different stages of production. Different editors may

have different views of the tradeoff between keeping examples intact and allowing whitespace at

the bottom of pages. There is no sense in spending time on formatting while you are still working

on a draft. ExPex therefore provides a number of parameters which can be adjusted to control

various aspects of page breaking.

In spite of efforts to guide Tex in making good decisions about page breaking, the results are

not always satisfactory.

Every once and a while, TEX will produce a really awful looking page and you

will wonder what happened. For example, you might get just one paragraph and

a whole lot of white space, when some of the text on the following page would

easily fit into the white space. The reason for such apparently anomalous behavior

is almost always that no good page break is possible; even the alternative that looks

better to you is quite terrible as far as TEX is concerned!

(from Knuth’s TEXbook, p. 115)

In situations like this, one has to give up on encouraging Tex to do the right thing and give explicit

orders to break the page by inserting \eject or \vfil\eject in the appropriate place. The

drawback to an explicit order is that it remains in force after revisions are made to the document.

If it causes page breaking that is obviously bad, the problem will usually be seen when editing.

The biggest danger is that the output is not terrible, but it is less than ideal and the discrepancy is

missed in less than meticulous copy editing.



76

16.1. Discouraging page breaks in examples

Macro: \exbreak

Parameters:

key value initial value

exbreakfil skip 0pt plus 4ex

exbreakpenalty integer -500

splitpartspenalty integer 200

Tex carries out page breaking by assigning a cost (via penalties) to each possible page break and

choosing the lowest cost option. Plain Tex defines a macro \goodbreak which ends the current

paragraph and gives a negative penalty (−500) if a page break is taken after the paragraph. A

negative penalty is a reward, which encourages page breaking at that point. The ExPex macro

\exbreak is a variant of \goodbreak. It not only ends the current paragraph and awards a penalty

(a reward if the penalty is negative) if a page break is taken at that point, but makes it easier for a

satisfactory page break to be taken by allowing the page to end with some vertical fill, allowing

some whitespace to appear at the bottom of the broken page.

\exbreak is inserted at the beginning of every \ex or \pex block. The penalty and amount

of fill are parameterized. The default values are suitable for camera-ready copy, assuming that the

publisher is willing to tolerate a small amount of whitespace at the bottom of a page in return for

keeping an example intact. 4 ex is about 1.5 times the distance between baselines in most fonts.

For drafts, I set exbreakfil=.3\vsize, which keeps almost all examples intact at the cost of

allowing substantial whitespace to appear at the bottom of a page.

The setting of exbreakfil can be overridden by supplying a value directly as an optional

argument of \exbreak. For example, \exbreak[5ex] acts like \exbreak (with no argument)

with exbreakfil is set to 5ex.

Page breaks right before an example part in a \pex construction introduced by \a are

discouraged by imposing a penalty determined by the setting of splitpartspenalty. If

splitpartspenalty is set to 10000, such breaks will be completely disallowed. I use this setting

for writing drafts. Coupled with a generous setting of \exbreakfil, almost all page breaks in

examples are eliminated, which is what I prefer in writing a draft. The default value is more

suitable for finished documents.

In older versions of ExPex, \exbreak was called \goodpar. The present name is more

consistent with Tex’s naming habits.



77

16.2. Controlling where page breaks occur in examples (if they must)

If a page break within an example cannot be avoided because it would require too much vertical

fill to be inserted, it is often important to control where within the example the page break is made.

Consider for example a display like (151).

(151) a. example A

b. contrast with example A

c. example B

d. variation on B

e. another variation on B

f. a third variation on B

g. example C

h. contrast with example C

Suppose the logic of the examples pairs a and b, c–f, and g and h. How do you avoid a page

break which interrupts the logic of the collection of examples? One option is the standard Tex

method of using \nobreak to prevent a page break, as in the code below:

\pex[interpartskip=.25ex]

\a example A\par\nobreak

\a contrast with example A

\a example B\par\nobreak

\a variation on B\par\nobreak

\a another variation on B\par\nobreak

\a a third variation on B

\a example C\par\nobreak

\a contrast with example C

\xe

Note that \par must precede \nobreak. We are interested in preventing a page break in the

process of adding lines to the current page, not in preventing a break in the process of building

the lines which are added to the current page. \par breaks the line, which takes Tex out of line

building mode and puts it into page building mode.

\exbreak offers an alternative.

\pex[interpartskip=.25ex]

\a example A

\a contrast with example A\exbreak

\a example B

\a variation on B

\a another variation on B

\a a third variation on B\exbreak

\a example C

\a contrast with example C

\xe



78

Index of control sequences, parameters, and special symbols

*, parameter 32

+, exceptional gloss item 39

+, gloss diacritic 45

@, exceptional gloss item 40

@, gloss diacritic 45

˜, tilde diacritic 12

\a 15

aboveexskip† 10

aboveglbskip† 38

aboveglcskip† 38

aboveglftskip† 38

\actualexno 26

\anextx 60

appendtopexarg 26

avoidnumlabelclash 26

\bblastx 60

\begingl[] 34

\beginglpanel[] 53

belowexskip† 10

belowglpreambleskip† 38

belowgpreambleskip† 15

\blastx 60

\crnb 71

\crs 70

crskip\user 70

\defineglwlevels 51

\definelabeltype 23

\definelingstyle 30

\deftag 60

\deftagex 60

\deftaglabel 60

\deftaglabel, in tables 69

\deftagpage 60

dima† 70

dimb† 70

dimc† 70

\endgl 34

\endpanel 53

\endpreamble 42

Everyex† 30

everyex† 30

everygl 37

everygla 37

everyglb 37

everyglc 37

everyglft 37

everyglilg 37

everyglpreamble 37

everygluf 56

everylabel 19

everypanel† 53

everytrailingcitation 48

\ex 10

\exbreak 76

exbreakfil 76

exbreakpenalty 76

\excnt 10

\exdisplay 71

exno 13

exno, setting by reference 63

exnoformat 13

\exnoprint 71

exnotype 13

exskip 10

extraglskip† 38

fullrefformat 64

\gathertags 62

\getfullref 60

\getref 60

\gla[] 34

\glb[] 34

\glc[] 34

\glft[] 34

glftpos 52

glhangindent 38

glhangstyle 38

glnabovelineskip 44

glneveryline 44

\glpreamble[] 34

glrightskip 38, 50

glspace† 38

glstruts (footnote) 37

glstyle 42

\gluf 56



79

glufcloseup 56

glwidth 47

glwordalign 58

\hwit 66

interpartskip† 15

\judge 32

\keepexcntlocal 28

label 18

\label, use of the LaTex macro 66

labelalign 21

labelanchor 18

labelformat 19

labelgen 23

labellist 23

labeloffset† 15

\labels 68

labeltype 15, 23

labelwidth† 15

\lastlabel 63

\lastx 60

\Lingset 74

\lingset 8

lingstyle 30, 31

\ljudge 32

mincitesep 48

\nextx 60

\nl 68

\noexno 71

\nogloss (exceptional gloss token) 39

nopreamble 17

numoffset† 10

\pex 15

\pexcnt 15, 23

pexcnt (parameter) 23

preambleanchor 18

preambleoffset† 15

\ref, use of the LaTex macro 66

\refproofing 62

\rightcomment 48

sampleexno 25

samplelabel 15

splitpartspenalty 76

ssratio 52

ssrightskip 52

sssep 52

tag 60

\tagfilesuffix 62

textanchor 18

textoffset† 10

\tl 68

\trailingcitation 48

\tspace 70

\xe 10


