
Functional METAPOST for LATEX∗

Marco Kuhlmann†

2001/11/19

Abstract

Functional METAPOST (fmp) is a powerful frontend to the METAPOST

language. This package adds basic fmp support to LATEX, enabling users to
keep fmp source code within their documents and, by a two-run mechanism,
including automatically generated fmp figures.

1 Introduction

Functional METAPOST by Joachim Korittky ([Kor98]) adds a high-level interface
to the METAPOST language ([Hob89], [Hob92]), enabling the user to program their
graphics using the Haskell language. Impressive examples of Functional META-
POST can be found in Korittky’s diploma thesis; some of them will be given below.
The system and the documentation can be downloaded from

http://www.informatik.uni-bonn.de/~ralf/software.html

Using Functional METAPOST as my standard graphics developing tool, I felt
a need to write a LATEX package which smoothly integrates fmp into daily work,
similar to the emp package by Thorsten Ohl ([Ohl97]); this is how fmp came to
being. The earliest version supported only the possibility to automatically produce
shell-scripts for graphics generation. Since then, I have added the possibility to
encapsulate fmp code – though I still ask myself if this way of maintaining code
is as natural for fmp as it is for pure METAPOST in emp.

In case you have any questions or comments on this package, feel free to send
me an email. May fmp help fmp to spread around the world. :-)

1.1 Examples of Functional METAPOST

Before I start to present the fmp package, let me first give you two mouth-watering
examples of fmp (the Haskell code for them can be found at the end of this
document): figure 1 gives a binominal tree of rank 5, figure 2 shows a simple Venn
diagram. Among other things, these examples exhibit two features in which fmp
is superior to many other graphics drawing packages around:

∗This file has version number v1.1a.
†E-Mail: marco.kuhlmann@gmx.net

1

Figure 1: A binominal tree of rank 5

• By embedding METAPOST into the Haskell programming language, fmp
gives the user (and especially users who have previous experience in func-
tional programming) a great tool to program graphics on a very high-level
level of abstraction. This not only helps you to focus on the logical structure
rather than on layout questions, but also is especially important if you want
to scale and re-use old material.

• fmp can be easily extended. For example, for figure 1, the core language
has been augmented by tree drawing features, using much better algorithms
than those of any other tree drawing package around. This is especially good
news for computer scientists, who need trees very often, but did not yet have
a package to draw them on such a level of abstraction.

To be able to use fmp, you need a Haskell interpreter, such as hugs, and the
METAPOST program, which should be part of any somewhat complete distribution
of LATEX. Having produced a Haskell source, you feed it into hugs and issue the
generate command provided by fmp. This will translate your code into low-level
METAPOST commands, and finally produce a ready-to use PostScript file.

1.2 How this package works

Calling hugs and typing in the generation commands is a tedious job if you keep
more than but a few illustrations around. This package offers the \fmpfigure

U

B

A

Figure 2: A Venn diagram (cf. figure 22 in [Hob92])

2

command, which generates a shell script (at present, this only works for ∗n∗x),
which you then can execute to have all the graphics files generated at once. At
the next run of LATEX, these graphic files will appear at their proper positions.
Besides, fmp enables you to store Haskell code within a LATEX file, in case you
want to have all the code for one document at one place.

2 Usage

2.1 Including graphics

Using fmp to include graphics from some fmp source is straightforward. Let us
assume that you keep two fmp figures (Haskell values) example1 and example2 in
a file called fmp-doc.hs. A minimal document using the package to include these
two figures would then look like this:

\documentclass{article}

\usepackage{fmp}

\fmpsourcefilename{fmp-doc}

\begin{document}

\fmpfigure{example1}

\fmpfigure{example2}

\end{document}

\end{verbatim}

You include a figure into your LATEX document by using the \fmpfigure macro.\fmpfigure

It takes, as its mandatory argument, the string identifying the figure in the Haskell
source, and creates a shell script containing all the hugs calls needed for the actual
generation. After the shell script has been written, you can execute it and run
LATEX again; if everything went right, the graphics file will appear at the place
where you issued the \fmpfigure command.

Any optional arguments to \fmpfigure will be passed to the graphicx package
and interpreted as if they appeared together with a \includegraphics command.
This allows you to change the visual appearance of the included figure (e. g., the
size to which the figure shall be scaled). Refer to [Car99] for more information
about possible paramters.

2.2 Including code

You can also store your fmp code in the same file than your LATEX source, includedfmp

within the fmp environment. During compilation, the contents of this environment
are written to an external file (see below).

2.3 Changing file names

You can control the names of three different files:\fmpsourcefilename

\fmpscriptfilename

\fmpfigurebasename • the Haskell source (\fmpsourcefilename, defaults to 〈jobname〉.hs),

3

• the shell script (\fmpscriptfilename, defaults to fmpgenerate.sh) and

• the graphics file base name (\fmpfigurebasename, defaults to fmpfigure),
which is the base file name of the graphics files that will be generated by
hugs. (An index number specifying their order in the document will be
appended to this name.)

You can modify all three file names by calling the respective macros, each of which
takes the new name as its argument.

2.4 Preamble and postamble

Before something is written to the source file or the shell script file, the package\fmpsourcepreamble

\fmpaddtosourcepreamble

\fmpscriptpreamble

\fmpaddtoscriptpreamble

\fmpsourcepostamble

\fmpaddtosourcepostamble

\fmpscriptpostamble

\fmpaddtoscriptpostamble

will output a preamble to that file. The source code preamble could contain
everything from comments to Haskell module identifications and basic imports,
while the shell script preamble should probably contain the line that calls hugs
and tells it to input the rest of the file as comment. Have a sample run to see
the default contents of the preamble. If you wish to change the text: you can
set a new preamble by the \fmpsourcepreamble command, and you can append
a new line to the current preamble calling \fmpaddtosourcepreamble. (Similar
commands are available for the shell script preamble.) There is also a postamble,
which is written as the very last thing to the source code or shell script.

METAPOST uses the environment variable $TEX to determine which TEX it
has to call when generating labels etc. On many systems, this variable defaults to
tex, which is certainly not what you want in conjunction with fmp. One common
usage for the preamble therefore is to include a line like export TEX=latex (or
something similar, depending on your shell) into the generation script.

2.5 Graphics file formats

The graphicx package is used to handle the inclusion of generated fmp figures.
If fmp is called from within pdflatex, graphicx is loaded with the pdftex driver
option. In this case, the fall-back behaviour when encountering an \fmpfigure
command is to read the corresponding graphics file as mps (METAPOST output);
it will then internally be converted to pdf by graphicx. When called from within
normal latex, graphics files are handled as eps (encapsulated PostScript). You
probably need to load a specific PostScript driver for graphicx in this case – do so
by supplying fmp with the same package option that you would use for graphicx
(see the graphicx user manual for further information on that).

Acknowledgements

The help of Ralf Hinze and the suggestions of Peter Bartke and Ferenc Wagner
are gratefully acknowledged.

4

Source code for the examples

--

-- This is file ‘fmp-doc.hs’,

-- generated with the docstrip utility.

--

-- The original source files were:

--

-- fmp.dtx (with options: ‘examples’)

--

-- Example source code for the FMP package

--

module FMPDoc where

import FMP

import FMPTree

example1 = binom 5

where

ce = circle empty

binom 0 = node ce []

binom n = node ce [edge (binom i)

| i <- [(n-1),(n-2)..0]]

#setAlign AlignRight

example2 = box (math "U" |||

ooalign [toPicture [cArea a 0.7,

cArea b 0.7,

cArea ab 0.4],

bOverA])

where

cArea a c = toArea a #setColor c

bOverA = column [math "B" #setBGColor white,

vspace 50,

math "A" #setBGColor white]

a = transformPath (scaled 30) fullcircle

b = transformPath (scaled 30 & shifted (0,-30))

fullcircle

ab = buildCycle a b

References

[Hob89] John D. Hobby: A METAFONT-like System with PostScript Output.
TUGboat vol. 10, no. 2, pp. 505–512, 1989

[Hob92] John D. Hobby: A User’s manual for METAPOST. Computing Science
Technical Report no. 162, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1992

5

[Kor98] Joachim Korittky: functional METAPOST. Eine Beschreibungsspra-
che für Grafiken. Diplomarbeit an der Rheinischen Friedrich-Wilhelms-
Universität Bonn, 1998

[Ohl97] Thorsten Ohl: EMP: Encapsulated METAPOST for LATEX. Technis-
che Hochschule Darmstadt, 1998

[Car99] David Carlisle: Packages in the ‘graphics’ bundle. User documenta-
tion, 1999

Change History

v1.0a
General: Initial release. 1

v1.0b
General: Documentation: Improve-

ments as suggested by Peter
Bartke. 2

v1.1a
General: Added to bibliography:

Reference to graphicx package
user documentation. 5

Documentation: Optional argu-
ments to \fmpfigure are now
passed to the graphicx pack-
age. 3

6

