
1 The gn-logic style option

Description of Version 1.4 (5/95) by Gerd Neugebauer

The gn-logic style option provides a facility to typeset logical formulas
of a certain kind. This style option provides an environment like eqnarray,
an extended newtheorem environment and several macros.

1.1 Mathematical Symbols

The following marcos provide better usage of the junctors and quantifiers.
Especially the spacing is improved.
Symbol Macro Example

∧ \AND A\AND B A ∧ B
∨ \OR A\OR B A ∨ B
.∨ \XOR A\XOR B A

.∨ B
→ \IMPLIES A\IMPLIES B A → B
→ \IMPL A\IMPL B A → B
← \IF A\IF B A ← B
↔ \IFF A\IFF B A ↔ B
def←→ \IFFdef A\IFFdef B A

def←→ B
∧. . .∧ \ANDdots A_1\ANDdots A_n A1 ∧. . .∧ An

∨. . .∨ \ORdots A_1\ORdots A_n A1 ∨. . .∨ An

\ \is x\is y x\y
IN \Nat n\in\Nat n ∈ IN
∀ \Forall \Forall x P(x) ∀x P (x)
∃ \Exists \Exists y P(x) ∃y P (x)

The \AND Macro

This macro can be used for the logical conjunction. In addition to the \wedge
macro it adds more space and the formulas tend to be better readable.
Compare

x=1\AND y=x produces x = 1 ∧ y = x
x=1\wedge y=x produces x = 1 ∧ y = x
x=1\land y=x produces x = 1 ∧ y = x

1

The \OR Macro

This macro can be used for the logical disjunction. In addition to the \vee
macro it adds more space. Compare

x=1\OR y=x produces x = 1 ∨ y = x
x=1\vee y=x produces x = 1 ∨ y = x
x=1\lor y=x produces x = 1 ∨ y = x

The \XOR Macro

This macro can be used for the exclusive disjunction. It has no common
counterpart. The spacing is like in in all junctor macros.

x=1\XOR y=x produces x = 1
.∨ y = x

The \IMPL and the \IMPLIES Macros

These macros can be used for the logical implication. In addition to the
\rightarrow macro it adds more space. Compare

x=1\IMPL y=x produces x = 1 → y = x
x=1\IMPLIES y=x produces x = 1 → y = x
x=1\rightarrow y=x produces x = 1→ y = x

The \IF Macro

This macro can be used for the logical implication written in reverse order.
In addition to the \leftarrow macro it adds more space. Compare

x=1\IF y=x produces x = 1 ← y = x
x=1\lefttarrow y=x produces x = 1← y = x

The \IFF Macro

This macro can be used for the logical equivalence. In addition to the
\leftrightarrow macro it adds more space. Compare

x=1\IFF y=x produces x = 1 ↔ y = x
x=1\leftrighttarrow y=x produces x = 1↔ y = x

2

The \IFFdef Macro

Like above but with a small “def” above the arrow.

x=1\IFFdef y=x produces x = 1 def←→ y = x

The \is Macro

This macro is for typesetting unifiers. In this case the predefined \setminus
produces to much space.

\{y\setminus x, z\setminus 4\} produces {y \ x, z \ 4}
\{y\is x, z\is 4\} produces {y\x, z\4}
\{y\backslash x, z\backslash 4P} produces {y\x, z\4}

The Number Macros

This are macros for those who have no access to the AMS-TEX fonts. It
makes the symbols for the natural numbers, integers, rationals, reals and
complex numbers. The usual magnification commands apply to it aswell.

3

\tiny ... \normalsize ... \Huge X_X

\bbB IB IB IB IB IB IB IB IB IB IB IBIB

\Complex\bbC C C C C C C C C C C CC

\bbD ID ID ID ID ID ID ID ID ID ID IDID

\bbE IE IE IE IE IE IE IE IE IE IE IEIE

\bbF IF IF IF IF IF IF IF IF IF IF IFIF

\bbG G G G G G G G G G G GG

\bbH IH IH IH IH IH IH IH IH IH IH IHIH

\bbI II II II II II II II II II II IIII

\bbJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJJJ

\bbK IK IK IK IK IK IK IK IK IK IK IKIK

\bbL IL IL IL IL IL IL IL IL IL IL ILIL

\bbM IM IM IM IM IM IM IM IM IM IM IMIM

\Nat \bbN IN IN IN IN IN IN IN IN IN IN ININ

\bbO O O O O O O O O O O OO

\bbP IP IP IP IP IP IP IP IP IP IP IPIP

\Rat \bbQ Q Q Q Q Q Q Q Q Q Q QQ

\Real \bbR IR IR IR IR IR IR IR IR IR IR IRIR

\Int \bbZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZZZ

\bbOne 1l 1l 1l 1l 1l 1l 1l 1l 1l 1l 1l1l

Unfortunately the macros \bbC, \bbG, \bbO, and \bbQ do not scale prop-
erly when used in subscripts or superscripts of formulae. The following
examples shows how the sizing can be achieved manually

\bbQ_{\mbox{\scriptsize \bbQ}} produces QQ

4

The \Forall and the \Exists Macros

The general problem with quantifies is that after the quantified variable the
following formula is not automatically seperated with a small space. This
can be overcome by the following macros.

The \Forall and the \Exists macros take one argument. They typeset
the respective quantifier followed by the argument (i.e. the variable) and
finally a small space. As usual the argument has to be enclosed in braces if
it consists of more than one character. Otherwise the braces can be omitted.
This allows a elegant notation of short quantified formulas.

\Forall x P(x) produces ∀x P (x)
\Forall{x_1,\ldots,x_n}P(x_1,\ldots,x_n) produces ∀x1, . . . , xn P (x1, . . . , xn)
\Exists x P(x) produces ∃x P (x)
\Exists{x_1,\ldots,x_n}P(x_1,\ldots,x_n) produces ∃x1, . . . , xn P (x1, . . . , xn)

1.2 The Formula Environment

This environment allows to typeset logical formulas. The main problem
with the eqnarray environment was the numbering. In multiline formulas
my intention was to have the number in the middle of the formula. Inside
this environment several macros are valid.

\begin{Formula}[label] \end{Formula}
Start the list of formulas. Optionally a label can be given. This label
is used to reference the first formula.

\=
Start a new line.

\>level
Start a new line and indent to the given level. This indentation is done
in quantities of \FormulaIndentwhich can be set with the \setlength
command. The default value is 3em.

\Form[label]
Start a new formula. Optionally a label can be given. This label can
be used to reference to the formula (see \ref).

Now lets have a look at some examples. First, we see a single two-line
formula. Note that the number at the right side is centered between the two
lines.

5

\begin{Formula}
P(X) \IMPL

\= Q(X) \IFF R_1(X) \OR R_2(X)
\end{Formula}

P (X) →
Q(X) ↔ R1(X) ∨ R2(X)

(1)

Next we will see an example of several formulas. The first formula is
split to three lines and the third line is indented to level 1. Remark: \= is
in reality an abbrevation for \>0.
\begin{Formula}[form:1]

P(X) \IMPL
\= Q(X) \IFF R_1(X)
\>1 \OR R_2(X)
\Form[form:2]

S(X) \IMPL
\= \neg Q(X) \IFF R_1(X) \OR R_2(X)
\end{Formula}

P (X) →
Q(X) ↔ R1(X)

∨R2(X)
(2)

S(X) →
¬Q(X) ↔ R1(X) ∨ R2(X)

(3)

1.3 The NewTheorem Environment

My experience with the newtheorem environment was that I had a certain
scheme to use it. First, every theorem got a label. Thus, every theorem
was followed by a label command. Optionally a theorem may have a name.
This name is typeset right after the number. The body of the theorem
allways started in the next line. This let to the definition of an extended
NewTheorem environment. The arguments are the same as those of the
newtheorem environment. But the environment defined by this extended
command take two optional arguments. The first optional argument is a
label to be assigned to the theorem. This argument has to be enclosed in
parentheses. The second type of optional argument has to be enclosed in
brakets. It is typeset in \small after the title text. The third optional
argument is enclosed in <>. It is typeset in \small\bf and surrounded by
parentheses.

\NewTheorem{guess}{Conjecture}

\begin{guess}[Fermat](thm:fermat)
There do not exist integers $n>2$,
x, y, and z such that
$x^n+y^n=z^n$.

\end{guess}

Conjecture 1 Fermat
There do not exist integers n > 2, x,
y, and z such that xn + yn = zn.

The commands used to typeset some of the optional argument can be cus-
tomized in the following way. The macros \TheoremTitle and \TheoremName

6

are used to typeset their argument in \small and \small\bf and enclosed in
parentheses respectively. This macros can be redefined using \renewcommand
as shown in the following example:
\NewTheorem{theorem}{Theorem}

\renewcommand{\TheoremTitle}[1]{{\sf [#1]}}

\renewcommand{\TheoremName}[1]{{\small(#1)}}

\begin{theorem}[Fermat]<conjecture>(thm:f2)

There do not exist integers ...

\end{theorem}

Theorem 1 Fermat (conjecture)
There do not exist integers n > 2, x,
y, and z such that xn + yn = zn.

7

