
The mcexam package

Jorre Vannieuwenhuyze (jorre_v@zoho.com)

September 12, 2021

This package automatically randomly permutes the order of questions and answer

options in different versions of a multiple choice exam/test. Next to the exam versions

themselves, the package also allows printing a concept version of the exam, a key table

with the correct answers or points, and a document with solutions and explanation per

exam version. The package also allows writing an R code which processes the results

of the exam and calculates the grades.

Copyright © 2017 Jorre Vannieuwenhuyze. Permission is granted to copy, distribute and/or modify this software

under the terms of the LaTeX Project Public License, version 1.3c or later.

1 Loading the package 3

2 Setting the questions 5
2.1 The questions . 5
2.2 The answers . 6

2.2.1 Permuting the answers . 7
2.2.2 Points . 8

2.3 Instructions, explanation, and notes 10

3 Selective output 11

4 Analysis of results 11
4.1 Processing with R . 11
4.2 Compiling an analysis document 12

5 Lay-out and additional useful commands 13
5.1 Tweaking the output types . 13
5.2 Changing the appearance of the counters 14
5.3 Changing the appearance of the list structures 14
5.4 Changing the appearance of different document elements 15
5.5 Babel . 16

6 Revision History 16
6.1 Versions . 16

1

This package was developed for large-scale randomized multiple choice exams
at my department. The functionalities of this package may overlap with the
esami package and the AMC program but there were some special requirements
at my department which are not included in these packages. In particular the
mcexam provides the following features:

• The possible answer permutation patterns are completely flexible and can
entirely be specified by the user.

• Typesetting the answer options is completely flexible with the mcanswers

environment.

• At my university, the students have to fill in a standard one-page answer
form and unprocessed results from these forms are directly provided to
the examiner. The package writes an R code which processes and analyses
these results.

It was easier to build this new package that fits our purpose than to unravel
and change the existing ones. Nevertheless, in case of interest, it is my inten-
tion to contact the developers of the other packages in order to integrate the
functionalities into one package.

Specifying questions and answers with the mcexam are very straightforward
and similar to ordinary list environments. Imagine that you want to develop a
multiple choice exam with three questions, each including three possible answers,
which all need to be randomized. With the mcexam package, all you need to
do is to include these questions and answers in a list-wise structure within the
mcquestions environment inside the document body of your favourite LATEX
document-class:

\begin{mcquestions}

\question How much is $2+2$?

\begin{mcanswerslist}

\answer two

\answer[correct] four

\answer five

\end{mcanswerslist}

\question How much is $5-3$?

\begin{mcanswerslist}

\answer 1

\answer[correct] 2

\answer 3

\end{mcanswerslist}

\question How much is 0×2?

2

\begin{mcanswerslist}[fixlast]

\answer 1

\answer 2

\answer[correct] none of the above

\end{mcanswerslist}

\end{mcquestions}

Depending on the option you specify when loading the package, these questions
can be compiled as

• a concept exam which includes all information about the randomizations
and solutions;

• each version of the exam itself;

• a key table with the correct answers;

• each version of the exam including the solutions and explanations; and

• an analysis version which includes an analysis of the results of the exam
after these are processed by R.

The user of the package can further mark answer options by points instead of
‘correct/incorrect’, group questions, add an introduction, an explanation and
notes to each question, define arbitrary permutation patterns to the answers,
and much more. As an example of such an option, note the optional argument
fixlast in the mcanswerslist environment in the last question. This option
means that the last answer in this question will never change place across dif-
ferent versions of the exam. Of course, there are many more such options and
all these options are described below.

An example exam file is given in mcexam_example.tex. Fictitious results for
this exam are given in the mcexam_example_dataset.r which can be processed
in R following the instructions below.

1 Loading the package

The package is loaded as usual by the code statement

\usepackage[<options>]{mcexam}

The mcexam package requires the following packages to be installed: xkeyval,
etoolbox, xstring, environ, pgf, enumitem, longtable and newfile.

The following package options can be included as ‘key=value’-pairs:

• output: The package option output defines the output type of the docu-
ment. There are five possible output types you can use:

3

– output=concept: This option creates a concept version of your exam
with all the questions typeset in the same order as they appear in
the script file. For each question, the correct answers or the answer
points are given, a table is created with the answer permutations for
each version of the exam, the explanation of the solution is shown
and the additional notes are shown. concept is the default output
type.

– output=exam: This option creates a version of the exam that can be
printed and given to the students during the real exam. It doesn’t
mark the correct answer and hides explanation boxes and question
notes. The version of the exam which needs to be made, can be
specified by the version option (see below).

– output=key: This option creates a key table with the labels of the
correct answers for each question. This key table can be published
after the exam so that the students can check there answers, without
seeing the actual questions and answers themselves.

– output=answers: This option creates a document with the questions,
the answers and an explanation of the solution. It is meant to be used
for feedback to the students. As with the exam output, these answer
documents have to be made for each version separately because they
maintain the randomization order of the questions and answers. The
version of the exam which needs to be made, can be specified by the
version option (see below).

– output=analysis: This option provides an analysis of the results,
it provides the frequencies of students giving the answer options and
it shows statistics like the average points, the p-value, the corrected
p-value, the item rest correlation, or Cronbach’s alpha. Before using
this option, the results need to be processed by R first (see section
4).

• numberofversions=n: This option specifies the total number of versions
n to be made. By default the number of versions is set to 4. Make sure
that the version number (the next package option) does not exceed this
number. If the version number does exceed the number of versions, an
error will be thrown.

• version=v: This option defines the version v which needs to be printed
when output=exam or output=answers. This option takes a number as
argument between 1 and the total number of versions, e.g. version=1,
version=2, etc. The default value of this option is version=1.

The package also defines the command \mctheversion which can be used
to print the version number on the document in the correct format (see
section 5.2). In the exam or answers output style, it prints “Version v”.
In the concept output style, it prints “Concept version”. In the analysis

4

output style, it prints “Analysis”.

• seed=s: This option sets the seed s for the random permutations, which
is an arbitrarily chosen positive integer. The seed is not set by default,
which means that a different randomization will be obtained each time
the document is processed. For that reason, it is advised to always specify
the seed, in order to obtain consistent output across different runs.

• randomizequestions=true/false: This option defines whether the ques-
tion order should be randomized (true) or not (false). This option is set
to true by default.

• randomizeanswers=true/false: This option defines whether the answer
order should be randomized (true) or not (false). This option is set
to true by default. If you set both the randomizequestions and the
randomizeanswers options to false, a warning will be thrown. After all,
if you don’t want to randomize anything, you don’t really need this pack-
age.

• writeRfile=true/false: This option defines whether an R-script should be
written including macro’s to process and analyse the students’ answers.
If it is set to true, an R-script will be written. By default it is set to
false. Note that, if this option is set to true, all questions should contain
answers within the mcanswers or mcanswerslist environments, otherwise
the program will throw errors.

The package also defines the \mcexamoptions{key=value,...} command
which can also be used to set or change the package options after the pack-
age has been loaded.

2 Setting the questions

2.1 The questions

The most important parts of the exam are, of course, the questions. Within
the body of your script file, you place the questions within the mcquestions-
environment which works similar to list-environments. Each question is pre-
ceded by a \question command similar to the \item command:

\begin{mcquestions}

\question This is the first question.

\question This is the second question.

\end{mcquestions}

Sometimes, some questions belong together and these questions may not be split
when the question order is randomized. To avoid this undesirable behavior, you
can include follow as an optional argument to the \question command. For
example,

5

\begin{mcquestions}

\question This is the first question.

\question[follow] This is the second question.

\question The third question.

\end{mcquestions}

means that the second question will always directly follow the first question
even though they may appear as questions two and three instead of one and
two in some versions of the exam.

2.2 The answers

With the mcexam package, answers can be set in two ways. The first and prob-
ably the most common way to set the answers is a list structure. This can
be achieved by the mcanswerslist environment which works similar to regu-
lar list-environments. Each answer is preceded by an \answer command (like
\item in an itemize list). You can include as many answers as you want. For
example

\question What is the color of the sky?

\begin{mcanswerslist}

\answer blue

\answer green

\answer red

\answer yellow

\answer none of the above

\end{mcanswerslist}

will typeset

1. What is the color of the sky?

a) blue
b) green
c) red
d) yellow
e) none of the above

or any of its permutations.

Sometimes, however, such list structures are not what you want. In that
case you can use the mcanswers environment. Within this environment you
need to use the \answer command and the \answernum command. The
\answer{n}{answer} sets the answer itself which is assigned number n. It
is mandatory to use all numbers between 1 and the total number of answers.
For example, if you need three answers you need to include \answer{1}{...},
\answer{2}{...}, and \answer{3}{...}, otherwise the package will throw er-
rors. The order in which the \answer commands appear, however, is not im-
portant. You can start with \answer{3}{...} as long as you also include

6

\answer{1}{...} and \answer{2}{...}.

The \answernum{n} simply typesets the answer number n in the correct format
(see section 5.2). This command is not mandatory to use, but it is highly
recomended to use it because it will automatically typeset the answer number
in the correct format.

As an example, the code

\question Which is the letter alpha?

\begin{mcanswers}

\begin{tabular}{cccc}

\answer{1}{\Hugeα} &

\answer{2}{\Hugeβ} &

\answer{3}{\Hugeγ} &

\answer{4}{\Hugeδ} \\[0.1\baselineskip]

\answernum{1} &

\answernum{2} &

\answernum{3} &

\answernum{4} \\

\end{tabular}

\end{mcanswers}

will produce

1. Which is the letter alpha?

α β γ δ
a) b) c) d)

or something similar with the Greek letters shuffled around.

2.2.1 Permuting the answers

By default, all answers are randomly shuffled within the mcanswerslist and
mcanswers environments. However, this is not always what you want. For
that reason, both environments have one optional argument which specifies how
answers should be permuted. This option can be one of the following:

• permuteall: With this option, all answers are permuted in the different
versions of the exam. This is the default option and doesn’t need to be
given explicitly.

• ordinal: This option permutes the answers in order. That is, the answers
are given on the exam either in the order or the reversed order as they are
given in the script file.

• fixlast: This option permutes all answers except the last given answer.
This is handy if the last answer is something like, for example, “None of
the above”.

7

• permutenone: This option doesn’t permute the answers and sorts the
answers in each version in the same order as they are given in the script
file.

• User specific: If none of the above options satisfies your needs, you can still
enter the possible permutations manually. You achieve this by making a
comma separated list of all allowed permutations where each permutation
itself is a comma separated list of all answer numbers within two curly
braces. For example, if your question contains three answers you can give
the option [{1,2,3},{2,3,1}]. With this option, the package will either
put the answers in the order ‘answer 1, answer 2, answer 3’ or in the order
‘answer 2, answer 3, answer 1’. The package will throw errors if only
one permutation is given, if a permutation does not contain all answer
numbers, if a permutation contains answer numbers more than once, or
if a permutation contains invalid answer numbers. The package will not
throw errors if a permutation is given more than once. For example,
[{1,2,3},{1,2,3},{2,3,1}] will not give errors, it just means that the
order ‘1, 2, 3’ is twice more likely to appear than the order ‘2, 3, 1’.

Putting all together, in your script file you can write something like this:

\question What is the color of the sky?

\begin{mcanswerslist}[fixlast]

\answer blue

\answer green

\answer red

\answer yellow

\answer none of the above

\end{mcanswerslist}

\question Which statement is correct?

\begin{mcanswerslist}[{1,2,3,4},{2,1,4,3}

,{3,4,1,2},{4,3,2,1}]

\answer The moon is a planet.

\answer The moon is a star.

\answer The sun is a planet.

\answer The sun is a star.

\end{mcanswerslist}

2.2.2 Points

The correct answer (or answers) can be marked by an optional argument of the
\answer command in both the mcanswerslist and mcanswers environments,
that is

\answer[<mark>]

in the mcanswerslist environment and

8

\answer[<mark>]{<n> }{<answer> }

in the mcanswers environment. The <mark> -option can be either of two modes.

• correct or empty (=incorrect, default): With these options, answers are
either correct or incorrect. Correct answers are given one point, incor-
rect answers are given zero points. Note that more than one answer per
question can be marked as correct.

• A decimal number: Altenatively, the marks can be decimal numbers which
are the points given to each answer. The numbers/points can be negative
in case you want to use guess corrections.

Depending on the mode (correct/incorrect or points) the package may give
slightly different output in some output types. As soon as the package encoun-
ters one decimal as a mark, it switches to points mode. In this mode, correct
or empty options will not give errors but will be treated as one point and zero
points respectively. In case no decimal marks are given and only ‘correct’
marks are encountered, the package will give output in correct/incorrect-mode.

As an example, the following questions are valid questions:

\question Which is the letter alpha?

\begin{mcanswers}

\begin{tabular}{cccc}

\answer[correct]{1}{\Hugeα} &

\answer{2}{\Hugeβ} &

\answer{3}{\Hugeγ} &

\answer{4}{\Hugeδ} \\[0.1\baselineskip]

\answernum{1}&

\answernum{2}&

\answernum{3}&

\answernum{4}\\

\end{tabular}

\end{mcanswers}

and

\question What is the color of the sky?

\begin{mcanswerslist}[fixlast]

\answer[4] blue

\answer[-2] green

\answer[1.5] red

\answer[1] yellow

\answer none of the above

\end{mcanswerslist}

9

2.3 Instructions, explanation, and notes

Additional to the answers, the question environment can also include an
mcquestioninstruction, an mcexplanation and an mcnotes environment.
The mcquestioninstruction environment is used for general instructions
about the next question or group of questions (using the follow option of
the \question command). It is printed in the exams themselves. The
mcexplanation enviromnent should be used to store an explanation of the ques-
tion and the right answer. It is printed in the concept and the answers versions.
The mcnotes enviromnent, in contrast, can be used to store additional notes
about the question. It is only printed in the concept version. An example of
their use is as follows:

\begin{mcquestioninstruction}

This is a question about the sky.

\end{mcquestioninstruction}

\question What is the color of the sky?

\begin{mcanswerslist}[fixlast]

\answer[4] blue

\answer[-2] green

\answer[1.5] red

\answer[1] yellow

\answer none of the above

\end{mcanswerslist}

\begin{mcexplanation}

If you look up to the sky and there are no clouds,

you’ll see it is blue.

\end{mcexplanation}

\begin{mcnotes}

This question had a large proportion of good answers

last year.

\end{mcnotes}

Note that the mcquestioninstruction comes before the \question command
while the mcexplanation and mcnotes environments come after the \question

command. As a result, an mcexplanation or an mcnotes environment before
the first \question will give an error, while an mcquestioninstruction after
the last \question will also give an error.

10

3 Selective output

Sometimes, you may want to print some text or use some commands in, for
example, only one output type or in only one version of the exam. In that case,
you should use the \mcifoutput command:

\mcifoutput[<versions>]{<output-types> }{<text> }

This command prints <text> in all <output-types> given as a comma-
separated list. In the exam and answers output types you can also optionally
specify the <versions> as a comma-separated list. As an example, the code

\mcifoutput{concept,exam}{name:}

will print “name:” on the exams and in the concept version but not on the
answers document, the key table, or the analysis document. The command

\mcifoutput[1,3]{exam}{\newpage}

will start a new page on the exams version 1 and 3 but not in the other versions.
If the <versions> option is empty, the command will print <text> on all
versions of the exam documents. Note that the <versions> option is ignored
for concept, key and analysis output. This means that code like

\mcifoutput[wrong]{exam,concept}{blah}

will print “blah” on the concept version because wrong is ignored. However,
this code will print nothing on the exams because the <versions> option is
not empty (although wrong). Note that the optional <versions> parameter
can not be used in the preamble because the version is only set in stone at the
\begin{document}.

4 Analysis of results

4.1 Processing with R

Typically, multiple choice exams are completed on standard forms which are
scanned automatically. The examiner then receives a data file listing all students
with their answers. Using this file to grade the students is not an easy task
because it firstly requires to map the given permuted answer number to the
initial answer number and secondly requires checking whether this answer is
right or wrong. The mcexam class allows to do this semi-automatically.

If the writeRfile package option is enabled, compiling the exam document in
any of the output types automatically generates an R file which can be used to
process data files with the answers of the students. The R code will be written
to the file \jobname.r. In case more than one mcquestions environments are
present in the document, the second environment will write its R-code to the file
\jobname-B.r, the third will be written to the file \jobname-C.r, etc. The -B,

11

-C, . . . extensions can be overruled by the optional argument of the mcquestions
environment. For example, if you write

\begin{mcquestions}[myfile]

...

\end{mcquestions}

the R-code of this environment will be written to the file \jobname-myfile.r.

In the R file, the function processanswers is defined which processes the an-
swers. This function takes four arguments:

• ID: A vector with the ID numbers of the students.

• version: A numeric vector with the version number of the exam for each
student in the same order as ID.

• answers: A numeric data frame with the given answers of the students.
The columns refer to the questions, the rows to the students in the same
order as ID.

Watch out, if your initial data is not numeric, you must first transform
the data to numeric answers. For example, if you have a data frame X

with answers in capital letters (A-Z) format, you need first to map these
letters to the numbers 1-26 by, for example, applying the match function
to the data frame:

apply(answers,2,match,LETTERS).

• path: The path where the function writes information for the analysis
output type (see next subsection). By default, the path is the working
directory (getwd()).

The processanswers function creates a new data frame with the students’
ID’s, the versions, and two variables for each question. The variables
originalQuestion.x, where x refers to the question number, store the answers
of the students in the initial enlisting of the script file (before permutations).
The variables pointsQuestion.x give the points of a student to initial ques-
tion x (in correct/incorrect mode, it is 1 if a student gave a correct answer to
question x and 0 if the student gave a wrong answer). Additionally, there is
also the total variable which stores the sum of the points (i.e. the sum of the
pointsQuestion.x variables).

The processanswers function also creates the file \jobname.ana which stores
information for the analysis output type.

4.2 Compiling an analysis document

After processing the answers in R, you can compile an analysis document with
the output=analysis package option. This analysis document includes the
percentages of students giving each answer option, the (corrected) p-values, the

12

item-rest correlations, and Cronbach’s alpha of the questions. First, confirm
that the \jobname.ana file, which was created by R, is in the same folder as
your .tex file. In case of multiple mcquestions environments, the program will
automatically take the extension into account, also when this is specified by the
optional argument of the mcquestions environment.

5 Lay-out and additional useful commands

5.1 Tweaking the output types

At \begin{document}, a set of booleans are defined which depend on the output
type and which control how the output is created. These booleans can be
changed if you don’t like the output of a certain output type. In order to
change these booleans, use the

\mcsetupConcept{<keys> }

\mcsetupExam{<keys> }

\mcsetupKey{<keys> }

\mcsetupAnswers{<keys> }

\mcsetupAnalysis{<keys> }

commands, which take a key=value -list as argument. The keys which can be
used are the following:

• showPerVersion=true/false: If true, only one version is send to the out-
put depending on the version option of the package. If false, a general
document is made which summarizes all versions and which may show
permutation tables for the questions and answers (if these are permuted
at least).

• showQuestionPermutationtable=true/false: Show a permutation table
of the questions at the start of the mcquestions environment?

• showQuestionsAnalysis=true/false: Show a the analysis of the questions
at the start of the mcquestions environment? (Requires an .ana file).

• showQuestionList=true/false: Show the questions?

• showCorrectAnswers=true/false: Show the correct answers in
correct/incorrect-mode?

• showAnswerPoints=true/false: Show the answer points in points-mode?

• showExplanation=true/false: Show the explanation of the correct an-
swer?

• showAnswerPermutationTable=true/false: Show the premutation table
of the answers for each question?

• showAnswersAnalysis=true/false: Show a the analysis of the answers for
each question? (Requires an .ana file).

13

• showNotes=true/false: Show the notes for each question?

• showKeytable=true/false: Show the key table? Note that the key table al-
ways summarizes all versions. It make no sense to set showKeytable=true
if showPerVersion=true.

As an example, if you don’t like the standard way of making a document for
each version separately with the answers, you can add the following command
to the preamble:

\mcsetupAnswers{showPerVersion=false

,showQuestionPermutationtable=true

,showAnswerPermutationTable=true

}

5.2 Changing the appearance of the counters

By default, the number format of the version numbers is \Roman, of the questions
numbers is \arabic, and of the answers numbers is \alph. These formats can
be changed by redefining the \mcversionlabelfmt, the \mcquestionlabelfmt

and the \mcanswerlabelfmt commands with \renewcommand. Currently, these
commands are defined as

\newcommand\mcversionlabelfmt[1]{\Roman{#1}}

\newcommand\mcquestionlabelfmt[1]{\arabic{#1}}

\newcommand\mcanswerlabelfmt[1]{(\alph{#1})}

5.3 Changing the appearance of the list structures

The questions, the answers in the mcanswerslist environment and the question
information in the concept, answers and analysis output styles are put in
newly defined lists using the enumitem package. The lists are setmcquestions,
setmcanswerslist and setmcquestioninfo. You can change the appearance
of these lists using the \setlist command from the enumitem package. For
more information, refer to the enumitem package documentation. Currently,
the lists are defined as

\setlist[setmcquestions]{label=\mcquestionlabelfmt{*}.

,ref=\mcquestionlabelfmt{*}

,itemsep=2\baselineskip

,topsep=2\baselineskip }

\setlist[setmcanswerslist]{label=\mcanswerlabelfmt{*}

,noitemsep}

\setlist[setmcquestioninfo]{before=\footnotesize\sffamily}

14

5.4 Changing the appearance of different document ele-
ments

The package defines several environments which typeset particular con-
tent. The setmcquestioninstruction environment typesets the question
instructions, the setmcquestion typesets the question and its answer op-
tions, the setmcanswers environment typesets the content of the mcanswers

environment, the setmcquestionpermutationtable typesets the permuta-
tion table of the questions, the setmcanswerpermutationtable typesets the
permutation table of the answers, the setmcquestionanalysistable and
setmcansweranalysistable environments typeset the analysis tables in the
analysis output, and the setmckeytable typesets the key table in the key

output. All these environments can be redefined with the renewenvironment

command. Currently, they are defined as

\newenvironment{setmcquestioninstruction}

{\noindent}

{}

\newenvironment{setmcquestion}

{}

{}

\newenvironment{setmcanswers}

{\vspace{\baselineskip}}

{}

\newenvironment{setmcquestionpermutationtable}

{\begin{center}

\footnotesize\sffamily

\setlength{\tabcolsep}{15pt} }

{\end{center}}

\newenvironment{setmcanswerpermutationtable}

{\begin{center}

\setlength{\tabcolsep}{10pt} }

{\end{center}}

\newenvironment{setmcquestionanalysistable}

{\begin{center}

\setlength{\tabcolsep}{10pt}

\footnotesize\sffamily }

{\end{center}}

\newenvironment{setmcansweranalysistable}

{\begin{center}\setlength{\tabcolsep}{10pt}}

{\end{center}}

\newenvironment{setmckeytable}

{\begin{center}\setlength{\tabcolsep}{10pt}}

{\end{center}}

For example, if you want to keep all questions and answer options together on
the same page, you can include them in a minipage as follows:

15

\renewenvironment{setmcquestion}

{\begin{minipage}[t]{\linewidth-\labelwidth}}

{\end{minipage}\par}

provided that the calc package has been loaded.

5.5 Babel

The babel package can be used in an mcexam document. At the moment, a
Dutch implemenation is included. For Dutch exams, you include

\usepackage[dutch]{babel}

in the preamble of your script file.

6 Revision History

6.1 Versions

2017/05/02 v0.3: First published version.

2017/12/26 v0.4: Added pgffor package to fix bug.

2021/09/12 v0.5: Fixed bugs with randomization of answers.

16

