nameauth — Name authority mechanism
for consistency in text and index*

Charles P. Schaum?
Released 2024/02/09

Abstract

The nameauth package automates the correct formatting and indexing of names
for professional writing. This aids the use of a name authority and the editing
process without needing to retype name instances.

Contents
1 Quick Start 4 2.3 Formatting
1.1 Simple Example 4 2.3.1 Choose System
1.2 How To Use the Manual . . . 6 2.3.2 Predefined Hooks . . .
1.3 Basic Concepts 7 2.4 Alternate Formatting
1.3.1 Name Arguments . . . 7 2.5 SCOP_C of Dccisio.ns' o
132 Name Ambiguity . . . N 2.6 Version Compatibility
1.4 Basic Interface 10 3 Feature Priority
1.4.1 Western Names 10
1.4.2 Reversed Western .. 12 4 Naming Macros
1.4.3 Eastern Names 13 4.1 \Name and \Namex
1.4.4 Ancient Names 14 4.2 Forenames: \FName
1.5 Quick Interface 15 4.3 ;Lf(;)c}inic;l D?tgils """"
3. ina targs
1.5.1 Name Sho.rthands .. 15 4139 Name AI;g C%;avcats .
1.5.2 Name Variants 17 433 Full Stop Detection
1.5.3 Alternate Field 18 4.3.4 GCrouping, Spaces . . .
1.6 Select Macro Overview 19 4.3.5 Formatting Initials . .
1.6.1 With Name Args . .. 19
1.6.2 Prefix Macros 20 5 Language Topics
1.7 Names and Complexity ... 21 5.1 Active Characters
5.2 Hyphenation
2 Package Options 29 5.3 Affixes Need Commas
2.1 Name Grammar and Syntax . 22 54 Eastern Names, Name Caps .
2.1.1 Affix Commas. 22 5.5 Eeverseg Nsames """"
. 5.6 istin urname
2.1.2 Surname in Caps ... 22 5.7 Particgl;es};n Names
2.1.3 Reverse Name Order . 22 571 Standard Rules
2.2 IIldCXiIlg 23 5.7.2 Non—Breaking Spaces .
2.2.1 Toggle Indexing 23 5.7.3 Look-Alike Particles .
2.2.2 Toggle Index Sorting . 23 5.7.4 Capitalizing
2.2.3 Verbose Warnings . . 23 5.8 Medieval Names

*This file describes version 4.0, last revised 2024/02/09.
"Email: charles[dot]schaum@comcast.net

23
23
24
24
24
25

26

27
27
28
29
29
31
31
32
33

6 Debugging 41 11.3.5 History Text 97

6.1 Name Patterns 41 11.3.6 Inflected Names . .. 98
6.2 Indexing: States. 43 11.3.7 Reference Work I . . . 99
6.3 Debugging Macros 45 11.4 Roman Names 101
11.4.1 General Market 101
7 Indexing Macros 49 11.4.2 Student Reference . . 102
7.1 General Control. 49 11.4.3 Scholarly Reference. . 107
7.1.1 Toggle Indexing 49 11.5 Special Uses 109
7.1.2 Multiple Indexes . .. 49 11.5.1 Reference Work IT . . 110
713 Verbose Warnings .. 49 11.5.2 Marginalia 113
7.1.4 Index Protection . .. 50
7.2 Page Entries 50 12 Planned Obsolescence 116
7.3 Cross-References 51 12.1 Pseudonyms 116
7.3.1 Basic Macro. 51 12.1.1 Special Syntax 116
7.3.2 Fine Control 52 12.1.2 The Macros 116
7.4 Prefix Macros 54 12.1.3 Workarounds 118
7.5 Automatic Rules 55 12.2 Obsolete Syntax 119
7.6 Sorting Names 56
7.6.1 General Approach .. 56 13 Advanced Customization 121
7.6.2 Sorting Initials 58 13.1 Using Package Internals . . . 121
7.7 Index Tags 58 13.2 Using Separate Macros 122
7.7.1 General Approach . . 58 13.3 Full Customization 125
7.7.2 Identical Names . .. 59 13.3.1 Names In Boxes . .. 125
7.7.3 Special Tags 59 13.3.2 Change Parsing 127
7.8 Categories/Sub-entries 61
14 Technical Notes and Tips 128
8 Name Tags 65 14.1 Tips: General 128
. . 14.2 Tips: Indexing 128
9 Formatting and Decisions 67 143 Tips: Name Args 129
9.1 Basic Formatting 67 144 Active Unicode 130
9.2 Application: Footnotes~ 69 14.4.1 General Information 130
9.3 Making Name Decisions . . . 70 o o '
. .. 14.4.2 Compatibility 132
9.4 Formatting and Decisions . . 72 14.4.3 Fragility . . S 133
9.5 Testing Name Decisions . .. 73
9.5.1 Testipg Macros N AT Implementation 134
9.5.2 Applications. 75 15.1 Boolean Flags 134
9.5.3 Beamer Example . . . 77 15.1.1 Flow Control 134
10 Name Authority Basics 80 15.1.2 Syntax oy 134
10.1 Variant Names 80 15.1.3 Debuggmg """" 136
10.1.1 Alternate Argument . 80 15.1.4 Indexmg """" 136
10.1.2 Multiple Variants . . . 81 15.1.5 Formattlng' """ 136
10.1.3 Nonstandard Caps . . 83 15.1.6 Name Decisions 137
10.1.4 Variants and Xrefs . . 83 15'1.'7 Compatibility 137
10.2 Using a Name Authority . . . 85 15.2 Registers, Hooks, Values . . . 137
15.2.1 Token Registers 137
11 Advanced Formatting 86 15.2.2 Hooks 138
11.1 Formatting Hooks 87 15.2.3 Internal Values 139
11.2 Name Tags in Hooks 88 15.3 Package Options 139
11.2.1 Hook Templates . .. 89 15.3.1 Syntax 139
11.2.2 Ancient Names 90 15.3.2 Indexing 139
11.2.3 Life Dates 91 15.3.3 Formatting 139
11.3 Alternate Formatting 93 15.3.4 Predefined Hooks . . . 140
11.3.1 Enabling/Disabling. . 93 15.3.5 Alternate Format . . . 140
11.3.2 Using \noexpand . . . 94 15.3.6 Scope 140
11.3.3 Capitalization 95 15.3.7 Compatibility 140
11.3.4 Formatting Features . 95 15.4 Package Initialization 140

15.5 Internal Macros 141 15.7.5 Name Decisions

15.5.1 Fundamental Macros . 141 15.7.6 Name Parser

15.5.2 Errors/Debugging . . 149 15.8 User Macros: Name Args. . .

15.5.3 Core Name Engine . . 150 15.8.1 Basic Interface ..

15.5.4 Indexing 155 15.8.2 Quick Interface
15.6 User Macros: Prefixes 156 15.8.3 Debugging Macros . .

15.6.1 Syntax 156 15.8.4 Indexing

15.6.2 Indexing 157 15.8.5 Name Tags

15.6.3 Format/Decisions . . . 158 15.8.6 Name Decisions
15.7 User Macros: Helpers 158 15.8.7 Pseudonyms

15.7.1 Syntax 158

15.7.2 Indexing 159 16 Change History

15.7.3 Formatting 159

15.7.4 Alternate Format . . . 159 17 Index

160
161
162
162
162
164
168
178
178
181

183

186

This manual mentions names of historical figures both living and deceased.
We intend to use all names herein with respect, for teaching purposes only,
and never express or imply any disrespect or bias.

Compatibility

less code duplication, and better customization.

o Use with a pre-2017 TEX distribution might cause occasional errors.
See also Sections 4.3.1, 13.3.2 and 14.4.2.

e Older user customizations using xargs may still work with the
oldargs option. See Sections 2.6 and 13.3.2.

If one should require version 3.7, see section 7 of README . md.

Starting with version 4.0, nameauth uses xparse for starred macros and name
arguments. Benefits include better macro design, more control over arguments,

Other works quoted herein either are in the public domain or they are copy-
righted works cited under the terms of fair use, to which the present author
claims no copyright. The purpose is to show the power of words and names.

Any great work of art ...revives and readapts time and space, and the measure of
its success is the extent to which it makes you an inhabitant of that world — the
extent to which it invites you in and lets you breathe its strange, special air.

—Leonard Bernstein
“What Makes Opera Grand?”, Vogue (December 1958)

1 Quick Start

A name authority is a canonical, scholarly list of names to which variant name
forms and aliases refer. Books can contain hundreds of names and index entries. The
nameauth package assists academic and business writing to minimize the work of
managing many names:

o Automate the display and formatting of names.

o Manage and display information that is associated with names.

o Make decisions relating to names (name control sequence patterns).

e Sort name index entries properly.

¢ Automatically add information to index entries.

e Ensure correct indexing of names that span page breaks.

¢ Change name forms in the text while retaining consistent index entries.
e Adopt name forms in the text and index that are culturally appropriate.
e Do not force the user to adopt any one culture’s naming conventions.

o Permit European academic conventions (“Continental” formatting).

Indexing rules implemented by nameauth are based on Nancy C. Mulvany, Indexing
Books (Chicago: University of Chicago Press, 1994). All references [Mulvany]| refer to
this edition. See also similar information in The Chicago Manual of Style (15" ed.,
Chicago: Chicago UP, 2003, 309f., 755f.) or newer editions; referenced as [Chicago].

1.1 Simple Example

We begin with an excerpt from a biography written by Charles Waddell Chesnutt,
a prominent African-American author at the turn of the twentieth century.! We
create a new document, use only the default nameauth options, and create no extra
formatting for names (cf. Section 9.1).

The nameauth environment (Section 1.5) in the preamble resembles a tabular
with four columns. In column one we define the naming macros. In columns two and
three we define the names that the macros will display. We leave column four empty.

We use \Forgetname (Section 9.3) in Group 2 to “forget” about the names in
Group 1. When we reorder the statements, the names change form automatically.

1 \documentclass{article}

2 \input{compat.tex} % Included with nameauth; example file aids
3 % compatibility across different LaTeX versions and engines.
4 \usepackage{makeidx}

5 \usepackage{nameauth}

6 \usepackage[inline]{enumitem}

7 \makeindex

8

9 \begin{nameauth}

w0 % Col. 1 Col. 2 Col. 3 Col. 4

11 \< Doug & Frederick & Douglass & >

12 \< Bailey & Betsey & Bailey & >

13 \end{nameauth}

!Chesnutt, Frederick Douglass (Boston: Small, Maynard, 1899). See also this web page.

https://docsouth.unc.edu/neh/chesnutt/summary.html

27

\begin{document}

\textbf{Group 1}\\
\begin{enumeratex}

\item[\textbf{1.}] \Doug\ rose to eminence by sheer force
of character and talents that neither slavery nor caste
proscription could crush.

\item[\textbf{2.}] \Doug’s early life is perhaps the most
complete indictment of the slave system ever presented at
the bar of public opinion.

\item[\textbf{3.}] \Doug\ was born in February, 1817. His
earliest memories centered around the cabin of his
grandmother, \Bailey.

\end{enumeratex*}

\textbf{Group 2}\\

\ForgetName [Frederick] {Douglass}
\ForgetName [Betsey]{Bailey}
\begin{enumeratex}

\item[\textbf{2.}] \Doug’s early life is perhaps the most
complete indictment of the slave system ever presented at
the bar of public opinion.

\item[\textbf{3.}] \Doug\ was born in February, 1817. His
earliest memories centered around the cabin of his
grandmother, \Bailey.

\item[\textbf{1.}] \Doug\ rose to eminence by sheer force
of character and talents that neither slavery nor caste
proscription could crush.

\end{enumeratex}

\printindex
\end{document}

Group 1

1. Frederick Douglass rose to eminence by sheer force of character and talents
that neither slavery nor caste proscription could crush. 2. Douglass’s early life
is perhaps the most complete indictment of the slave system ever presented at
the bar of public opinion. 3. Douglass was born in February, 1817. His earliest
memories centered around the cabin of his grandmother, Betsey Bailey.

Group 2

2. Frederick Douglass’s early life is perhaps the most complete indictment of
the slave system ever presented at the bar of public opinion. 3. Douglass was
born in February, 1817. His earliest memories centered around the cabin of his
grandmother, Betsey Bailey. 1. Douglass rose to eminence by sheer force of
character and talents that neither slavery nor caste proscription could crush.

Right Is of No Sex— Truth Is of No Color— God Is the Father of Us All, and
All We Are Brethren.

—Frederick Douglass

motto, The North Star (Rochester, NY, 1847)

1.2 How To Use the Manual

This manual tries to support various learning styles by using layout, colors, shapes,
and similar ordering of both document sections and package code.

Macro Argument Types

{Mandatory Arguments} [Optional Arguments]

This manual shows mandatory This manual shows optional
arguments in black. arguments in dark red.

Scope and Sequence

The table of contents indicates what topics are covered, the simpler and frequent to
the complex and infrequent. Later topics require knowledge from multiple sections.
The end of each major section includes a return link to the table of contents.

Key Concepts

Starting in Section 1.4, we use debugging macros to show name control patterns
in the margins (Section 6.1). These patterns are the key to how names work in
nameauth. Through Section 5.8 we show basic index entries in the margins in
order to illustrate the things for which one should look when debugging.

Special Signs
This manual uses signs and illustrative typesetting that are not built-in defaults of
nameauth, but in some cases are implemented using it:
We highlight First Uses and Later Uses of names (Sections 9.1, 9.3).
T A dagger indicates reversed Western forms (Sections 5.5).
I A double dagger shows usage of the obsolete syntax (Section 12.2).
§ A section mark denotes index entries of fictional names.

@ < The “dangerous bend” shows where caution is needed.

Example Files

The files examples.tex and compat . tex are located with this manual. For generating
package testing files, see README.md, also located with this manual.

For assistance at various times, thanks to Marc van Dongen, Enrico Gregorio, Philipp
Stephani, Heiko Oberdiek, Uwe Lueck, Dan Luecking, Robert Schlicht, and others.

In memoriam Robin Fairbairns

He was very kind when I first uploaded nameauth, and gracious thereafter as well.

1.3 Basic Concepts

This section introduces fundamental concepts needed by package users. The rest of

the manual requires these to be understood.

1.3.1 Name Arguments

Below we show how familiar categories of names map to name arguments in the
appropriate macros, as defined by the current syntax. We use the excellent advice in

[Mulvany, 152-82] and [Chicago], adapting them for use in ITEX.

Western Name: [(FNN)]1{(SNN, Affix)} [(Alternate)]

Forename(s):(FNN)

Personal name(s):
baptismal name
Christian name
multiple names

praenomen’®

Surname(s):(SNN)

Family name:
of father, mother
ancestor, vocation

origin, Tegion
nomen / cognomen

patronym

Qualifier: (Affix)

Sobriquet / title:
Sr., Jr., III..

notable attmbute
origin, region

Alias: (Alternate)

Replaces (FNN) only in the text.

Family / clan name

Personal:(Affix)

Usually one name

“Native” Eastern Name: {(SNN, Affix)} [(Alternate)]

Alias: (Alternate)

Replaces (Affix)

only in text.?

Royal/Medieval /Ancient Name: {(SNN, Affix)} [(Alternate)]

Given name(s)

Sobrlquet / title:
Sr., Jr., III..
notable attm’bute
origin, region
patronym

Personal:(SNN) Qualifier: (Affix) Alias: (Alternate)

Replaces (Affiz)

only in text.*

2There are several ways of handling the Roman tria nomina. See Section 11.4.

5The obsolete syntax uses (Alternate) instead of (Affiz) for a personal name (Section 12.2).

“The obsolete syntax uses (Alternate) instead of (Affiz) for a qualifier (Section 12.2).

1.3.2 Name Ambiguity

e Name forms are ambiguous.

In Western culture, one often sees forenames followed by a surname.
Patronyms, as in Leif Erikson and Llywelyn ap Gruffudd, and other excep-
tions exist.” Some readers might assume the following:

Forename Forename Surname

Marcus Tullius Cicero
Forename Surname
Pontius Pilate
Jesus Christ

Even though all these initial assumptions are false, Western naming
conventions tend to dominate the general readership market and, mutatis
mutandis, they affect the use and indexing of names.

e Cultural context resolves ambiguity.

Here we see how the names above have meaning in their proper context.
The words themselves as signs do not offer the as many clues about their
meaning until the signs become part of a cultural landscape.

Personal Name Clan Name Branch Family or Nickname

Marcus Tullius Cicero
Pontius Pilate

Personal Name Sobriquet

Jesus Christ

o This package embraces such ambiguities.

Roman praenomina did not have the same significance as Western fore-
names.’ Yet the family name (nomen) of the man we call Cicero is Tullius.
In English, he used to be known as Tully. In this manual we choose the
popular case for the cognomen Cicero as a Western surname. Scholarly
publications can take at least two different approaches (see Section 11.4).

The name Pontius Pilate has no personal name, which fits with Roman
naming trends. Pontius is a clan name. Most texts and inscriptions favor
the cognomen Pilatus, denoting martial prowess.

Jesus Christ is a name derived from Greek Incotc Xpiotédg, from Y’shua
ha-Mashiach, Joshua the Anointed One. The personal name is Jesus.
Other added names are titles or descriptors.

¢ Macros can modify names in the text to fit cultural norms.

Name forms in the text are independent of their index entries. This is
necessary for special cases like Hungarian names. Thus, a text oriented
to Hungarian readers can talk about Liszt Frenect (Franz Liszt) in the
body text, but he can be indexed as Liszt, Frenec. One can do something
similar with East Asian names, if Western index entries are required.

SIndexed here under Erikson and Llywelyn. See also this document on indexing Welsh names.
63ee Wikipedia. Roman names in particular are sensitive to the historical and political development
of Rome and its empire, the history of Roman families and culture, as well as other factors.

https://www.theindexer.org/wp-content/uploads/2020/07/welsh-personal-names.pdf
https://en.wikipedia.org/wiki/Praenomen

¢ Name arguments determine index entry forms.

The way that one puts names into macro name arguments absolutely
determines the entry form in the index:

Printed Name Macro and Arguments Western Index Entry
Person Family Affix \Name [Person] {Family, Affix} Family, Person, Affix
Person Family \Name [Person] {Family} Family, Person
Family Person \RevName?, Family, Person
\Name [Person] {Family}
Printed Name Macro and Arguments Nonwestern Index Entry
Family Person \Name{Family, Person} Family Person
Person Family \RevNameY, Family Person
\Name{Family, Person}
Person Affix \Name{Person, Affix} Person Affix
Person \Name{Person} Person

The following choices reflect non-scholarly English-language books. Later
sections will show different ways to encode name arguments for scholarly
works or non-English books.

Printed Name Macro and Arguments Western Index Entry

M.T. Cicero \Name [M.T.]{Cicero} Cicero, M.T.

Printed Name Macro and Arguments Nonwestern Index Entry
Pontius Pilate \Name{Pontius, Pilate} Pontius Pilate

Jesus Christ \Name{Jesus, Christ} Jesus Christ

e Name complexity creates nameauth complexity.

We might take names for granted until we have to consider them, use
them in multicultural contexts, index them, and so on. Even if one does
not use the nameauth package, one cannot escape this complexity.

Indeed, it is only through the process of making nameauth that the present
author became aware of the many intricate and fascinating complexities
of names. The hope is that this package might facilitate accurate and
respectful cross-cultural use of names in quality publications.

It is a very poor thing, whether for nations or individuals, to advance the history
of great deeds done in the past as an excuse for doing poorly in the present; but
it is an excellent thing to study the history of the great deeds of the past, and
of the great men who did them, with an earnest desire to profit thereby so as to
render better service in the present. In their essentials, the men of the present
day are much like the men of the past, and the live issues of the present can
be faced to better advantage by men who have in good faith studied how the
leaders of the nation faced the dead issues of the past.
—Theodore Roosevelt
Introduction, The Papers and Writings of Abraham Lincoln (1905)

1.4 Basic Interface

The description of macro arguments in this section applies to all nameauth macros
that take name arguments (Sections 1.3.1 and 1.6.1), making this section critical to
using and mastering nameauth.

o If the required argument (SNN) is empty, nameauth issues a package
error, even when the (Affiz) part of an (SNN), (Affiz) pair is not empty.

o Extra spaces around each argument are stripped.

e Include name arguments consistently to have consistent index entries.

o For all name forms, see Section 4.3.1 regarding final optional arguments.

1.4.1 Western Names

Required Required (SNN) Optional
(FNN) optional (Affiz) (text only)
\Name
\Name* || [(FNN)] || {(SNN, Affiz)} || [(Alternate)]
\FName

Within nameauth, Western names have distinct features:

o Western names must use the first optional (FNN) argument.
o They require a comma to delimit any affixes (Section 5.3).
o Western index entries have two general forms:

(SNN), (FNN)
(SNN), (FNN), {Affiz)

o They have Western name patterns (Section 6.1) and index entry forms.

Full, Last, and First Names

\Name prints first uses of names long, then short thereafter. \Name* ensures a long
form. Both \FName and \FName* print long names in first uses, then just a forename
in later uses.” The affix in a surname only appears in long name instances.

Name Pattern(s): First use: George Washington................. \Name [George]{Washington}

George!Washington Later use: George Washington................. \Name* [George] {Washington}

GeorgeS. !Patton, Jr. Later use: Washington \Name [George]{Washington}

Basic Index: Later use: George.....................o. \FName [George] {Washington}
Washington, George

Patton, George S., Jr. First use: George S. Patton Jr............ \Name [George S.]{Patton, Jr.}

Later use: George S. Patton Jr. \Name* [George S.]{Patton, Jr.}

Later use: Patton........................ \Name [George S.]{Patton, Jr.}

Later use: George S....................... \FName [George S.]{Patton, Jr.}

"The intent is that one can just add an F to either \Name or \Name*.

10

Affixes and Alternate Forms

In a long name instance, \DropAffix drops the affix from a Western surname. The
(Alternate) argument appears only in long names or forename-only names in the text.
Otherwise, the automatic shortening of names will display only a short surname.

Name Pattern(s): o Drop the affix in a long name instance (forced by \Namex*):
GeorgeS. !Patton, Jr.
J.D.!Rockefeller,IV First use: George S. Patton
CliveStaples!Lewis \DropAffix\Name* [George S.]{Patton, Jr.}
Basic Index: Later use: George S. Patton
Patton, George S., Jr. \DropAffix\Name*[George S.]{Patton, Jr.}

Rockefeller, J.D., IV
Lewis, Clive Staples

Use an alternate forename in a long- or forename instance:

First use: John Davison Rockefeller IV

\Name [J.D.]{Rockefeller, IV}[John Davison]
Later use: George

\FName [George S.]{Patton, Jr.}[Georgel

Drop the affix and alter the forenames:

First use: Jay Rockefeller
\DropAffix\Name*[J.D.]{Rockefeller, IV}[Jay]

Later use: Jay Rockefeller
\DropAffix\Name*[J.D.]{Rockefeller, IV}[Jay]

Use multiple alternate forenames for the same person:

First use: Clive Staples Lewis

\Name [Clive Staples]{Lewis}
Later use: C.S. Lewis

\Name* [Clive Staples]{Lewis}[C.S.]
Later use: Jack

\FName [Clive Staples]{Lewis}[Jack]

To sort the index consistently and properly, all names should be sorted by
their longest unique name forms and by the Arabic equivalents of Roman
numerals. See Section 5.8, 7.6, 7.6.2, 10.1. and all of Section 11. For example:

\PretagName [J.D.]{Rockefeller, IV}{Rockefeller, John D 4}

The alternate domination of one faction over another, sharpened by the spirit
of revenge, ...is itself a frightful despotism. But this leads at length to a more
formal and permanent despotism. The disorders and miseries, which result,
gradually incline the minds of men to seek security and repose in the absolute
power of an individual; and sooner or later the chief of some prevailing faction,
more able or more fortunate than his competitors, turns this disposition to the
purposes of his own elevation, on the ruins of Public Liberty.

—George Washington, Farewell Address (1796)

11

1.4.2 Reversed Western Names

Required Required (SNN) Optional
(FNN) no (Affix) (text only)
\Name
\Name* || [(FINN)] {(SNN)} [(Alternate)]
\FName

Reversed Western names (Section 5.5) have these features:

o They must use the first optional (FNN) argument.

e Avoid using affixes in order to avoid odd name forms. One also could use
\DropAffix (Section 5.3), but that would not affect index entries.

o Index entries have the Western form: (SNN), (FNN).
e They have Western name patterns and index entry forms.

o They do not work with the obsolete syntax (Section 12.2).

Starting with Western Name Forms

These reversed Western forms are used optimally in a context where Hungarian
names and similar cases of name order appear in a document because their index
entries take a Western form [Mulvany, 166].%

Name Pattern(s):

Frenec!MolnAar First use: Frenec Molndr.......................... \Name [Frenec]{Molnar}
Hideyo!Noguchi First use: Hideyo Noguchi........................ \Name [Hideyo]{Noguchi}
Basic Index: Later use: Doctor Noguchi.............. \Name* [Hideyo] {Noguchi} [Doctor]

Noguchi, Hideyo
Molnéar, Frenec . .
Using the Reversing Macros

We use the prefix macros \RevName and optionally \CapName (Section 1.6) to print
either a Hungarian or “non-native” Eastern name in the text while keeping Western
forms in the index:

Same name patterns Later use: Molnar Frenect
and index entries \RevName\Name* [Frenec] {Molnar}\dag
as above. Later use: Molnarf

\RevName\Name [Frenec]{Molnar}\dag
Later use: NOGUCHI Senseif

\CapName\RevName\Name* [Hideyo] {Noguchi} [Sensei] \dag
Later use: NOGUCHI¢}

\CapName\RevName\Name [Hideyo]{Noguchi}[Sensei]\dag

These macros, as is the case with many nameauth macros, work properly in
context, not arbitrarily. They always have Western index entries, regardless of
how they appear in the text.

8Regarding the margin note that shows name control sequences, with pdflatex and latex, in
Frenec!Molnlar the glyphs &g correspond to \IeC{\'a}.

12

Name Pattern(s):
Miyazaki,Hayao
Basic Index:
Miyazaki Hayao

Same name patterns
and index entries

as above.

1.4.3 Eastern Names

All nonwestern name forms in nameauth have the syntax: (SNN,Affiz). In Eastern
names, (SNN) refers to a family name and (Affiz) to a personal name. Otherwise,
(SNN) refers to a person’s name and (Affiz) to added information. Knowing this
difference helps one avoid nonsense names.

Required (SNN) Optional
required (Affiz) (text only)
\Name
\Name* || {(SNN, Affiz)} || [(Alternate)]
\FName

These features denote “native” Eastern names in nameauth (Sections 5.4, 5.5):

o They must leave empty the (FNN) argument.
o They use instead the (SNN, Affix) arguments.
o Their index entries take the nonwestern form: (SNN Affiz).

o Names with the form (SNN, Affiz) can use the (Alternate) argument to
swap (Affiz) with (Alternate).

e They have nonwestern name patterns and index entry forms.

“Native”, Reversible Eastern Name Forms

Among the names shown below, \FName does not show a personal name by default.
This design helps to prevent Western writers from being culturally insensitive.

First use: Miyazaki Hayao........................ \Name {Miyazaki, Hayao}
Later use: Miyazaki................. ... \Name {Miyazaki, Hayao}
Later use: Miyazaki Sensei.............. \Namex{Miyazaki, Hayaol}[Senseil
Later use: Miyazaki............c..oooiiiiiit, \FName{Miyazaki, Hayao}

One must use \ForceFN with \FName (Section 4.2) to get a personal name.
(Alternate) swaps with (FNN) (in both long forms and in short forms) in the text
only. (Alternate) does not work with the obsolete syntax (Section 12.2):

Later use: Hayao \ForceFN\FName{Miyazaki, Hayao}
Later use: MIYAZAKI Sensei .. \CapName\Name*{Miyazaki, Hayao}[Sensei]
Later use: Sensei.............. \ForceFN\FName{Miyazaki, Hayao}[Sensei]
Later use: Mr. Miyazaki........... \RevName\Name*{Miyazaki, Hayaol}[Mr.]

If “native” Eastern names are reversed, they will have Western name order in
the text, but they will retain Eastern-form index entries.

13

Name Pattern(s):
Elizabeth,I
John,Eriugena
Aristotle

Basic Index:

Elizabeth I
John Eriugena
Aristotle

1.4.4 Royal, Medieval, and Ancient Names

\

Required (SNN) Optional,
optional (Affiz) special
\Name
\Name* || {(SNN, Affiz)} || [(Alternate)]
\FName

These features denote royal, medieval, and ancient names in nameauth, grouped
under the general rubric of “nonwestern” name forms:

They must leave empty the (FNN) argument.
They use either the (SNN, Affiz) arguments or just (SNN).
Their index entries take the nonwestern forms: (SNN Affiz) or (SNN).

Names with the form (SNN, Affiz) can use the (Alternate) argument to
swap (Affix) with (Alternate).

Names with the form (SNN) should not use (Alternate) (cf. Section 12.2).
They have nonwestern name patterns and index entry forms.

One generally does not reverse these names (Section 5.5).

No School Like the Old School

\FName normally prints (SNN) to avoid nonsense names in the text.

First use: Elizabeth I \Name {Elizabeth, I}
Later use: Elizabeth....................... \Name {Elizabeth, I}
Later use: Elizabeth....................... \FName{Elizabeth, I}

Here we work with titles and sobriquets:

First use: Elizabeth | “Gloriana”

\ForgetThis\Name{Elizabeth, I}[I ‘‘Gloriana’’]
Later use: Gloriana

\ForceFN\FName{Elizabeth, I}[Glorianal]

Here we show a non-royal:

First use: John Scotus Eriugena
\Name {John, Eriugenal}[Scotus Eriugenal]

Later use: John Eriugena \Name*{John, Eriugena}
Later use: John \Name {John, Eriugena}
Later use: Eriugena............ \ForceFN\FName{John, Eriugena}

These are nonsensical name forms:

Lateruse: |..................... \ForceFN\FName{Elizabeth, I}
Later use: Eriugena John \RevName\Name*{John, Eriugena}

The trivial case:

First use: Aristotle.......... \Name{Aristotle}
Later use: Aristotle................ \Name{Aristotle}

1.5 Quick Interface
1.5.1 Name Shorthands

nameauth (env.) To reduce typing, we replace frequently-used macros with the shorthand forms of
the quick interface. Using the nameauth environment in the preamble guards against
undefined macros. It defines a delimited macro \<, recalling a tabular:

\begin{nameauth}
\< (argl) & (arg2) & (arg3) & (arg4) >
\end{nameauth}

In this context, (argl) becomes the root of three new macros per name:

\(argl) same as: \Name [(arg2)]1{({arg3)}[{arg4)]
\L(arg1) same as: \Name* [(arg2)1{(arg3)} [(arg4)] % L for long
\S(arg1) same as: \FName [(arg2)]1{({arg3)} [{arg4)] % S for short

Usually we leave (arg/) empty, apart from specific contexts. That field perma-
nently displays only alternate names, or is used with the obsolete syntax (Section 12.2).
Here is another way of thinking about arguments in the nameauth environment that
relates back to what we have seen:

\begin{nameauth}
\< (argl) & (FNN) & (SNN, Affiz) & (Alternate) >
\end{nameauth}

By seeing the mandatory arguments in black and the optional ones in red, it helps
us to see that, if either (argl) or (arg3) are empty, or (SNN) is empty, nameauth will
generate a package error. Forgetting the backslash, any ampersand, or angle bracket
will cause fatal errors. See Section 4.3.1 on final optional arguments.

Package warnings result when one redefines name shorthands using the nameauth
environment. For example, we use White in two different rows to populate (Arg?).
That causes \White, \LWhite, and \SWhite to be redefined:

1 \begin{nameauth}

2 \< White & E.B. & White & > % version 1
3 \< White & E.\,B. & White & > % version 2
4 \end{nameauth}

\White produces E. B. White, the version with the thin space. We lost the first
version of the name when we redefined it.”

On the next page we will create an example nameauth environment using many
of the names that we have so far encountered. We will add other names that we have
not yet seen, introducing additional concepts in the process. Those include Western
name forms that contain particles (usually prepositions or clan designators), which
are discussed in greater detail in Section 5.7.

“When building this package there should be a warning: Shorthand macro already exists.
This is intentional, meant to test if the warning is working properly.

15

The comments below are merely explanatory and in no wise required to use the

environment. Likewise, extra spaces that are added for clarity are stripped.

W N

© oo ~ o v

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

not

\begin{nameauth}
% Western Name Forms
% <argl> <arg2> <arg3> <arg4>
\< Wash & George & Washington & >
\< Lewis & Clive Staples & Lewis & >
% Western Name Forms with Affixes
\< Patton & George S. & Patton, Jr. & >
\< JRIV & J.D. & Rockefeller, IV & >
% Western Name Forms with Particles
\< Soto & Hernando & de Soto & >
\< JWG & J.W. von & Goethe & >
\< VBuren & Martin & Van Buren & >
% Reversed Western Forms
\< Noguchi & Hideyo & Noguchi & >
\< Molnar & Frenec & Molnar & >
% ‘‘Native’’ Eastern Forms
\< Miyazaki & & Miyazaki, Hayao & >
% Royal, Medieval, and Ancient Forms
\< Eliz & & Elizabeth, I & >
\< Aeth & & Ethelred, II & >
\< Eriugena & & John, Eriugena & >
\< Aris & & Aristotle & >
% Name Forms Always Using Alternate Names
\< CSL & Clive Staples & Lewis & C.S. >
\< MSens & & Miyazaki, Hayao & Sensei >
\end{nameauth}

Here is an example of how much typing one can save with the quick interface,
to mention the prevention of error by not retyping arguments:

Output Macro
Washington Quick: \Wash
Basic: \Name [George]{Washington}
George Washington Quick: \LWash
Basic: \Name* [George] {Washington}
George Quick: \SWash
Basic: \FName [George] {Washington}
George Washington Quick: \ForgetThis\Wash
Basic: \ForgetName [George]{Washington}
\Name [George]{Washington}
George Washington Quick: \ForgetThis\Wash
Basic: \ForgetThis\Name [George] {Washington}
Washington Quick: \SubvertThis\Wash
Basic: \SubvertName [George] {Washington}
\Name [George]{Washington}
Washington Quick: \SubvertThis\Wash
Basic: \SubvertThis\Name [George] {Washington}
(unseen in text) Quick: \JustIndex\Wash
Basic: \IndexName [George] {Washington}

16

1.5.2 Quick Name Variant Overview

After setting up the previous nameauth environment, we use the resulting name
shorthands. Below we show more “prefix macros” that affect name forms in the text.
We hide the use of \ForgetThis (Section 9.3), which creates first instances.

Name Pattern(s): o Western Names: Sections 4.1, 4.2
George !Washington
GeorgeS. !Patton,Jr. First use: George Washington.................., \Wash
J.D.!Rockefeller,IV Later use: George Washington.............................. \LWash
CliveStaples!Lewis Later use: Washington \Wash
Hideyo!Noguchi Later use: GeOrge.........oivuiiiiiiiii i \SWash
Miyazaki,Hayao
Basic Index: o Nicknames and Affixes: Sections 4.2, 5.3
Washington, George
Patton, George S., Jr. First use: George S. Patton................... \DropAffix\Patton
Rockefeller, J.D., IV Later use: George S. Patton Jr........................... \LPatton
Lewis, Clive Staples Later use: Pattont \Patton
Noguchi, Hideyo Later use: George S. Patton \DropAffix\LPatton
Miyazaki Hayao Later use: George Patton........... \DropAffix\LPatton [George]
Later use: George S......co.iiiiiiiiiiii i \SPatton
Later use: George.........c.cooiiiiiiiiiiiiea.. \SPatton[George]
First use: John Davison Rockefeller IV... ... \JRIV[John Davison]
Later use: J.D. Rockefeller IV \LJRIV
Later use: Jay Rockefeller................ \DropAffix\LJRIV [Jay]
First use: Clive Staples Lewis.............ccooiiiiinn... \Lewis
Later use: C.S. Lewis..........cooiiiiiii ... \LLewis[C.S.]
Later use: Jack Lewis.......... \LLewis [Jack]
Later use: Clive Staples............o.oiiiiiiii .. \SLewis
Later use: Jack ..., \SLewis [Jack]
Later use: C.S. LeWis ...oouviuiiii e \LCSL
Later use: C.S. ... \SCSL
e “Native” Eastern Names: Section 5.4
First use: MIYAZAKI Hayao.................. \CapName\Miyazaki
Later use: MIYAZAKI Hayao................. \CapName\LMiyazaki
Later use: MIYAZAKI \CapName\Miyazaki
Later use: Hayao Miyazaki................... \RevName\LMiyazaki
Later use: Mr. Miyazaki............... \RevName\LMiyazaki [Mr.]
Later use: Miyazaki.................oo ool \SMiyazaki
Later use: Hayao.............coooiiiiiin. \ForceFN\SMiyazaki
o Reversed Western Names: Section 5.5
First use: Hideyo Noguchi.............ot \Noguchi
Later use: Hideyo Noguchi.............................. \LNoguchi
Later use: Doctor Noguchi.................... \LNoguchi [Doctor]
Later use: Hideyo......... ...t \SNoguchi
Later use: Noguchi Hideyotf.............. \RevName\LNoguchi\dag
Later use: NOGUCHI Hideyot .. \CapName\RevName\LNoguchi\dag
Later use: NOGUCHI} \CapName\Noguchi\dag
e Western Names Reversed by Surname: Section 5.6
First use: Washington, George \RevComma\LWash
Later use: Washington, George \RevComma\LWash

Name Pattern(s): o Particles: Section 5.7
Hernando!de~Soto

Aristotle First use: Hernandode Soto..................... \Soto
KEthelred,II Later use: de Soto...... ... \Soto
John,Eriugena Later use: De Soto.....ccovviiiiiiii . \CapThis\Soto
Basic Index:
de Soto, Hernando ¢ Royal and Medieval Names: Section 5.8
Aristotle
AEthelred II First use: Athelred 1110 o o \Aeth
John Eriugena Later use: Athelred. \Aeth
Later use: /Ethelred I, “Unraed”.......... \LAeth[II, ¢‘Unrzd’’]
First use: John Scotus Eriugena....\Eriugena[Scotus Eriugenal
Later use: John Eriugena........... \LEriugena
Later use: John....... il \Eriugena
First use: Aristotle \Aris
Later use: Aristotle \Aris

1.5.3 (Alternate) Name Field Tips

Two shorthands above use (arg4), the final field in each row of the nameauth envi-
ronment. These are \CSL and \MSens. They correspond to similar name shorthands
\Lewis and \Miyazaki, which leave (arg4) empty. Here is how they are related:

Name Pattern(s):
CliveStaples!Lewis

They share identical name control patterns (Section 6.1).

Miyazaki ,Hayao First use: Miyazaki Sensei ..., \MSens

Basic Index: Later use: Miyazaki..........cooiiiiiiiiiiiiiiii. \Miyazaki
Lewis, Clive Staples First use: C.S. LeWiS....ouiuiuiniii i \CSL
Miyazaki Hayao Later use: Lewis..........cooiiiiiiiiiiiiiiiaan.s. \Lewis

o Usually, one leaves (arg4) empty and adds alternate names in brackets
as needed: C.S. Lewis \LLewis[C.S.]

o By using (arg/), one trades less work for more ambiguity: Can one add
an alternate name or not? To answer that, one should keep track of all
name shorthands that use (arg4).

o Failure to keep track of such macros creates output like C.S. Lewis[Jack]
\LCSL[Jack] and Miyazaki Sensei[Sensei] \LMSens [Sensei]. The reason
why these macro versions produce undesired output is because (arg4)
permanently populates (Alternate).

o Remember that (arg4) can be used for the obsolete syntax, as mentioned
previously, but we do not cover that here.

The space program is not only scientific in purpose but also is an expression
of man’s insistent determination to do the nearly impossible —to explore the
unknown, even at great risk.

—Harold Urey (1961)

1Regarding the margin note that shows name control sequences, with pdflatex and latex, in
REthelred,II the glyphs AE correspond to \IeC{\AE}.

18

1.6 Select Macro Overview
1.6.1 Macros with Name Arguments

All macros that take name arguments (Section 1.3.1) can have final optional arguments
(Section 4.3.1) and update \NameauthPattern (Section 11.2.1). The (zref args) are
the same as (name args) for a cross-reference to a (target) (Section 7.3).

Optional Prefix Macro Star Arguments
Naming (prefix macros) \Name * (name arys)
(prefiz macros) \FName * (name args)
Page entry \SeeAlso \IndexName (name args)
Only cross-ref \SeeAlso \IndexRef (zref args) (target)
Stop page entry \ExcludeName (name args)
Allow page entry \IncludeName * (name args)
Sort index \PretagName (name argsy (sort key)
Make index tag \TagName (name args) (tag)
Delete index tag \UntagName (name args)
Make name tag \NameAddInfo (name args) (tag)
Show name tag \NameQueryInfo (name args)
Delete name tag \NameClearInfo (name args)
Delete name cs \ForgetName (name args)
Create name cs \SubvertName (name args)
Name cs tests \IfMainName (name args) {{y)H(n)}
\IfFrontName (name args) {{y)X(n)}
\IfAKA (name args) {(y)H(n)H{z)}
Debugging \ShowPattern (name args)
\ShowIdxPageref * (name args)
\ShowNameInfo (name args)
\ShowNameState (name args)

Optional prefix macros are shown in the next subsection. Not shown above are
\AKA, \AKA*, \PName, and \PName* (Section 12.1).

The world is very different now. For man holds in his mortal hands the power
to abolish all forms of human poverty and all forms of human life. And yet the
same revolutionary beliefs for which our forebears fought are still at issue around
the globe —the belief that the rights of man come not from the generosity of
the state, but from the hand of God.

—John F. Kennedy, Inaugural Address (1961)

19

1.6.2 Prefix Macros

Similar to the package options (Section 2), many prefix macros alter the values of
the Boolean flags that reflect the state of names and name processing. The naming
and indexing macros reset the Boolean flags after they are invoked.

o Capitalization in the Text

\CapName Capitalize entire (SNN). Overrides \CapThis.
\CapThis Capitalize first letter of all name components.
\AccentCapThis Fallback when Unicode detection cannot be done.

o Reversing in the Text

\RevName Reverse order of any name. Overrides \RevComma
\RevComma Reverse only Western names to (SNN), (FNN).

e Commas in the Text

\ShowComma Add comma between (SNN) and (Affiz).
\NoComma No comma between (SNN) and (Affiz). Overrides \ShowComma.

e Name Breaks in the Text

\DropAffix Drop affix only for a long Western name instance.
\KeepAffix Insert non-breaking space (NBSP) between (SNN), (FNN/Affix).
\KeepName Insert NBSP between all name elements. Overrides \KeepAffix.

e Forcing Name Forms via Control Sequence

\ForgetThis Force first name instance. Negates \SubvertThis.
\SubvertThis Force subsequent name instance.

o Forcing Name Forms via Boolean Flags

\ForceName Force first-use formatting hooks.
\ForceFN Print (Affix)/(Alternate) in nonwestern short forms.

¢ Indexing

\SeeAlso For \IndexName, \AKA, and \PName; make a see also xref.
\SkipIndex For naming macros; do not create index entry (once).
\JustIndex For naming macros; index only (once); negated by \AKA, \PName.

Some important notes include:

o Prefix macros stack:
FooBar............... \CapThis\RevName\SkipIndex\Name [bar]{foo}
¢ The Boolean flags governed by the prefix macros are reverted after the

appropriate macros produce output in the text (or index) unless the
output of the naming macros is suppressed via \JustIndex.

e Even after using \JustIndex, several name form modifiers are reset. This
prevents errors when handling the next name.

o Except for \SeeAlso, use prefix macros only before a naming macro that
is designed to print output in the text.

e Use \SeeAlso only with \IndexRef, \AKA, and \PName. Otherwise it will
be ignored and reset by \IndexName and the naming macros.

Macros that do not take name arguments include prefix macros (Section 15.6),
helper macros (Section 15.7), most internal package macros, and formatting macros
(Sections 9.1 and 11).

20

1.7 Names and Complexity

The nameauth package allows levels of complexity when representing names. Already,
we have seen this example above:

Elizabeth | “Gloriana™ i, \LEliz[I ‘‘Gloriana’’]

We can display the same thing with different macros. This next example does
not offer more features; it only offers more complexity:

Elizabeth | “Gloriana” \LEliz\ ‘‘\ForceFN\SEliz[Gloriana]’’

The next example offers more features and better automation. Based on Sec-
tion 11.2.2 we use name tags and change the formatting hooks to match this manual’s
conventions. The key here is that we make a few key changes once, which then
govern many appearances of names:

\NameAddInfo{Elizabeth, I}{ ‘‘Gloriana’’}

\renewcommand*\NamesFormat [1]

{
\color{bluet\sffamily #1
\ifcsname\NameauthPattern!DB\endcsname

\expandafter\csname\NameauthPattern!DB\endcsname

\fi

}

\renewcommand*\MainNameHook{\sffamily}

© 0w N O O R W N

First use: Elizabeth | “Gloriana” \ForgetThis\LEliz
Later use: Elizabeth |.... \LEliz
Later use: Elizabeth \Eliz

Section 5.7 shows a similar trade-off between simplicity and automation with an
example using the name of poet e.e. cummings. Moving on to Section 11.4, complexity
increases, yet the state of any given name remains well-defined.

Avoid the Rabbit Hole

e In nameauth, names are nouns that have state and modifiers.

e In nameauth, names are verbs capable of changing their environment.
e There are trade-offs between ease of use and automation.

e Simple examples often are not easy to automate.

¢ Automation works best with a few key changes.

o Most use-cases can be as simple as Section 1.1.

e Use the simple approach unless a complex approach is needed.

Back to Table of Contents]

21

2 Package Options

There are many options for use in nameauth, which can be divided into specific areas
of functionality. These range from defaults that make conforming to certain standards
easier to backward compatibility with old versions. The expected syntax follows:

\usepackage [(option,), (options),. .. ,(option,)] {nameauth}

We discuss package options according to the structure of this package. That
structure repeats among the Boolean flags, package options, user interface macros,
and internal macros. The goal is understanding through repetition.

Section 3 shows the hierarchy of these options and related macros. Default options
are in boldface and need not be invoked by the user. Non-default options are in
dark red and must be invoked explicitly. Many of these options work together with
macros that do the same thing, but with finer control.

2.1 Name Grammar and Syntax

2.1.1 Show/Hide Affix Commas

nocomma Modern standards: Suppress commas be-
tween surnames and affixes.

comma Older standards: Retain commas between surnames
and affixes.

These options do not affect the index. They permit different standards for name
affixes. The default nocomma option gives, e.g., James Earl Carter Jr. The comma option
produces James Earl Carter, Jr. Macros that allow finer control of commas and affixes
are shown in Section 5.3.

2.1.2 Capitalize Entire Surnames

normalcaps Do not perform any special capitalization.
allcaps Capitalize entire surnames, e.g., Romanized Eastern

names, throughout the document.

These options do not affect the index. See Section 5.4 for finer control. To capitalize
names in the index, use caps as desired or alternate formatting (Section 11.3).

2.1.3 Reverse Name Order

notreversed Print names in the order specified by \Name
and the other macros.

allreversed Print all name forms in “smart” reverse order; West-
ern as nonwestern, and vice versa.

allrevcomma Print all names in “Surname, Forenames” order,
meant for Western names.

These options do not affect the index and are mutually exclusive (Sections 5.5 and 5.6).
Use allrevcomma option only for listing Western names by surname.

22

2.2 Indexing

2.2.1 Toggle Indexing
index Create index entries in place with names.
noindex Suppress indexing of names.

These options and related macros apply only to the nameauth package macros. The
default index option enables name indexing right away. The noindex option disables
the indexing of names until \IndexActive enables it. Caution: using noindex and
\IndexInactive prevents index tags until you call \IndexActive, as explained in
Section 7.1. For indexing feature priority, see Section 3.

2.2.2 Toggle Index Sorting

pretag Create sort keys used with makeindex.

nopretag Do not create sort keys.

The default allows \PretagName to create sort keys used with makeindex. The
nopretag option disables the sorting mechanism and causes \PretagName only to
emit warnings, as might be needed with, e.g., xindy. See Section 7.6.

2.2.3 Verbose Warnings
verbose Show more diagnostic warnings.

The default suppresses all but the most essential package warnings. Increasing the
warnings may help to debug index page entries, cross-references, and exclusions.
Section 7.1 shows macros that can enable and disable verbose warnings.

2.3 Formatting and Name Control Sequences

Formatting, which, in its simplest form is typographic post-processing of a name, and
in its complex forms can affect the syntactic form of a name, refers to the appearance
of a name in the body text.

2.3.1 Choose Formatting System

mainmatter Start with “main-matter names” and format-
ting hooks (Section 2.3.2).
frontmatter Start with “front-matter names” and hooks until

\NamesActive starts the main system.
alwaysformat Use only respective “first use” formatting hooks.

formatAKA Format the first use of a name with \AKA like the
first use of a name with \Name.

The mainmatter and frontmatter options enable two respectively independent
systems of name use and formatting. Even when no extra formatting occurs, the
formatting hooks are defined. Changes require \renewcommand. See Section 9.1.

The alwaysformat option forces “first use” hooks globally in both naming systems.
Its use is limited in current versions of nameauth.

The formatAKA option permits \AKA to use the “first use” formatting hooks. This
enables \ForceName to trigger those hooks at will (Section 12.1). Otherwise \AKA
only uses “subsequent use” formatting hooks.

23

2.3.2 Predefined Formatting Hooks

noformat Pass the displayed name through the format-
ting hooks unchanged.

smallcaps First use of a main-matter name in small caps.

italic First use of a main-matter name in italic.

boldface First use of a main-matter name in boldface.

The options above are “quick” definitions of \NamesFormat based on English typog-
raphy. The default is no formatting.!' See also Robert Bringhurst, The Elements of
Typographic Style, version 3.2 (Point Roberts, Washington: Hartley & Marks, 2008),
53-60. All references [Bringhurst] refer to this edition.

The following macros govern the way that names in the text appear. Two naming
systems are used in nameauth, one for main-matter text (default) and one for front-
matter text.'> These hooks do not affect the index. Changes to the formatting hooks
normally apply within the scope where they occur:

¢ \NamesFormat formats first uses of main-matter names.
e \MainNameHook formats subsequent uses of main-matter names.
e \FrontNamesFormat formats first uses of front-matter names.

e \FrontNameHook formats subsequent uses of front-matter names.

Sections 9.1, 11, and 13 explain these hooks and their redefinition in greater
detail. Section 12.1 discusses how \AKA does not respect these formatting systems.

2.4 Alternate Formatting

altformat Make available the alternate formatting framework
from the start of the document. Activate alternate
formatting by default.

A built-in framework provides an alternate formatting mechanism that can be used
for “Continental” formatting that one sees in German, French, and so on. Continental
standards often format surnames only, both in the text and in the index. Section 11.3
introduces the topic and should be sufficient for most users, while Section 13 goes
into greater detail for customization.

Previous methods that produced Continental formatting were more complex than
the current ones. Yet these older solutions still should work, as long as one uses the
altformat option and related macros.

2.5 Change Scope of Name Decision Macros
globaltest Do not put name decision paths in a local scope.

The default puts the decision paths of \IfMainName, etc., into groups with local
scope (Section 9.5). This option removes that scoping.

"For the old default, use the smallcaps option. User feedback dictated this change.

12\NamesFormat was once the only formatting hook. The other macros developed from there.
Regrettably, this package originated in a time when the present author was ignorant of several
cultural and technical aspects of handling names. The “learn as you go” approach contributed to a
fair bit of “cargo-cult” programming.

24

2.6 Version Compatibility

0ldAKA Force \AKA* to act like it did before version 3.0,
instead of like \FName.

oldreset Reset per-use name flags locally; let \ForgetThis
and \SubvertThis pass through \AKA (pre-v3.3).
Let \SeeAlso pass through \IndexName and other
macros. Keep \IndexName and \IndexRef from
resetting \SkipIndex (pre-version 3.5).

oldpass When \Justindex is called, allow long or short
Boolean flags to pass through, as they did before
version 3.3.

oldtoks Token registers holding the arguments of the last-

used name are set locally, as before version 3.5.

oldsee Allow lax handling of see references that are extant
names, as before version 3.5.

oldargs Load the xargs and suffix packages in order to per-
mit user-supplied modifications to work as in ver-
sion 3.7 and before. The package macros will still
use xparse because of its advantages.

Using these options may increase the chance of undocumented behavior.'® They
are included for the sake of approximate backward compatibility with older documents,
illustrated by the following table:

Version Needed Options Possible Options
2.6 oldreset,oldtoks,oldsee, oldargs
0ldAKA,oldpass
3.0-3.2 oldreset,oldtoks,oldsee, oldargs
oldpass
3.3-3.4 oldreset,oldtoks,oldsee oldargs
3.5-3.7 oldargs

Back to Table of Contents]

We believe firmly in the revelation of God in Jesus Christ. I can see no conflict
between our devotion to Jesus Christ and our present action. In fact, I can see
a necessary relationship. If one is truly devoted to the religion of Jesus he will
seek to rid the earth of social evils. The gospel is social as well as personal.

—Dr. Martin Luther King Jr., Stride Towards Freedom (1958)

B3Previously, the prefix macros and mechanisms for long and short names used Boolean flags
locally. With continued use of this package, it became clear that such local scope could produce
unexpected results. Those results, in turn, could mask problems caused by some flags not being
reset by \AKA, \AKA*, and \JustIndex. The result was undocumented behavior.

25

3 Feature Priority

Indexing Capitalization Reversing Name Forms,
Commas, Breaks
index normalcaps notreversed \ForgetThis
noindex allcaps allreversed \DropAffix
\IndexActive \AllCapsInactive \ReverseActive
\IndexInactive \AllCapsActive \ReverseInactive
\JustIndex \CapName \RevName \SubvertThis
\ForceName
\NoComma
\SkipIndex \AccentCapThis allrevcomma \KeepName
\RevCommaActive \ForceFN
\RevCommaInactive \ShowComma
\SeeAlso \CapThis \RevComma \KeepAffix

Above we see the relative priority of package options and their related macros.

Package options are shown in boldface.

Lighter-colored rows show higher priority. Darker-colored rows show lower
priority. Higher-priority options and macros have the ability to override
lower-priority ones.

All options and macros in a given row have equal priority and are able to
countermand each other within a given column.

Priority affects macros and options within columns. \IndexInactive
overrides \JustIndex, which overrides \SkipIndex. If \IndexInactive
is invoked, \JustIndex will have no effect.

Section 7.4 shows the complex interaction between \SkipIndex and
\JustIndex. It it is best to use \SkipIndex and \JustIndex only before
a naming macro that can print to the text.

Priority usually does not affect macros and options in different columns.
Yet the macros themselves can have specific effects that change the
expected behavior of macros in other columns.

For example, \JustIndex prevents a name from being displayed in the
text. Even if \IndexInactive overrides \JustIndex with respect to
indexing, it has no effect on the fact that the name will not be printed.

Also, \JustIndex resets the effects of \ForgetThis and \SubvertThis
because those prefix macros should precede only naming macros that
produce output in the text.

Due to this behavior, even though \JustIndex does not “override” the
caps and reversing macros and options, nevertheless it simply prevents
any other macros related to the display of a name from taking effect.

[Back to Table of Contents]

26

\Name
\Name*

Name Pattern(s):
Albert!Einstein

J.E.!Carter,Jr.

Confucius

Miyazaki,Hayao

Basic Index:

Elizabeth,I

Einstein, Albert

Carter, J.E., Jr.

Confucius
Miyazaki Hayao
Elizabeth 1

4 Naming Macros

This section is a “pedantic” presentation of macros, their syntax, and their output.
Section 1.4 is better for getting started. All naming macros that have the same
arguments also create consistent index entries. These entries are created both at the
start and at the end of a name, in case that name spans a page break.

4.1 \Name and \Namex*

\Name displays and indexes names. It always prints the (SNN) argument. \Name
prints the full name at the first occurrence, then usually just the (SNN) argument
thereafter. \Name* always prints the full name:

\Name [(FNN)I{(SNN, Affiz)} [(Alternate)]
\Name* [(FNN)]1{(SNN, Affiz)} [(Alternate)]

In the body text, not the index, the (Alternate) argument replaces either (FNN)
or, if (FNN) is absent, (Affiz). If both (FNN) and (Affiz) are absent when (Alternate)
is present, then the obsolete syntax is used (Section 12.2, not shown below).

1 \begin{nameauth}

2 \< Einstein & Albert & Einstein & >
3 \< Carter & J.E. & Carter, Jr. & >
4 \< Confucius & & Confucius & >
5 \< Miyazaki & & Miyazaki, Hayao & >
6 \< Eliz & & Elizabeth, I & >
7 \end{nameauth}

Albert Einstein
Albert Einstein
Einstein

J.E. Carter Jr.

James Earl Carter Jr.

Carter
Confucius
Confucius
Miyazaki Hayao
Miyazaki Sensei
Miyazaki
Elizabeth |
Elizabeth |
Elizabeth

\Name [Albert]{Einstein} or \Einstein
\Name* [Albert]{Einstein} or \LEinstein
\Name [Albert]{Einstein} or \Einstein
\Name [J.E.]{Carter, Jr.} or \Carter
\Name* [J.E.]{Carter, Jr.}[James Earl]
or \LCarter [James Earl]

\Name [J.E.]{Carter, Jr.} or \Carter
\Name {Confucius} or \Confucius

\Name {Confucius} or \Confucius

\Name {Miyazaki, Hayao} or \Miyazaki
\Name*{Miyazaki, Hayao}[Senseil

\Name {Miyazaki, Hayaol} or \Miyazaki
\Name {Elizabeth, I} or \Eliz
\Name*{Elizabeth, I} or \LEliz

\Name {Elizabeth, I} or \Eliz

With the quick interface, the best way to get alternate names follows pat-
terns like “James Earl Carter Jr.” \LCarter[James Earl] and “Miyazaki Sensei”
\LMiyazaki[Sensei]. The alternate forename is not shown in subsequent short
name instances e.g., “Carter” \Carter [James Earl]. Thus, one must use either
long-name instances or forename instances to see the alternate names.

27

\FName
\FNamex*

\ForceFN

Name Pattern(s):
Albert!Einstein

J.E.!Carter,Jr.

Confucius
Miyazaki,Hayao
Elizabeth,I

4.2 Forenames: \FName

\FName and its synonym \FName* print personal names only in subsequent name
uses. That means when a name control sequence does not exist, they print long name
forms because it is a first use of a name.

Unlike all other starred forms of macros in nameauth, these macros are synonyms
because one might edit either \Name or \Name* by adding an F to create a short
name instead of the usual forms. This was implemented before the quick interface.

\FName [(FNN)I{(SNN, Affiz)}[{Alternate)]
\FName* [(FFNN)1{(SNN, Affix)}[{Alternate)]

These forename instance macros will permit all name types, but the normal
behavior prints forenames only with Western names. With nonwestern names only
(SNN) is printed. This is designed to prevent Western writers from causing unintended
offense in Eastern contexts. It also prevents the display of nonsense names in the
context of ancient and royal names.

To get an Eastern personal name or any affixed components of an ancient name,
or to get (Alternate) to display in their place, one must precede these macros with
\ForceFN. See also Section 5.8 for more uses of \ForceFN.

Albert \FName [Albert]{Einstein} or \SEinstein
Jimmy \FName [J.E.]{Carter, Jr.}[Jimmy]
or \SCarter [Jimmy]
Confucius \FName{Confucius} or \SConfucius
Miyazaki \FName{Miyazaki, Hayaol} or \SMiyazaki
Hayao \ForceFN\FName{Miyazaki, Hayao}
or \ForceFN\SMiyazaki
Sensei \ForceFN\FName{Miyazaki, Hayao}[Sensei]
or \ForceFN\SMiyazaki[Senseil]
Elizabeth \FName{Elizabeth, I} or \SEliz

Good Queen Bess \ForceFN\SEliz[Good Queen Bess]

The (Alternate) argument replaces forenames in the text, which strongly shapes

the use of \FName. We already have covered the use of (Arg4) of the nameauth

environment in Section 1.5.3. Please refer to that material when using (Alternate),
especially with the quick interface.

Censorship, in my opinion, is a stupid and shallow way of approaching the
solution to any problem. Though sometimes necessary, as witness a professional
and technical secret that may have a bearing upon the welfare and very safety
of this country, we should be very careful in the way we apply it, because in
censorship always lurks the very great danger of working to the disadvantage of
the American nation.
—Dwight D. Eisenhower
Associated Press luncheon (24 April 1950)

28

4.3 Technical Details
4.3.1 Final Optional Arguments

Macros that take name arguments (see also Section 1.6.1) sometimes use a final
optional argument. Using these arguments with the current syntax gives:

Printed Name Macro and Arguments Western Index Entry
Alias Family Affix \Name [Person]{Family, Affix}[Alias] Family, Person, Affix
Alias Family \Name [Person] {Family}[Alias] Family, Person
Family Alias \RevName’, Family, Person
\Name [Person] {Family} [Alias]
Printed Name Macro and Arguments Nonwestern Index Entry
Family Alias \Name{Family, Person}[Alias] Family Person
Alias Family \RevName?, Family Person
\Name{Family, Person}[Alias]
Person Alias \Name{Person, Affix}[Alias] Person Affix

Since May 2018, xparse offers two approaches that have their own pros and cons.
Below \Namei works the same as nameauth. \Nameii takes the alternate route. If one
builds this package with a IXTEX distro from before 2018, \Nameii will not appear,
and \Namei will work like \Nameii in newer versions. It was for the sake of stability
and consistency that nameauth used xargs and suffix in its early days. Now that all the
issues with xparse have been addressed, the latter is the best choice going forward.

\NewDocumentCommand {\Namei}{O{} m 0{}}
{\def\Opt{#3}\ifx\Opt\empty #1\ #2\else \Opt\ #2\fi}

% Cannot use this definition before May 2018.

\NewDocumentCommand{\Nameii}{0{} m '0{}}
{\def\Opt{#3}\ifx\Opt\empty #1\ #2\else \Opt\ #2\fi}

|\Namei: | \Namei[Personl]{Familyl} [somethingl]\\[lex]
|\Nameii:| \Nameii[Person2]{Family2} [something?2]

o N O s W N

\Namei: somethingl Familyl
\Nameii: Person2 Family2 [something?2]

e \Namei ignores spaces between the mandatory argument and the final
optional argument.

— Subsequent text in brackets will be interpreted as a name
argument, even if unintended.

— Yet we avoid errors from unintended spaces when using alter-
nate names and the obsolete syntax.

e \Nameii treats spaces between the mandatory argument and the final
optional argument as significant.

— Subsequent text in brackets will be seen as a name argument
only if no spaces occur between the mandatory argument and
final optional argument.

— Yet when using alternate names and the obsolete syntax, with
unintended spaces we could “lose” names from the arguments
and see unwanted results in the text.

29

In the next example we show the default approach of nameauth in practice using
the basic name interface. \ForgetName (Section 9.3) lets us simulate first instances
of names, even if they have appeared already.

We want: “Albert Einstein [then] said”; “Miyazaki Hayao [apparently] said”.
Also: “Einstein [then] said”; “Miyazaki [apparently] said”.
Macros: ¢ ‘\Name[Albert]{Einstein} [then] said’’;
¢ ‘\Name{Miyazaki, Hayao} [apparently] said’’.
We get: “then Einstein said”; “Miyazaki apparently said”.
Repeat: “Einstein said”; “Miyazaki said”.

¢ Add explicit spaces:
“Albert Einstein [then] said”; “Miyazaki Hayao [apparently] said”.
¢ “\Name [Albert]{Einstein}\ [then] said’’;
¢ “\Name {Miyazaki, Hayao}\ [apparently] said’’.
e Add curly braces:
“Einstein [then] said”; “Miyazaki [apparently] said”.
¢ “\Name [Albert] {Einstein}{} [then] said’’ and
¢ “\Name{Miyazaki, Hayao}{} [apparently] said’’.

Now we show how the nameauth default argument handling works with the quick
naming interface:

-

\begin{nameauth}

2 \< Einstein & Albert & Einstein & >
3 \< Miyazaki & & Miyazaki, Hayao & >
4 \end{nameauth}

We want: “Albert Einstein [then] said”; “Miyazaki Hayao [apparently] said”.
Also: “Einstein [then] said”; “Miyazaki [apparently] said”.
Macros: ¢ ‘\Einstein [then] said’’;
¢ “\Miyazaki [apparently] said’’.
We get: “then Einstein said”; “Miyazaki apparently said”.
Repeat: “Einstein said”; “Miyazaki said”.

o Add explicit spaces:
“Albert Einstein [then] said”; “Miyazaki Hayao [apparently]| said”.
‘“\Einstein\ [then] said’’ and
‘“\Miyazaki\ [apparently] said’’.
¢ Add curly braces:
“Einstein [then] said”; “Miyazaki [apparently| said”.
¢ “\Einstein{} [then] said’’ and
¢ “\Miyazaki{} [apparently] said’’.

Section 13.3.2 shows how one can customize and change argument handling,
addressing some of the same issues and caveats illustrated above.

We depict hatred, but it is to depict that there are more important things. We
depict a curse, to depict the joy of liberation.

—NMuiyazaki Hayao
Proposal for Princess Mononoke

30

Name Pattern(s):

MartinLuther!King, Jr.
MartinLuther!King, Jr.

Basic Index:

King, Martin Luther, Jr.
King, Martin Luther, Jr.

4.3.2 Name Argument Caveats

To get consistent index entries, all nameauth macros that take name arguments trim
extra spaces around each name argument, shown in gray below:

\Name[(FNN) 1{ (SNN) , (Affit) [(Alternate) 1]
We show this in practice while suppressing name formatting;:

No spaces:\\

\fbox{\strut\Name* [Martin Luther]{King,Jr.}}
\fbox{\strut\Name [Martin Luther]{King,Jr.}}
\fbox{\strut\FName [Martin Luther]{King,Jr.}}

Spaces:\\

\fbox{\strut\Name*[Martin Luther]{ King , Jr. }}
\fbox{\strut\Name [Martin Luther]{ King , Jr. }}
\fbox{\strut\FName[Martin Luther]{ King , Jr. }}

© 0w N O Uk W N e

No spaces:
Martin Luther King Jr. || King || Martin Luther

Spaces:
Martin Luther King Jr. || King || Martin Luther

We resume name formatting to show names that look the same, but are different.
Non-breaking spaces, explicit spaces, thin spaces, and macros that expand to spaces
are not trimmed. They produce different name patterns, shown below:

Output Macro Name Pattern
foo bar \Name{foo~bar} foo~bar
foo bar \Name{foo\ bar} foo\bar

foo bar \Name{foo\space bar} foo\spacebar

Name patterns, not name appearance, determine if names are the same (Sec-
tion 6.1). There may be cases where one might leverage that point.

4.3.3 Full Stop Detection

Western names tend to use full stops in various cases, including the following:

e After the initial letter abbreviation of forenames.

o After affixes: “Jr”. (junior), “Sr”. (senior), “d. A.” (der Altere), “d.J (der
Jiingere) etc.

o In some contexts, after degrees like “M.D.” (Medicinae Doctor), J.D.
(Juris Doctor), Ph.D. (Philosophiae Doctor), etc.

If name contains a full stop at the end, followed by a full stop in the text. the
nameauth macros try to prevent two adjacent full stops. All macros that take name
arguments and print names in the text check if the printed name ends with a full
stop. They also check the lookahead token for a full stop. If both cases are true, they
gobble the lookahead token.

31

We show this behavior in the example below. \ForgetName (Section 9.3) lets us
simulate the first instances of names. The table tells us whether or not the full stop
on the lookahead token is gobbled, why that is the case, as well as the output of the
name in the text and its correlating source.

1 \begin{nameauth}
2 \< MLK & Martin Luther & King, Jr. & >

3 \end{nameauth}

Full Stop Gobbled

Dr. Martin Luther King Jr.

Full Stop Gobbled

Dr. Martin Luther King Jr.
Dr. Martin Luther King Jr.

Full Stop Gobbled
M.L.

M.L.

Full Stop Remains
Dr. King.

Full Stop Remains
Martin Luther King.
Martin Luther King.

Long Name Form, First Use

Dr. \Name[Martin Luther]{King, Jr.}.
Force Long Name Form

Dr. \Name*[Martin Luther]{King, Jr.}.
Dr. \LMLK.

Alternate FNN with Initials

\FName [Martin Luther]{King, Jr.}[M.L.].
\SMLK[M.L.].

Affix Auto-Drops

Dr. \Name[Martin Luther]{King, Jr.}.
Force Affix to Drop

\DropAffix\Name* [Martin Luther]{King, Jr.}.
\DropAffix \LMLK.

4.3.4 Grouping and Spaces

We disable indexing for the examples below so that we do not generate unwanted
entries. Take care when using curly braces {} in naming macro arguments. They
will produce different names, as the formatting shows:

Macro Result Name Pattern Type
1 \Name[one]{two} one two one!two Western
2 \Name[{one}]{{t}w{o}} onetwo one!{t}w{o} Western
3 \Name{{one}, two} one two {onel},two nonwestern
4 \Name{{one}, {twol}} one two {one},{two} nonwestern
5 \Name{{one, twol}} one, two {one,two} abnormal

These names have different patterns and different index entries, even if they look
similar in the text (Sections 6.1, 7.6). Similar issues pertain to grouping used with
alternate formatting (Section 11.3). Consistency is key.

The grouping used in name 5 creates an abnormality . Here we illustrate that with
the output of \ShowNameInfo (Section 6.3). Normally, the comma should delimit or
segment the argument into two names:

\Name{one, two} (SNN: one) (Affix*: two)
\Name{{one, twol}} (SNN: one, two)

Curly braces can change the lookahead token and defeat punctuation detection
(as well as create a new, unique name). Using spaces between a name and a full
stop can have a similar effect. The next table shows us several actions that allow or
inhibit full stop detection. We se ethe results of each action, the action taken, and
both output and source related to that action.

32

Full Stop Remains

Dr. Martin Luther King Jr..
Dr. Martin Luther King Jr..

Full Stop Gobbled

Dr. Martin Luther King Jr.
Dr. Martin Luther King Jr.

Full Stop Remains

Dr. Martin Luther King Jr..

Full Stop Gobbled

Dr. Martin Luther King Jr.

Full Stop Remains

Dr. Martin Luther King Jr. .

Full Stop Gobbled

Dr. Martin Luther King Jr.

Full Stop Remains

Not Contained in Group

Dr. {\Namex[Martin Luther]{King, Jr.}}.
Dr. {\LMLK}.

Contained in Group

Dr. {\Name*[Martin Luther]{King, Jr.}.}
Dr. {\LMLK.}

Grouped in Affix; New Name

Dr. \Name*[Martin Luther]{King, {Jr.}}.
Not Grouped in Affix; New Name

Dr. \Name*[Martin Luther]{King, {Jr}.}.
Intervening Space

Dr. \Name*[Martin Luther]{King, Jr.} .
After Shorthand

Dr. \LMLK .

After Shorthand with Optional Argument

Dr. M.L. King Jr. . Dr. \LMLK[M.L.]
Fixed; Space Removed

Dr. M.L. King Jr. Dr. \LMLK[M.L.].

4.3.5 Formatting Initials

This can be a thorny topic. Some publishers are dead-set on having a space between
initials. Many designers find that practice to be inelegant at best. [Bringhurst] wisely
advises one to omit spaces between initials.

Fighting with one’s editor does little good. If a style guide requires spaces, try
thin spaces. The quick interface simplifies the task. Below we use no formatting;:

1 \PretggName (E.\,B.]1{Whitel}% \LWhite E.B. White
> {white, Elwyn} I
3 \begin{nameauth} |11]] |
4 \< White & E.\,B. & White & > Normal text: E. B. White
5 \end{nameauth}

One might notice that we used \PretagName to sort this name by something
other than its initials: “White, Elwyn”. Sorting only by initials (and with embedded
macros like a thin space) will produce unexpected entry order (Section 7.6.2).

[Back to Table of Contents]

5 Language Topics

Here we cover technical issues related to the use of names in various languages and
cultures. Specifically, we show how they should be represented in English, but this
material can apply to other language standards as well.

5.1 Caveats with Active Characters

Active characters affect name patterns and index sorting, depending on the I TEX
engine being used. We use \PretagName (Section 7.6; cf. 14.4) to get correct sorting
and \SkipIndex (Section 7.4) to suppress bogus index entries:

33

Name Pattern(s): 1. Athelred 1l ..o \Name*{Ethelred, II}

AEthelred,II (1)) . . . L 14
\AEthelred.TT (2) We have seen this name earlier, as the formatting shows.
Bo\"ethius (3) We sort this with \PretagName{£thelred, II}{Aethelred, 2}
BoAsithius (4) .
Bo{\"e}thius (5) 2. fEthelred Il ..o \SkipIndex\Name{\AE thelred, II}

This name is new, as the formatting shows us. It looks like the name above, but
its control pattern differs by the macro \AE.

We get a different index entry, regardless of how we sort it.

3. Boéthius ... \Name{Bo\"ethius}
This new name uses \"e to display a lowercase e with a diaeresis.
We sort it with \PretagName{Bo\"ethius}{Boethius}.

4. Boéthius. ... \SkipIndex\Name{Boé&thius}

This name differs by the character é. It cannot have the same index entry as
Boéthius above.

5. Boéthius......... .. . \SkipIndex\Name{Bo{\"e}thius}

Yet another different name by virtue of grouping tokens (Section 4.3.4). The
index entry for this one is again different.

5.2 Hyphenation

In modern English, names can be hyphenated to reflect their cultural origins. With
nameauth, one can handle such names by using default hyphenation, optional hyphens,
or packages like babel and polyglossia.

Default Hyphenation

Name Pattern(s): Here we use the default hyphenation. Using \textls from microtype we get the name
John!Strietelmeier to bhreak badly. We use \SkipIndex to omit this version from the index.

1 \textls[20]{In English, some names come from other cultures.
2 Names like \SkipIndex\Name[John]{Strietelmeier}
3 can break badly in some cases.}

In English, some names come from other cultures. Names like John Stri-
etelmeier can break badly in some cases.

Discretionary Hyphens

Name Pattern(s): We create a different name from that above. One must use the discretionary hyphens
John!Strie\-tel\-meier consistently in the macro arguments. We use \Name [John] {Strie\-tel\-meier} to
omit this version from the index. We see that it breaks properly.

1 \textls[20]{In English, some names come from other cultures.
2 Names like \SkipIndex\Name[John]{Strie\-tel\-meier}
3 can break badly in some cases.}

In English, some names come from other cultures. Names like John Strietel-
meier can break badly in some cases.

14Regarding the margin note that shows name control sequences, with pdflatex and latex,
in AEthelred,II the glyphs AE correspond to \IeC{\AE}. Likewise in BoAdthius the glyphs ki
correspond to \IeC{\"e}.

34

Language Packages

Name Pattern(s): Here we use an approach with macros in name arguments that can be applied to
John!\de{Strietelmeier} habel and polyglossia. This approach has issues that we discuss in Sections 5.7, 11.3,
and elsewhere, showing how to prevent errors.

When a macro occurs in a name argument appearing in both text and index, fix
any concerns about macro expansion by using \noexpand before that macro.

Since the leading element of (SNN) is a macro, using \CapThis would halt XTEX
with errors unless we used alternate formatting (Section 11.3):

\PretagName [John] {\noexpand\de{Strietelmeier}}
{Strietelmeier, John}

1 \newcommand\de [1]{\foreignlanguage{ngerman}{#1}}

2 % or polyglossia: \newcommand\de[1]{\textgerman{#1}}
3

4 \begin{nameauth}

5 \< Striet & John & \noexpand\de{Strietelmeier} & >
6 \end{nameauth}

7

8

9

10 \textls[20]{In English, some names come from other cultures.
11 Names like \Striet\ or \Name[John]{\noexpand\de{Strietelmeierl}}
12 break badly in some cases.}

In English, some names come from other cultures. Names like John Strietel-
meier or Strietelmeier break badly in some cases.

5.3 Affixes Need Commas

Regarding an (SNN, Affiz) pair, the key to avoiding error is to apply macros
to (SNN) and (Affiz) as if they were independent arguments.

A comma is not a required name element unless used in an (SNN, Affiz) pair.
When thus used it delimits a Western surname from its affix, an Eastern family name
from a personal name, and an ancient name from an affix.

When a comma appears in a required name argument, each member of the
(SNN, Affix) pair is treated as a separate argument. Thus, we say that the comma
delimits or segments the name argument. Spaces around the comma are ignored. See
Section 11.3.2 for more information when using macros in name arguments. Below
we see the basics of commas in name arguments.

Name Pattern(s):

Oskar !Hammerstein, IT Oskar Hammerstein Il \Name [Oskar] {Hammerstein, II}
Louis,XIV Hammerstein \Name [Oskar] {Hammerstein, II}
Sun,Yat-sen Louis XIV \Name{Louis, XIV}
Basic Index: Louis \Name{Louis, XIV}
Hammerstein, Oskar, 11 Sun Yat-sen \Name{Sun, Yat-sen}
Louis XTV Sun \Name{Sun, Yat-sen}

Sun Yat-sen

35

Name Pattern(s):
Oskar !Hammerstein

\KeepAffix

\KeepName

\DropAffix

\ShowComma
\NoComma

Western names with affixes must use (SNN,Affiz), never the obsolete syntax,
which is meant for nonwestern names and is discouraged. We get || Hammerstein and
a bad index entry from, e.g., \SkipIndex\Name [Oskar] {Hammerstein} [II].

If the name displayed in the text shows both (SNN) and (Affix), then
\KeepAffix turns the space between (SNN) and (Affiz) into a non-breaking space.
\KeepAffix\Name{Louis, XIV} will not break between Louis and XIV. All name
types that use (Affiz) are supported.

In longer name forms, \KeepName turns spaces between all visible name elements
into non-breaking spaces.

e \Name[Sandra Day]{0’Connor} Sandra Day O'Connor has two points where the
name can break: after Sandra and after Day.

¢ \KeepName\Name* [Sandra Day]{0’Connor} Sandra Day O'Connor has one point
where the name can break: after Sandra.

This macro does not alter spaces within name elements with multiple names,
such as French and German forenames, as well as Spanish surnames. \KeepName
works with all name types.

If \DropAffix precedes only a Western name, it will suppress the affix af-
ter the surname in a first or long instance. We get “Oskar Hammerstein” From
\DropAffix\Name* [Oskar] {Hammerstein, II}.

With nonwestern names, the (Affiz) in the (SNN, Affiz) pair drops automatically
in the text for subsequent uses, making \DropAffix redundant. We see that above
in the case of Louis XIV, who becomes Louis.

In a long name form, \ShowComma forces the display of a comma between a
Western name and its affix. It works like the comma option on a per-name basis, and
only in the text. One uses \ShowComma with older publication styles that separate a
Western name and affix with a comma. \NoComma works like the nocomma option in
the body text on a per-name basis.

George S. Patton, Jr. \ShowComma\LPatton
George S. Patton Jr. \NoComma\LPatton

Neither \ShowComma, \NoComma, nor their related package options interact with
the use of \RevComma and friends (Sections 3 and 5.6).

5.4 Eastern Names and Family Names in All Caps

Proper Eastern names, included with ancient and medieval forms in the broader
group of nonwestern names, are encoded using comma-delimited syntax (compare
the obsolete syntax in Section 12.2). They have nonwestern index entries: (SNN)
(Affir) (no comma between name elements). The current syntax permits alternate
names; the obsolete does not.

\Name{(SNN, Affiz)} [(Alternate)]

Even in some academic texts, one sees nonwestern names encoded with Western
5 . .
forms.' The nameauth package seeks to remedy that issue, which has more to do

15 Jaroslav Pelikan, The Christian Tradition, 5 vols. (Chicago: Chicago UP, 1971-1989); Immanuel
Geiss, Personen: Die biographische Dimension der Weltgeschichte, Geschichte Griffbereit vol. 2
(Munich: Wissen Media Verlag, 2002). At this time, NNDB sorts Kim Jong Un under U, not K.

36

https://www.nndb.com/

\AllCapsActive
\AllCapsInactive
\CapName

\global

Name Pattern(s):
Hideyo!Noguchi
Miyazaki,Hayao

Basic Index:

Noguchi, Hideyo
Miyazaki Hayao

\ReverseActive
\ReverseInactive
\RevName

\global

Name Pattern(s):
Hideyo!Noguchi
Miyazaki,Hayao

Basic Index:

Noguchi, Hideyo
Miyazaki Hayao

with outsourcing indexes to non-expert providers than with scholars. For example,
the macro \Name*{Sun, Yat-sen} Sun Yat-sen ensures correct forms in the text and
the index. We get cross-cultural sensitivity and scholarly accuracy.

Certain contexts call for one’s entire family name to be capitalized. This differs
from the way in which initial letter capitalization is handled (Section 5.7). In addition
to the allcaps package option (Section 2), \A11CapsActive and \AllCapsInactive
work for blocks of text. All have priority over \CapName, which works once per name.
These capitalize (SNN) in the body text only. They also work with \AKA and
friends. For capitalization in both the text and index (beyond doing it manually) see
Sections 11.3 and 13.

Both \AllCapsActive and \AllCapsInactive can be used either as a pair or
singly within an explicitly local scope. Use \global to force a global effect.

Hideyo Noguchi \LNoguchi

Hideyo NOGUCHI \CapName\LNoguchi}
Miyazaki Hayao \LMiyazaki
MIYAZAKI Hayao \CapName\LMiyazaki

5.5 Reversed Names

Sometimes a publisher expects Western-style index entries. Sometimes certain names
have specific forms in the index, The reversing option and macros can adapt forms
in the text to the index entries required in such cases.

In addition to the allreversed option for reversing name order (Section 2),
\ReverseActive and \ReverseInactive do the same for blocks of text. These all
have priority over the use of \RevName, used once per name. These macros do not
affect the index. They work also with \AKA and friends. Reversing only affects
long name forms, which is why we show only long names below. In this manual,
reversed Western forms are shown with a dagger (7).

Both \ReverseActive and \ReverselInactive can be used either as a pair or
singly within an explicitly local scope. Use \global to force a global effect.

Output Macro

Hideyo Noguchi \LNoguchi

Doctor Noguchi \LNoguchi [Doctor]

Bad result: \LNoguchi [Sensei]
Noguchi Hideyot \RevName\LNoguchi\dag

Bad result: ‘ Noguchi Doctor‘ \RevName\LNoguchi [Doctor]

\RevName\LNoguchi [Sensei]

Noguchi Senseif

Miyazaki Hayao \LMiyazaki

Miyazaki Sensei \LMiyazaki[Sensei]
Bad result: \LMiyazaki [Mr.]
Hayao Miyazaki \RevName\LMiyazaki

Mr. Miyazaki \RevName\LMiyazaki [Mr.]
Bad result: ‘ Sensei Miyazaki ‘ \RevName\LMiyazaki [Sensei]

Reversing Western Names

\RevName\Name [(FNN)]1{(SNN)} [{Alternate)]

37

Avoid using (Affiz) with such names. For example, \RevName\LPatton\dag pro-
duces “Patton Jr. George S.1”. The name looks wrong unless one uses either \RevComma
or \DropAffix. This name has a Western index entry.

Reversing Eastern Names

\RevName\Name{(SNN, Affiz)} [{Alternate)]

The index entry of this name form looks like (SNN) (FNN) (no comma). This
name has a nonwestern index entry.

Reversing ancient names works the same as reversing Eastern names. The
problem is that, in most cases, one produces a nonsense name.

5.6 Listing Western names by Surname

\ReverseCommaActive To make lists of “last comma first” names, in addition to the allrevcomma option
\ReverseCommaInactive (Section 2), the macros \ReverseCommaActive and \ReverseCommalInactive func-
\RevComma tion the same way with blocks of text.They both have priority over \RevComma. These
all affect only long Western name forms. The first two are broad toggles, while the
third is used once per name.
\global Both \ReverseCommaActive and \ReverseCommaInactive can be used either as
a pair or singly within a local scope. Use \global to force a global effect.

Name Pattern(s): Oskar Hammerstein Il Hammerstein Il, Oskar change
USkar!H?mmerStem’U Hideyo Noguchi Noguchi, Hideyo change
Hideyo!Noguchi fthelred 1 [thelred 11 no change

KEthelred,II

Sun Yat-sen Sun Yat-sen no change
Sun,Yat-sen

5.7 Particles in Names

Particles are small words attached to names, grouped either with forenames or
surnames, that refer often to places of origin or noble houses. Some particles have
been carried into modern names through various means.

5.7.1 Standard Rules

According to [Mulvany, 152-82], one may treat name particles in the following way:

o English use of de, de la, d’, von, van, and ten often keeps them with the
surname. Capitalization may vary.

o Le, La, and L’ always are capitalized unless preceded by de.
e Modern Romance languages keep particles with the surname.
e German and medieval Romance languages keep particles with forenames.

e Modern Welsh, Irish, and Scots names often merge particles with sur-
names: FitzRoy or Fitzroy; O’Leary; McDonald, MacLeish.

38

Name Pattern(s):
Martin!VanBuren
Hernando!de~Soto
J.W.von!Goethe

Basic Index:

Van Buren, Martin
de Soto, Hernando
Goethe, J.W. von

\CapThis

\AccentCapThis

Body Text Index Macro

Martin Van Buren Van Buren, Martin \ForgetThis\VBuren
Van Buren Van Buren, Martin \VBuren

Hernando de Soto de Soto, Hernando \ForgetThis\Soto
De Soto de Soto, Hernando \CapThis\Soto

JW. von Goethe Goethe, JW. von \ForgetThis\JWG
Goethe Goethe, J.W. von \JIWG

5.7.2 Non-Breaking Spaces

Despite the macros in Section 5.3, names with particles present their own challenges.
We recommend inserting a tilde (active character for a non-breaking space) or
\nobreakspace between some particles and names to prevent bad breaks, sorting
them with \PretagName (Section 7.6). Here the quick interface helps greatly.

5.7.3 Look-Alike Particles

There are characters that look similar, but in fact are different. For example, L’
(L+apostrophe) and d’ (d4+apostrophe) are two separate glyphs each. In contrast,
L (L+caron) and d (d+caron) are one Unicode glyph each (Section 14.4). If one
confuses these similar characters, spurious results can occur.

5.7.4 Capitalizing Particles

In English and modern Romance languages, names like Hernando de Soto have their
particles in the (SNN) argument: de Soto. When the particle appears at the beginning
of a sentence, one must capitalize it, e.g.,:

De Soto was a famous Spanish explorer.

\CapThis\Soto\ was a famous Spanish explorer.

o With latex and pdflatex, using \CapThis should work with all of the
Unicode characters available in the T1 encoding. For a broader set of
characters, consider using xelatex and lualatex.

e Section 10.1.3 applies \CapThis to nonstandard names and indexing.

e Sections 11.3 and 14.4 explain potential problems of \CapThis. That is
a trade-off for using a natural language approach.

o \CapName overrides the (SNN) created by \CapThis. It is unlikely that
the two would be used in the same context.

Before nameauth used automatic Unicode detection, \AccentCapThis placed
before \CapThis handled Unicode characters. It remains for backward compatibility.
Otherwise it is seldom used and not needed.

5.8 Medieval Names

Medieval names present some interesting difficulties, often based on the expected
standards of the context in which they are used. Some publications use them like
Western names while others do not. In the following preamble snippet we have:'°

16Regarding the margin note that shows name control sequences, with pdflatex and latex, in
Thomas, A&~Kempis the glyphs A& correspond to \IeC{\'a}.

39

Name Pattern(s):
Thomas,A&~Kempis (1-4, 7
Thomas,\ ‘a~Kempis (56
Thomas!Ad~Kempis (8-10
Basic Index:

Thomas & Kempis (14, 7)
Thomas & Kempis (5-6)
a Kempis, Thomas (8-10)

N —

\PretagName{Thomas, a~Kempis}{Thomas Akempis} 7% medieval
\PretagName [Thomas] {a~Kempis}{Akempis, Thomas} % Western
% We do not index an alternate medieval form
\ExcludeName{Thomas, \‘a~Kempis}
% If we did use the alternate form, we would sort it as
\PretagName{Thomas, \‘a~Kempis}{Thomas Akempis}
\begin{nameauth}
\< KempMed & & Thomas, a~Kempis & > % medieval
\< KempW & Thomas & a~Kempis & > % Western
\end{nameauth}

% Create xref before using the Western name.
\IndexRef [Thomas]{&~Kempis}{Thomas &~Kempis}

e Medieval form: \KempMed

1. In the text, we see Thomas a Kempis and Thomas. The added
name “a Kempis” \ForceFN\SKempMed is a place name, not a
surname. It is Latin for von Kempen.

2. Thomas is indexed as “Thomas a Kempis”.
3. A Kempis \CapThis\ForceFN\SKempMed can start a sentence.

4. We use \PretagName (Section 7.6) to sort the name under
Thomas, followed by Akempis, not A kempis (cf. 10 below).

o Alternate medieval form: \Name{Thomas, \ ‘a~Kempis}

5. Thomas a Kempis is a different name.

6. We used \ExcludeName (Section 7.3.2) before using the alter-
nate form to keep it from generating an extra index entry.

7. We index the canonical form here with \JustIndex\KempMed.
o Western form: \KempW

8. Thomas a Kempis is a Western name form with the index entry:
“a Kempis, Thomas”.
9. A Kempis appears via \CapThis\KempW.

10. We first created a cross-reference from the Western form to the
medieval form to prevent spurious page entries (Section 7.3).
We index the canonical form again: \JustIndex\KempMed.
\PretagName [Thomas] {4 Kempis}{a Kempis, Thomas} puts
Thomas before aardvark in the index. We remove the extra
spaces to get the proper sorting between ajar and alkaline:
\PretagName [Thomas] {a~Kempis}{Akempis, Thomas}

Back to Table of Contents]

40

Name Pattern(s):
George!Washington
Miyazaki,Hayao

\NameauthPattern

6 Debugging

From this point onward, concepts that we introduced earlier will mesh together
in complex ways, starting with indexing. Name patterns govern those interactions,
illustrated by debugging macros. We explain what the debugging macros communicate,
then we describe the macros.

Previously, we have seen simple name patterns displayed in the margin, which
look like the examples to the left of this paragraph. Now we show full name patterns,
which indicate the “system” or data set to which they belong. Name patterns are
control sequences that usually expand to the empty string. They look like this:'”

George!Washington!MN Y name, main matter
Miyazaki,Hayao!NF % name, front matter
Jay!'Rockefeller!PN % index cross-reference
W.E.B.!Du~Bois!PRE % index sort tag
Gregory,I!TAG % index tag
Schuyler!Colfax!DB % name tag

From this point onward, we show index entries in the body text instead of the
margin due to their increasing complexity.

6.1 Name Pattern Overview

Below we show how macro arguments generate name patterns. The (Alternate)
argument only affects patterns when using the obsolete syntax (Section 12.2). The
patterns govern names in both the text and the index. The colon at the beginning of
each pattern prevents any collisions with extant macros:

Macro Arguments Patterns Name Type
[(FNN)I{(SNN)} (FNN)!(SNN) Western
[(FNN)I1{(SNN)} [{Alt)] (FNN)!{SNN) Western
[(FNN)I{(SNN, Affiz)} (FNN)!/(SNN),(Affiz) Western
[(FNN)I1{(SNN, Affiz)}[(Alt)] (FNN)I(SNN),(Affizr) Western

{(SNN, Affix)} {(SNN),(Affiz) nonwestern
{(SNN, Affix)}[(Alt)] :(SNN),(Affiz) nonwestern
{(SNN)} [(Alt)] (SNN),(Alt) old syntax
{(SNN)} (SNN) nonwestern

Every time a macro that takes name arguments is called (Section 1.6.1), the inter-
nal name category logic will \let the current name pattern to \NameauthPattern,
making it available to formatting hooks (cf. Section 11.2).

The name category logic is provided by \@nameauth@Choice, which determines
the type of name (Western or nonwestern) by its arguments. Various nameauth
macros append the appropriate “system” or name data set indicator to the pattern.
We use this concept starting here, but mostly in Section 11.

Below are name patterns generated from name elements. We mark reversed
Western names with a dagger (1) and names using the obsolete syntax with a double
dagger (1). We show that name patterns depend on name arguments, not on the

17To fit the information in the margin, we display them by taking the output of \ShowPattern
and manually adding the system to correspond to the package internals.

41

appearance of a name. The obsolete nonwestern syntax and the current syntax share

the same patterns.

Body Text
Adolf von Harnack
Adolf Harnack

\ShowPattern
Adolf'Harnack
Adolf'Harnack

Macro
\Harnack[Adolf vonl]
\LHarnack

George S. Patton Jr. GeorgeS.!Patton,Jr. \ForgetThis\Patton
George S. Patton GeorgeS. !Patton,Jr. \DropAffix\LPatton
Hideyo Noguchi Hideyo!Noguchi \ForgetThis\Noguchi
Noguchi Hideyot Hideyo!Noguchi \RevName\LNoguchi\dag
Yamamoto Isoroku Yamamoto, Isoroku \ForgetThis\Yamt
Isoroku Yamamoto Yamamoto, Isoroku \RevName\LYamt

Henry VIII Henry,VIII \Name{Henry,VIII}
Henry VIIII Henry,VIII \Name*{Henry} [VIII]\ddag
Demetrius | Soter Demetrius,I \Dem[I Soterl]
Demetrius | Demetrius,I \LDem

Aristotle Aristotle \ForgetThis\Aris
Aristotle Aristotle \Aris

Six suffixes are appended to these patterns to create six “systems” or data sets.
The (pattern) element in the next table is the output of \ShowPattern. Within that
(pattern) is a leading colon, name elements with spaces removed, and delimiters that
separate those elements. Western names use an exclamation point and a comma.
Nonwestern names only use a comma. For the use of ID, see \ShowNameState on
page 47. For the way that exclusions use the cross-reference system as a special case
for preventing index interaction, see Section 7.3.2.

Description Pattern ID Example
Front-matter names (pattern)!NF front Adolf !'Harnack!NF
Main-matter names (pattern)!MN main Hideyo!Noguchi !MN
Index cross-refs (pattern)'PN xref Yamamoto, Isoroku!PN
Exclusions (pattern)!PN excl (like xref, special value)
Index sort tags (pattern)'PRE pretag Henry,VIII!PRE
Index data tags (pattern)!'TAG idxtag Demetrius,I!TAG

()

Name data tags pattern) ! DB namedb Aristotle!DB

Next we see what macros write patterns to what systems. \IndexName does not
generate a name pattern. This lets cross-references determine the index control logic.

Macros 'MN 'PN 'PRE !TAG !DB

\Name \Name* \FName \FNamex*

[]
\ForgetName \SubvertName |

\PName \PName* [|

\AKA \AKA* \IndexRef
\ExcludeName
\IncludeName \IncludeNamex*

\PretagName

\TagName \UntagName

\NameAddInfo \NameClearInfo

42

6.2 Indexing: States

Six distinct “states” describe any name pattern with respect to the index. They are
derived using \ShowNameState. Below we show these states and what they mean.

State 1: No Name Information Present

\IndexName makes index page entry, creates no name pattern Stay in State 1
CONETOl SEQUENCEttt

. \TagName makes inde.x tag, creates a pattern ending in !TAG; Stay in State 1
\UntagName destroys it............ ..ot

\PretagName makes index sort tag, creates a pattern ending in Stay in State 1
IPRE (o only ONCE) . oottt

\ForgetName is redundant; it cannot destroy a control sequence Stay in State 1
that does not exist..........

. \ | .
. Naming ma.cro makes nam(.e pattern (!MN or !NF), prints name, Go to State 2
makes two index page entries

. . o .
. \SubvertName makes a name pattern ending either in 'MN or in Go to State 2
INF, or bothat once....... ...,

. 1 DN
. \IndexRef makes an xref pattern ending with !PN; that pattern Go to State 3
expands to empPty. ..o

\SeeAlso\IndexRef makes an xref pattern ending with !PN;
. Go to State 3
that pattern expands to empty............

. —
. \ExcludeName makes an xref pattern ending with !PN; that Go to State 5
pattern expands to X!

\.

State 2: Only a Name Pattern Exists

N\

\IndexName makes index page entry, creates no name pattern Stay in State 2
CONEIOl SEQUENICE . ..ttt ittt J
\TagName makes index tag, creates a pattern ending in !TAG; Stay in State 2)
\UntagName destroys it............cooiiiiiiiiiiiiiii.n.)
\PretagName is doable, but not recommended (that will create Stay in State 2
SPUTIOUS @NETIES) .« . vttt ettt et et }
. Naming macro makes name pattern (!MN or !NF), prints name, Stay in State 2
makes two index page entries...........ol
\SubvertName is redundant; it cannot create a control sequence Stay in State 2
that already exists.
. \IndexRef by itself does nothing because a name pattern already Stay in State 2
XISt . ottt

\ForgetName destroys a name pattern ending in !MN, !NF, or

Go to State 1
both at once.

\SeeAlso\IndexRef makes an xref pattern ending with !PN;
. Go to State 4
that pattern expands to empty........... ...t

. S
. \ExcludeName makes an xref pattern ending with !'PN, that Go to State 6
pattern expands to 'X!

Virtue never has been as respectable as money.

—NMark Twain, The Innocents Abroad (1869)

43

State 3: Only an Xref Pattern Exists

\PretagName is doable, but not recommended (that will create
SPUTIOUS €NBTIES) ..ottt et

\TagName, \UntagName, \IndexName, \IndexRef (also with
\SeeAlso), \ExcludeName, and \IncludeName do nothing.....

\ForgetName is redundant; it cannot destroy a control sequence
that does not exist.o

\Includename* destroys an extant xref pattern (!PN).........

Naming macro makes name pattern (!MN or !NF), prints name,
makes no index entries.......... ... il
\SubvertName creates a name pattern ending either in !MN or
in INF,or bothatonce

Stay in State 3

Stay in State 3

Stay in State 3

Go to State 1

Go to State 4

Go to State 4

State 4: Both Name and Xref Patterns Exist

\PretagName is doable, but not recommended (that will create
SPUTrIOUS eNtIIes) ..o\ vv vttt

\TagName, \UntagName, \IndexName, \IndexRef (also with
\SeeAlso), \ExcludeName, and \IncludeName do nothing.....

Naming macro makes name pattern (!MN or !NF), prints name,
makes no index entries.t

\SubvertName is redundant; it cannot create a control sequence
that already exists. ..ot

\Includename* destroys an extant xref pattern (!PN).........

\ForgetName destroys a name pattern ending in !'MN, !NF, or
both at once.

Stay in State 4

Stay in State 4

Stay in State 4

Stay in State 4

Go to State 2

Go to State 3

r

State 5: Only an Exclusion Exists

\PretagName is doable, but not recommended (that will create
SPUTIOUS €NBTIES) « .o vttt ettt

\TagName, \UntagName, \IndexName, \IndexRef (also with
\SeeAlso), and \ExcludeName do nothing....................

\ForgetName is redundant; it cannot destroy a control sequence
that does not exist.oviiiiii e
\Includename, \Includename* destroy xref pattern ending with
IPN, expanding to 'x! i

Naming macro makes name pattern (!MN or !NF), prints name,
makes no index entries............ oo

\SubvertName creates a name pattern ending either in !MN or
in INF,or bothatonce................. ...

| r

Stay in State 5

Stay in State 5

Stay in State 5

Go to State 1

Go to State 6

Go to State 6

I don’t think the mystical experience can be verbalized. When the ego disappears,

so does power over language.

—W.H. Auden, Paris Review interview (1972) p. 206

44

State 6: Both Name Pattern and Exclusion Exist

\PretagName is doable, but not recommended (that will create
SPUTIOUS €NBTIES) ..ottt et

Stay in State 6

~

\TagName, \UntagName, \IndexName, \IndexRef (also with
\SeeAlso), and \ExcludeName do nothing....................

Stay in State 6

Naming macro makes name pattern (!MN or !NF), prints name,
makes no index entries.ottt

Stay in State 6

\Includename, \Includename* destroy xref pattern ending with
IPN, expanding to 'x!

Go to State 2

\ForgetName destroys a name pattern ending in !MN, !NF, or
both at once....... .o i

Go to State 5

6.3 Debugging Macros

\ShowPattern We use \ShowPattern in Section 6.1 to illustrate name control patterns. It displays

\ShowIdxPageref

how the name arguments create name patterns that form name control sequences.

One can debug pattern collisions and other issues with this macro:

[\ShowPattern[(FNN)]{(SNN, Affix)} [(Alternate)]

|

Thus, \texttt{\ShowPattern[Hernando] {de~Soto}} will produce the output
Hernando!de~Soto. As we have seen before, using inputenc/fontenc will cause names
like \texttt{\ShowPattern{Boéthius}} to produce BoAathius.

\ShowIdxPageref displays a full index entry in the text as if it were only a page

entry, not a cross-reference.

\ShowIdxPageref [(FNN)I{(SNN, Affiz)}[(Alternate)]

Index styles, \PretagName, and \TagName affect the output of \ShowIdxPageref.

Active characters and macros appear as printed, not as in idx files. In a normal
ETREX document, for example, if we mention Hernando de Soto after setting up a sort

tag (Section 7.6), we get the following:

\PretagName [Hernando] {de~Soto}{Desoto, Hernando}

\ShowIdxPageref [Hernando] {de~Soto}
Desoto, Hernando@de Soto, Hernando

We could not create index entries within the quote above in this dtx file because
we changed \IndexActual. A dtx file uses a different default for \IndexActual (see

Section 7.7). Here we get instead:

\PretagName [Hernando] {de~Soto}{Desoto, Hernando}
\TagName [Hernando] {de~Soto}{\string|hyperpage}

\ShowIdxPageref [Hernando] {de~Soto}
Desoto, Hernando=de Soto, Hernando|hyperpage

45

\ShowIdxPageref*

\ShowNameInfo

Throughout this manual, \ShowIdxPageref* illustrates basic index entries that

do not contain sorting information or tags. The syntax is:

\ShowIdxPageref*[(FNN)]{(SNN, Affix)}[{Alternate)]

Regardless of whether we have a normal KTEX document or a dtx file, we get:

\ShowIdxPageref* [Hernando] {de~Soto}
de Soto, Hernando

Here we can see how the macros that take name arguments interpret them. We

can check our intent against what the package actually sees.

\ShowNameInfo [(FNN)1{(SNN, Affiz)}[(Alternate)]

Below we show several name forms. This macro shows detokenized name arguments
to prevent potential errors and to disclose any macros in the name arguments, which

are designated according to Section 1.3.1.

e James Earl Carter Jr. \Namex[J.E.]{Carter, Jr.}[James Earl]

\ShowNameInfo[J.E.]{Carter, Jr.}[James FEarl]:
(FNN: J.E.) (SNN: Carter) (Affix: Jr.) (Alt: James Earl)

e Miyazaki Sensei............c.ooiiiiit \Name*{Miyazaki, Hayao}[Senseil

\ShowNameInfo{Miyazaki, Hayaol}[Senseil:
(SNN: Miyazaki) (Affix*: Hayao) (Alt: Sensei)

o Elizabeth I, “Gloriana” \Name*{Elizabeth, I}[I, ‘‘Gloriana’’]

\ShowNameInfo{Elizabeth, I}[I, ‘‘Gloriana’’]:
(SNN: Elizabeth) (Affix*: I) (Alt: I, “Gloriana”)

e Henry VIIIE ..o \Name*{Henry} [VIII]\ddag

\ShowNameInfo{Henry}[VIII] (obsolete syntax):
(SNN: Henry) (Alt*: VIII)

o Confucius. \Name*{Confucius}

\ShowNameInfo{Confucius}:
(SNN: Confucius)

For the following examples we activate alternate formatting (Section 11.3), which
permits typesetting more complex name forms seen in European academic writing.

This use of small caps may generate harmless font substitution warnings.

o John Strietelmeier
\ForgetThis\Name [John] {\noexpand\de{Strietelmeier}

\ShowNameInfo[John] {\noexpand\de{Strietelmeier}}:
(FNN: John) (SNN: \de {Strietelmeier})

e Catherine de’ MEDICI

\Name [Catherine \noexpand\AltCaps{d}e’]{\noexpand\textSC{Medicil}}

\ShowNameInfo[Catherine \noexpand\AltCaps{dl}e’]
{\noexpand\textSC{Medicil}}:
(FNN: Catherine \AltCaps {d}e’) (SNN: \textSC {Medici})

46

e Martin LUTHER
\Name [Martin] {\noexpand\textSC{Lutherl}}

\ShowNameInfo [Martin] {\noexpand\textSC{Luther}}:
(FNN: Martin) (SNN: \textSC {Luther})

o Using \noexpand before macros in name arguments “fixates” them, ensuring
consistency (important for name patterns and the index):

— \ShowNameInfo[John]{\noexpand\de{Strietelmeier}}
(FNN: John) (SNN: \de {Strietelmeier})
— \ShowNameInfo[John] {\de{Strietelmeier}}
(FNN: John) (SNN: \protect \foreignlanguage {ngerman}{Strietelmeier})

o If one uses an undefined macro in the arguments, but precedes it with \noexpand,
\ShowNameInfo will not generate an error.

— \ShowNameInfo{\noexpand\SomeUndefinedMacro}
(SNN: \SomeUndefinedMacro)

When a macro occurs in a name argument appearing in both text and index, fix
any concerns about macro expansion by using \noexpand before that macro.

\ShowNameState With this macro we can see all the systems with which a name pattern is associated
and the current index “state” described in Section 6.2. Its syntax is:

[\ShowNameState [(FNN)I{(SNN, Affix)} [{Alternate)]]

\ShowNameState produces a line of text with the following information:
o Base name pattern, the base control pattern that nameauth sees. This

would be the output of \ShowPattern.

o Type of name, referring to how the name in the argument was parsed.

w : Western (regardless of whether it is reversed)

nw : nonwestern (regardless of whether it is reversed)
current syntax

nw,0s : nonwestern name, obsolete syntax (Section 12.2)

 Index state (Section 6.2) shows what index-related options are permissible
and how the indexing macros will behave.

states: 1, 2, 3,4, 5, and 6
o All the control systems (Section 6.1) that the name pattern inhabits.

systems : front, main, xref, excl, pretag, idxtag, namedb.

In the next example we show names in indexing states from one to six, and we
illustrate all name types and many of the control systems. All extant names have
index tags due to being used in a dtx file with the ltxdoc class and the hypdoc
package (Section 7.7.3). Otherwise, names need not always have a control pattern in
the idxtag system.

47

e Some yet unused name:............. \ShowNameState{Not Seen, Yet}
Pattern: NotSeen,Yet Type: nw Index state: 1 Systems:

¢ New and extant names:

— Rudolph Carnap.................. \Name* [Rudolph] {Carnap}
Pattern: Rudolph!Carnap Type: w Index state: 2 Systems: main
idxtag

— Henry VIII ... \Name*{Henry, VIII}
Pattern: Henry,VIII Type: nw Index state: 2 Systems: main
idxtag

— Henry VIIIZ ...l \Name*{Henry} [VIII]\ddag
Pattern: Henry,VIII Type: nw,o0s Index state: 2 Systems: main
idxtag

— Thomas a Kempis............... \Name*{Thomas, &~Kempis}

Pattern: Thomas,Ad~Kempis Type: nw Index state: 2 Systems:
main pretag idxtag

e Name used only in xref: \IndexRef{Sun King}{Louis XIV}
Pattern: SunKing Type: nw Index state: 3 Systems: xref

e Name used after xref exists:
Sun King . oo \Name*{Sun King}
Pattern: SunKing Type: nw Index state: 4 Systems: main xref

¢ Unused name excluded from index:..... \ExcludeName{Santa, Claus}
Pattern: Santa,Claus Type: nw Index state: 5 Systems: excl

e Previously excluded name gets used:
Thomas a Kempis............oooooiat. \Name*{Thomas, \ ‘a~Kempis}
Pattern: Thomas,\‘a~Kempis Type: nw Index state: 6 Systems: main excl

Back to Table of Contents]

Eyn Chriften menfch ift eyn freyer herr / fiber alle ding / und niemande
unterthan. Eyn Chriften menfch it eyn dien{tpar knecht aller ding und yderman
unterthan.

(A Christian person is a free lord, above all things, and subject to no one. A
Christian person is a willing servant of all things and is subject to everyone.)

—Martin LUTHER
Von der Freiheit eines Christenmenschen (1520)

48

7 Indexing Macros

Indexing pulls together all the concepts from the previous sections, yet applies them
to the index. In this section we enable (and trigger) verbose index warnings.

7.1 General Indexing Control

7.1.1 Toggle Indexing

\IndexInactive \IndexInactive deactivates the indexing functions of the naming macros, as well
\IndexActive as \IndexName, and \IndexRef. \IndexActive enables indexing. These can be used
throughout the document. They do not affect indexing apart from nameauth.

¢ \IndexInactive broadly suppresses \IndexName, \IndexRef, and the
indexing components of the naming macros, \AKA, and \PName.

o For a fine degree of control, use \ExcludeName and \IncludeName.

\global \IndexActive and \IndexInactive can be used as a pair or singly within a
group. They have top priority (Section 3). Use \global to force a global effect.

7.1.2 Multiple Indexes

\NameauthIndex IXTEX has various ways to produce multiple indexes; see this page. \NameauthIndex
is the indexing hook defined by default as \index. Users can redefined this hook for
use with multiple indexes. Below we use the index package to do this.

\documentclass{article}
\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.

Test indexing rules:
Yamaha Torakusu
create index entry:
\IndexName

{Nippon Gakki} \usepackage{makeidx} % Must have for defining \seealso macro.

\usepackage{index}
\usepackage{nameauth}

© 00 N O U s W N =

\makeindex % Default index
\newindex{per}{rdx}{rnd}{Index of Persons} % Other index
\renewcommand*\NameauthIndex{\index [per]}

= = e
N o= O

13 \begin{document}
14 The Electric Boogaloo\index{Boogaloo, Electric}\\ 7 main index
15 was created by \Name{Ollie~\& Jerry}. % mname index

17 \printindex[per] % Shows the entry: 0llie & Jerry, 1

19 \renewcommand\indexname{Index of Subjects}
20 \printindex % Shows the entry: Boogaloo, Electric, 1
21 \end{document}

7.1.3 Verbose Warnings

\IndexWarnVerbose As with many of the other options in nameauth, we have added two macros that toggle
\IndexWarnTerse verbose index warnings like the verbose option (default is terse). To disable verbose
warnings, use \IndexWarnTerse. To enable verbose warnings, use the verbose option

or \IndexWarnVerbose. Throughout Section 7 we enable verbose warnings.

49

https://www.texfaq.org/FAQ-multind

\global

\IndexProtect

Test indexing rules:
Yamaha

\IndexName The internal version of this macro is used also by the naming macros. This is the
user interface to create index page entries in the same way that the naming macros
do. \IndexName prints nothing in the body text.

\IndexWarnVerbose and \IndexWarnTerse can be used as a pair or singly within
a group. They have the same priority as the verbose option, but they do not affect
what is displayed in the document. Use \global to force a global effect.

7.1.4 Index Protection

This macro prevents naming macros from producing output, both in the text and in
the index. It is local in scope. Its primary use is to prevent errors in the index, in
case the naming macros get passed as arguments to themselves or passed into index
entries by mistake. The core naming engine uses internal locks to protect against
this problem in the text.

One can use \IndexProtect right before \printindex to protect the index
against bogus output. For example:

\Name{foo\Name{bar}} in the text generates foo. Notice that the internal
locks prevent \Name{bar} from producing output in the text.

The first KTEX pass creates \indexentry{foo\Name {bar}} in the idx
file. With enough passes, using also makeindex, in the ind file we get
both \item foo\Name {bar} from the text and an additional \item bar
from the macro executed in the index.

That gives one index entry “foobar” and another entry “bar”.

Using \IndexProtect \printindex still permits the index entry gener-
ated by \item foo\Name {bar}, but it does not allow \Name {bar} to
generate any output or additional entries in the index.

We get only one entry “foo”, similar to what we see in the text. This
manual uses the tag § for \Name{foo\Name{bar}}, not shown in the
example for the sake of clarity.

7.2 Page Entries

\IndexName [(FNN)I1{(SNN, Affiz)}[{Alternate)]

If (FNN) is present, it ignores (Alternate) for Western and “native” Eastern name
forms. If (FFNN) is absent, \IndexName can use either the current or the obsolete
nonwestern syntax (Section 12.2). Indexing follows [Mulvany, 152-82]. The points
below deal with macros explained in Section 7.4.

¢ \IndexName obeys both \IndexInactive and \IndexActive, which are

used to deactivate and activate indexing.

e \IndexName does not obey \SkipIndex. The latter only works with

macros that display a name in the text, which \IndexName does not.

e \IndexName will not make page entries for any names that are excluded

by \ExcludeName. Nor will it make entries names that have been used
to create cross-references.

50

e \IndexName resets the effects of both \SeeAlso and \SkipIndex unless
one uses the oldreset option.

e Section 7.4 shows behavior among \SkipIndex, \JustIndex, and the
naming macros that differs from the same macros and \IndexName.

7.3 Cross-References

Index cross-references have two kinds. See references only point from a name to other
name entries containing page entries. See also references occur at the end of an entry
with page entries or sub-entries.

7.3.1 Basic Macros for Both Kinds of Xrefs

\IndexRef By default, \IndexRef creates a see reference from the name defined by its first three
arguments to the target in its final argument. To create a see also reference, one
must precede it with \SeeAlso (Section 7.4). Thus, the two forms used are:

\IndexRef [(FNN)I{(SNN, Affix)} [(Alternate)1{({Target)}
\SeeAlso\IndexRef [(FNN)1{(SNN, Affiz)}[(Alternate)]1{(Target)}

Although it might be redundant to point this out, in practice, when using
\IndexName and \IndexRef, one might forget that the latter has four arguments, at
least two of which are required. Missing text and bad xrefs can result.

Test indoxing rules: e Define see references before making any \Name entries for them.

Creating see also xref e Define see also references after all \Name instances to the respective

\SeeAlso\IndexRef names have been created.
{Yamaha, Torakusu})
{Nippon Gakki} ¢ \IndexRef will not alter or repeat extant cross-references.

e \IndexRef will not cross-reference names excluded by \ExcludeName.

e \IndexRef will not add a see cross-reference that would map also to
an extant name control pattern, unless one uses the oldsee option. A
fuller explanation of this non-trivial fact lies in Section 6.2, illustrated
by a state diagram. A page entry usually correlates with a name control
pattern, but that may not always be the case. We check for a control
sequence (name pattern); usually, a page entry also exists.

e \IndexName resets the effects of both \SeeAlso and \SkipIndex, unless
one uses the oldreset option.
e To have multiple names and cross-references interact, see Section 10.1.4.
\IndexRef prints nothing in the text. The name parsing is like \IndexName. The
final argument is not checked in any way. For example:
Name Pattern(s): source: \IndexRef{Sun King}{Louis XIV}
SunKing!PN index: Sun King see Louis XIV

\IndexRef will not merge multiple cross-references and it will not allow more
than one cross-reference. For multiple cross-references one must use something like
the following example, or create manual index entries:

source: \IndexRef{bar}{baz; foo}
index: bar, see baz; foo

51

\ExcludeName

Name Pattern(s):
Mr.Baseball!PN
Bob!Uecker !MN

\IncludeName
\IncludeNamex*

Test indexing rules:
Yamaha

7.3.2 Fine Control of Xref Logic

Here we show how the index control logic pertinent to cross-references can be extended
to establish fine-grained control that can exclude or include names.

We can prevent a name from being used as either an index entry or as an index
cross-reference. This macro will not exclude extant cross-references:

\ExcludeName [(FNN)1{(SNN, Affiz)} [{Alternate)]

Unlike \IndexInactive and \IndexActive, which prevent and permit all index-
ing, \ExcludeName only excludes a specific name from being printed as a page entry
or cross-reference in the index. See the following example, as well as examples in
Sections 5.7 and 10.1. Indexing remains active:

\ExcludeName{Mr. Baseball}

In this example we cannot get page entries for
\Name{Mr. Baseballl}, the nickname of

\Name [Bob] {Uecker}, because it was excluded.

s W NN =

In this example we cannot get page entries for Mr. Baseball, the nickname of
Bob Uecker, because it was excluded.

Use the following macros to break a few indexing rules. They remove protections
used for exclusion and cross-referencing. They have the same syntax as \ExcludeName:

\IncludeName [(FNN)I{(SNN, Affiz)} [{Alternate)]
\IncludeName* [(FNN)1{(SNN, Affiz)} [(Alternate)]

\IncludeName removes an exclusion attached to a name by \ExcludeName.
\IncludeName* completely erases both exclusion and cross-reference information.
Once that protection is removed, one can create page entries to a name in the index
that had been used as a cross-reference.

Analogously, \ForgetName (Section 9.3) removes name control patterns, allowing
one to create a cross-reference. Section 6.2 explains this behavior as a set of states.
Below we run some tests (cf. Section 9.5) and produce a few warnings because verbose
warnings are active here.

\begin{itemize}
\item \Name*{Mr. Baseball} is
\IfAKA{Mr. Baseball}
{\meta{an xref}}{\meta{a name}}{\meta{excluded}}.

\item Making an xref fails.\IndexRef{Mr. Baseball}{Uecker, Bob}
\Name*{Mr. Baseball} is still
\IfAKA{Mr. Baseball}
{\meta{an xrefl}}{\meta{a name}}{\meta{excluded}}.

11 \item The inclusion macro\IncludeName{Mr. Baseball} makes it
12 \IfAKA{Mr. Baseball}

13 {\meta{an xref}}{\meta{a name}}{\meta{excluded}}.

14 Now we could create page entries with a naming macro.

52

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Name Pattern(s):
J.D.'Rockefeller,IV!MN
Jay'!Rockefeller!PN
Jay!Rockefeller!MN

© W N O s W N

e T s e =
®w N O ook W N = O

\item Instead, we forget the name\ForgetName{Mr. Baseball}
to destroy the name pattern that governs the name. It is now
\IfAKA{Mr. Baseball}
{\meta{an xref}}
{\IfMainName{Mr. Baseball}{\meta{extantl}}
{\IfFrontName{Mr. Baseball}{\meta{extant}}
{\meta{destroyed}}}}
{\meta{excluded}}.

\item Making another xref\IndexRef{Mr. Baseball}{Uecker, Bob} creates
\IfAKA{Mr. Baseball}
{\meta{an xref}}{\meta{a name}}{\meta{excluded}}.
\end{itemize}

e Mr. Baseball is {ezcluded).
e Making an xref fails. Mr. Baseball is still {ezcluded).

e The inclusion macro makes it (@ name). Now we could create page
entries with a naming macro.

o Instead, we forget the name to destroy the name pattern that governs
the name. It is now (destroyed).

o Making another xref creates (an zref).

Cross-references get more protection than exclusions:

\begin{itemize}
\item \DropAffix\LJRIV[Jay] was indexed as
¢ ‘\ShowIdxPageref*[J.D.]{Rockefeller, IV}.

\item We create the
xref\IndexRef [Jay]{Rockefeller}{Rockefeller, J.D., IV}.

\item The test calls \SJRIV[Jay] an
\IfAKA[Jay]l{Rockefeller}{\meta{xref}}{\meta{name}}{}.

\item After being °‘included’’\IncludeName[Jay]{Rockefeller}
he still is an
\IfAKA[Jay]{Rockefeller}{\meta{xref}}{\meta{name}}{}.

\item After °‘forced inclusion’’\IncludeName*[Jay]{Rockefeller}
he can be a \IfAKA[Jay]l{Rockefeller}{\meta{xref}}{\meta{name}}{}
and create page entries.

\end{itemize}

o Jay Rockefeller was indexed as “Rockefeller, J.D., IV.

o We create the xref.

o The test calls Jay an (zref).

o After being “included” he still is an (zref).

e After “forced inclusion” he can be a (name) and create page entries.

Using \IncludeNamex* is necessary when creating index sub-entries for a name
using \IndexTag. If one creates a cross-reference in any sub-entry of a name,
\IncludeName* will permit additional page entries to be made for the other
sub-entries of that name or for the name itself. See Section 7.8.

93

\SeeAlso

Test indexing rules:
Nippon Gakki

\SkipIndex

\JustIndex

Name Pattern(s):
George !Washington!MN

7.4 Prefix Macros Used for Indexing

Indexing macros ignore Boolean flags meant for naming macros. Yet there are three
prefix macros that affect indexing: \SeeAlso, \SkipIndex, and \JustIndex.

Put \SeeAlso before \IndexRef, \AKA, and \PName (Section 12.1) to make a see
also reference for a name that has appeared already in the index. If enabled before
invoking \PName, \SeeAlso will be disabled when the regular name is generated,
then enabled when the cross-reference is generated.

One can refer to \Name[the]{Rat Pack} as a group of entertainers
including \Name [Sammy]{Davis, Jr.}, \Name[Dean]{Martin}, and
\Name [Frank] {Sinatra}. No more page entries for

\Name* [the] {Rat Pack} will occur after this line, and a
\textit{see also} xref will exist.

\SeeAlso\IndexRef [the] {Rat Pack}

{Davis, Sammy, Jr.; Martin, Dean; Sinatra, Frank}

~ (=] ot - W N —

One can refer to the Rat Pack as a group of entertainers including Sammy Davis
Jr., Dean Martin, and Frank Sinatra. No more page entries for the Rat Pack will
occur after this line, and a see also xref will exist.

Currently \IndexName and other nameauth macros that create index entries will
reset the Boolean flag governed by \SeeAlso unless one uses the oldreset option.
preventing a stray use of the macro from affecting the index.

The prefix macro \SkipIndex will suppress indexing for just one instance of a
name displayed by a naming macro. \SkipIndex\Name [Monty]{Python} produces
Monty Python in the text, but with no index entry. \SkipIndex works with the
naming macros. Side effects include:

e Unless the oldreset option is used, both \IndexName and \IndexRef
issue warnings if \SkipIndex precedes them. Then, both \IndexName
and \IndexRef ignore \SkipIndex and reset its flag.

e When the oldreset option is used, both \PName and \PName* issue
warnings when \if@nameauth@SkipIndex is true on exit.

This prefix macro makes \Name, \Name*, \FName, and the quick interface short-
hand macros act similar to \IndexName. \JustIndex suppresses name output in the
text, but flags for long and first name forms are reset as if the naming macro had
produced output. Using the oldreset option prevents these flags from being reset,
completely mimicking a call to \IndexName.

Option Output Source

default Washington \JustIndex\SWash \Wash
default Washington \JustIndex\LWash \Wash
oldpass George \JustIndex\SWash \Wash

oldpass George Washington \JustIndex\LWash \Wash

There are potential side effects related to \JustIndex:

o Both \AKA and \PName ignore \JustIndex and go on about their business.
They also set \@nameauth@JustIndexfalse.

e \JustIndex resets the flags set by \ForgetThis and \SubvertThis, pre-
venting them from passing through.

54

Test indexing rules:
Creating see xref
\IndexRef{Nippon Gakki}
{Yamaha Corp.}

Name Pattern(s):
Yamaha, Torakusu!MN

Name Pattern(s):
Yamaha, Torakusu!MN

Name Pattern(s):
Yamaha, Torakusu!PN

Name Pattern(s):
NipponGakki !MN

Name Pattern(s):
YamahaCorp. !MN

e The following three lines are equivalent:

— \JustIndex \SkipIndex \Name{A} \Name{B}
— \SkipIndex \JustIndex \Name{A} \Name{B}
— \JustIndex \Name{A} \SkipIndex \Name{B}

\JustIndex takes priority with \Name{A} and passes \SkipIndex to
\Name{B} (see also Section 3).

e \JustIndex and the naming macros do not replace \IndexRef.

7.5 Automatic Rules

Below we indicate what to expect regarding index rules in any given state. Here we
do not attempt to concatenate page ranges. Above, we put a series of names and
cross-references in margin notes, Here is the result:

Page Macro Index Result
49 \Name{Yamaha, Torakusu} Yamaha Torakusu, 49
\IndexName{Nippon Gakki} Nippon Gakki, 49
50 \Name{Yamaha, Torakusu} Yamaha Torakusu, 49, 50

Nippon Gakki, 49
51 \SeeAlso\IndexRef{Yamaha, Yamaha Torakusu, 49, 50 see also Nippon Gakki

Torakusu}{Nippon Gakki} Nippon Gakki, 49
52 \Name{Yamaha, Torakusu} Yamaha Torakusu, 49, 50 see also Nippon Gakki
Nippon Gakki, 49
54 \Name{Nippon Gakki} Yamaha Torakusu, 49, 50 see also Nippon Gakki
Nippon Gakki, 49, 54
55 \IndexRef{Nippon Gakkil} Yamaha Torakusu, 49, 50 see also Nippon Gakki
{Yamaha Corp.} Nippon Gakki, 49, 54

1. On page 49 there are no name control patterns (Section 6.1) for either a
name or a cross-reference. Then the name Yamaha Torakusu comes into
being, along with its control pattern. A pair of index page entries are
generated, one before and one after the name.

Also on 49 an index page entry is created for Nippon Gakki, whose control
pattern does not yet exist.

2. On page 50 the name Yamaha appears again. Since a control pattern
exists, a short form is printed and two index page entries are generated.

3. On page 51 we create a see also cross-reference from Yamaha Torakusu
to the name Nippon Gakki. Now a cross-reference pattern exists for Mr.
Yamaha. We can no longer create index page entries for him.

4. On page 52 we attempt to make an index page entry to Mr. Yamaha by
invoking his name. That attempt fails due to the extant xref.

5. On page 54 we print the name Nippon Gakki, bringing its name control
sequence into being. Even though it was the target of an xref, that does
not restrict the ability to make page entries for it.

6. On page 55 we attempt to create a see cross-reference from Nippon Gakki
to the name Yamaha Corp. (Notice that the extra full stop in the text gets
gobbled.) That fails because, unlike a see also reference, a see reference
cannot be created when a name control pattern already exists.

This manual’s index entries for Nippon Gakki and Yamaha Corp. will also include
this page in addition to those shown above.

95

\IndexActual

\global

Name Pattern(s):
AEgidius!PRE

\PretagName

Name Pattern(s):
EEthelred,II!PRE
W.E.B.!Du~Bois!PRE
KEthelred,II!'MN
W.E.B.!Du~Bois!MN

7.6 Sorting Names in the Index

When using makeindex, all names with characters outside the ASCII range [A-Za-z]
need to be sorted. All names with macros in their arguments need to be sorted. All
names with particles need to be sorted. We do that with sort tags.

7.6.1 General Approach

Using \index{(sort key)@({actual)} works with both makeindex and texindy. The
general practice for sorting with makeindex -s involves creating an ist file (pages
659-65 in The Latex Companion).

By default, the “actual” character is @. If one needs to change the “actual” char-
acter, such as when using gind.ist with dtx files, one would put \IndexActual{=}
in the preamble (or driver section) before creating index entries with the naming
macros. \PretagName does not care about the “actual” character, but it provides
the information that is automatically added after that character.

Effects of \IndexActual are local in scope. Use \global to make it otherwise,
but that will affect every use of \PretagName thereafter. We demonstrate this scoping
below as it pertains to gind.ist in a dtx file:

\PretagName{Egidius}{Aegidius}

In a \texttt{dtx} file the ‘‘actual’’ character is \texttt{=}.

\begingroup
In a local scope we change to the normal character \texttt{@}
and show the index entry:
\texttt{\IndexActual{@}\ShowIdxPageref{Egidius}}.

\endgroup

Now back to \texttt{dtx} mode: \texttt{\ShowIdxPageref{Egidiusl}}.

© 0w N O s W N

In a dtx file the “actual” character is =. In a local scope we change to the normal
character @ and show the index entry: Aegidius@Egidius. Now back to dtx
mode: Aegidius=Egidius.

The nameauth package enables automatic index sorting using a “pretag” (cf.
Section 6.1). Unless the nopretag option is used (which results in warnings),
\PretagName creates a sort key terminated with the “actual” character. Do not
put the “actual” character in the “pretag”:

[\PretagName [(FNN)1{(SNN, Affiz)} [(Alternate)]1{(tag)}]

One can “pretag” any name, any cross-reference, and even excluded names. Once
made, sorting tags cannot be unmade. If one uses \PretagName in the preamble,
those names will be sorted automatically throughout the document. For example:

1 \PretagName{Ethelred, II}{Aethelred 2}
2 \PretagName[W.E.B.]{Du~Bois}{Dubois, William}

Every reference to /thelred Il and W.E.B. Du Bois is automatically tagged and
sorted.'® One should “pretag” all names that contain active characters or macros.
That can differ when using xindy and Unicode-based KTEX.

18Regarding the margin note that shows name control sequences, with pdflatex and latex, in
REthelred,II the glyphs AE correspond to \IeC{\AE}.

56

We keep the next example simple to illustrate the concept. We do not use
alternate formatting because we do not capitalize, mutate, or segment the alias
“Doctor angelicus” (cf. Sections 5.8, 11.3). We create a see reference before using this
alias, for which no page entries will be generated. The name patterns are:

\textit{Doctorangelicus}!PRE
\textit{Doctorangelicus}!PN
Thomas,Aquinas!MN
\textit{Doctorangelicus}!MN

\PretagName{\textit{Doctor angelicus}}{Doctor angelicus}
\IndexRef{\textit{Doctor angelicus}}{Thomas Aquinas}

Perhaps the greatest medieval theologian was
\Name{Thomas, Aquinas}, later known as
\Name{\textit{Doctor angelicus}}.

Ut e W N =

Perhaps the greatest medieval theologian was Thomas Aquinas, later
known as Doctor angelicus.

To give Doctor angelicus page entries and a see also reference, we omit line 2 above,
wait until the end of the body text, after both names are fully indexed, and then
use: | \SeeAlso\IndexRef{\textit{Doctor angelicus}}{Thomas Aquinas} |

Name Particles

Spaces change sorting. For example, the sort tag De_ Soto precedes deal due to the
space therein. The sort tag DeSoto falls as expected between derp and determinism.

Collating Sequences

German 3 6 00 B map to English ae oe ue ss. Yet Norwegian & ¢ 3 follow z in that
order. Check a style guide regarding collating sequences, spaces, and sorting. This is
where using xindy can be very helpful. See also Section 5.7.

Alternate Formatting

Additional examples starting with Section 11.3.5 deal with index sorting as it relates
to alternate formatting, “Continental” practice, and macros in name arguments.
Please ensure that such macros expand to the form desired in the index in order to
get proper sorting with \PretagName.

Igitur qui desiderat pacem, praeparet bellum.

(Accordingly, the person who would desire peace prepares for war.)

—Publius Vegetius Renatus, De re militari (c. 390)

o7

\TagName
\UntagName

7.6.2 Sorting Initials

In order to sort the index consistently and properly, all names should be sorted
by their longer name forms, not their initials.

Sorting J.D. Rockefeller IV \Name* [J.D.]{Rockefeller, IV} presents a problem
that does not occur with Clive Staples Lewis \Name* [Clive Staples]{Lewis}. In
the case of Jay Rockefeller IV, the initials will appear in the index, while with C.S.
Lewis, the longer names will appear in the index.

In nameauth we have a specific way to do that once per name, and all the
remaining names will be sorted as expected. Before we use a name like Rockefeller,
preferably in the preamble, we use the following macro:

\PretagName [J.D.]{Rockefeller, IV}{Rockefeller, John D 4}

e The index entry is “Rockefeller, J.D., IV".
e In the “pretag” we spell out the first forename and add enough of
the second to get a unique sorting key.

o We turn the Roman numeral affix into an Arabic numeral so that it
does not sort like letters.

For more examples of handling alternate forms of surnames see Sections 5.8, 10.1,
all subsections of Section 11, and 13.

7.7 Index Tags

Index data tags are information added automatically to index page entries for names
used with nameauth macros.

7.7.1 General Approach

This macro creates a tag that persists until one changes it with \TagName or destroys
it with \UntagName. Tags can include life dates, regnal dates, and other information.
Both \TagName and \UntagName have global scope and handle arguments in the
same way as \IndexName:

\TagName [(FNN)]J{(SNN, Affiz)}[{Alternate)]{(tag)}
\UntagName [(FNN)I{(SNN, Affiz)}[(Alternate)]

All the indexing macros are keyed to the name patterns. \PretagName generates
the leading sort key. \TagName and \UntagName affect the trailing content. The
following graphic illustrates the “segments” of an index entry and the nameauth
macros that affect the respective segments:

Naming macros

\PretagName \IndexName
\index{ | Aethelred 2@ | Ethelred II | , king}
\TagName
\UntagName

o8

Name Pattern(s):
Gregory,I!'TAG
Gregory, I!'MN

Name Pattern(s):
E. 'Humperdinck!TAG
E. 'Humperdinck!MN

Tags created by \TagName can be helpful in the indexes of academic texts by
adding dates, titles, etc. \TagName causes the nameauth indexing macros to append
uthe Great, pope|to the index entries created in the next example:

1 \TagName{Gregory, I}{ the Great, pope}
2 Pope \Name*{Gregory, I} was known as \Name*{Gregory, I}
3 [the Great].

Pope Gregory | was known as Gregory the Great.

See Section 11.2.2 for more ways to deal with ancient names. \TagName works with
all names that produce index page entries. It does not work with with cross-references
produced by \IndexRef, \AKA, etc. Tags can hold different kinds of information, but
they should not be verbose. They can include daggers, asterisks, and so on. For
example, all fictional names in the index of this manual are tagged with §. One must
add any desired spaces to the start of the tag.

7.7.2 Disambiguating Identical Names

We can format and index one name as two different people with \TagName and
\ForgetThis (Section 9.3). The index tags group together their respective entries,
while the name decision macros can set up specific logic for each name:

\TagName [E.]{Humperdinck}{ (composer)}
This refers to the classical composer:
\Name [E.] {Humperdinck} [Engelbert] .

\TagName [E.] {Humperdinck}{ (singer)}
This refers to the pop singer from the 60s and 70s:
\ForgetThis\Name [E.]{Humperdinck} [Engelbert].

N O O Re W N =

This refers to the classical composer: Engelbert Humperdinck.

This refers to the pop singer from the 60s and 70s: Engelbert Humperdinck.

7.7.3 Special Tags for Special Cases

\TagName can create “special” index entries for names with the general form below.
These tags are compatible with hyperref used in normal IXTEX documents.'® When
\(macro)#1{#1} exists and (name args) are the arguments, one can use the form:

[\TagName(name args){|{macro)}

When using the Itxdoc class with hypdoc, as in this manual, neither nameauth
nor regular use of \index creates hyperlinked page entries. Index data tags in the
<driver> section of the dtx file, which reads the “commented” part of the dtx file
into a document environment, take the form:

\TagName(name args){|hyperpage}

Within the “commented” part of the package documentation in this dtx file, the
vertical bar is active. Hence, we use:

9This was implemented in v.3.3, based on the answer of Heiko Oberdiek to this question.

99

https://tex.stackexchange.com/questions/201720/index-produces-invalid-idx-entry-with-manual-style-commaparse-hyperref

\TagName(name args){\noexpand\string|hyperpage}
or

\index{(entry argument)\noexpand\string|hyperpage}

Internally, in \@nameauth@IdxFormat, when a cross-reference is being created, a
tag of the form (some text)|(some macro) is reduced to (some text), allowing the
macros |see and |seealso internally to be appended to the index entry even if a
tag with a vertical bar exists.

Next we create a special tag. Since we used lines 1-2 in this dtx file, we put them
in the driver section to avoid both errors with the redefinition of the vertical bar and
any possible confusion when using \string.

1 \newcommand\Orphan [2] {#1 (\hyperpage{#2})}
2 \TagName [Lost] {Name}{\,\S|Orphan{perdit}}
3 \Name[Lost]{Name}

Lost Name
idx file: \indexentry{Name, Lost\,\S |Orphan{perdit}}{(page)}
ind file: \item Name, Lost\,\S \pfill \Orphan{perdit}{(page)}

Manual Breaks and Entries

The microtype package and its Spacing environment may be the best solution to fix
index entries and sub-entries that break badly across columns or pages. Yet we could
add manual breaks after editing is complete.

We must create a helper macro that takes an argument and adds a break after
that argument. That is how macros like \textbf use implied page entries in the
index, e.g.: \index{Doe, John|textbf}.

Below we use \newpage to jump to a new column. See also the multicol and
idxlayout packages, as well as classes like memoir. On line 1 we define the \Endbreak
macro that will break the column after the end of an index entry.

\newcommand*{\EndBreak} [1]{#1\newpage}

We use \EndBreak after the last page in a given entry. This method works for both
manual index entries and for the nameauth macros. If all instances of \Name{Some,
Name} on the same page have that same index tag, there will be no duplicate page
entries, hyperlinks will work, and the index will break as indicated:

Page Macro Index Result

10 \Name{Some, Name} Some Name, 10
\index{Topic} Topic, 10

15 \Name{Some, Name} Some Name, 10, 15
\index{Topic} Topic, 10, 15

18 \TagName{Some, Name|EndBreak}’
\Name{Some, Name} Some Name, 10, 15, 18(break)
\index{Topic|EndBreak} Topic, 10, 15, 18(break)

We do not have to supply an argument to \EndBreak because, as with the font
switching example above, the page entry is implied.

We can intermix nameauth macros with manual index entries. We may need to
look at the idx or ind files to craft matching entries on the page where the break
occurs. Instead of using \TagName, we also can do this:

60

Page Macro Index Result
18 \SkipIndex\Name{Some, Namel},
\index{Some Name |EndBreak}. Some Name, 10, 15, 18(break)

Results for manual entries may vary, depending on what distribution of IXTEX is
being used and how old it is. Any name with active characters needs to be handled dif-
ferently before 2018 than after 2018. All instances of \index{Some Name|EndBreak}
must fall on the same page.

We do not recommend breaking an index entry in the middle. There are sev-
eral discussions, such as this page and that page. A “quick and dirty” version
corresponding to the \EndBreak macro follows:

1 \makeatletter
2 \newcommand*{\MidBreak} [1]{#1\newpage\@gobble}
3 \makeatother

Nevertheless, it is clear from some discussions that such macros can be rather
fiddly at times and can produce unexpected results. One is advised to take caution
when breaking index entries midway or otherwise modifying them in this manner.

7.8 Categories and Sub-entries

Indexes can have categories and sub-entries such as the following:
(category 1)

(name entry)

(name sub-entry 1)
(name sub-entry 2). ..

(name entry). ..
(category 2). ..

To get nameauth to work with this structure, one must use both \PretagName
and \TagName. For example, to sort a name under (category), use something like:

\PretagName [(FNN)]{(SNN)}{{category 1)'(SNN), (FNN)}
\PretagName{(SNN, Affix)}{(category 1)'(SNN) (Affiz)}

Whenever one wants to generate a sub-entry for a name, one can use \TagName
to create that sub-entry when needed via something like:

\TagName [(FNN)J{(SNN)}{!(name sub-entry)}
\TagName{(SNN, Affiz)}{!(name sub-entry)}

One is not restricted to Western or nonwestern name arguments; the boxes above
are meant just to show the basic tag formats.

61

https://tex.stackexchange.com/questions/86646/indexing-subentries-and-see-also
https://tex.stackexchange.com/questions/231840/what-is-the-proper-use-of-several-seealso-in-the-same-index-entry-with-makeinde

4

One could use \TagName to change to another sub-entry or the default tag
as needed, or use \UntagName to remove the tag. If a sub-entry contains a cross-
reference via \IndexRef, it is necessary to follow that with \IncludeName* to permit
any further page entries in other sub-entries or the main name entry. Below we
demonstrate how one would implement sub-entries using index tags in a normal
IKTEX document. We cannot show categories when using gind.ist.

Categories higher than names are handled by \PretagName. Categories lower
in the hierarchy are handled by \TagName. It is best practice to have three or less
levels of categories in an index. Two levels are more common. Using such levels also
depends on the index style and formatting files.

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage [a6paper,landscape,left=1cm,right=1cm] {geometry}
\usepackage{makeidx}

\usepackage{nameauth}

W N

\makeindex

© oo ~ o w

10 \newcommand*{\EndBreak} [1] {#1\newpage}

11

12 % Sort these names under: US Presidents.

13 \PretagName [George] {Washington}{US Presidents!Washington, George}
14 \PretagName [Abraham]{Lincoln}{US Presidents!Lincoln, Abraham}
15

16 % Sort these names under: Philosophers.

17 \PretagName{Aristotle}{Philosophers!Aristotle}

18 \PretagName{Plato}{Philosophers!Plato}

19

20 % Sort these names under: Black Americans, famous.

21 \PretagName [Frederick] {Douglass}

22 {Black Americans, famous!Douglass, Frederick}
23 \PretagName [Martin Luther]{King, Jr.}
24 {Black Americans, famous'King, Martin Luther, Jr.}

25
26 % Sort these names under: Europeans, historical.

27 \PretagName{\AE thelred, II}{Europeans, historical!Aethelred 2}
28 \PretagName [Hernando] {de Soto}

29 {Europeans, historical!de Soto, Hernando}

30

st % This is not a sub-category.

32 \TagName [George S.]{Patton, Jr.}{, general}

33

34 \begin{nameauth}

35 \< Wash & George & Washington & >

36 \< Aris & & Aristotle & >

37 \< Plato & & Plato & >

38 \< Aeth & & \AE thelred, II & >

39 \< Sun & & Sun, Yat-sen & >

40 \< Linc & Abraham & Lincoln & >

41 \< MLK & Martin Luther & King, Jr. & >

42 \< Soto & Hernando & de Soto & >
43 \< Goethe & J.W. von & Goethe & >
44 \< Patton & George S. & Patton, Jr. & >

45 \< Ike & Dwight D. & Eisenhower & >

62

46 \end{nameauth}

48 \begin{document}
49 \small

51 \section{Famous Black Americans}

53 \Name [Frederick]{Douglass} rose to eminence by sheer force of
54 character and talents that neither slavery nor caste

55 proscription could crush. Circumstances made

56 \Name [Frederick]{Douglass} a slave, but they could not prevent
57 him from becoming a freeman and a leader among mankind.\\

59 We also celebrate \MLK, then \MLK.
61 \section{Patres Patriae}

63 We mention President \Wash; again, \Wash.
64 Family and close friends called him \SWash.\\

66 \TagName [George] {Washington}{!as general}
67 We can reminisce about \LWash[General].
68 \UntagName [George] {Washington}

70 When speaking of \Linc, we can refer to \LLinc[Abe].
72 \section{Philosophers}

74 Among philosophers we consider \Plato\ and \Aris.

76 \section{Historical Figures}

78 \TagName{Sun, Yat-senl}{|EndBreak}

79 We ponder about \Aeth, then \Aeth.

s0o We speak of \Sun, then \Sun.

81 We note \Soto, then just \Soto.

82 \CapThis\Soto{} starts a sentence.

84 \section{Further Discussion}

s6 \TagName [George]{Washington}{!as general}

87 \TagName [Dwight D.]{Eisenhower}{!as general}

ss \LWash, \LPatton, and \LIke\ were high-ranking generals.\\
90 \TagName[Dwight D.]{Eisenhower}{!as president}

91 \UntagName [George] {Washington}

92 \Wash\ and \Ike\ also were US presidents.

94 7 Instead of pre-tagging Ike we do the following:
95 \index{US Presidents!other|see{Eisenhower, Dwight D., presidentl}}

o7 \small

98 \printindex
99 \end{document}

63

Below we show only the index from this example. A few notable features include:

o Patton uses a regular index tag instead of a subcategory. That is a way
to ‘cheat” and get more groupings of entries than allowed categories.

o Eisenhower illustrates multiple subcategories for a name. A cross-reference
from a sub-entry of US presidents points to him.

e Washington illustrates having both a super-category and a subcategory.

o Eisenhower, Patton, and Sun are not sorted under categories. The other
names are sorted under categories.

Index
Black Americans, famous US Presidents
Douglass, Frederick, 1 Lincoln, Abraham, 1
King, Martin Luther, Jr., 1 other, see Eisenhower, Dwight D., pres-
ident
Eisenhower, Dwight D. Washington, George, 1, 2
as general, 2 as general, 1, 2

as president, 2
Europeans, historical

Athelred 11, 2

de Soto, Hernando, 2

Patton, George S., Jr., general, 2
Philosophers

Aristotle, 2

Plato, 2

Sun Yat-sen, 2

Back to Table of Contents

Four score and seven years ago our fathers brought forth on this continent, a
new nation, conceived in Liberty, and dedicated to the proposition that all men
are created equal. ...It is for us the living, rather, to be dedicated here to the
unfinished work which they who fought here have thus far so nobly advanced. It
is rather for us to be here dedicated to the great task remaining before us — that
from these honored dead we take increased devotion to that cause for which
they gave the last full measure of devotion —that we here highly resolve that
these dead shall not have died in vain— that this nation, under God, shall have
a new birth of freedom —and that government of the people, by the people, for
the people, shall not perish from the earth.

—Abraham Lincoln, Gettysburg Address (19 November 1863)

64

8 Name Tags

\NameAddInfo All valid names in nameauth can have name tags; no restrictions exist. Unlike index
tags, name tags are not printed automatically with every name managed by nameauth.
Sections 9.5 and 11.2 have more examples. The macro is \long, allowing for some
complexity in the (tag) argument:

\NameAddInfo [(FNN)I{(SNN, Affiz)} [(Alternate)l1{({tag)}

Name Pattern(s): For example, \NameAddInfo [George]l {Washington}{(1732--99) } makes a name
George!Washington!DB tao hut does not print whenever Washington \Wash is used. The name tag needs to
George!llashington!MlV 1, displayed using the helper macro below.

\NameQueryInfo To print a name tag for a given name, we use \NameQueryInfo, a helper macro
that prints a name tag in the name info data set:

[\NameQueryInfo [{(FNN)I{(SNN, Affiz)} [{Alternate)]]

\NameQueryInfo[George] {Washington} prints the name tag for George Wash-
ington: (1732-99). In Section 11.2 and thereafter we show how one can automate the
retrieval of name tags using formatting hooks, Yet therein also lies a caution:

e When using the recommended template for a formatting hook (Sec-
tion 11.2.1), one can use \noexpand in arguments for \NameAddInfo,
\NameQueryInfo, and \NameClearInfo without restriction.

e When using designs based on older templates, using \noexpand may
cause \NameQueryInfo to print nothing if one uses the basic interface.
Using the quick interface will work as expected.

One can insert a space at the start of a name tag; use signs like asterisks, daggers,
and the like; and even create footnotes, such as footnote 20 (below):

\NameAddInfo[Ulysses S.]{Grant}
{eighteenth US president (1869--1877)%}
\NameAddInfo[Schuyler]{Colfax}
{\footnote{\Name [Schuyler]{Colfax} was the seventeenth US
vice-president during the first term (1869--73) of
\Name* [Ulysses S.]{Grant}, \NameQueryInfo[Ulysses S.]{Grantl}.}}

Name Pattern(s):

George !Washington!DB
UlyssesS. !Grant ! DB
Schuyler!Colfax!DB
Schuyler!Colfax!MN
UlyssesS. !Grant ! MN

Remember \Name [Schuyler]{Colfax}?\NameQueryInfo[Schuyler]{Colfax}
Derived from the same origin as ‘‘scholar’’, this name can occur
as ‘‘Skylar’’ for girls and ‘‘Skyler’’ for boys.

© W N O e W N

[un
o

Remember Schuyler Colfax??" Derived from the same origin as “scholar”, this
name can occur as “Skylar” for girls and “Skyler” for boys.

20Colfax was the seventeenth US vice-president during the first term (1869-73) of Ulysses S. Grant,
eighteenth US president (1869-1877).

65

\NameClearInfo

Name Pattern(s):
George!Washington!DB

The previous example cannot be used in a formatting hook (Section 11.2). Within
the formatting hooks, one is in a “locked path” that prevents calling a naming macro.
This prevents a stack overflow. \Name* [Ulysses S.]{Grant} would not print inside
a formatting hook, although \NameQueryInfo[Ulysses S.]{Grant} would print.

Name tags can call each other. To protect against a stack overflow, use Boolean
flags and conditional statements. Below, \NameQueryInfo calls a tag that sets a
Boolean flag true, which causes the other tag to stop any recursion and exit.

\newif\ifA
\newif\ifB
\NameAddInfo{A}

{\Atrue A \ifB Stop \else \NameQueryInfo{B} \fi \Afalse}
\NameAddInfo{B}

{\Btrue B \ifA Stop \else \NameQueryInfo{A} \fi \Bfalse}
\begin{itemize}

\item \NameQueryInfo{A}

\item \NameQueryInfo{B}
\end{itemize}

© 0w N O s W N

=
o

« A B Stop
« B A Stop

\NameAddInfo will replace one name tag with another name tag, but it does not
delete a tag. That is the role of \NameClearInfo. The syntax is:

\NameClearInfo [(FNN)I{(SNN, Affiz)}[(Alternate)]

We now revisit George Washington and his associated name tag.
1 The name tag is: \fbox{\NameQueryInfo[George]{Washington}}\quad

2 Clearing data.\NameClearInfo[George]{Washington}\quad
3 The name tag is empty: \fbox{\NameQueryInfo[George]{Washington}}

The name tag is: | (1732-99) | Clearing data. The name tag is empty:

Back to Table of Contents

He who exercises government by means of his virtue may be compared to the
north polar star, which keeps its place and all the stars turn towards it.

—Confucius, The Analects, C II (475-221 BC)

66

\NamesActive
\NamesInactive

\global

9 Basic Formatting and Name Decisions

9.1 Basic Formatting

This section offers a brief overview; Section 11 goes into great detail. Even when
using the default options for nameauth wherein no formatting occurs, we can observe
syntactic changes to names:

Syntactic Changes; No Formatting/Post-Processing

First Instance Macro Later Instance Macro
George S. Patton Jr. \Patton Patton \Patton
George S. Patton Jr. \LPatton George S. Patton Jr. \LPatton
George S. Patton Jr. \SPatton George S. \SPatton
Yamamoto Isoroku \Yamt Yamamoto \Yamt
Yamamoto Isoroku \LYamt Yamamoto Isoroku \LYamt
Yamamoto Isoroku \SYamt Yamamoto \SYamt

We can add formatting to these syntactic changes. In its basic form, formatting
is typographic post-processing. In its advanced form, formatting locally affects also
the syntactic forms of names while leaving index entries undisturbed.

Many books are structured with front matter that includes a table of contents,
foreword, introductory material or survey material, and other instructive content
that is not part of the main matter. The nameauth package has separate syntax and
formatting system for front matter (!NF) and main matter (!MN). These formatting
systems are linked to the existence of a name control pattern.

o First instance of a name

— No name control sequence exists.

— A name is printed with its long form (default).

— The “first-use” formatting hook is used (default).

— After the name is printed, a name control sequence is created.

e Subsequent instance of a name

— A name control sequence already exists.
— A name is printed using a shorter form (default).
— The “subsequent-use” formatting hook is used (default).

The parser and related macros create name forms and formats only in the text.
Macros in name arguments affect both text and index (Section 11.3).

Independent “main-matter” and “front-matter” systems are used to format first
and subsequent name uses. \NamesInactive and the frontmatter option enable
the front-matter system. \NamesActive switches names to the main-matter system.
The mainmatter option is the default setting for names.

These two macros can be used explicitly as a pair or singly within an explicit
local scope. Use \global to force a global effect.

67

\NamesFormat The main-matter system uses \NamesFormat to post-process first occurrences
\MainNameHook of names and \MainNameHook for subsequent uses. The front-matter system uses
\FrontNamesFormat \FrontNamesFormat for first uses and \FrontNameHook for subsequent uses. The
\FrontNameHook alwaysformat option causes only \NamesFormat and \FrontNamesFormat to be
used. Since the formatting hooks always are defined when using nameauth, one must
use \renewcommand when changing their definitions.?! Section 6.1 shows how name
control sequences are keyed either to the main-matter system or to the front-matter
system. The two formatting systems are distinct, useful for separate document

elements. We color-code them and “forget” any previous name uses:

Name Pattern(s): Front-matter system: \NamesInactive
front-matter

Rudolph!Carnap!NF
Nicolas!Malebranche |NF Rudolph Carnap \Name [Rudolph]{Carnap}
main-matter Carnap \Name [Rudolph] {Carnap}
Rudolph!Carnap!MN Nicolas Malebranche = \Name [Nicolas]{Malebranche}
Nicolas!Malebranche!MN Malebranche \Name [Nicolas]{Malebranche}
Main-matter system: \NamesActive
Rudolph Carnap \Name [Rudolph]{Carnap}
Carnap \Name [Rudolph] {Carnap}
Nicolas Malebranche \Name [Nicolas]{Malebranche}
Malebranche \Name [Nicolas]{Malebranche}

We used the xcolor package with the following macros:

1 \renewcommand*\FrontNamesFormat [1]{\color{red}\sffamily #1}

2 \renewcommand*\FrontNameHook [1]{\color{darkgray}\sffamily #1}
3 \renewcommand+*\NamesFormat [1]{\color{blue}\sffamily #1}

4 \renewcommand*\MainNameHook [1]{\sffamily #1}

\ForceName We show examples of \ForceName in Sections 9.3, 11.2, and 12.1. Use this prefix
macro to force “first use” formatting for the next \Name, etc., but without deleting
any name control sequences. Thus:

Name Pattern(s): Carnap \Name [Rudolph] {Carnap}

Rudolph!Carnap!MN Carnap \ForceName\Name [Rudolph] {Carnap}

alwaysformat Below we simulate alwaysformat via package internals. Only the “first use”
formatting hooks are used:

o Front matter: Albert Einstein, Einstein; Confucius, Confucius.
Patterns: Albert!Einstein!NF Confucius!NF

e Main matter: M.T. Cicero, Cicero; Elizabeth |, Elizabeth.
Patterns: M.T.!Cicero!MN Elizabeth,I!MN

2!The names of these macros grew from \NamesFormat, originally the only formatting hook.
Especially with the macros in this section, the naming scheme is unfortunate because package
development involved some groping in the dark regarding the concepts.

68

Name Pattern(s):
Adolf !Harnack!MN
Adolf!Harnack!NF

Hook caveats

The internal name parser determines what syntactic name elements exist and how
they are constituted. It passes that information to macros that determine the form
of nonwestern or Western names to be displayed. They in turn call the format hook
dispatcher for post-processing, which calls the formatting hooks using the pattern:

\bgroup(Hook){#1}\egroup.

One can create formatting hooks that take either no argument or one argument.
Since the formatting hooks are already defined, one must not use \newcommand to
create new hooks. Instead, use \renewcommand e.g.:

\renewcommand*\NamesFormat{{content)}
\renewcommand*\NamesFormat [1] {{content)}

A hook that takes one argument can use, change, or discard it and invoke
\NameParser (Section 11.5). Due to package design using local scope, both the
following achieve exactly the same effect:

\renewcommand*\NamesFormat{\itshape}
\renewcommand*\NamesFormat{\textit}

9.2 Application: Footnotes

The independent systems of names work with footnotes. Names in the body text, such
as Adolf Harnack (later ennobled to Adolf von Harnack), normally affect name forms
in the footnotes.?? In footnote 22 \MainNameHook is called instead of \NamesFormat
because Harnack already had occurred above. We can use the front-matter system to
change that:

\makeatletter

\let\@oldfntext\@makefntext
\long\def\@makefntext#1{\NamesInactive\@oldfntext{#1}\NamesActive}
\makeatother

W N e

When we create another footnote, we see very different results.’® Footnote 23
shows the first use of a name because it is the first use in the front-matter system. One
can synchronize the two systems with \ForgetThis and \SubvertThis (Section 9.3).
Below we revert footnotes with:

1 \makeatletter
2 \let\@makefntext\Qoldfntext
3 \makeatother

By what other voice, too, than that of the orator, is history, the evidence of
time, the light of truth, the life of memory, the directress of life, the herald of
antiquity, committed to immortality?

—NMarcus Tullius Cicero, De oratore B 1T; C IX, §36 (55 BC)

22\We have Harnack from \Harnack instead of Adolf Harnack.
23We have Adolf Harnack from \Harnack, then Harnack.

69

\ForgetName

\ForgetThis

\SubvertName

\SubvertThis

\LocalNames
\GlobalNames

9.3 Making Name Decisions

By default, the macros below produce global effects. They change both the !'MN
and !'NF data sets (Section 6.1). Those changes implicitly affect syntactic name
forms, name formatting, index protection with respect to creating cross-references
(Section 7.3), and the name testing macros (Section 9.5).

This macro takes the same arguments as \Name, but it prints no output. It
“forgets” a name, forcing a “pre-first use” state. The next instance of that name will
display as if the name did not yet exist:

[\ForgetName [(FNN)I1{(SNN, Affiz)}[(Alternate)]]

43

\ForgetName “unprotects” names like \IncludeName* “unprotects” xrefs. This
allows one to make both see and see also cross-references to a name, even if that
name already has index page entries.

This prefix macro causes the next instance of a naming macro or shorthand to
“forget” a name before printing it. After knowing Einstein, we forget him and again
have a first instance via \ForgetThis\Einstein: Albert Einstein. \ForgetThis no
longer affects the index unless one uses the oldreset option.

This macro takes the same arguments as \Name, but it produces no output in
the text. It “subverts” a name by creating a name pattern control sequence, forcing
a “subsequent use”, and “protecting” a name from being used as a see reference
(analogous to \ExcludeName and \IndexRef:

[\SubvertName [(FNN)1{(SNN, Affiz)}[(Alternate)]]

This prefix macro causes the next instance of a naming macro or shorthand to
“subvert” a name before printing it. As indicated in Section 3, \ForgetThis has a
higher priority than \SubvertThis and negates it. \SubvertThis no longer affects
the index unless one uses the oldreset option.

We still advise one to avoid using \ForgetThis and \SubvertThis
before any naming macro that produces no output in the text.

By default, \ForgetName, \SubvertName, \ForgetThis, and \SubvertThis are
not limited either by scope or by the active naming system. \LocalNames restricts the
effects of these macros to the current naming system, but not to scope. \GlobalNames
restores the default behavior that affects both systems. Both macros always have
global scope.

To see how these two macros work, in the following example we define a macro
that reports whether or not \Name [Charlie] {Chaplin} exists. This macro gives four
possible results: the name exists in the main matter, it exists in the front matter, it
exists in both systems, or it does not exist (see Section 9.5):

1 \def\CheckChuck{{\bfseries\IfFrontName [Charlie] {Chaplin}

2 {\IfMainName [Charlie]{Chaplin}{both}{front}}
3 {\IfMainName [Charlie] {Chaplin}{main}{none}}}}

70

Name Pattern(s):
Charlie!Chaplin!MN

Name Pattern(s):
Charlie!Chaplin!NF

Start in the “main-matter” system with no extant name:
\NCheCRCRUCK . .ottt ettt e none
Create a name in the “main matter”:

\Name [Charlie]{Chaplin}.............. Charlie Chaplin
NCHECKCRUCK ..t tveett et et main

Switch to the “front-matter” system and create a name. If one is within a
group or local scope, one may have to add \global to \NamesInactive:

\global\NamesInactive
\Name [Charlie]{Chaplin}.............. Charlie Chaplin
\CheCKChUCKttt both

use \LocalNames to make both \ForgetName and \SubvertName work
with only the current system.

\LocalNames

Had we not used \global above, we would have implicitly returned to
the main-matter system due to scoping and environments like quote and
itemize. We “forget” only the name in the front-matter system.

\ForgetName [Charlie]{Chaplin}
\CheckChuck...........oooiiiiiiiiiiiii i, main

¢

Next “subvert” the front-matter name to “remember” it again. Then

switch to main matter:

\SubvertName [Charlie] {Chaplin}
\CheCKCRUCK ..o\ttt both
\global\NamesActive

Now the current system is main matter. We forget the main-matter name
only, leaving the front-matter name intact:

\ForgetName [Charlie]{Chaplin}
\CheckChuck ...ttt front

Use \GlobalNames to make \ForgetName and \SubvertName work with
both systems again:

\GlobalNames

Finally, we forget everything. Even though we are in a main-matter
section, the front-matter name also goes away:

\ForgetName [Charlie]{Chaplin}
\CheckChuck ..ot none

71

9.4 Formatting and Decisions

We pull together information on name forms and formatting, focusing on what
happens in one naming system only, since the two systems are independent.

First Instance: Betsey Bailey ... \Bailey
Betsey Bailey . ..o \LBailey
Betsey Baileyoooiii \SBailey

Name control pattern created with text output. Index state 2, 4,
or 6 (Section 6.2). Name form: long. First-use hooks.

Later Instance: Bailey \Bailey
Betsey Bailey \LBailey
Betsey. .o \SBailey

No change to name pattern. Index state 2, 4, or 6. Name form:
short. Subsequent-use hooks.

Forgotten: (no output) \ForgetName [Betsey] {Bailey}
Name pattern deleted. Index state 1, 3, or 5 (Section 6.2). next
instance usually will be a first use, e.g.: Betsey Bailey.

Subverted: (no output) \SubvertName [Betsey]{Bailey}
Name pattern created. Index state 2, 4, or 6. next instance usually
will be a later use, e.g.: Bailey, Betsey Bailey, Betsey.

\ForgetThis: Betsey Baileycc.oooiiiiiii... \ForgetThis\Bailey
Betsey Bailey........ ...l \ForgetThis\LBailey
Betsey Bailey \ForgetThis\SBailey

Name pattern deleted, then created again. Index state 2, 4, or
6. Name form and format: same as first use above. next instance
usually will be a later use, e.g.: Bailey, Betsey Bailey, Betsey.

\SubvertThis: Bailey.......... ... i \SubvertThis\Bailey
Betsey Bailey. ...l \SubvertThis\LBailey
Betsey ... \SubvertThis\SBailey

Name pattern created. Index state 2, 4, or 6. Name form and
format: same as later use above. next instance usually will be a
later use, e.g.: Bailey, Betsey Bailey, Betsey.

Format as First: Bailey i \ForceName\Bailey
Betsey Bailey ... \ForceName\LBailey
Betsey...oooviii \ForceName\SBailey

No change to name pattern. Index state 2, 4, or 6. Name form:
short or long. Name format: First-use hooks.

In real life, unlike in Shakespeare, the sweetness of the rose depends upon the
name it bears. Things are not only what they are. They are, in very important
respects, what they seem to be.

—Hubert H. Humphrey, speech (26 March 1966)

72

\GlobalNameTest
\LocalNameTest

\IfMainName

9.5 Testing Name Decisions

Since name patterns are control sequences like macros, we can test for their existence.
This can relate names to each other dynamically throughout a document.

9.5.1 Testing Macros

The macros in this section test for the presence or absence of a name, then expand
to a result based on the outcome of the test.

The default behavior encapsulates the decision paths in a local scope, insu-
lating any changes therein. If this is not desired, use the globaltest option or
\GlobalNameTest. \LocalNameTest will re-enable the default. These commands af-
fect assignment statements in test paths. By default, one must explicitly use \global
when desired. See also the examples below.

In order to test whether or not a “main matter” name control sequence exists,
use this long macro that can accommodate paragraph breaks:

\IfMainName [{(FNN)]{(SNN, Affix)} [{Alternate)]{{yes)}{(no)}

For example we have not encountered \Name [Bob] {Hope} yet. Using \IndexName
does not affect the tests in this section. We could do the following test that will
reflect whether or not the name is present in the text:

1 I heard someone say: \IfMainName[Bob]{Hope}
2 {Bob here!}
3 {No Bob here.}\IndexName [Bob]{Hope}

I heard someone say: No Bob here.

Now we test for \Name{Elizabeth,I}, a name that has occurred, and we also
show the difference between local and global test paths. We see that the default
keeps local any assignments made in the test paths:

\GlobalNameTest
\def\msg{We are unsure about \LEliz}

\IfMainName{Elizabeth,I}
{\def\msg{We really do know of \LEliz}}
{\def\msg{We do not know of \LElizl}}

\parbox{0.4\textwidth}{\msg} (\cmd{\GlobalNameTest}).

© oo ~ o v - W [V -

\LocalNameTest
\def\msg{We are unsure about \LEliz}

= = e
N = O

\IfMainName{Elizabeth,I}
{\def\msg{We really do know of \LEliz}}
{\def\msg{We do not know of \LEliz}}

[SR
o U W

\parbox{0.4\textwidth}{\msg} (\cmd{\LocalNameTest}) .

[un
IS

We really do know of Elizabeth | (\GlobalNameTest).

We are unsure about Elizabeth | (\LocalNameTest).

73

\IfFrontName

\IfAKA

Name Pattern(s):
Jesse!Ventura!MN
James! Janos!PN
James ! Janos!MN

In order to test whether or not a “front matter” name pattern exists, use this
long macro that can accommodate paragraph breaks. Its syntax is:

[\IfFrontName [(FNN)1{(SNN, Affiz)} [{Alternate)]1{{yes)}{(no)}

|

This macro works just like \IfMainName, except using the “front matter” name
control sequences as the test subject. These testing macros prove their worth especially
through combination. For example, we do a test based on Section 9.1.

N O s W N =

\IfFrontName [Rudolph]{Carnap}
{\IfMainName [Rudolph]{Carnap}
{\Name [Rudolph]{Carnap} is in both main- and front-matter text.}
{\Name [Rudolph] {Carnap} is only in front-matter text.}}
{\IfMainName [Rudolph]{Carnap}
{\Name [Rudolph]{Carnap} is only in main-matter text.}
{\Name [Rudolph]{Carnap} has not been mentioned.}}

Carnap is in both main- and front-matter text.

This macro tests whether or not a regular or excluded form of cross-reference
control sequence exists. The syntax is:

\IfAKA[(FNN)1{(SNN, Affiz)} [{(Alternate)]{(y) }H{(n) H{(excl)}

This macro also works like \IfMainName, except that it has an additional (ezcl)
branch in order to detect the activity of \ExcludeName (Section 7.1). Cross-references
are governed by name control sequences ending in !PN (Section 6.1).

Excluded control sequences (the (ezcl) path) expand to the value of
\@nameauth@Exclude.

Regular cross-references (the (y) path) do not expand to that value. At
present, they are empty.

\ExcludeName creates excluded xrefs. \IncludeName destroys them.

Regular xrefs are created by \IndexRef, \AKA, \PName and their starred
forms. Regular xrefs are destroyed by \IncludeNamex*.

Based on the known facts above, below we offer some examples:

1.

[V R SR

In the text we first create an instance of former pro-wrestler and Minnesota
governor Jesse Ventura, \Name [Jesse]{Ventura}.

We establish his lesser-known legal name as an alias: “James Janos”,
\IndexRef [James] {Janos}{Ventura, Jesse}\Name [James] {Janos}.

. We get the result: “Jesse Ventura is a stage name”. If we do not use

\ExcludeName, we can leave the (excl) branch empty:

\IfAKA[James]{Janos}
{\Name* [Jesse]{Ventura} is a stage name}
{\Name* [Jesse]{Ventura} is a regular name}

{3

74

We can combine all these macros to create a complete, unified test:

1 \IfAKA[FNN]{SNN, Affix}[Alternate]

2 {%

3 % yes; it is an xref

4 F

s %

6 % no, it is a name

7 \IfFrontName [FNN]{SNN, Affix}[Alternate]
8 %

9 % yes, it is in the front matter

10 \IfMainName [FNN]{SNN, Affix}[Alternate]
1 {%

12 % it is in both front and main matter
13 }

14 {4

15 % it is only in the front matter

16 Y

17 }

18 %

19 % no, it is not in the front matter

20 \IfMainName [FNN]{SNN, Affix}[Alternate]
21 {%

22 % it is only in the main matter

23 }

24 {%

25 % it does not exist

26 jyA

27 Y%

28}

20 {%

30 % no; it is excluded

31}

9.5.2 Applications: Game Books, Histories, Etc.

In any text where encountering certain names can change variables, character statis-
tics, personal information, the macros described above can be used to key various
pieces of information to the presence or the absence of a name. For example, in a
series of independent document sections, one can craft notes like the one below to
sketch out character development:

1 \ifMainName [Ferris]{Bueller}
2 {\Name [Cameron] {Frye} is gloomy and introspective.}
3 {\Name [Cameron] {Frye} is developing positive traits.}

In some instances, one might test for the presence of a name to determine whether
or not to use a particular version of that name:

1 \ifMainName[J.W. von]{Goethe}

2 {\Name [J.W. von]{Goethe}}
3 {\Name [J.W. von]{Goethe}[Johann Wolfgang von]}

In Sections 11.2.2 and 11.5 we explore ways that one could automate something
like what we have above. Section 11.5 applies better to Western names.

75

Name Pattern(s):
Paul!PN
Saul,ofTarsus!DB
Jesus,Christ!MN
Lucius!SergiusPaulus!MN
Paul!MN
Saul,ofTarsus!MN

In addition to using the name decision testing macros by themselves, one can use
them with name tags to ensure that the information associated with a given name is
not anachronistic.

For example, we know that certain people are associated with chronological events.
We associate those people and events to the information presented in a name tag via
name testing macros:

\NameAddInfo{Saul, of Tarsus}
{\IfMainName{Jesus, Christ}
{\IfMainName [Lucius]{Sergius Paulus}
{renamed himself \Name{Paul}, in
honor of his patron}
{next became a preacher to the Gentilesl}}
{wrote first that he persecuted Christians}}
\ForgetName{Jesus, Christ}
\ForgetName [Lucius] {Sergius Paulus}
\IndexRef{Paul}{Saul of Tarsus}

© W N O e W N

=
= o

\Name{Saul, of Tarsus} \NameQueryInfo{Saul, of Tarsus}.

He wrote in the letter to the Galatians, later reported in
the book of Acts, that he saw a vision of \Name{Jesus, Christ}
on the road to Damascus.

I ~ S =
D Utk W N

\Name{Saul, of Tarsus} \NameQueryInfo{Saul, of Tarsus}.
He undertook three missionary journeys before being
sent to Rome for trial in an appeal to Caesar.

While in Cyprus, \Name{Saul, of Tarsus} converted
\Name [Lucius] {Sergius Paulus}, who became a patron.

NN N R e =
N O O © o

\Name{Saul, of Tarsus} \NameQueryInfo{Saul, of Tarsus}.
Under the name \Name{Paul} he wrote his letters.

NN
= W

Saul of Tarsus wrote first that he persecuted Christians. He wrote in the letter to
the Galatians, later reported in the book of Acts, that he saw a vision of Jesus
Christ on the road to Damascus.

Saul next became a preacher to the Gentiles. He undertook three missionary
journeys before being sent to Rome for trial in an appeal to Caesar. While in
Cyprus, Saul converted Lucius Sergius Paulus, who became a patron.

Saul renamed himself Paul, in honor of his patron. Under the name Paul he
wrote his letters.

Caveats

Using these tests inside other macros or passing control sequences to them may
create false results (see The TpXbook, 212-15). This was especially the case before
2018 with names using diacritical marks and other letters outside the basic Latin
characters. That is why nameauth uses token registers to save name arguments.

We have stressed and will continue to stress using \noexpand in macros passed
as name arguments to stabilize what happens. See also Section 14.4 regarding how
one might engage possible Unicode issues in certain IXTEX engines.

In addition to these points, using the trace package, \show, or \meaning can help
one to mitigate problems.

76

9.5.3 Beamer Example

Below we keep names consistent with beamer overlays using some of the macros
explained in this section. Otherwise, name forms will change automatically as one
advances the slides. We do not use indexing in this example.

\documentclass{beamer}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage [noindex] {nameauth}

[

\mode<presentation>
\beamerdefaultoverlayspecification{<+->}

© W N O s W N

\begin{document}

=
o

11 \begin{frame}{Move Text Without Retyping Names}

12 \begin{itemize}\footnotesize

13 \item<1-> Original\ForgetName [George]{Washington}/

14 \ForgetName [George] {Washington’s}\\
15 This version of \Name[Ulysses S.]{Grant} changes.
16 \begin{enumerate}

17 \item<2-> \IfMainName [George]{Washington’s}{He}%

18 {\Name [George] {Washington}}

19 became the first president

20 of the United States.

21 \item<3-> \IfMainName [George]{Washington}{His}/,

22 {\Name* [George] {Washington’s}}

23 military successes during the Seven Years War
24 readied him to command the army

25 of the Continental Congress.

26 \end{enumerate}

27 \item<1-> Reordered\ForgetName [George]{Washington}}

28 \ForgetName [George] {Washington’s}\\
29 This version of \ForgetThis\Name[Ulysses S.]{Grant}
30 does not change.

31 \begin{enumerate}

32 \item<3-> \IfMainName [George]{Washington}{His}/

33 {\Name* [George] {Washington’s}}

34 military successes during the Seven Years War
35 readied him to command the army

36 of the Continental Congress.

37 \item<2-> \IfMainName [George]{Washington’s}{He}%

38 {\Name [George] {Washington}}

39 became the first president

40 of the United States.

41 \end{enumerate}

42 \end{itemize}

43 \end{frame}

45 \end{document}

The overlays, numbered from one to three, keep name forms consistent by deleting
name control sequence patterns for each new overlay. Otherwise, name patterns would
change for each new overlay.

77

Name conditionals ensure specific, context-dependent forms based on what
name has appeared. These conditionals allow the text in each overlay to be order-
independent and able to be moved around at will. The first overlay shows the use of
\ForgetThis to keep names constant.

7

Move Text Without Retyping Names

» Original
This version of Ulysses S. Grant changes.

» Reordered
This version of Ulysses S. Grant does not change.

The second overlay uses \ForgetName forcing specific name forms respective to
each overlay, instead of respective to the overall sequence of overlays. We also observe
the use of name conditionals in text elements that one might reorder.

r

Move Text Without Retyping Names

» Original
This version of Grant changes.
1. George Washington became the first president of the United
States.

> Reordered
This version of Ulysses S. Grant does not change.

2. He became the first president of the United States.

78

Overlay three fully illustrates how all these features integrate. This could allow
a presenter to maintain information used in different presentations, making each
element or slide a “drop-in” unit that can figure out how to present names, name
forms, and related information without extensive retyping.

7

Move Text Without Retyping Names

» Original
This version of Grant changes.

1. George Washington became the first president of the United
States.

2. His military successes during the Seven Years War readied him
to command the army of the Continental Congress.

» Reordered
This version of Ulysses S. Grant does not change.

1. George Washington's military successes during the Seven Years
War readied him to command the army of the Continental
Congress.

2. He became the first president of the United States.

Back to Table of Contents]

"Tis but thy name that is my enemys;. ..
What’s in a name? That which we call a rose
By any other name would smell as sweet;
So Romeo would, were he not Romeo call’d,
Retain that dear perfection which he owes
Without that title. Romeo, doff thy name,
And for that name which is no part of thee
Take all myself.
—William SHAKESPEARE
“Romeo and Juliet”, Act II, Scene IT (published 1597)

79

Name Pattern(s):
Mike!Tyson!MN

10 Name Authority Basics

10.1 Variant Names

This section explains how to manage simpler surname variants. There are several
ways that nameauth can handle variants, in increasing levels of complexity.

1. Use (Alternate) to create variant forms, yet retain consistent index entries.
This is the default function of nameauth that readers already have seen.

2. Create several names. Index one or more occurrences of these names as
“standard” variants that refer to each other via see also references. In
relation to the “standard” variants, any other variants would be indexed
only with a see reference. The macros \JustIndex, \IndexName, and
\IndexRef play a big role here (Sections 7.2 and 7.3).

3. Use alternate formatting, \noexpand, and macros in the name arguments
that expand differently under specific conditions in the formatting hooks,
but expand consistently when indexed.

We will repeat the following rule in the discussion of Roman names (Section 11.4)
and in the discussion of alternate formatting (Section 11.3). One cannot overstate
this point when using mutable macros in name arguments:

When a macro occurs in a name argument appearing in both text and index, fix
any concerns about macro expansion by using \noexpand before that macro.

10.1.1 Variants and the Alternate Argument

We begin with the first kind of variant names listed above. We decide that the
canonical name to be used is Mike Tyson. We set up both the canonical name and an
alternate name in the nameauth environment:

\begin{nameauth}

\< Tyson & Mike & Tyson & >

\< Iron & Mike & Tyson & Iron Mike >
\end{nameauth}

Ut e W N

\IndexRef{Iron Mike}{Tyson, Mike}

Because \Iron uses the (Alternate) column, all index page entries are the same
as those for \Tyson, the canonical name. Adding the cross-reference via \IndexRef
produces “Iron Mike see Tyson, Mike” in the index.

Output Macro Output Macro
Iron Mike Tyson \LIron Iron Mike Tyson \LTyson[Iron Mike]
Tyson \Iron Tyson \Tyson
Iron Mike \SIron Mike \STyson

Yet (Alternate) does more than handle variant forenames in Western name forms.
It can be used to manage alternate names in Eastern and ancient forms, as we have
already seen. For this to work properly, we must have a name where (SNN) and

80

Name Pattern(s):
Elizabeth,I!MN

Name Pattern(s):
W.E.B.!Du~Bois!MN
W.E.B.!DuBois!MN

(Affiz) are both populated in order to use (Alternate). Otherwise, one winds up with
the obsolete syntax (Section 12.2).

We will engage this topic more, beginning with Section 11.2.2, Here we give a

basic illustration of how one can start to manage these names. For instance:

© 00 N O U W N =

\begin{nameauth}
\< Eliz & & Elizabeth, I & >
\end{nameauth}

\IndexRef{Gloriana}{Elizabeth I}
\IndexRef [Good Queen]{Bess}{Elizabeth I}

\LEliz[I, ‘‘Gloriana’’] was known also as
\ForceFN\SEliz[‘‘Good Queen Bess’’].

Elizabeth I, “Gloriana” was known also as “Good Queen Bess".

10.1.2 Managing Multiple Variant Names

With the second class of name variants listed above, we get into pseudonyms, aliases,
and variant family names. This class is more complicated:

1. Names that change capitalization in the surname, take grammatical

endings, or vary in other ways. See Sections 5.7, 5.8, 11.2.2, 11.3.5ff.,
and 11.4, for increasingly complex examples.

Names having separate index entries that are linked together with cross-
references. Sections 7.2 and 7.3 give many examples, which we will not
repeat here because most of the work is done with indexing macros.

Names that the author wants to treat as different, yet which the nameauth
internals might see as the same. One can use the naming macros, index
tagging macros, and formatting macros to simulate the existence of
multiple identical names (see below and Section 7.7).

The following method avoids using macros in name arguments and it is easier to

set up. The trade-off is that, while macros in name arguments are harder to set up,
they benefit from automation. Below we establish two names and a sort key for the
main name under which both names are indexed:

[S

\begin{nameauth}

\< DuBois & W.E.B. & Du~Bois & >

\< AltDuBois & W.E.B. & DuBois & >
\end{nameauth}
\PretagName [W.E.B.]{Du~Bois}{DuBois, William}

Based on historical research and some name authorities, we decide that
the the canonical name will be: W.E.B. Du Bois \DuBois.

We use the non-breaking space (the tilde active character) because in-
ternally, nameauth removes all regular spaces from name patterns. Both
\Name [W.E.B.]{Du Bois} and \Name[W.E.B.]{DuBois} have the same
name control pattern: W.E.B. !DuBois (Section 6.1). The name pattern
W.E.B.!Du~Bois differs from both of the other names.

81

e Another reason to use the non-breaking space is that it prevents a line
break between the particle Du and the name Bois.

e The sort key that could be applicable to both names is {DuBois,
William}. Had we used the sort key {Du Bois, William}, the name
would be sorted before dual, which is not in order (Section 7.6.2).

o Instead of using \SkipIndex\AltDuBois many times, we create a cross-
reference before the alternate name is used to prevent index page entries
from being created for the alternate form:

\IndexRef [W.E.B.]{DuBois}{Du Bois, W.E.B.}

e With the following setup we keep full stop detection, modify name
forms, and check if the name straddles a page break in order to ap-
pend \JustIndex\DuBois if needed:

\newcommand\VarDuBois{\JustIndex\DuBois\AltDuBois}
\newcommand\LVarDuBois{\JustIndex\DuBois\LAltDuBois}
\newcommand\SVarDuBois{\JustIndex\DuBois\SAltDuBois}
Speaking of \VarDuBois[William E.B.J].\\

Speaking of \LVarDuBois.\\

Speaking of \SVarDuBois[William E.B.].

Speaking of William E.B. DuBois.
Speaking of W.E.B. DuBois.
Speaking of William E.B.

g s W N =

e The macro below loses full stop detection, but it does automatically
handle the name spanning a page break, just like the regular naming
macros. Yet it is rather inelegant.

1 \newcommand\NewDuBois [2]{%

2 \def\Test{#1}%

3 \def\Long{L}%

4 \def\Short{S}%

5 \JustIndex\DuBoisY

6 \ifx\Test\Long \LAltDuBois[#2] \else
7 \ifx\Test\Short \SAltDuBois[#2] \else
8 \AltDuBois \fi\fi

9 \JustIndex\DuBois}

10 \ForgetThis\NewDuBois{}{William E.B.}\\
11 \NewDuBois{L}{}\\

12 \NewDuBois{S}{William}

William E.B. DuBois
W.E.B. DuBois
William

The cause of war is preparation for war.
—W.E.B. Du Bois
Darkwater (1920), C II: The Souls of White Folk

82

10.1.3 Nonstandard Capitalization and Indexing

Here we look at nonstandard capitalization. We consider poet e.e. cummings. As long
as one sticks with the default noformat option, the easiest solution is to begin a
sentence with something like:

Name Pattern(s): 1 \SubvertThis\CapThis\Name[e.e.]{cummings}’s motif of the
e.e.!cummings!MN 2 goat-footed balloon man has underlying sexual themes that
Basic Index: 3 nevertheless present a childish facade.

cummings, e.e.
Cummings’s motif of the goat-footed balloon man has underlying sexual themes
that nevertheless present a childish facade.

Suppose, however, that we want both some kind of name formatting and still use
capitalization. We can use the indexing macros discussed in Section 7.1:

\ExcludeName [e.e.]{cummings’s}

We consider the work of \ForgetThis\Name[e.e.]{cummings}.
\SubvertThis\CapThis\Name[e.e.]{cummings’s}

motif of the goat-footed balloon man has underlying
sexual themes that nevertheless present a childish facade.

Name Pattern(s):
e.e.!cummings’s

Ul W N =

We consider the work of e.e. cummings. Cummings’'s motif of the goat-footed
balloon man has underlying sexual themes that nevertheless present a childish
facade.

In both examples above, we use \SubvertThis to force a subsequent use in order
to prevent a first use that looks like “E.e. Cummings’s”. The macro \CapThis will
capitalize the first letter in all name elements. Using \ExcludeName keeps one from
having to use \SkipIndex every time.

Section 11.3 explains how to use \CapThis with alternate formatting when using
macros in name arguments. Section 11.3.6 describes how automation lends itself to
grammatical inflections of names.

10.1.4 Variant Names and Index Cross-References

Here we show differences among variants and cross-references. We can choose to index
variants under the canonical name or we can set up cross-references with variants.
The order in which we do that is significant:

Name Pattern(s): 1. We use the canonical name to create page entries:
J.E.!Carter,Jr.!IMN (1-2)
Jimmy!Carter!PN (3, 6) JE Carter Jro oo \Name*[J.E.]{Carter, Jr.}
Jimm%’!carter!MNl (4) 2. Variants that use (Alternate) in the text create page entries under the
J.E.1Carter, Jr. 1PN (5) canonical form, not the variant form:
Jimmy Carter........ \DropAffix\Namex[J.E.]{Carter, Jr.}[Jimmy]
\ShowIdxPageref*[J.E.]{Carter, Jr.}[Jimmy] Carter, J.E., Jr.

3. We must create a see reference from an alternate form to a canonical
form before using the alternate form in a naming macro, or it will be
ignored and a warning will result:

\IndexRef [Jimmy]{Carter}{Carter, J.E., Jr.}

83

4. No page entries will occur below because we made the see reference first.
Note how the alternate form is an independent name:

Jimmy Carter.........o i \Name [Jimmy] {Carter}

5. If we want to index the alternate name, we have to use the canonical
name instead of the alternate name:

\IndexName[J.E.]{Carter, Jr.}

6. If instead we wanted to make a see also reference, we would use both the
canonical name and the alternate name, then create the cross-reference
after all uses of the alternate name (at the end of the document), e.g.:

\SeeAlso\IndexRef [Jimmy]{Carter}{Carter, J.E., Jr.}

Multiple Connections

Below, two names are indexed with page numbers. They have see also cross-references
to each other. One of those names also has a see reference to it:

Name Pattern(s): 1. We use the canonical name to set up page entries:
Maimonides !MN
Moses,ben-Maimon!PN

g% Maimonides.t \Name{Maimonides}
Moses,ben-Maimon!MN (3) 2. Maimonides has two other names, one more used than the other. We set

(4)

(5)

Rambam ! MN

up his least-used name as the see reference:
Rambam ! PN

\IndexRef{Moses, ben-Maimon}{Maimonides}

3. We have a main name with a page entry and a “see reference” to that
name. No page entries will occur below because we made the xref first:

Moses ben-Maimon \Name{Moses, ben-Maimon}

4. Before creating see also cross-references, we use the other alias so that
all the page entries precede the cross-references:

Rambam \Name{Rambam}

5. All see also references must come after all page entries. For example, one
could put both of these macros at the end of the document:

\SeeAlso\IndexRef{Maimonides}{Rambam}
\SeeAlso\IndexRef{Rambam}{Maimonides}

Multiple Targets

There is a case where one cross-reference can point to multiple targets, such as
demonstrated in the example below:

\PretagName{\textit{Snellius}}{Snellius}
\IndexRef{\textit{Snellius}}

{Snel van Royen, R.; Snel van Royen, W.}
Both \Name[W.]{Snel van Royen}[Willebrord] and
his son \Name[R.]{Snel van Royen}[Rudolph] were known
by the Latin moniker \Name{\textit{Snellius}}.

Name Pattern(s):
\textit{Snellius}!PRE
\textit{Snellius}!PN
W. !SnelvanRoyen!MN
R.!SnelvanRoyen!MN

Ut e W N =

Both Willebrord Snel van Royen and his son Rudolph Snel van Royen were known
by the Latin moniker Snellius.

One must plan the location of xrefs or use \IncludeName*. Above, we have no
page entry for \Name{\textit{Snellius}} because \IndexRef comes first.

84

Name Pattern(s):
Jacques!De~Pamele!MN
Jacobus!Pamelius!MN
Giovanni!d’Andrea!MN
Toannes!Andreae!MN

Basic Index:

De Pamele, Jacques
Pamelius, Jacobus
d’Andrea, Giovanni
Andreae, Ioannes

10.2 Using a Name Authority

Below are a couple of names from a name authority created for a translation of De
Diaconis et Diaconissis Veteris Ecclesiae Liber Commentarius by Caspar Ziegler, of
which the present author was the editor.?*

Constructing that name authority of over 500 names was a challenge. The deceased
translator left names in abbreviated Latin. He left many place-names in Latin and
incorrectly translated some others. To get valid names that one can research, the
present author recommends:

o CERL Thesaurus

e Virtual International Authority File
« EDIT16

o WorldCat

o Library of Congress

e Older version of Graesse, Orbis Latinus

I set the vernacular forms as canonical, with the Latin versions referring to them.
I re-translated all the place-names. I also did the following;:

1. Sort vernacular names with \PretagName due to particles (Section 7.6). 2. If
Latin names are only cross-references, use \IndexRef (name args) to generate cross-ref-
erences before referring to any names (Section 7.3). 3. If Latin names have page
entries, then place \SeeAlso\IndexRef(name args) as needed at the end of the
document, before \printindex. 4. Use \CapThis (Section 5.7).

\PretagName [Jacques] {De~Pamele}{Depamele, Jacques}
\Name [Jacques] {De~Pamele} [Jacques de~Joigny]
\IndexRef [Jacobus] {Pamelius}{De~Pamele, Jacques}
\Name [Jacobus] {Pamelius}

\PretagName [Giovanni] {d’Andrea}{Dandrea, Giovanni}
\Name [Giovanni]{d’Andrea}

\IndexRef [Ioannes] {Andreae}{d’Andrea, Giovanni}
\Name [Toannes] {Andreae}

© 0w N O s W N

Canonical Name \Name [Jacques]{De~Pamele}[Jacques de~Joigny]
Jacques de Joigny De Pamele

Latin Name \Name [Jacobus]{Pamelius} Jacobus Pamelius
Canonical Name \Name[Giovanni]{d’Andreal} Giovanni d’Andrea

Latin Name \Name[Ioannes]{Andreae} loannes Andreae

D'Andrea \CapThis\Name [Giovanni]{d’Andrea} can be used at the beginning
of a sentence. \Name [Jacques] {De~Pamele} gives De Pamele.

Back to Table of Contents]

2The book, The Diaconate of the Ancient and Medieval Church had been typeset using INTEX,
but then had to be converted to a different format.

85

https://data.cerl.org/thesaurus/_search
https://viaf.org/
https://edit16.iccu.sbn.it/web/edit-16
https://www.worldcat.org/
https://id.loc.gov/authorities/names.html
https://www.columbia.edu/acis/ets/Graesse/contents.html

11 Advanced Formatting

Up to this point, formatting hooks have taken a name whose form was set in the
internal name parser and the hooks applied some typographic changes to that name.

In this section we start using formatting hooks in ways that interact with and
change the syntactic form of a name, perhaps in addition to making typographic
changes to that name.

We thus merge the two concepts of syntax and formatting to create more complex
examples that are able to do more complicated things with names. We thus can meet
a few specific, real-world cultural expectations and scholarly conventions.

Before we delve into this section, below we see a general scheme of how the core
name engine processes a name:

Naming Macro Layer

Naming macros \Name, \Name*, \FName, \FName*, and the macros created
by the nameauth environment all send their arguments to three hooks that,
by default, point to \@nameauth@Name (Section 13.3). Here \@nameauth@Name
handles the work requested by \JustIndex, \SubvertThis, \ForgetThis, and
\SkipIndex. It then hands off the name arguments to the name parser, either
with a main-matter !MN suffix or a front-matter !'NF suffix...

Syntactic Element Layer

\@nameauth@Parse: Determine name category, capitalization, punctua-
tion, elements to be used, and pass on to. ..

Name Display Layer

\@nameauth@NonWest: Consult rules, construct displayed form.
\@nameauth@West: Consult rules, construct displayed form.
\@nameauth@Form: “Magic Eight Ball” of rules for name forms.
Includes checking if a name control sequence exists, checking
which is the calling macro, and so on. Pass the information to. ..

Format Hook Dispatcher

\@nameauth@Hook: Check the name to be printed for a
final full stop. Check which naming system we are using.
Call a formatting hook depending on if our name control
sequence pattern exists, and if we are in the main-matter
system or the front-matter system. The formatting hook
prints the name in the text.

\

\@nameauth@Parse: Make name control sequence from name pattern.

\.

\@nameauth@NameEngine: If the final full stop flag is true, check the lookahead
token for a full stop and gobble it if needed.

86

11.1 Formatting Hooks

This proof of concept puts the first mention of a name either in italics (front matter)
or in boldface (main matter), and it adds a margin note if that is allowed. We use
\let to save and restore the old hooks, although we also could use a group to keep
format changes in a local scope:

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage{nameauth}

\makeindex

© 00 N O U s W N =

% First save main- and front-matter hooks. Then change
% first-use hooks for both main matter and front matter.
\let\OldFormat\NamesFormat
\let\OldFrontNames\FrontNamesFormat

e
w N = O

\renewcommand*\NamesFormat [1] {\textbf{#1}\unless\ifinner
\marginpar{\raggedleft\scriptsize #1}\fi}

\renewcommand*\FrontNamesFormat [1]{\textit{#1}\unless\ifinner
\marginpar{\raggedleft\scriptsize #1}\fi}

o
[BRSNS

\PretagName{Vlad, {\c T}epe{\c s}}{Vlad Tepes} % for accented names
\TagName{Vlad, II}{ Dracul} % for index information
\TagName{Vlad, III}{ Dracula}

\IndexRef{Dracula}{Vlad III}

[I R R R CR
s W N = O ©

\begin{document}

N
w

The new format (front matter):\NamesInactive

NN
N O

\Name{Vlad, III}[III Draculal], known as

\IndexRef{Vlad, {\c T}epe{\c s}}{Vliad III}
\SubvertThis\Name*{Vlad, {\c T}epe{\c s}}

(\Name*{Vlad, {\c T}epe{\c s}}[the Impaler])

after his death, was the son of \Name{Vlad, II}[II Dracull],
a member of the Order of the Dragon. Later instances of

¢ “\Name*{Vlad, III}’’ and ‘‘\Name{Vlad, III}’’ appear thus.

W W W W W w NN
gk W N O ©

The new format (main matter):\NamesActive

w W
N O

\Name{Vlad, III}[III Dracula], known as

\IndexRef{Vlad, {\c T}epe{\c s}}{Vliad III}
\SubvertThis\Name*{Vlad, {\c T}epe{\c s}}

(\Name*{Vlad, {\c T}epe{\c s}}[the Impaler])

after his death, was the son of \Name{Vlad, II}[II Dracull],
a member of the Order of the Dragon. Later instances of

¢ “\Name*{Vlad, III}’’ and ‘‘\Name{Vlad, III}’’ appear thus.

N N N I)
g ok W N = O ©

\let\NamesFormat\OldFormat
\let\FrontNamesFormat\0ldFrontNames

PN
o N O

We are back in the old format.

P
o ©

87

Vlad IIT Dracula
Vlad II Dracul

Vlad IIT Dracula
Vlad II Dracul

\@nameauth@toksa
\@nameauth@toksb
\@nameauth@toksc

51 in the front matter we see: \NamesInactive
52 \ForgetThis\Name{Vlad, III}[III Draculal],
53 \Name*{Vlad, III}, and \Name{Vlad, III}.
54

55 in the main matter we see: \NamesActive

56 \ForgetThis\Name{Vlad, III}[III Draculal],
57 \Namex{Vlad, III}, and \Name{Vlad, III}.
58

59 \printindex

60 \end{document}

The new format (front matter):

Vlad III Dracula, known as Vlad Tepes (Vlad the Impaler) after his death, was
the son of Viad II Dracul, a member of the Order of the Dragon. Later instances
of “Vlad IlI” and “Vlad” appear thus.

The new format (main matter):

Vlad IIT Dracula, known as Vlad Tepes (Vlad the Impaler) after his death,
was the son of Vlad II Dracul, a member of the Order of the Dragon. Later
instances of “Vlad IlI” and “Vlad” appear thus.

We are back in the old format.
in the front matter we see: Vlad Il Dracula, Vlad Ill, and Vlad.

in the main matter we see: Vlad Ill Dracula, Vlad Ill, and Vlad.

The reason why we redefine \NamesFormat is because it is more common to add
extra information with the first mention of a name. Yet one similarly could redefine
\MainNameHook or \FrontNameHook for subsequent uses of names.

11.2 Name Tags in Hooks

By recalling name tags (Section 8) in formatting hooks, one can automate how they
either appear with a name or not. This package is all about automation and the
associated trade-offs.

Formatting hooks are called within a local scope. They take zero or one argument
(Section 9.1). When they take one argument, they have the option to print that
argument, add information to the argument, or discard the argument. Yet macros
used in formatting hooks can present challenges that we show how to manage:

e When \noexpand is used in a name argument, \NameQueryInfo and
perhaps other macros may not produce output within a formatting hook
when using the basic interface, but the quick interface works fine.

e Macros that are used to make local changes in formatting hooks should
never make the same changes outside of that context, else spurious index
entries will occur.

Three token registers contain each of the name arguments used in a macro that
takes them. They are needed to manage the proper expansion of name arguments,
especially in the index. Historically, these registers have been necessary for names
that contain accents and diacritics. In Section 12.1, these registers correspond to the
last three name arguments. They can be used, if needed, in formatting hooks by
nameauth macros that take name arguments.

Their chief use, historically speaking, was to facilitate retrieving name tags via
\NameQueryInfo. That use has been superseded by \NameauthPattern, which is
described in Section 6.1.

88

Alternate A

Alternate B

11.2.1 Hook Templates
Recommended Template

The hook below prints the name tag with the first use of a name in the main-matter
system, if such a tag exists. It is simple, it avoids the \NameQueryInfo problem, and
it is easy to debug.

\renewcommand*\NamesFormat [1]
{%
#1%
\ifcsname\NameauthPattern!DB\endcsname
\expandafter\csname\NameauthPattern!DB\endcsname?,
\fi
}

N O g W N =

Older Templates

Two other hook designs were used in the past to display name tags. They are included
here only for the sake of illustration. After showing the templates, we test all three
of them to show why we recommend the template above.

We use e-TEX features next. See this page on the use of \unexpanded and
another page pertinent to the structure of this hook. We print the name, expand
the arguments of \NameQueryInfo, and use those arguments to print the tag.

1 \makeatletter

2 \renewcommand*\NamesFormat [1]{%

3 \begingroup’

4 \protected@edef\temp{\endgroup

5 {#1\noexpand\NameQueryInfo

6 [\unexpanded\expandafter{\the\@nameauth@toksal]
7 {\unexpanded\expandafter{\the\@nameauth@toksbl}}
8 [\unexpanded\expandafter{\the\@nameauth@toksc}]’
9 Y%

10 A

11 \temp%

12}

13 \makeatother

The older form of this hook was the first to be used in nameauth, based on this
pdf article from TUGboat that gives a tutorial on \expandafter. As one can see,
it is more tedious, but gets the same result as above:

\let\ex\expandafter

\makeatletter

\renewcommand*\NamesFormat [1]{%
#1%,
\ex\ex\ex\ex\ex\ex\ex\NameQueryInfo,
\ex\ex\ex\ex\ex\ex\ex[\ex\ex\ex\the,
\ex\ex\ex\@nameauth@toksa\ex\ex\ex]%
\ex\ex\ex{\ex\the\ex\@nameauth@toksb\ex}/
\ex [\the\@nameauth@etoksc]

3

\makeatother

© 0w N O s W N

— e
=)

89

https://tex.stackexchange.com/questions/140785/how-is-unexpanded-defined
https://tex.stackexchange.com/questions/61223/explanations-about-begingroup-edef-x-endgroup
https://www.tug.org/TUGboat/tb09-1/tb20bechtolsheim.pdf
https://www.tug.org/TUGboat/tb09-1/tb20bechtolsheim.pdf

Template Test

We set up the following test for our three templates, with indexing suppressed:

¢ A macro in a name argument is preceded by \noexpand. That occurs
with greater frequency in advanced formatting.

o If we see the outcome, “Test passed”, we have success.
o If we see the outcome, “Test”, we have failure.
The macro \testname contains the first part of our test output. The name

tag contains the second part. We will use both name interfaces with all three
templates.

1 \newcommand\testname{Test}

2 \NameAddInfo{\noexpand\testname}{ passed}
3 \begin{nameauth}

4 \< Test & & \noexpand\testname & >

5 \end{nameauth}

e The recommended hook gives us:
\ForgetThis\Name{\noexpand\testname} Test passed success

\ForgetThis\Test Test passed success
o Alternate A gives us:

\ForgetThis\Name{\noexpand\testname} Test failure

\ForgetThis\Test Test passed success
o Alternate B gives us:

\ForgetThis\Name{\noexpand\testname} Test failure

\ForgetThis\Test Test passed success

11.2.2 Application: Ancient Names

Ancient names tend to be the most fluid regarding the meaning and use of affixes.
Certain scholarly contexts add more information to a name when it is first introduced.
Here we look at ways to address that need. For the sake of clarity, here the examples
do not use the formatting conventions of this manual.

First we explore the easiest way to handle royal or ancient variants by manually
adding any epithets or sobriquets to a standard name form:

Name Pattern(s): e We use \PretagName to sort especially Roman numerals in the index. For
Antiochus,IVIPRE example: \PretagName{Antiochus, IV}{Antiochus 4}

Name Pattern(s): e We use \TagName to ensure that any “long form” information is displayed
Antiochus, IVITAG in the index: \TagName{Antiochus, IV]}{ Epiphanes, king}.

e Using \PretagName and \TagName in the preamble ensures consistency.

Name Pattern(s): o We use (Alternate) to add “long form” information in the text, e.g:
Antiochus,IV!MN
\Name {Antiochus, IV}[IV Epiphanes]............ Antiochus IV Epiphanes
\Namex{Antiochus, IV}ottt Antiochus IV
\Name {Antiochus, IV}.........c.oooioiioei ... Antiochus

90

Name Pattern(s):
Demetrius,I!PRE
Demetrius,I!TAG

Demetrius,I!MN

Name Pattern(s):
Demetrius,I!DB

Next we show a snippet that uses the quick interface with this same method. We
trigger a first use, followed by long and short subsequent uses:

\PretagName{Demetrius, I}{Demetrius 1}
\TagName{Demetrius, I}{ Soter, king}
\begin{nameauth}

\< Dem & & Demetrius, I & >
\end{nameauth}

[S

\ForgetName{Demetrius, I}

\Dem[I Soter] ..ot Demetrius I Soter
10 =3 Demetrius 1
AN 0= A Demetrius

As discussed in Section 1.7, simple examples do not lend themselves to automation.
Below we trade automation, where we do not need to add information manually to
the (Alternate) argument, for a complex initial setup that uses name tags and the
recommended template:

6 \NameAddInfo{Demetrius, I}{ Soter}
7 \renewcommand*\NamesFormat [1]
8
9

{h
#17,
10 \ifcsname\NameauthPattern!DB\endcsname
11 \expandafter\csname\NameauthPattern!DB\endcsname},
12 \fi
13}

14 \renewcommand*\MainNameHook{}

\ForgetName{Demetrius, I}

N0 =3 P Demetrius I Soter
N0 =3 PP Demetrius I
D I, o ottt et Demetrius

In both cases, the index entry in a normal document would be sorted like the
following: Demetrius 1@Demetrius I Soter, king.

The first use of a name, or one after the use of \ForgetName or \ForgetThis,
shows the most information. A long instance of an extant name shows a little less
info, and a short instance shows the least. Every difference in name form corresponds
with a macro in a known state.

11.2.3 Application: Life Dates

History texts tend to use life dates, regnal dates, and dates when certain figures
flourished. As we used more information with ancient names via name tags, we can
do something similar here.

First we must create any name tags that might be used. Whether it is in the
preamble or in the body text, the main point is that the tag can only be used if it
exists. The tags have a leading space because they are printed conditionally.

We also define a cross-reference “Atatiirk,” yet we use naming macros with that
name, printing formatted names in the text but making no index page entries. We
add a Boolean flag to the formatting hook that lets us suppress dates in first uses as
needed, while normally displaying dates in first uses by default. Below we suppress
the usual formatting of this manual.

91

© 00 N O U s W N =

T I S o T N S~ S SR S O
@ N R O © ® N O U A W N~ O

24

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage{nameauth}

\makeindex

% Add name tags to names.
\NameAddInfo [George] {Washington}{ (1732--99)}
\NameAddInfo[Mustafa]{Kemal}{ (1881--1938)}
\NameAddInfo{Atat\"urk}{ (in 1934, a special surname)}

% Ensure that Atat\"urk is a cross-reference that
% has no page entries in the index.
\IndexRef{Atat\"urk}{Kemal, Mustafa}

% Manually suppress name tag in ‘‘first’’ instance
\newif\ifNoTag

% Redesign formatting hook to usually print a tag
% only in ‘‘first’’ instance. On exit, It resets
% the flag that suppresses tags, making that flag
% work only once per name use.

\renewcommand*\NamesFormat [1]
{h
#17,
\ifcsname\NameauthPattern!DB\endcsname
\unless\ifNoTag
\expandafter\csname\NameauthPattern!DB\endcsname,
\fi
\global\NoTagfalse}
\fi

Up to this point it seems as if there has been a lot of setup. The payoff, however,

comes in the main body text where the use of the naming macros does not look much
different than normal.

35
36
37
38
39
40
41
42
43
44
45

}

\begin{document}

\ForgetThis\Name [George] {Washington} held office as the first US
president from 1789 to 1797. \Name[George] {Washington} was the only
president whose term in office was completely in the eighteenth
century. If we need to trigger the first use hook at some point,

we can suppress dates and get an automatic long instance via:
\NoTagtrue\ForgetThis\Name [George] {Washington}. Or we can trigger
the first-use hook in a subsequent name use and still have dates:

George Washington (1732-99) held office as the first US president from 1789 to
1797. Washington was the only president whose term in office was completely in
the eighteenth century. If we need to trigger the first use hook at some point, we
can suppress dates and get an automatic long instance via: George Washington.
Or we can trigger the first-use hook in a subsequent name use and still have
dates: Washington (1732-99).

92

Since we already set up a cross-reference with \IndexRef, we can use just the

the naming macros with “Atatiirk” and get the desired formatting without any page
entries in the index:

46
47
48
49
50
51
52
53
54
55
56

\ForceName\Name [George] {Washington}.

We can add name info tags to names used only as cross-
references. For example, \Name[Mustafa]{Kemal} was granted
the name \Name{Atat\"urk}. We mention \Name[Mustafa]{Kemal}
and \Name{Atat\"urk} again. Likewise, we can trigger a
first use, but with no name tag tag:
\NoTagtrue\ForgetThis\Name{Atat\"urk}.

\printindex
\end{document}

We can add name info tags to names used only as cross- references. For example,
Mustafa Kemal (1881-1938) was granted the name Atatiirk (in 1934, a special
surname). We mention Kemal and Atatiirk again. Likewise, we can trigger a
first use, but with no name tag tag: Atatirk.

11.3 Alternate Formatting

We build on the subject of complex formatting hooks that \noexpand playing a role
therein, Before we engage the topic of Roman names and other complex examples,
we need to cover alternate formatting.

11.3.1 Enabling and Disabling

The first thing we need to know is how to enable and disable alternate formatting:

\AltFormatActive

Macro Enabled Activated
\AltFormatActive | |
\AltFormatActivex* [|
\AltFormatInactive

Enabled means that the alternate formatting mechanism inhibits the
normal behavior of \CapThis.

Disabled means that the normal behavior of \CapThis is again in force
and alternate formatting is inhibited.

Activated means that built-in alternate formatting macros like \textSC
format their arguments.

Deactivated means that built-in alternate formatting macros like
\textSC do not format their arguments.

Both the altformat option and \AltFormatActive enable and activate alternate

formatting. Both cause \CapThis to work via \AltCaps instead of the normal way.
\AltFormatActive countermands \AltFormatActivex.

\AltFormatActivex*

The starred form \AltFormatActive* enables alternate formatting but deacti-

vates the built-in alternate formatting macros, preventing them from changing their
arguments. It countermands both the altformat option and \AltFormatActive. It
causes \CapThis only to work via \AltCaps.

93

\AltFormatInactive

This macro both disables and deactivates alternate formatting. This reverts
globally to standard formatting and the normal function of \CapThis.

Most nameauth macros that turn things on and off have a local scope unless
one uses \global. These alternate formatting macros have global scope to eliminate
implied scope becoming a point of failure, creating spurious index entries.

The macros above always make global changes. Using names designed for
alternate formatting in a document section that uses regular formatting will
produce an inconsistent appearance in the text and spurious index entries.

11.3.2 Using \noexpand

As we get into advanced formatting, we will encounter \noexpand with greater
frequency. Even before we consider that discussion, we need to touch on a few ways
that macros can break nameauth when used in name arguments.

In order to handle the inherent ambiguity of name forms, macros that take name
arguments trade a certain “fragility” for the ability to be as close to natural language
as possible. In versions of nameauth before 3.5, enclosing an (SNN),(Affix) argument
within a robust macro like \textsc would halt IXTEX with errors. That seems to be
no longer the case. Nevertheless, depending on the macros used, it may be helpful to
apply macros separately to (SNN) and (Affiz) like this:

\Name{\noexpand\MyMacro{(SNN)}, \noexpand\MyMacro{(Affiz)}}

Using \CapThis with a name whose leading element is a macro may fail, depending
on the particular macro. Use alternate formatting to have \CapThis activate the
alternate capitalization mechanism.

When a macro occurs in a name argument appearing in both text and index, fix
any concerns about macro expansion by using \noexpand before that macro.

In Section 6.3 we encountered reasons for using \noexpand in name arguments,
as well as related caveats. Now we include more reasons to use \noexpand:

e If a macro is undefined, even putting \noexpand before it will permit an
error unless the macro is detokenized or verbatim.

e The use of \noexpand isolates the local, conditional expansion of macros
in the formatting hooks from the global macro state in the index.

¢ Indexing of such names normally does not occur within the formatting
hooks. Otherwise, different index entries would result.

e One can use macros in the formatting hooks to trigger local changes.
If using Boolean flags to trigger those changes, one needs two flags per
change (e.g., grammatical inflection) but not per name.

e Local flags are false when the hook executes. Global flags are reset when
the hook terminates.

o Take care when using macros in name arguments without using \noexpand
before them.

94

\AltCaps

\textSC
\textIT
\textBF
\textUC

11.3.3 Alternate Capitalization

Above we referred to potential problems using \CapThis. When alternate formatting
is enabled, \CapThis changes its mechanism to avoid such problems.

Using the aid of the helper macro \AltCaps, \CapThis will cause \AltCaps to
capitalize its argument only in a formatting hook. \AltCaps is enabled whenever
alternate formatting is enabled, but it works independently of both \Al1tOn and
\A1t0ff, which are covered in the next section. We describe the syntax:

\noexpand\AltCaps{(Arg)}

We offer a silly example below, taking advantage of the local scope of the quote
environment to disable indexing temporarily:

\IndexInactive

What’s in \Name[\noexpand\AltCaps{a}]{Namel}?
\CapThis\Name* [\noexpand\AltCaps{a}] {Name} smells not,
but a rose does, even if it has

\Name* [\noexpand\AltCaps{a}] {Name}.

Tl W N =

What’s in a Name? A Name smells not, but a rose does, even if it has a Name.

\AltCaps does not partition its argument, so it will not have the same issues as
the normal use of \CapThis, adding to stability and robustness at the expense of
doing a little more work.

11.3.4 Formatting Features

Using alternate formatting can be as easy as using any one of four predefined
macros. These macros are analogous to the predefined formatting hooks that are
accessible via package options. They always format their arguments when using
the altformat option or \AltFormatActive. They never format their arguments
when \AltFormatActivex* is used or alternate formatting is disabled.

By themselves, they do not change format. Yet the macros \A1tOff and \AltOn,
described shortly, are able to turn the formatting of these macros on and off. We advise
using \noexpand before these macros because they can be made to change format.
Assuming that we have sorted the following names with \PretagName (Section 7.6),
we get the following, using this manual’s formatting conventions:

\Name [Konrad] {\noexpand\textSC{Zusel}};
\Name [Konrad] {\noexpand\textSC{Zuse}}\\
\Name [Ada] {\noexpand\textIT{Lovelacel}};
\Name [Ada] {\noexpand\textIT{Lovelace}}\\
\Name [Charles]{\noexpand\textBF{Babbagel}};
\Name [Charles]{\noexpand\textBF{Babbage}}\\
\Name{\noexpand\textUC{Kanade}, Takeol};
\Name{\noexpand\textUC{Kanade}, Takeo}

[e e A

Konrad ZUSE; ZUSE

Ada Lovelace; Lovelace
Charles Babbage; Babbage
KANADE Takeo; KANADE

95

\A1tOff

\A1tOn

Font substitutions might occur with these macros, depending on the font used.
\CapName, \RevComma, and \RevName can modify the names, but only in the text.

The alternate formatting macros shown above become more interesting when we
automate how they turn on and off. Using \noexpand is necessary here. Both macros
below are used in formatting hooks. They hide some complexity from authors.

Vaguely reminiscent of depressing an automobile’s manual clutch lever, \A1t0ff
deactivates \textSC, \textBF, \textIT, and \textUC only in a formatting hook.
The alternate formatting mechanism is still “running”, but it is not transferring
“power” to the formatting macros. They display their arguments unmodified.

Likewise, \A1tOn activates \textSC, \textBF, \textIT, and \textUC only in
a formatting hook, as if one let out the clutch pedal, causing “power” to transfer
through the gearbox to the formatting macros. They now modify their arguments.

If one uses the altformat option or \AltFormatActive, the formatting “power’
goes to the formatting macros by default in order to have formatted names in the
index. Otherwise, the normal formatting regime isolates formatting in the text, as
the Anglosphere seems wont to do.

We use \noexpand as discussed and add a formatting hook to get changes in the
text, not in the index. We also suspend this manual’s formatting conventions:

)

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

© 0w N O s W N

\PretagName [Konrad] {\noexpand\textSC{Zuse}}{Zuse, Konrad}
\PretagName [Ada] {\noexpand\textIT{Lovelace}}{Lovelace, Ada}
\PretagName [Charles]{\noexpand\textBF{Babbage}}

{Babbage, Charles}
\PretagName{\noexpand\textUC{Kanade}, Takeo}{Kanade Takeo}

e e
=W N = O

\begin{document}

=
(2B

\renewcommand*\MainNameHook{\A1tOff}

= e
o

\ForgetThis\Name [Konrad] {\noexpand\textSC{Zusel}};
\Name [Konrad] {\noexpand\textSC{Zuse}}\\
\ForgetThis\Name [Ada]{\noexpand\textIT{Lovelacel}};
\Name [Ada] {\noexpand\textIT{Lovelace}}\\
\ForgetThis\Name [Charles] {\noexpand\textBF{Babbagel}};
\Name [Charles]{\noexpand\textBF{Babbage}}\\
\ForgetThis\Name{\noexpand\textUC{Kanade}, Takeo};
\Name{\noexpand\textUC{Kanade}, Takeo}

NN NN NN N N =
N O O R W N = O ©

\printindex
\end{document}

NN
©

Konrad ZUSE; Zuse

Ada Lowelace; Lovelace
Charles Babbage; Babbage
KANADE Takeo; Kanade

96

11.3.5 History Text

First we engage the idea of a history text, where we use standards for medieval
Italian to encode a name instead of those used in modern Romance languages.

© W N O e W N

W oW oW W W NN NN NN NN NN E R R R e e
B W N =2 O W 0 N O U R WD O YW oUW N = O

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

\begin{nameauth}

\< Luth & Martin & \noexpand\textSC{Luther} & >

\< Cath & Catherine \noexpand\AltCaps{d}e’

& \noexpand\textSC{Medicil} & >
\end{nameauth}
\PretagName [Martin] {\noexpand\textSC{Luther}}{Luther, Martin}
\PretagName [Catherine \noexpand\AltCaps{d}e’]
{\noexpand\textSC{Medici}}{Medici, Catherine de}

\renewcommand*\MainNameHook{\sffamily\AltOff}
\begin{document}

\ForgetThis\Luth\ was a leading figure in the Protestant
Reformation. \Luth\ believed that one is declared

righteous in a forensic sense by divine grace through faith
created by the Holy Spirit via the Gospel and the Sacraments.

\ForgetThis\Cath\ was not only Queen of France in her own right,
but she also guided the reigns of her three sons.
\CapThis\LCath[\noexpand\AltCaps{d}e’]

was blamed for the St.\ Bartholomew’s Day massacre that saw the
murder of thousands of Huguenots.

\printindex
\end{document}

Martin LUTHER was a leading figure in the Protestant Reformation. Luther
believed that one is declared righteous in a forensic sense by divine grace
through faith created by the Holy Spirit via the Gospel and the Sacraments.

Catherine de' MEDICI was not only Queen of France in her own right, but she
also guided the reigns of her three sons. De' Medici was blamed for the St.
Bartholomew’s Day massacre that saw the murder of thousands of Huguenots.

Comparing the example above to Section 5.7 shows us some differences. Medieval

Italian, similar to modern German, keeps the particle(s) with the forename(s). Modern
Italian groups particles and surnames together. Thus, we must use here:

de' Medici \LCath[\noexpand\AltCaps{d}e’]
De' Medici \CapThis\LCath[\noexpand\AltCaps{d}e’]

97

11.3.6 Inflected Names

Next we design grammatical inflections for use with alternate formatting. We do
not use the general formatting conventions in this manual. We shall build on this

example in order to design the more complex hooks used for Roman names.

We need two Boolean flags for one change in name form, which is a grammat-
ical inflection in this case. Thus, we set up \ifGenitive as the global flag and

\ifDoGenitive as the local flag.

\DoGenitivetrue occurs only in the formatting hook. The macro that produces
the genitive (or possessive) ending only does so when \ifDoGenitive is true. This
keeps the index entries consistent via \noexpand. Likewise, \A1t0ff only occurs in

the formatting hook \MainNameHook.

© 00 N O U s W N =

W oW W W W W W W W NN NN NN NN NN R R e s R e e e
0o N O s W N O YW U e W NN E O YW U e W NN = O

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

\newif\ifGenitive
\newif\ifDoGenitive

\newcommand*\GEN{\ifDoGenitive\textSC{’s}\fi}

\begin{nameauth}
\< Jeff & Thomas &
\noexpand\textSC{Jefferson}\noexpand\GEN{} & >
\end{nameauth}

\PretagName [Thomas] {\noexpand\textSC{Jefferson}\noexpand\GEN{}}
{Jefferson, Thomas}

\TagName [Thomas] {\noexpand\textSC{Jefferson}\noexpand \GEN{}}
{, pres.}

\renewcommand*\NamesFormat [1]
{\ifGenitive\DoGenitivetrue\fi#1\global\Genitivefalse}

\renewcommand*\MainNameHook [1]
{\ifGenitive\DoGenitivetrue\fi\AltOff#1\global\Genitivefalse}

\begin{document}

Consider \Genitivetrue\Jeff\ legacy as the author of the
colonies’ \textit{Declaration of Independence} and his impact
as third president of the United States. \Jeff\ was a complex
historical figure whose actions defy a consistent moral compass
both in public policy and in personal affairs.

\printindex
\end{document}

Consider Thomas JEFFERSON’S legacy as the author of the colonies’ Declaration
of Independence and his impact as third president of the United States. Jefferson
was a complex historical figure whose actions defy a consistent moral compass
both in public policy and in personal affairs.

98

11.3.7 Reference Work 1

Here we show how nameauth might be used in a reference work, where names are
also the head-words of articles. We present examples that include a basic Western
name, a basic Eastern name, and a more complicated Western name that includes
an alias. Here are a few points to consider:

© 0w N O s W N

LT T e
=~ O © ® N O A W N R O

Sort all names that use alternate formatting.

Match index entry forms to article head-words. Name variants are cross-
referenced to the name form in the head-word.

Ensure that the first appearance of a name displays only the active
alternate formatting. Any additional formatting comes from the macro
that formats entries.

Deactivate alternate formatting in subsequent name instances.

Since some IATEX fonts do not combine small caps and boldface, we
instead use slanted text to set the head-words off from the articles. That
font switch is done in the macro that formats the articles (\RefArticle).

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex
% Sort any names with macros in the arguments.

\PretagName [Greta] {\noexpand\textSC{Garbo}}{Garbo, Greta}

\PretagName{\noexpand\textSC{Misora}, Hibari}{Misora Hibari}

\PretagName [Heinz] {\noexpand\textSC{R\"uhmann}}{Ruehmann, Heinz}

\PretagName [Heinrich Wilhelm]{\noexpand\textSC{R\"uhmann}}
{Ruehmann, Heinrich Wilhelm}

% Make a cross-reference from a variant name form to the
% form of the head-words

\IndexRef [Heinrich Wilhelm]{\noexpand\textSC{R\"uhmann}}
{\noexpand\textSC{R\"uhmann}, Heinz}

% Define the formatting hooks. Since we use the ‘altformat’
% option, alternate formatting is turned off in later
% name uses.

\renewcommand*\MainNameHook{\A1tOff}
% Typeset head-words with a slanted font.

\newcommand{\RefArticle} [3]
{%
\def\check{#2}%
\ifx\check\empty
\noindent\ForgetThis\textsl{#1}\ #3
\else

99

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

\noindent\ForgetThis\texts1{#1}\ #2\ #3
\fi\medskip
}

\begin{document}

\RefArticle
{\RevComma\Name [Greta] {\noexpand\textSC{Garbo}}}
{3
{(18 September 1905\,--\,15 April 1990) was a Swedish
film actress during the 1920s and 1930s.
\Name [Greta] {\noexpand\textSC{Garbo}}\dots}

\RefArticle
{\Name{\noexpand\textSC{Misora}, Hibari}}
{(W:\, “ “\RevName\Name*{\noexpand\textSC{Misora}, Hibaril}’’;}
{29 May 1937\,--\,24 June 1989) was a Japanese singer
and actress noted for her positive message.
\Name{\noexpand\textSC{Misora}, Hibari}\dots}

\RefArticle
{\RevComma\Name [Heinz] {\noexpand\textSC{R\"uhmann}}}
{(\SubvertThis\ForceName

\FName [Heinrich Wilhelm]{\noexpand\textSC{R\"uhmann}};3}
{7 March 1902\,--\,3 October 1994) was a German actor

in over 100 films.

\Name [Heinz] {\noexpand\textSC{R\"uhmann}}\dots}

\printindex
\end{document}

GARBO, Greta (18 September 1905—15 April 1990) was a Swedish film actress
during the 1920s and 1930s. Garbo. ..

Misora Hibari (W: “Hibari Misora”; 29 May 1937 — 24 June 1989) was a Japanese
singer and actress noted for her positive message. Misora. . .

RUHMANN, Heinz (Heinrich Wilhelm; 7 March 1902 -3 October 1994) was a
German actor in over 100 films. Rihmann. . .

I read in a book once that a rose by any other name would smell as sweet, but
I’'ve never been able to believe it. I don’t believe a rose WOULD be as nice if it
was called a thistle or a skunk cabbage.

—L.M. Montgomery, Anne of Green Gables, C 5 (1908)

100

11.4 Roman Names

Roman names tend to be among the most variable in terms of treatment. As far as
nameauth is concerned, they range from being treated as Western names to being
treated in very special ways. Below we show some variations.

11.4.1 Casual Reading / General Book Market

o Treat as a Western name, especially among well-known Roman names

like Marcus Tullius Cicero, where the final name, Cicero, is a surname and

the rest forenames:2°

\TagName [Julius]{Caesar}{, imperator} % for index
\Name [Julius] {Caesar}[Gaius Julius]\\

\Name* [Julius] {Caesar}\\

\Name [Julius] {Caesar}

N

Name Pattern(s): Gaius Julius Caesar
Julius!Caesar!MN Julius Caesar
Caesar

Index: Caesar, Julius

 Treat as a Western name; put nomen and cognomen in (SNN):%0

1 \ForgetThis\Name [Lucius]{Sergius Paulus}\\
2 \Name [Lucius]{Sergius Paulus}

Name Pattern(s): Lucius Sergius Paulus
Lucius!SergiusPaulus!MN Sergius Paulus

Index: Sergius Paulus, Lucius

e Treat as ancient names, especially those with no praenomen:

1 \ForgetThis\Name{Pontius, Pilate}[Pilatus]\\
2 \Name*{Pontius, Pilatel}\\
3 \ForceFN\FName{Pontius, Pilate}

Name Pattern(s): Pontius Pilatus
Pontius,Pilate!MN Pontius Pilate
Pilate

Index: Pontius Pilate

There is also a method where Roman names are indexed as mononyms using the
most recognizable of their names.?” That method is ill-suited for nameauth.

Fere libenter homines, id quod volunt, credunt.
(In general, people willingly believe what they want [to believe].)
—Julius Caesar, De bello gallico 3.16.6 (58-49 BC)

Z5Philip J. Adler, World Civilizations, 3rd ed. (Belmont, Calif.: Thomson/Wadsworth, 2003).

26paul L. Maier, In the Fullness of Time: A Historian Looks at Christmas, Easter, and the Early
Church, revised ed. (San Francisco: Harper, 1991).

2" Justo L. Gonzélez, The Story of Christianity, 2 vols. (San Francisco: Harper, 1984).

101

11.4.2 Student-Oriented Reference Works

We focus here on reference works meant for general education. In this subsection and
the next, we do not use the general formatting conventions of this manual and we
activate alternate formatting. Roman names have the following format:

o A personal name (praenomen)
e A clan name (nomen)

o A distinguishing name, sometimes denoting clan branches (cognomen);
that could include various affixed names (agnomina)

In ancient Rome, the family name (nomen) was important, helping also to
structure society. This page offers a good overview. The exact roles of names changed
over time. Another page gives an overview of Roman naming conventions. A very
helpful video can be found on the YouTube channel PolyMATHY by Luke Ranieri.

Some reference works treat the cognomen as if it were a Western surname.”
Using this approach, Roman names encoded with nameauth have this form:

Index: (cognomen) (agnomen), (praenomen) (nomen)

Macro: \Name [{praenomen) (nomen)l{{cognomen), (agnomen)}

With both praenomen and nomen in (FNN), as well as the agnomina in (Affix),
they drop automatically in subsequent name uses. With a cognomen as an effective
surname, our choices for name components in the text take on this logic:

o Display one of the following in (FNN):

— Only the praenomen
— Only the nomen

— Both praenomen and nomen
« Display one of the following in (SNN):

— Only the cognomen
— Both cognomen and agnomina

We accomplish this by using macros in the name arguments:

o If the macros in the name arguments will be “segmented” in some way,
as \CapThis does, then use alternate formatting (Sections 11.3).

o When using Boolean flags (\if(flag)) in the macros that represent name
elements, ensure that those flags only change their value within the local
scope of the name formatting hooks (Section 9.1).

o Two Boolean flags are needed for each automated variant in the name.
One flag reflects the global state and the name form in the index. The
other reflects the local state of the formatting hooks.

28GQee Geiss, Geschichte Griffbereit; Kinder and Hilgemann, dtv-Atlas zur Weltgeschichte, 2 vols.,
29th printing (1964; Munich: Deutscher Taschenbuch Verlag, 1993). See also this page.

102

https://en.wikipedia.org/wiki/Patrician_(ancient_Rome)
https://en.wikipedia.org/wiki/Roman_naming_conventions
https://www.youtube.com/watch?v=RMLb1jVl_Uo
https://books.infotoday.com/books/Indexing-names.shtml

When a macro occurs in a name argument appearing in both text and index, fix
any concerns about macro expansion by using \noexpand before that macro.

Since we have four name components, we need at most eight Boolean flags. Our
two examples each use six flags, with four in common and one separate pair each. In
the preamble we define all macros and conditionals used in naming macro arguments.
Instead of \ifNoNomen we use \ifNoGens for readability.

We must use \noexpand in the macro arguments. We define macros in both
(FNN) and (SNN) that expand conditionally. We use the quick interface to define
name shorthands, and we sort the name with \PretagName. False Boolean flags
display longer name forms. True flags display shorter forms.

We used \PretagName and \TagName as needed (cf. Section 11.2.2. These format-
ting hooks used with Roman names also work with other name types.

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

© ~ =] ot - W N —

% Global Boolean flags need to be defined only once.
\newif\ifNoPraenomen

\newif\ifNoCognomen

\newif\ifNoGens

\newif\ifNoAgnomen

e e
TR W N = O

% Local Boolean flags need to be defined only once.
\newif\ifXPrae
\newif\ifXCogn
\newif\ifXGens
\newif\ifXAgno

R
S © ®w N o

% Name variant macros need to be defined uniquely for each
% name. First is Scipio. Second is Gracchus.

NN
w N =

\newcommand*\SCIPi
{%
\ifXGens Publius\else
\ifXPrae Cornelius\else
Publius Cornelius}
\fi
\fi
}

W oW W N NNN NN
N O O © 0 N O Ot

\newcommand*\SCIPii
{h
\ifXAgno Scipio\else
Scipio Africanusy
\fi
}

W W W w w w w
© 0w N O s W

103

\newcommand*\TSemp
{h
\ifXGens Tiberius\else
\ifXPrae Sempronius\else
Tiberius Sempronius}
\fi
\fi
}

% Quick interface definitions. The first shows
% the concept of Roman names without extra features.
% The second (Gracchus) adds name info tags.

\begin{nameauth}
\< Scipio & \noexpand\SCIPi & \noexpand\SCIPii & >
\< TGrac & \noexpand\TSemp & Gracchus & >
\end{nameauth}

% We add the name tag.
\NameAddInfo [\noexpand\TSemp] {Gracchus}
{ (consul, 177 \textsc{bc}H)}

% Sorting and tagging the names

\PretagName [\noexpand\SCIPi]{\noexpand\SCIPii}
{Scipio Africanus}

\PretagName [\noexpand\TSemp] {Gracchus}
{Gracchus, Tiberius Sempronius}

\TagName [\noexpand\TSemp] {Gracchus}{, consul}

\begin{document}

% Although it is helpful to set everything up

% In the preamble, it is not absolutely necessary.

% Here we define the simpler set of formatting hooks
% for Scipio, although the complex hooks will work

Formatting hook macros need to be redefined only once. We reset the global

Boolean flags to ensure the longest name forms in the index. The local Boolean flags
automatically revert to false outside the scope of the formatting hooks.

75
76
77
78
79
80
81
82
83
84
85
86
87

% for both equally as well.

\renewcommand*\NamesFormat [1]

{h
\ifNoPraenomen\XPraetrue\fi%
\ifNoGens\XGenstrue\fi%
\ifNoCognomen\XCogntrue\fiY,
\ifNoAgnomen\XAgnotrue\fi%
#17,
\global\NoPraenomenfalse,
\global\NoGensfalse,
\global\NoCognomenfalse}
\global\NoAgnomenfalsey,

104

90 \renewcommand*\MainNameHook[1]
o {%

92 \ifNoPraenomen\XPraetrue\fi/
93 \ifNoGens\XGenstrue\fi%

94 \ifNoCognomen\XCogntrue\fi},
95 \ifNoAgnomen\XAgnotrue\fi/,
96 #17%,

97 \global\NoPraenomenfalse’

98 \global\NoGensfalse,

99 \global\NoCognomenfalse,

100 \global\NoAgnomenfalsey,
01}

103 \NoAgnomentrue\Scipio\ was born around 236 \textsc{bc}
104 1into the Scipiones branch of the Cornelii clan.

105 \NoAgnomentrue\Scipio\ rose to military fame during the
106 Second Punic War. Thereafter he was known as \Scipio.
107 He flourished during the Egyptian reigns of

108 \Name{Ptolemy, IV}[IV Philopator] and

100 \Name{Ptolemy, V}[V Epiphanes], and the Syrian

110 reigns of \Name{Seleucus, III}[III Ceraunus] and

Publius Cornelius Scipio was born around 236 BC into the Scipiones branch of
the Cornelii clan. Scipio rose to military fame during the Second Punic War.
Thereafter he was known as Scipio Africanus. He flourished during the Egyptian
reigns of Ptolemy IV Philopator and Ptolemy V Epiphanes, and the Syrian
reigns of Seleucus III Ceraunus and Antiochus III the Great.

Below we show more name name variations than were shown above. In addition,
we use those same formatting hooks to display non-Roman names:

Publius Cornelius Scipio Africanus...................... \ForgetThis\Scipio
Publius Cornelius Scipio Africanus...........c.cooviiiiiiiiinen... \LScipio
Scipio AfrICanuso.ve it \Scipio
Publius Corneliusot \SScipio
Publius Cornelius Scipio..................... \NoAgnomentrue\LScipio
SCIPIO. .o \NoAgnomentrue\Scipio
Publius ... \NoGenstrue\SScipio
Cornelius.oovvvuii i \NoPraenomentrue\SScipio
Ptolemy IV Philopator \Name*{Ptolemy, IV}[IV Philopator]
Ptolemy IVo \Name*{Ptolemy, IV}
Ptolemy ... \Name{Ptolemy, IV}

In Section 11.2.2; we used name tags instead of (Alternate) in the first-use
formatting hook. Here we show the changes needed to add name tags to the first-use
formatting hook. Even though we are changing the formatting hooks throughout the
document, none of the changes cause different index entries and will be unnoticed in
the finished document.

111 \Name{Antiochus, III}[III the Great].
112
113 % We make no change to \MainNameHook, but we do

114 % change \NamesFormat to display any extant

=

105

115/ name tags.
116
117 \renewcommand*\NamesFormat [1]

118 {%
119 \ifNoPraenomen\XPraetrue\fi}
120 \ifNoGens\XGenstrue\fi%

121 \ifNoCognomen\XCogntrue\fi},
122 \ifNoAgnomen\XAgnotrue\£fi%

123 #1%

124 \ifcsname\NameauthPattern!DB\endcsname

125 \expandafter\csname\NameauthPattern!DB\endcsname’,
126 \fi

127 \global\NoPraenomenfalse,

128 \global\NoGensfalse

129 \global\NoCognomenfalse}

130 \global\NoAgnomenfalsey,

131}

132

133 \TGrac\ served as tribune of the plebs in 184 \textsc{bc}.
134 \NoGenstrue\STGrac\ was elected praetor for 180 \textsc{bc},
135 after which he was appointed governor of Hispania Citerior,
136 serving with the rank of proconsul. In 177 \textsc{bc},

137 he was elected consul, again in 163 \textsc{bc}.

138

139 \printindex

140 \end{document}

Tiberius Sempronius Gracchus (consul, 177 BC) served as tribune of the plebs in
184 BC. Gracchus was elected praetor for 180 BC, after which he was appointed
governor of Hispania Citerior, serving with the rank of proconsul. In 177 BC, he

was elected consul, again in 163 BC.

Below we show both a Roman name and a different name type working the

way with the formatting hook:

Tiberius Sempronius Gracchus (consul, 177 BC).......... \ForgetThis\TGrac
Tiberius Sempronius Gracchus.............. i ... \LTGrac
Tiberius Gracchus......... ... i i, \NoGenstrue\LTGrac
GracChuso \TGrac
Tiberius SemMpPronius.ottt e \STGrac
TIDETIUS .« v vt \NoGenstrue\STGrac
SEIMPIONIUS . .« - v vttt \NoPraenomentrue\STGrac
Demetrius I Soter...........c.oo i \ForgetThis\Dem
Demetrius L. ... \LDem
Demetrius. . oo

salie

Bellum parate, quoniam pacem pati non potuistis.

(Prepare for war, for it seems that you are unable to tolerate peace.)?”

—Publius Cornelius Scipio Africanus
attributed by Titus Livius in Ab urbe condita B 30 (27-9 BC)

29Here we enclosed this quote in a group and redefined the formatting hooks locally.

106

11.4.3 Scholarly Reference Works

The Ozxford Classical Dictionary and other scholarly sources index according to the
nomen. That approach moves the nomen from (FNN) to (SNN) thus:

Index: (nomen) (cognomen) {agnomen), {praenomen)

Macro: \Name [{praenomen)]{{nomen) (cognomen) (agnomen)>

This indexing method is incompatible with the previous section, but we show
both in this manual. We retain most of the code used in the last section, but we
change the macros used in the name arguments. The logic still shows all names for
the index, but we make different choices in the text:

o Display the praenomen in (FNN):
« Display one of the following in (SNN):

Only the cognomen

— Both the cognomen and agnomina

Only the nomen

Both the nomen and cognomen
— The nomen, cognomen, and agnomina

1 \documentclass{article}

2 \input{compat.tex} % Included with nameauth; example file aids
3 % compatibility across different LaTeX versions and engines.

4 \usepackage{makeidx}

5 \usepackage[altformat] {nameauth}

6

7 \makeindex

8

9 % Global Boolean flags need to be defined only once.

10 \newif\ifNoPraenomen

11 \newif\ifNoCognomen

12 \newif\ifNoGens

13 \newif\ifNoAgnomen

14

15 % Local Boolean flags need to be defined only once.
16 \newif\ifXPrae

17 \newif\ifXCogn

18 \newif\ifXGens

19 \newif\ifXAgno

20

21 % Name variant macros need to be defined
22 % uniquely for each name.

23

24 \newcommand*\CSB

25 {%

26 \ifXGens

27 \ifXAgno Scipio\else

28 Scipio Barbatus\fi

29 \else

30 \ifXCogn Cornelius\else

31 \ifXAgno Cornelius Scipio\else
32 Cornelius Scipio Barbatus

107

33 \fi

34 \fi
35 \fi
36 F

37

38 % Quick interface definition

39 \begin{nameauth}

40 \< 0Scipio & Lucius & \noexpand\CSB & > % 0 for Oxford
41 \end{nameauth}

42

43 % Sorting and tagging

44 \PretagName [Lucius]{\noexpand\CSB}{Cornelius Scipio Barbatus}
45 \TagName [Lucius]{\noexpand\CSB}{, consul}

46

47 \renewcommand*\NamesFormat [1]

s %

49 \ifNoPraenomen\XPraetrue\fiy

50 \ifNoGens\XGenstrue\fi%

51 \ifNoCognomen\XCogntrue\fi}

52 \ifNoAgnomen\XAgnotrue\fi}

53 #17%

54 \ifcsname\NameauthPattern!DB\endcsname

55 \expandafter\csname\NameauthPattern!DB\endcsname,
56 \fi

57 \global\NoPraenomenfalse,

58 \global\NoGensfalse}

59 \global\NoCognomenfalse},

60 \global\NoAgnomenfalsey,

61}

62

63 \begin{document}

64

65 \0Scipio\ was born around 337 \textsc{bc} into the

66 Scipiones branch of the Cornelii clan, one of the large
67 patrician clans. \NoGenstrue\NoAgnomentrue\OScipio\ was
6s one of the two elected consuls in 298 \textsc{bc}

69 and served during the Third Samnite War.

70

71 \printindex

72 \end{document}

Lucius Cornelius Scipio Barbatus was born around 337 BC into the Scipiones
branch of the Cornelii clan, one of the large patrician clans. Scipio was one of
the two elected consuls in 298 BC and served during the Third Samnite War.

Instead of relying on some nameauth features that drop some names automatically,
in all but (FNN) we have to state explicitly what we want:

Lucius Cornelius Scipio Barbatus...................... \ForgetThis\OScipio
Lucius Cornelius Scipio Barbatus............. ...t \LOScipio
Cornelius Scipio Barbatus......... ... \OScipio
Lucius .o \SOScipio
Cornelius. ... \NoCognomentrue\0Scipio
Cornelius Scipio ... \NoAgnomentrue\0Scipio
Scipio Barbatus..........ooo i \NoGenstrue\0Scipio
SCIPIO et \NoGenstrue\NoAgnomentrue\OScipio

108

\NameParser

\ifNameauthWestern
\ifNameauthObsolete

One may create convenience macros instead of using the Boolean flags. Yet this
might make things less clear at first glance, for example:

\newcommand*\LucScipio{\NoGenstrue\NoAgnomentrue\OScipio}
Lucius SCipio . ..vvuvv i \ForgetThis\LucScipio
SCIPIO . et \LucScipio

The student and scholarly forms of Roman names are incompatible. Yet we show
what the index entries would be in a normal KTEX document without hyperlinks:

Popular Reference Works:
\ShowIdxPageref [\noexpand\SCIPi] {\noexpand\SCIPii}
Scipio Africanus@Scipio Africanus, Publius Cornelius

\ShowIdxPageref [\noexpand\TSemp] {Gracchus}
Gracchus, Tiberius Sempronius@Gracchus, Tiberius Sempronius, consul

Scholarly Reference Works:
\ShowIdxPageref [Lucius] {\noexpand\CSB}
Cornelius Scipio Barbatus@Cornelius Scipio Barbatus, Lucius, consul

11.5 Special Name Uses

Previously, formatting hooks either changed typefaces or mutated their arguments.
Now we move beyond parsing the argument as we have received it.

The user-accessible parser (Section 15.7.6) builds a printed name from internal,
locally-scoped macros. Its output is affected by a subset of the Boolean flags, namely,
those flags that affect long and short forms, as well as name reversal. Within the
hooks we can use the user-accessible parser as often as we want.

e \if@nameauth@FullName toggles long or short name forms, as in
\Name versus \Name*. \if@nameauth@FirstName toggles forenames when
\if@nameauth@FullName is false. When modifying these flags, one must
know when they are normally true or false.

e \if@nameauth@RevThis reverses name order. \ForceFN normally toggles
\if@nameauth@EastFN. Using \if@nameauth@RevThis, reversing with-
out commas, overrides \if@nameauth@RevThisComma if both are true.

o \if@nameauth@RevThisComma creates the form (SNN), (FNN).

Two Boolean flags are available to users so that they can know quickly what
type of name was processed most recently by \@nameauth@Choice, which is called
by all macros that take name arguments. These allow hook designers to vary the
hook behavior based on the name type.

These flags also persist after the macro that uses name arguments exits, unlike
many other flags. This allows one to poll the last macro that took naming arguments,
which may or may not be the last name printed in the text.

To illustrate how one might poll these flags, either in a formatting hook or after
a macro that takes name arguments exits, we set up the following macros and show
how the flags are set. Notice that the name type is a function solely of the name
arguments used, not how the name eventually ends up printed in the text, and not
based on the name control sequence.

109

\newcommand\ShowType
{h
\ifNameauthWestern Western name\else
\ifNameauthObsolete nonwestern name using obsolete syntax\else
nonwestern name using current syntax\fi
\fi
X

o

© W N O e W N

First, we begin with a Western name:

=
= o

\Name* [Albert]{Einstein} is a \ShowType.

= e
w N

Even though this name is reversed in the text, it is still Western:

-
IS

\RevName\Name* [Frenec]{Liszt}\dag\ is a \ShowType.

= = e
N o w

Here we present the same name twice, but using the two different
syntax versions for nonwestern names:

[a—
S © ®

\Name*{Henry, VIII} is a \ShowType.

NN
N

\Name*{Henry}[VIII]\ddag\ is a \ShowType.

NN
= W

Finally, even though we do not print the name,
\IndexName{Elizabeth, I} we get a \ShowType.

N
w

First, we begin with a Western name:

Albert Einstein is a Western name.

Even though this name is reversed in the text, it is still Western:
Liszt Frenecy is a Western name.

Here we present the same name twice, but using the two different syntax versions
for nonwestern names:

Henry VIII is a nonwestern name using current syntax.
Henry VIIII is a nonwestern name using obsolete syntax.

Finally, even though we do not print the name, we get a nonwestern name using
current syntax.

11.5.1 Reference Work II

Below we revisit the idea of a reference work, leveraging the formatting hooks to
format headwords, add information from name info tags:

Since we are using the altformat option or \AltFormatActive, we can expect
that formatting is activated by default. We design a subsequent-use hook that
deactivates alternate formatting inside of it:

[\renewcommand*(SubsequentHook) [11{...\A1t0ff\NameParser. ..}]

110

If we had used \AltFormatActive*, where the formatting macros are enabled,

but deactivated by default, then we might want instead a first-use hook that
activates the macros:

\renewcommand*(FirstHook) [1]1{...\AltOn\NameParser. ..}

© 0w N O U R W N e

— e
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34

36
37
38
39
40
41
42
43
44
45
46
47
48

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

% Boolean flags; the first sets up headwords and the second
% indicates that a nonwestern form should not be reversed.
\newif\ifHeadword

\newif\ifAncientName

% Sorting and tagging the names:

\PretagName [Charles]{\noexpand\textBF{Babbage}}{Babbage, Charles}
\PretagName{\noexpand\textUC{Kanade}, Takeo}{Kanade Takeo}
\PretagName [Ada] {\noexpand\textIT{Lovelace}}{Lovelace, Ada}

% Adding name information:
\NameAddInfo{Aristotle}{ (384--322 \textsc{bc})}
\NameAddInfo[Charles]{\noexpand\textBF{Babbage}}{ (1791--1871)}
\NameAddInfo{\noexpand\textUC{Kanade}, Takeo}{ (1945--)}
\NameAddInfo[Ada] {\noexpand\textIT{Lovelace}}
{ (Augusta Ada King, Countess of Lovelace
[n\’ee Byron]; 1815--52)}

% Redefining the formatting hooks:
\makeatletter
\renewcommand\NamesFormat [1]
{%
\ifHeadword
\ifNameauthWestern
\@nameauth@RevThisCommatrue,
\bfseries \NameParser?,
\normalfont}
\if csname\NameauthPattern!DB\endcsname
\expandafter\csname\NameauthPattern!DB\endcsname,
\fi
\else
\bgroup’
\bfseries \NameParser?,
\unless\ifAncientName
\normalfont; W:\AltOff\space
\@nameauth@RevThistrue \NameParser},
\fi
\normalfont}
\ifcsname\NameauthPattern!DB\endcsname
\expandafter\csname\NameauthPattern!DB\endcsname,

111

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

\fi
\egroup,
\fi
\else
\NameParser},
\fi
\global\Headwordfalse,
\global\AncientNamefalse,
}
\makeatother
\renewcommand\MainNameHook{\A1tOff}

% Define related macros:
\newcommand\Headword{\Headwordtrue\ForgetThis}
\newcommand{\RefArticle}[2]
{%

\noindent\Headword #1 #2,

3

\begin{document}

\RefArticle{\AncientNametrue\Name{Aristotle}}{was the first to offer
a system of logic, most notably syllogistic logic, that would

become the basis for discrete states and circuitry of

digital computers. \Name{Aristotlel}\dots}

\RefArticle{\Name [Charles]{\noexpand\textBF{Babbage}}}{designed and
built the Difference Engine and began work on the Analytical
Engine. \Name[Charles]{\noexpand\textBF{Babbagel}}\dots}

\RefArticle{\Name{\noexpand\textUC{Kanade}, Takeo}}{is one of the
foremost pioneers in the field of computer vision.
\Name{\noexpand\textUC{Kanade}, Takeol}\dots}

\RefArticle{\Name [Ada] {\noexpand\textIT{Lovelace}}}{collaborated with
\Name* [Charles]{\noexpand\textBF{Babbagel}}* and wrote what some
consider to be the first computer program for the Analytical

Engine. \Name[Ada]{\noexpand\textIT{Lovelace}}\dots}

\printindex
\end{document}

Aristotle (384-322 BC) was the first to offer a system of logic, most notably
syllogistic logic, that would become the basis for discrete states and circuitry of
digital computers. Aristotle. ..

Babbage, Charles (1791-1871) designed and built the Difference Engine and
began work on the Analytical Engine. Babbage. ..

KANADE Takeo; W: Takeo Kanade (1945—) is one of the foremost pioneers
in the field of computer vision. Kanade. ..

Lovelace, Ada (Augusta Ada King, Countess of Lovelace [née Byron]; 1815-52)
collaborated with Charles Babbage* and wrote what some consider to be the
first computer program for the Analytical Engine. Lovelace. . .

112

11.5.2 Marginalia

Starting where we left off with Roman names, we begin in the document preamble
by defining Boolean flags and macros. As with Roman names, their default values
produce the name form in the index entry. The default name form aligns with the
default Boolean flag setting: false. All non-default values and expansions of these
macros occur only in the formatting hooks. We use \PretagName to sort the names.
\Revert is used to print a last name without a margin note.

© 0w N O s W N =

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

% Global Boolean flags need to be defined only once.
\newif\ifSpecialFN
\newif\ifSpecialSN
\newif\ifRevertSN

% Name variant macros need to be defined
% uniquely for each name.

% For a long name, we want to use ‘‘William’’ in the text
% and ‘‘Wm.’’ in the margin.

\newcommandx*\WM

{%
\ifSpecialFN Wm.\else
William\fi

}

% The first surname use will be °‘Shakespeare’’, but ‘‘the
% Bard’’ thereafter. We allow for alternate caps.
% We can get °‘Shakespeare’’ thereafter by toggling a flag.

\newcommand*\SHK
{h
\ifRevertSN
\textSC{Shakespeare}\else
\ifSpecialSN
\noexpand\AltCaps{t}he Bard\else
\textSC{Shakespearel},
\fi
\fi
}

% Here is how we toggle that flag.
\newcommand*\Revert{\RevertSNtrue}
% Quick interface name definition:

\begin{nameauth}

113

48 \< Shak & \noexpand\WM & \noexpand\SHK & >
49 \end{nameauth}

50

51 % Sorting and tagging the name:

52

53 \PretagName [\noexpand\WM] {\noexpand\SHK}

54 {Shakespeare, William}

Next we define the two formatting hooks that structure the ways in which
these macros can expand when printed in the text. We force \NamesFormat to print
only allows only the default name via \RevertSNfalse, \SpecialFNfalse, and
\SpecialSNfalse. \MainNameHook disables alternate formatting with \A1t0ff, but
it allows variant name forms.

In the hooks we print the default name in the body text. If allowed, we print a
margin paragraph with an alternate full name using \NameParser. Both hooks set
\RevertSNfalse on exit, so that \Revert works on a per-name basis.

55 \PretagName [Robert] {\textSC{Burns}}{Burns, Robert}
56

57 % The ¢‘first-use’’ hook prints a name, then tries
58 % to insert a margin note using a different name form
59 /% and the user-accessible parser. Finally it resets
60 /% the reversion flag, which is only effective in the
61 /% ‘‘subsequent-use’’ hook. Note how macros in the

62 ' name arguments take the role of what the internal
63 /% Boolean flags might otherwise handle.

64

65 \makeatletter

66 \renewcommand+*\NamesFormat [1]

67 {h

68 \RevertSNfalse\SpecialFNfalse\SpecialSNfalse},
69 #1%,

70 \unless\ifinner

71 \marginpar

72 {%

73 \footnotesize\raggedlefty,

74 \SpecialFNtrue\SpecialSNfalse

75 \NameParser/,

76 Y

77 \fi

78 \global\RevertSNfalse,

79}

80

81 \renewcommand*\MainNameHook[1]

g2 {%

83 \Al1t0ff\SpecialFNfalse\SpecialSNtrue
84 #1Y%

85 \unless\ifinner

86 \unless\ifRevertSN

87 \marginpar

88 {%

89 \footnotesize\raggedlefty,

90 \SpecialFNfalse\SpecialSNfalse},
91 \NameParser/,

92 %

93 \fi

114

Wm. SHAKESPEARE
Robert BURNS
Shakespeare

94 \fi
95 \global\RevertSNfalse,
96)

Finally, we put all these macros to work in the text:

97 \makeatother

98

99 \begin{document}

100

101 \ForgetThis\Shak\ is the national poet of England

102 in much the same way that \Name[Robert]{\textSC{Burns}}
103 is that of Scotland. With the latter’s rise of influence
104 in the 1800s, \Revert\Shak\ became known as ‘‘\Shak’’.
105

106 \printindex

107 \end{document}

William SHAKESPEARE is the national poet of England in much the same way
that Robert BURNS is that of Scotland. With the latter’s rise of influence in the
1800s, Shakespeare became known as “the Bard”.

Back to Table of Contents

Antony: Friends, Romans, countrymen, lend me your ears;
I come to bury Caesar, not to praise him.
The evil that men do lives after them;
The good is oft interred with their bones;
So let it be with Caesar. The noble Brutus
Hath told you Caesar was ambitious:
If it were so, it was a grievous fault,
And grievously hath Caesar answer’d it.
Here, under leave of Brutus and the rest—
For Brutus is an honourable man;
So are they all, all honourable men—
Come I to speak in Caesar’s funeral.
He was my friend, faithful and just to me:
But Brutus says he was ambitious;
And Brutus is an honourable man.
—William SHAKESPEARE
“Julius Caesar”, Act III, Scene IT (first performed 1599)

115

12 Planned Obsolescence

12.1 Almost Obsolete: Pseudonym Macros

The macros described in this section were early features of nameauth. They do not
work like many of the other macros that display names and may be removed in the
future. We retain them at present for backward compatibility.

12.1.1 Special Syntax

To save space, we show (SAFX) as the equivalent of (SNN, Affiz). The macros in
this section all take arguments of the form:

Target Name Cross-Reference Name

[(FNN)I{(SAFX)} [(azref FNN)I{({xref SAFX)} [{zref Alternate)]

e The target name comes first, which is the opposite of \IndexRef. There
the target name comes last because it is text passed to the index macros.

e The cross-reference comes last to allow for the widest range of name forms
(again, the opposite of \IndexRef). We avoid two optional arguments in
succession by preventing the target from having a final optional argument.
Neither (Alternate) nor the obsolete syntax cannot be used with the
target name. Both can be used with the cross-reference.

o (SAFX) and (zref SAFX) can have comma-delimited suffixes.

e One cannot use \TagName with a cross-reference, but one can sort a
cross-reference with \PretagName (Section 7.6):

12.1.2 The Macros

\AKA The also known as macro and its starred form display an alias in the text and create

\AKA* a cross-reference in the index. They format names differently than the naming macros
because they use the name patterns for cross-references as a means to account for
the name forms that they print in the test.

\AKA [(FNN)I{(SAFX)}[(zref FNN)1{(zref SAFX)} [{zref Alternate)]
\AKA* [(FNN)1{(SAFX)} [{zref FNN)1{(xref SAFX)} [{zref Alternate)]

¢ Both macros create a cross-reference in the index to the target name.

e \AKA prints a long form of the cross-reference name in the text. \SeeAlso
works with \AKA, \AKA*, \PName, and \PNamex.

o If (zref Alternate) is present in a Western name form, then instead of
(zref FNN), (aref Alternate) will be printed in the text.

o If (zref Alternate) is present in a nonwestern name form, then instead of
(zref Affiz) (if present), (zref Alternate) will be printed in the text.

o If (xref Alternate) is present without either (zref FNN) or (zref Affiz),
the obsolete syntax is used.

116

e \AKAx is analogous to \FName. \ForceFN works with it. The o1dAKA
option implies \ForceFN with every use of \AKA*.

o Neither \AKA nor its derivatives permit the effects of \ForgetThis and
\SubvertThis to “pass through” because they produce output in the
text. The oldreset option negates this.

Below we make cross-references to Bob Hope \Name [Bob] {Hope}; all of the forms
listed create the cross-reference “Hope, Leslie Townes see Hope, Bob”.

Name Pattern(s):
Bob!Hope !MN
LeslieTownes!Hope!PN

Leslie Townes Hope \AKA[Bob] {Hope}[Leslie Townes]{Hope}
Hope, Leslie Townes \RevComma\AKA [Bob]{Hope}[Leslie Townes]{Hope}

Lester T. Hope \AKA [Bob] {Hope} [Leslie Townes]{Hopel}[Lester T.]
Leslie Townes \AKA* [Bob]{Hope} [Leslie Townes]{Hope}
Lester \AKA* [Bob] {Hope} [Leslie Townes]{Hope}[Lester]

We display other name forms after referring to some names to ensure that they
have sensible page entries:

Louis XIV \ForgetThis\Name{Louis, XIV}
Lao-tzu \Name{Lao-tzu}

Lafcadio Hearn \Name [Lafcadio] {Hearn}
Charles du Fresne \Name[Charles]{du~Fresne}

Caps and reversing macros work on the arguments that are printed in the text.

Name Pattern(s):

Louis. XTVIMN Sun King \AKA{Louis, XIV}{Sun King}
o Sun King \AKA*{Louis, XIV}{Sun King}
Lao-tzu!MN -
Lafcadio!Hearn!MN Li Er \AKA{Lao-tzuHLi, Er}
Charles!du~Fresne!MN Li \AKA*{Lao-tzu}{Li, Er}
SunKing!PN du Cange \AKA [Charles]{du~Fresne}{du~Cange}
Li,Er!PN Du Cange \CapThis\AKA [Charles] {du~Fresne}{du~Cange}
du~Cange ! PN KOIZUMI Yakumo \CapName\AKA[Lafcadio] {Hearn}{Koizumi, Yakumo}
Koizumi, Yakumo ! PN Yakumo Koizumi \RevName\AKA [Lafcadio] {Hearn}{Koizumi, Yakumo}
\PName These convenience macros were an early feature of nameauth. They print a main

\PName* name followed by a cross-reference in parentheses. If one is inclined to view \AKA as
rubbish, these two macros are a biological hazard.

\PName [(FNN)J{(SAFX)}[{(aref FNN)]1{{zref SAFX)} [{zref Alternate)]
\PName* [(FNN)1{(SAFX)} [(zref FNN)]1{(zref SAFX)} [{xref Alternate)]

\PNamex is like \Name* to the extent that it prints a long form of (FNN)(SAFX).
It does not affect the cross-reference (zref FNN)(xref SAFX)(xref Alternate).

o Most prefix macros only affect (FNN)(SAFX), not the cross-reference.

e The cross-reference always has a long form.

\SkipIndex keeps both names out of the index.

o (Alternate) and the obsolete syntax work only with the cross-reference.

117

formatAKA

Name Pattern(s):
Elizabeth,I!NF
GoodQueen!Bess!PN
Elizabeth,I!MN

If we attempted to use \PName*{William, I}[William]{the Conqueror}, this
macro would put “William | (William the Conqueror)” in the body text, but its
index entry would be incorrect: “the Conqueror, William see William 1”. We use
\ForgetName{William, I} to prepare for the following example. We do not show
the name patterns in the margin.

Macro: \PName [Mark] {Twain}[Samuel L.]{Clemens}

Text: Mark Twain (Samuel L. Clemens)
Twain (Samuel L. Clemens)

Macro: \PName* [Mark]{Twain}[Samuel L.]{Clemens}
Text: Mark Twain (Samuel L. Clemens)
Index: Clemens, Samuel L. see Twain, Mark
Macro: \PName{Voltaire}[Francois-Marie]{Arouet}
Text: Voltaire (Francois-Marie Arouet)
Index: Arouet, Francois-Marie see Voltaire
Macro: \PName{William, I}{William, the Conqueror}
Text: William | (William the Conqueror)
William (William the Conqueror)
Index: William the Conqueror see William I
Macro: \PretagName{\textit{Doctor mellifluus}}{Doctor mellifluus}
\PName{Bernard, of Clairvaux}{\textit{Doctor mellifluus}
Text: Bernard of Clairvaux (Doctor mellifluus)
Bernard (Doctor mellifluus)
Index: Doctor mellifluus see Bernard of Clairvaux
Macro: \ForgetThis\PName{Lao-tzu}{Li, Er}
Text: Lao-tzu (Li Er)

Index: Li Er see Lao-tzu

While these macros certainly work, much like the obsolete syntax, they can be
criticized as a design idea that originally seemed to hold promise, yet disappointed
in practice due to using the cross-reference system for name formatting.

12.1.3 Formatting Workarounds

By default, the macros in this section use only the formatting hooks for subsequent
instances of names (Section 9.1).

First, the formatAKA option will permit \ForceName to force the “first-use’
formatting hooks to be employed, but under different conditions. The name patterns
that control these uses (Section 6.1) apply only to cross-references; they are a distinct
system of patterns that differs from normal names and ignores the difference between
main-matter and front-matter name formatting.

9

\ForgetThis\Eliz \AKA{Elizabeth,I}/
[Good Queen] {Bess}

Front Matter: Elizabeth | Good Queen Bess
Main Matter: Elizabeth | Good Queen Bess
With \ForceName: Good Queen Bess

The first appearance of Good Queen Bess above uses \FrontNamesFormat as its
formatting hook because it is the first occurrence of the alternate name in the front
matter. After that, even though Good Queen Bess occurs for the first time in the

118

alwaysformat

main matter, it uses the subsequent-use \MainNameHook because we are not using
the regular name patterns. We need to use \ForceName, which triggers the expected
use of \NamesFormat, the first-use main-matter hook.

Second, we can use the alwaysformat option to force only the use of
\NamesFormat and \FrontNamesFormat. Of course, this can look like rubbish in
certain circumstances.

Elizabeth | was known as “Good Queen Bess”. Again we mention Queen Elizabeth,
“Good Queen Bess”. Using \ForceName: Good Queen Bess.

12.2 Obsolete Syntax

This nonwestern syntax limits alternate names and cross-references, prevents the use
of comma-delimited names, and complicates indexing. It is a “ghost of nameauth
past” that remains for the sake of backward compatibility and to prevent “holes”
where naming macro arguments are discarded without apparent reason.

\Name{(SNN)} [{Alternate)]

The genesis of this syntax was the use of the (Alternate) field for variant forenames
in Western names, personal names in Eastern names, and sobriquets, titles, and so
on in ancient names. Yet this prevented using alternate names for nonwestern names
and it limited those names to an unacceptable second-tier status. Developing the
comma delimiter in (SNN, Affiz) presented significant challenges, but it was worth
overcoming them to put all name forms on equal footing.

We show this syntax for the sake of completeness, but we strongly encourage
using the comma-delimited syntax instead.

o One must leave empty the first optional (FNN) argument.
o One must never use the comma-delimited argument (Affiz).

o These names always use (Alternate), which acts like (Affiz) usually does,
and affects both name and index patterns (Section 6.1).

o These names take the form (SNN Alternate) in the index.

o In this manual we designate these names with a double dagger ().

1 \Name{Henry} [VIII] % Ancient

2 \Name{Chiang} [Kai-shek] % Eastern

3 \begin{nameauth}

4 \< Dagb & & Dagobert & I > % Ancient

5 \< Yosh & & Yoshida & Shigeru > % Eastern

6 \< Fukuyama & &

7 \noexpand\textUC{Fukuyama} & Takeshi > % Alt. format
s \end{nameauth}

After studying in the US during the 1930s, in 1954 Rev. FUKUYAMA Takeshii
\Fukuyama\ddag published Nihon Fukuin Ruteru Kyokai Shi (History of the Evan-
gelical Lutheran Church in Japan).

119

Henry VIIIT \ForgetThis\Name{Henry} [VIII]\ddag

Henry: \Name{Henry} [VIII]\ddag

Chiang Kai-shek? \ForgetThis\Name{Chiang} [Kai-shek] \ddag
Chiangt \Name{Chiang} [Kai-shek] \ddag

Dagobert I \Dagb\ddag

Dagobert} \Dagb\ddag

YOSHIDA Shigerui \CapName\Yosh\ddag
Shigeru YOSHIDA} \CapName\RevName\LYosh\ddag

\AltFormatActive
FUKUYAMA Takeshif \ForgetThis\Fukuyama\ddag
FUKUYAMA{ \Fukuyama\ddag

\AltFormatInactive

Regardless of its flaws, the obsolete syntax shares name patterns, index tags,
name tags, and index entries with the current syntax:

Obsolete syntax: Henry VIIIf \ForgetThis\Name{Henry}[VIII]\ddag
Henry,VIII \ShowPattern{Henry} [VIII]

Current syntax: Henry \Name{Henry, VIII}
Henry,VIII \ShowPattern{Henry, VIII}

We do not expect people to use the obsolete syntax much anymore. Here we list
more advantages to using the current syntax and avoiding the old.

e Only the newer syntax permits such variants:

Henry Tudor...........cooiiiiiiiin, \Name*{Henry, VIII}[Tudor]
e The proper form for the old syntax is, e.g.:

Henry VIII ..o \Name*{Henry} [VIII]
e Next we see malformed Western names:

Henry VIIL ..o \Name [Henry]{VIII}

VI \Name [Henry] {VIII}

Tudor VIII ..o \Name* [Henry] {VIII} [Tudor]

VI \Name [Henry]{VIII} [Tudor]
e These malformed names have the same index entry VIII, Henry

Back to Table of Contents]

Names, once they are in common use, quickly become mere sounds, their
etymology being buried, like so many of the earth’s marvels, beneath the dust
of habit.

—Salman Rushdie, The Satanic Verses (1988)

120

13

Advanced Customization

Here we discuss package internals to help users customize and add features. We set
aside the common formatting in this manual and reset the formatting hooks to the
default settings. We use alternate formatting for much of this section:

W N

\renewcommand*\NamesFormat{}
\renewcommand*\FrontNamesFormat{}
\renewcommand*\MainNameHook{\A1tOff}
\renewcommand*\FrontNameHook{\A1tOff}

13.1 Using Package Internals

We start with alternate formatting (Section 11.3), changing the “back-end” macros to
our custom code. Here, we need only check \if@nameauth@DoAlt, which is toggled by
\AltOn and \AltO£ff. Instead of using \textSC and friends, we define a new macro
that works in similar fashion. \Fbox draws a frame around the name:

© 00 N O U s W N =

=
= o

12
13

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

% Alternate formatting macro definition

\makeatletter

\newcommand*\Fbox [1]{%
\if@nameauth@DoAlt\protect\fbox{#1}\else#1\fi

+

Since \AltCaps is part of nameauth, one need not reinvent that wheel. Just use

it in the name arguments and sorting macros:

14
15
16
17
18
19
20
21
22
23
24

\makeatother

% Quick interface definition
\begin{nameauth}
\< deSmet & Pierre-Jean &
\noexpand\Fbox{\noexpand\AltCaps{d}e~Smet} & >
\end{nameauth}

% Sorting and tagging
\PretagName [Pierre-Jean]
{\noexpand\Fbox{\noexpand\AltCaps{d}e~Smet}}%

For a truth, once established by proof, does neither gain force nor certainty by
the consent of all scholars, nor lose by the general dissent.?’

—Maimonides, Guide for the Perplexed (1190)

30Here we enclosed this quote in a group and redefined the formatting hooks locally.

121

The final step is redefining the hooks, which can be quite simple:

25 {de~Smet, Pierre-Jean}

26

27 \renewcommand*\MainNameHook{\A1tOff}

28 \renewcommand*\FrontNameHook{\A1tOff}

29

30 \begin{document}

31

32 \deSmet\ was a Jesuit missionary who arrived in North

33 America in 1821 at the age of twenty, after a year of seminary
34 education. \CapThis\deSmet\ was ordained in 1827 and worked

35 among American Indian nations after 1837. We can show the forms
36 \LdeSmet\ and \SdeSmet.

37

38 \printindex

39 \end{document}

Pierre-Jean was a Jesuit missionary who arrived in North America
in 1821 at the age of twenty, after a year of seminary education. De Smet was
ordained in 1827 and worked among American Indian nations after 1837. We
can show the forms Pierre-Jean de Smet and Pierre-Jean.

Some formatting, such as the use of \textSC, is fairly standard. Other formatting,
such as \Fbox above, is more ornamental.

13.2 Using Separate Macros

Alternate formatting can work with greater customization, but that is more labor-
intensive and requires one to keep track of more details. We still recommend using
\AltFormatActive to mitigate errors. The following example shows greater cus-
tomization that remains compatible with package internals.

Three Boolean flags replace package internals. The flag \ifFbox activates for-
matting, \CapThis sets \ifFirstCap true, and \ifInHook is set manually, instead
of being set by the hook dispatcher.

\documentclass{article}

1

2 \input{compat.tex} % Included with nameauth; example file aids
3 % compatibility across different LaTeX versions and engines.

4 \usepackage{makeidx}

5 \usepackage[altformat] {nameauth}

6

7 \makeindex

8

9 \newif\ifFbox % Replaces \if@nameauth@DoAlt \AltOn \AltOff

\newif\ifFirstCap % Replaces \if@nameauth@DoCaps \AltCaps
\newif\ifInHook 7% Replaces \if@nameauth@InHook hook dispatcher

e
= o

The formatting macro is like what we have seen, except it refers to \ifFbox. We
define \Fbox locally in this manual, but \noexpand helps isolate those effects.

12 \Fboxtrue % Replaces \AltFormatActive
14 % Alternate formatting macro definition

15 \newcommand*\Fbox [1]{%
16 \ifFbox\protect\fbox{#1}\else#1\fi

122

Our \AltCaps works like the built-in version, except it does not use the internal
macros and flags. We redefine \CapThis to use our flag instead of the internal flag:

17}

18

19 % Redefinition of \AltCaps and \CapThis
20 \renewcommand*\AltCaps[1]{%

21 \ifInHook

22 \ifFirstCap\MakeUppercase{#1}\else#1\fi
23 \else

24 #17%

25 \fi

26 F

We have to reproduce the logic and macros that the package would have provided.
That means defining everything from scratch. To emphasize these differences, instead
of displaying the macro argument, we use \NameParser to do that.

Changes to \ifInHook (default false) and \ifFbox (default true) are local to the
scope in which the hook macros are called. \1fFirstCap must be set globally. Below
we reproduce the logic of \A1tOff before \NameParser in \MainNameHook:

27 \renewcommand*\CapThis{\FirstCaptrue}

28

20 \renewcommand*\NamesFormat [1]

30 {\InHooktrue\NameParser\global\FirstCapfalse}

32 \renewcommand*\MainNameHook [1]

By using the same hook logic and \noexpand, the same macros used before now
use a different “back end” without creating spurious index entries.

33 {\Fboxfalse\InHooktrue\NameParser\global\FirstCapfalse}
34

35 \let\FrontNamesFormat\Namesformat

36 \let\FrontNameHook\MainNameHook

37

38 % Quick interface definition

39 \begin{nameauth}

40 \< deSmet & Pierre-Jean &

41 \noexpand\Fbox{\noexpand\AltCaps{d}e~Smet} & >
42 \end{nameauth}

43

44 % Sorting and tagging

45 \PretagName [Pierre-Jeanl

46 {\noexpand\Fbox{\noexpand\AltCaps{d}e~Smet}}%

47 {de~Smet, Pierre-Jean}

48

49 \begin{document}

51 \deSmet\ was a Jesuit missionary who arrived in North

52 America in 1821 at the age of twenty, after a year of seminary
53 education. \CapThis\deSmet\ was ordained in 1827 and worked

54 among American Indian nations after 1837. We can show the forms
55 \LdeSmet\ and \SdeSmet.

56

57 \printindex

58 \end{document}

123

Pierre-Jean was a Jesuit missionary who arrived in North America
in 1821 at the age of twenty, after a year of seminary education. De Smet was
ordained in 1827 and worked among American Indian nations after 1837. We
can show the forms Pierre-Jean de Smet and Pierre-Jean.

We can go one step further and use our own “back-end” macros with other
documents that were designed for the built-in macros used in alternate formatting,
as the next example shows:

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\makeindex

© W N O e W N

\newif\ifCaps % Replaces \if@nameauth@DoAlt
\newif\ifFirstCap J Replaces \if@nameauth@DoCaps
\newif\if InHook % Replaces \if@nameauth@InHook
\Capstrue % Replaces \AltFormatActive

e e e
s W NN = O

% Alternate formatting macro definition
\renewcommand*\textSC[1]{\ifCaps\textsc{#1}\else#1\fi}

= e
o

% Redefinition of \AltCaps and \CapThis
\renewcommand*\AltCaps [1]{%
\ifInHook
\ifFirstCap\MakeUppercase{#1}\else#1\fi
\else
#1%
\fi
}
\renewcommand*\CapThis{\FirstCaptrue}

NN ONNN NN = e
D Ut R W N O © N

\renewcommand*\NamesFormat [1]
{\InHooktrue#1\global\FirstCapfalse}

NN
© 0w 3

\renewcommand*\MainNameHook [1]
{\Capsfalse\InHooktrue#i\global\FirstCapfalse}

w W W
N o= O

\let\FrontNamesFormat\Namesformat
\let\FrontNameHook\MainNameHook

w W W
(SN

\begin{nameauth}

\< Luth & Martin & \noexpand\textSC{Luther} & >

\< Cath & Catherine \noexpand\AltCaps{d}e’

& \noexpand\textSC{Medicil} & >
\end{nameauth}
\PretagName [Martin] {\noexpand\textSC{Luther}}{Luther, Martin}
\PretagName [Catherine \noexpand\AltCaps{d}e’]
{\noexpand\textSC{Medici}}{Medici, Catherine de}

AR A R R A W W W W
Gk W NN O © 00 N O

\begin{document}

PN
N O

\ForgetThis\Luth\ was a leading figure in the Protestant

124

\NameauthName
\NameauthLName
\NameauthFName

48 Reformation. \Luth\ believed that one is declared

49 righteous in a forensic sense by divine grace through faith

50 created by the Holy Spirit via the Gospel and the Sacraments.

51

52 \ForgetThis\Cath\ was not only Queen of France in her own right,
53 but she also guided the reigns of her three sons.

54 \CapThis\LCath[\noexpand\AltCaps{dl}e’]

55 was blamed for the St.\ Bartholomew’s Day massacre that saw the
s6 murder of thousands of Huguenots.

57

58 \printindex

59 \end{document}

Martin LUTHER was a leading figure in the Protestant Reformation. Luther
believed that one is declared righteous in a forensic sense by divine grace through
faith created by the Holy Spirit via the Gospel and the Sacraments.

Catherine de’ MEDICI was not only Queen of France in her own right, but she
also guided the reigns of her three sons. De’ Medici was blamed for the St.
Bartholomew’s Day massacre that saw the murder of thousands of Huguenots.

13.3 Full Customization

One can redesign or augment the core naming macros, then hook those modifications
into the nameauth package without needing to patch the style file itself.

All these macros are set by default to \@nameauth@Name, the internal name
parser. \Name, or an unmodified shorthand, calls \NameauthName. \Name*, or an
L-shorthand, sets \@nameauth@FullNametrue, then calls \NameauthLName. \FName,
or an S-shorthand, sets \@nameauth@FirstNametrue, then calls \NameauthFName.
One should not modify \Name and \FName directly.

13.3.1 Names In Boxes

Since nameauth uses xparse, the next examples use it also. Here we look at decorationin
the sense of putting a name into something around it. This could be useful if, in
certain parts of a document, one wanted to turn names into hyperlinks or some other
kind of feature. Here we simply put names into colored boxes.

\documentclass{article}

\input{compat.tex} % Included with nameauth; example file aids
% compatibility across different LaTeX versions and engines.
\usepackage{makeidx}

\usepackage [altformat] {nameauth}

\usepackage{xcolor}

\makeindex

© oo ~ o - W [V -

\makeatletter
% Change the general-case name macro to show
% a name in a framed, colored box.

e
S =)

\NewDocumentCommand{\MyName}{0{} m O{}}{%
\global\@nameauth@toksa\expandafter{#11}/,
\global\@nameauth@toksb\expandafter{#2}/,
\global\@nameauth@toksc\expandafter{#3}/,
\fcolorbox{black}{gray!25!white}{\@nameauth@Name [#1]{#2} [#3]}/

I
o N o v

125

19}

20

21 % Likewise change the macro for when names are forced long.

22 \NewDocumentCommand{\MyLName}{0{} m O{}}{%

23 \global\@nameauth@toksa\expandafter{#1}J,

24 \global\@nameauth@toksb\expandafter{#2}/,

25 \global\@nameauth@toksc\expandafter{#3}J,

26 \fcolorbox{black}{green!25!white}{\O@nameauth@Name [#1] {#2} [#3]1}7
27}

28

20 % Likewise change the macro when personal names are desired.

30 \NewDocumentCommand{\MyFName}{0{} m O{}}{%

31 \global\@nameauth@toksa\expandafter{#1}J,

32 \global\@nameauth@toksb\expandafter{#2}%

33 \global\@nameauth@toksc\expandafter{#3}%

34 \fcolorbox{black}{yellow!25!white}{\@nameauth@Name [#1] {#2} [#3]}%
35t

36 \makeatother

37

38 % Change the formatting hooks, but do not use alternate.

39 7% formatting, which is separate from that above.

40 \renewcommand*\NamesFormat [1] {\scshape#1}

41 \renewcommand*\MainNameHook [1]{#1}

42

43 % Change the naming macro hooks.

44 \renewcommand*\NameauthName{\MyName}

45 \renewcommand*\NameauthLName{\MyLName}

46 \renewcommand*\NameauthFName{\MyFName}

47

48 \begin{document}

49

50 \ForgetThis\Name[Adolf]{Harnack} was a theologian who stressed
51 the Fatherhood of God and the brotherhood of man.

52 \Name [Adolf]{Harnack} flourished in the early twentieth

53 century; \Name*[Adolf]{Harnack}[Adolf von]; \FName[Adolf]{Harnack}.
54

55 \printindex

56 \end{document}

‘ ADOLF HARNACK ‘ was a theologian who stressed the Fatherhood of God and
the brotherhood of man. flourished in the early twentieth century;
‘ Adolf von Harnack |, ‘ Adolf ‘

After the name is printed in the body text, the internal macros globally set
\@nameauth@FullNamefalse and \@nameauth@FirstNamefalse, as well as other
flags related to the prefix macros. This prevents certain cases of undocumented
behavior in versions of nameauth before 3.3, where resetting flags locally could cause
unexpected name forms. If an existing document leverages the local resetting of flags,
one can use the oldreset option

\global Like many of the macros in this package, these macros can be redefined or used
locally within a scope without making global changes to the document unless you
specifically use \global.

126

13.3.2 Change Parsing

In Section 4.3.1 we saw reasons why nameauth ignores spaces before final optional
arguments. Here we show how to change that. With xparse since May 2018, the
10{7} specifier makes spaces significant before an optional argument. Before then, the
example below got the same result through undocumented behavior, now fixed.

1 \makeatletter

2 \@if1@t@r\fmtversion{2018/04/30}{\def \nameauthxp{}}{3}
3 \makeatother

4

5 \makeatletter

6 \ifdefined\nameauthxp

7 \NewDocumentCommand{\MyName}{0{} m !'0{}}{%

8 \global\@nameauth@toksa\expandafter{#1}%

9 \global\@nameauth@toksb\expandafter{#23}/

\global\@nameauth@toksc\expandafter{#3}/,
\@nameauth@Name [#1] {#2} [#317,
}
\else
\NewDocumentCommand{\MyName}{0{} m O{}}{%
15 \global\@nameauth@toksa\expandafter{#1}J,
16 \global\@nameauth@toksb\expandafter{#2}J,
17 \global\@nameauth@toksc\expandafter{#3}/,
18 \@nameauth@Name [#1]{#2} [#3]7
19}
20 \fi
21 \makeatother
22
23 \let\NameauthName\MyName
24 \let\NameauthLName\MyName
25 \let\NameauthFName\MyName
26
27 \ForgetName [Albert]{Einstein}
28 \ForgetName{Miyazaki, Hayaol}
29
30 We want ¢‘Albert Einstein [reportedly] said’’,

e e T
=W N = O

31 ‘‘Miyazaki Hayao [supposedly] said’’,
32 ‘‘Einstein [reportedly] said’’, and
33 ‘‘Miyazaki [supposedly] said’’.

34
35 We get ¢‘\Name[Albert]{Einstein} [reportedly] said’’,
36 ¢ ‘\Name{Miyazaki, Hayao} [supposedly] said’’,

37 “‘“\Name[Albert]{Einstein} [reportedly] said’’, and

38 ‘‘\Name{Miyazaki, Hayao} [supposedly] said’’.

We want “Albert Einstein [reportedly| said”, “Miyazaki Hayao [supposedly]
said”, “Einstein [reportedly] said”, and “Miyazaki [supposedly] said”.

We get “Albert Einstein [reportedly] said”, “Miyazaki Hayao [supposedly] said”,
“Einstein [reportedly] said”, and “Miyazaki [supposedly] said”.

Back to Table of Contents]

127

14 Technical Notes and Tips

14.1 Tips: General

¢ Technical details about package development and testing are in README . md.
e Both compat.tex and examples.tex contain useful information.

¢ Do not put naming macros withing a macro defined by \edef. Yet naming
macros can be passed as arguments to such a macro.

e In dtx files, the nameauth environment and initial tagging macros work
easiest in the <driver> section preamble. Yet if any of these contains
one or more \newif statements, they must go in the “commented part”
since the preamble falls between \iffalse and \fi.

14.2 Tips: Indexing and Sorting

e Two names may look alike on the page, but their name patterns can
differ, creating spurious index entries. Check the idx file to be sure.

o To fix spurious entries, compare index entries with names in the text.

Check if naming macros always use the same arguments.

— Check sorting tags (\PretagName (Section 7.6).

— Check use of active Unicode characters (Section 14.4).

— Use \ShowPattern, \ShowIdxPageref, and \ShowNameState.

— Did \noexpand precede macros in name arguments?

e Check nameauth package warnings. Set the verbose option, which will
offer a number of “informational” warnings that could be of assistance.

o If an entry is sorted incorrectly in the index, check the following:

— Are there any active characters, spaces, or control sequences in
the name arguments? Use \PretagName.

— Is alternate formatting used consistently? Are names used
within sections of alternate formatting used outside of them?

— Are macros in the name arguments that can expand differently
under different conditions preceded by \noexpand?

Using \protected@edef in macros can add spaces to index entries. The nameauth
macros must use \protected@edef to work with classes that write index entries to
aux files. One must check this in the idx file. We show this below:

1 \makeatletter
2 \newcommand\Idx[1]{\protected@edef\arg{#1}\index{\arg}t}
3 \makeatother

\Idx{\textsc{football}} produces:
\indexentry{\textsc {football}}{(page)}

The macro \index{\textsc{football}} produces:
\indexentry{\textsc{football}}{(page)}

128

14.3 Tips: Macros in Name Arguments

e A missing square bracket or curly brace in name arguments can cause er-
rors like “Paragraph ended” and “Missing (grouping token) inserted.”

e Use alternate formatting to avoid potential problems, especially when
using \CapThis, which segments arguments (Sections 11.3, 13).

o Use \noexpand(macro) in name macro arguments as a best practice.

e Macros used in name arguments must be defined either in the preamble
or in the outermost document scope to avoid errors.

o Boolean flags (\if(flag)) used in formatting hooks must be defined either
in the preamble or in the outermost document scope.

e The \global modifier does not work with \newif and \newcommand. Yet
\global can precede the use of a macro defined with \newcommand. The
TEXbook, pages 275277, shows what \global can and cannot do. See
more about this issue and \newcommand on this page.

e Below we show general aspects of scoping to apply them to this package:

1 \newif\ifCondA

2 \newcommand\MacroA{}

3 \begingroup

4 \newif\ifCondB

5 \global\newif\ifCondC

6 \global\newcommand\MacroB{}

7 \newcommand\MacroC{\def\MacroD{}}

8 \global\MacroC

9 \global\CondAtrue

10 \endgroup

11

12 \begin{itemize}

13 \item \ifdefined\CondAtrue \texttt{\textbackslash ifCondA} is defined
14 \else \texttt{\textbackslash ifCondA} is not defined \fi
15 in the outer scope (outer definition).

16

17 \item \ifdefined\MacroA \cmd{\MacroA} is defined

18 \else \cmd{\MacroA} is not defined \fi

19 in the outer scope (outer definition).

20

21 \item \ifdefined\CondBtrue \texttt{\textbackslash ifCondB} is defined
22 \else \texttt{\textbackslash ifCondB} is not defined \fi
23 in the outer scope (local definition).

24

25 \item \ifdefined\CondCtrue \texttt{\textbackslash ifCondC} is defined
26 \else \texttt{\textbackslash ifCondC} is not defined \fi
27 in the outer scope (no \cmd{\globall\cmd{\newif}).

28

20 \item \ifdefined\MacroB \cmd{\MacroB} is defined

30 \else \cmd{\MacroB} is not defined \fi

31 in the outer scope (no \cmd{\global}\cmd{\newcommand}) .
32

33 \item \cmd{\MacroC} \ifdefined\MacroC is defined

34 \else is not defined \fi

35 in the outer scope (local definition).

36

129

https://tex.stackexchange.com/questions/51733/global-renewcommand-equivalent-of-global-def

37 \item \cmd{\MacroD} \ifdefined\MacroD is defined

38 \else is not defined \fi

39 in the outer scope (\cmd{\global} affects \cmd{\def} in \cmd{\MacroC}).
40

41 \item \ifCondA \texttt{\textbackslash ifCondA} is true

42 \else \texttt{\textbackslash ifCondA} is false \fi

43 (\cmd{\global} assignment works, not instantiation).

44 \end{itemize}

e \ifCondA is defined in the outer scope (outer definition).

e \MacroA is defined in the outer scope (outer definition).

e \ifCondB is not defined in the outer scope (local definition).

e \ifCondC is not defined in the outer scope (no \global\newif).

o \MacroB is not defined in the outer scope (no \global\newcommand).

¢ \MacroC is not defined in the outer scope (local definition).

e \MacroD is defined in the outer scope (\global affects \def in
\MacroC).

e \ifCondA is true (\global assignment works, not instantiation).

Any macro that is used in the argument of a naming macro must be defined in
all scopes in which that name is used. The names themselves are global, but macros
in their arguments are not guaranteed to be so:

\begin{nameauth}

\< Testi & & \noexpand\TESTi & >

\< Testii & & \noexpand\TESTii & >
\end{nameauth}
\def\TESTi{Test One}
\indent \hbox to 10em{(Outer 1) \Testi\hfill}
\begingroup

(Inner 1) \Testil\\

\def\TESTii{Test Two}

\hbox to 10em{(Inner 2) \Testii\hfill}
\endgroup
(Outer 2) \unless\ifdefined\TESTii \cmd{\TESTii} undefined\fi

© 0w N O s W N

= e e
N = O

(Outer 1) Test One (Inner 1) Test One
(Inner 2) Test Two (Outer 2) \TESTii undefined

14.4 Active Unicode Characters
14.4.1 General Information

Both xelatex and lualatex support Unicode natively. In pdflatex, this happens
with active characters. There are features (e.g., in microtype) that require pdflatex.
Both makeindex and xindy have their own design choices.

With \usepackage[T1]{fontenc}, latex and pdflatex can use many active
Unicode characters automatically. Use \PretagName to sort names with these char-
acters (Section 7.6). More Unicode characters can be made available when us-
ing fonts with TS1 glyphs (pages 455-463 in The Latex Companion). Compare
this page or type either texdoc comprehensive, texdoc symbols-A4, or texdoc
symbols-letter for more information.

Active Unicode characters work much like macros. When using a font with TS1
glyphs and slots, the following preamble snippet is an example of how one might add
more Unicode characters, such as a long s (s-medialis):

130

https://tug.ctan.org/info/symbols/comprehensive/

\usepackage [utf8]{inputenc} % For older TL releases
\usepackage [TS1,T1]{fontenc}

\usepackage{lmodern}y, Contains TS1 glyph 115
\usepackage{newunicodechar}
\DeclareTextSymbolDefault{\textlongs}{TS1}
\DeclareTextSymbol{\textlongs}{TS1}{115}
\newunicodechar{f}{\textlongs}

© 00 N O U W N =

In Congrefs, July 4, 1776

In Congrefs, July 4, 1776

Below we group characters that are supported in pdflatex without additional
modification by accents and diacritical marks:

Capitals

acute AC-EG -1 LNORS - U Y 7
grave A. . E I -0 - U
circumflex AC - EGHIJ O-S - UWY
tilde A. .. I -NO - U
diaeresis®* A - - E I- -O0---U Y
cedilla -G -G - - KLN RST- .
macron A--EG-I----0---UEY
breve A .G 1. é U .
dot/dotless BC - EG - 1 - R N/
ogomek A - - B leo e Qe U e
caron ACDEG - I1-KLNORSTU - - %
various A ED (eth) D (stroke) JEDQO EOUUSTDP
Lowercase

acute 4¢.6g.1..106f8.4. V2%

grave a e 1 0---1

circumflex 4é.éghij...-06.8.-0W9

tilde P {1+ 00w+ - -
diaeresis A€ cive e~y

cedilla G g .1,(1171.17'§§. ..

macron a-.eg-1 ce0--URY -

breve ae . g.l s JRSRRIL s PR
dot/dotless Déee@elone oo 7

ogonek S R LI

caron acdég - ijkInorsta - .z
various axddijtpsceodoatisBtp

31 A diaeresis mark is one way to indicate a sound change (Umlaut). German originally used a
superscript e over a, o, and u. The cursive form of e simplified to a diaeresis in the 1800s. A diaeresis
also signals pronouncing a diphthong or digraph as two monophthongs, e.g., “noétic”.

131

14.4.2 Compatibility: Old and New

Changes in the way that pdflatex and latex handle Unicode characters since 2018
have made indexing simpler and more intuitive, e.g.

Pre-2018 Index Post-2018 Index
a — \IeC,{\"a} a4 — a4
& — \IeCu{\ae_} ' — ®

The \IeC macro plus its argument then would expand to \T1 plus its argument,
which would occur especially if accented characters were written out to a file, then
read in again. This could cause a number of problems.

There are two ways to test if one is working with a newer or older version of
pdflatex or latex. The first involves WTEX kernel macros in the document preamble
to check the format date. We check if the date is later than the first use of the file
utf8-2018.def, If that is the case, we can define macros or set Boolean flags, which
we can test repeatedly. For example, in the document preamble we could have:

1 \makeatletter

2 \@ifl@t@r\fmtversion{2018/10/05}{\def\nameauthltx{}}{}
3 \@ifl0t@r\fmtversion{2018/04/30}{\def\nameauthxp{}}{}
4 \makeatother

The tests above apply to two things that are pertinent to nameauth. The first is
the presence of ut£8-2018.def. The second involves changes in xparse that could
impact nameauth, which we used silently in Section 13.3.2. Another test checks
directly for the presence of utf8-2018.def:

1 \IfFileExists{utf8-2018.def}
2 {do if exists}
3 {do if absent}

Now we apply the test to an example. Before 2018, some index styles like gind . ist
could not work with characters that contained macrons. Since 2018, those restrictions
have been removed. To create a document that can work with old or new versions of
pdflatex and latex, one can choose to use macrons or not. In a recent version, one
will see macrons in the following names, otherwise, no macron will be present.

1 \ifdefined\nameauthltx \Name{Ghazali} \else \Name{Ghazali}\fi
2
3 \IfFileExists{utf8-2018.def}{\Name{Ghazali}}{\Name{Ghazali}}

Ghazali
Ghazali

The challenge of compatibility arises in this manual in a few instances, which we
summarize below to mention specific resources without going too far afield.

o To use older distributions, one must include the textcomp package for back-
ward compatibility. Otherwise it is not needed in recent TEX distributions,
e.g., since 2018.

o Use of certain text elements, such as \dotfill within tables, has become
more permissive in recent TEX distributions.

132

o The file examples.tex (see README.md) includes additional code snippets
that deal with compatibility.

e We \input the included snippet compat.tex in examples.tex to permit
use with different IATEX engines and older TEX distributions.

Users are encouraged to view and modify compat.tex to meet their own needs.

14.4.3 Fragility of Active Unicode

TEX macros that partition their arguments can break active Unicode characters.The
simple macro \def\foo#1#2#3!{<#1#2><#3>} takes three arguments, groups the
first two, then the third, followed by a delimiter that ends the argument list:

Arg. Macro Engine Result

abc \foo abc! (any) <ab><c>
{=z}bc \foo {=}bc! (any) <&b><c>
\ae bc \foo \ae bc! (any) <xb><c>
&bc \foo zbc! xelatex <&b><c>
xbc \foo zbc! lualatex <a&b><c>
&bc \foo zbc! pdflatex <a&><bc>
&bc \foo abc! latex <&><bc>

The letter a is one argument. Since {®} is in a group, it is one argument. The
macro \ae also is one argument. Both xelatex and lualatex likewise treat the
Unicode letter & as one argument. Thus, in all these cases, the first two glyphs are
grouped together in #1#2 and c is left by itself in #3.

In latex and pdflatex, however, ® is an active Unicode control sequence that
uses two arguments all by itself: #1#2. The rest of the input, bc, is in #3. This
is not intuitive. Any macro where this #1#2 pair is divided into #1 and #2 will
produce one of two errors: Unicode char ...not set up for LaTeX or Argument
of \UTFviii@two@octets has an extra }.

Starting on page 142 we show how to test if \Umathchar is not defined. If so, we
check if the leading token of the argument matches the start of an active Unicode
control sequence. If \@car(test)\@nil is equal to \@car 8 \@nil we capitalize #1#2,
otherwise just #1. Should #1 be a protected macro or something that does not expand
to a sequence of letters, we use alternate formatting and \AltCaps (Section 11.3.4).

Back to Table of Contents

Hermogenes: I should explain to you, Socrates, that our friend Cratylus has been
arguing about names; he says that they are natural and not conventional; not a
portion of the human voice which men agree to use; but that there is a truth or
correctness in them, which is the same for Hellenes as for barbarians.

—Plato, opening statement in Cratylus (c. 388 BC)

133

\ifNameauthWestern
\ifNameauthObsolete

15 Implementation

This package has been reorganized so that the manual and the package have sub-
stantially the same ordering. This repetition should aid understanding how the
components work.

15.1 Boolean Flags

The nameauth package is a parser. The flags in this section show and change the
state of that parser.

15.1.1 Flow Control
Who Called Me?

Let name formatting macros in the core name engine know if they were called by the
naming macros or by the pseudonym macros.

1 \newif\if@nameauth@InAKA
2 \newif\if@nameauth@InName

Core Macro Locks

\@nameauth@Name, \AKA, and macros that call them use \if@nameauth@Lock to avoid
a stack overflow. Setting \if@nameauth@BigLock true will prevent the core name
engine from executing until it is set false.

3 \newif\if@nameauth@Lock
4 \newif\if@nameauth@BigLock

Formatting Hook Indicator

Tell alternate formatting control macros that they are in a formatting hook.

5 \newif\if@nameauth@InHook

Core Name Engine Choices
\JustIndex toggles this flag, which makes the core name engine act like \IndexName.
6 \newif\if@nameauth@JustIndex

These two flags trigger \ForgetName and \SubvertName within \@nameauth@Name.

7 \newif\if@nameauth@Forget
8 \newif\if@nameauth@Subvert

15.1.2 Name Grammar and Syntax
Name Types

These flags reflect the last name type evaluated by any macro that takes name
arguments. The first shows whether or not we have a Western or nonwestern name.
The second shows the kind of nonwestern syntax used. These are not reset after
evaluation.

9 \newif\ifNameauthWestern
10 \newif\ifNameauthObsolete

134

Show/Hide Affix Commas

The comma and nocomma options toggle the first flag below. \ShowComma and \NoComma
respectively toggle the second and third.

11 \newif\if@nameauth@AlwaysComma
12 \newif\if@nameauth@ShowComma
13 \newif\if@nameauth@NoComma

Capitalize Entire Surnames

The first flag is global. The second is for individual names.

14 \newif\if@nameauth@AllCaps
15 \newif\if@nameauth@Al1lThis

Reverse Name Order
These flags govern name reversing. The first is global. The second is for individual
names.

16 \newif\if@nameauth@RevAll
17 \newif\if@nameauth@RevThis

These flags deals with Western names ordered in a list according to surname.

18 \newif\if@nameauth@RevAllComma
19 \newif\if@nameauth@RevThisComma

Full Stop Detection

This flag is used to prevent double full stops after a name is displayed.

20 \newif\if@nameauth@Punct

Name Breaking

\KeepAffix toggles the first flag below, while \KeepName toggles the second. Both
affect the use of non-breaking spaces in the text.

21 \newif\if@nameauth@NBSP
22 \newif\if@nameauth@NBSPX

Long and Short Names

\if@nameauth@FullName is true for a long name form. \if@nameauth@FirstName
causes only Western forenames or nonwestern surnames to be displayed when a
shorter form is used. The default is to reset both globally on a per-name basis.
\if@nameauth@ShortSNN is used with \DropAffix to suppress the affix of a West-
ern name. \if@nameauth@EastFN toggles the forced printing of Eastern forenames.

23 \newif\if@nameauth@FullName
24 \newif\if@nameauth@FirstName
25 \newif\if@nameauth@A1tAKA
26 \newif\if@nameauth@ShortSNN
27 \newif\if@nameauth@EastFN

135

15.1.3 Debugging

When used with the index debugging macros, show complete index entries if true,
otherwise show simple entries.

28 \newif\if@nameauth@LongIdxDebug

15.1.4 Indexing
Toggle Indexing

The indexing flags permit or prevent indexing and tags. \IndexActive and
\IndexInctive or the index and noindex options toggle the first flag; \SkipIndex
toggles the second.

29 \newif\if@nameauth@oIndex
30 \newif\if@nameauth@SkipIndex

Toggle Index Sorting

Allow or prevent the insertion of index sort keys.

31 \newif\if@nameauth@Pretag

Verbose Warnings

Control the number of warnings concerning the index; default is terse.

32 \newif\if@nameauth@Verbose

Cross-References

Tell the index entry formatter to create a cross-reference.
33 \newif\if@nameauth@Xref

Determine whether \IndexRef creates a see reference or a see also reference.
34 \newif\if@nameauth@SeeAlso

15.1.5 Formatting and Name Control Sequences
Choose Formatting System

\NamesActive and \NamesInactive, with the mainmatter and frontmatter options,
toggle formatting hooks via \if@nameauth@MainFormat.

35 \newif\if@nameauth@MainFormat

Modify Pseudonym Formatting

Permit \AKA and related macros to call the first-use formatting hooks once.

36 \newif\if@nameauth@AKAFormat

Select Formatting Hooks

\if@nameauth@FirstFormat triggers the first-use hooks to be called; otherwise the
second-use hooks are called. Additionally, \if@nameauth@AlwaysFormat forces this
true, except when \if@nameauth@AKAFormat is false.

37 \newif\if@nameauth@FirstFormat
38 \newif\if@nameauth@AlwaysFormat

136

Caps and Alternate Formatting

The next flags deal with first-letter capitalization. \CapThis sets the first Boolean
value. The second is triggered by \@nameauth@UTFtest when it encounters an active
Unicode character. The third is a fallback triggered by \AccentCapThis. The fourth
disables \CapThis for alternate formatting. The fifth toggles alternate formatting
within formatting hooks.

39 \newif\if@nameauth@DoCaps

40 \newif\if@nameauth@UTF

41 \newif\if@nameauth@Accent

42 \newif\if@nameauth@AltFormat
43 \newif\if@nameauth@DoAlt

15.1.6 Name Decisions
Creating and Destroying Name Patterns
Restrict the creation and destruction of name patters to the current name system if

true.

44 \newif\if@nameauth@LocalNames

Scope of Name Decision Macros

\IfMainName, \IfFrontName, and \IfAKA use locally-scoped paths by default. When
true, this flag causes these macros to not apply local scope, retaining the current
scope.

45 \newif\if@nameauth@GlobalScope

15.1.7 Version Compatibility

\if@nameauth@A1tAKA is toggled respectively by \AKA and \AKA* to print a longer
or shorter name. \if@nameauth@01dAKA forces the pre-3.0 behavior of \AKA*.

46 \newif\if@nameauth@01dAKA

Determine how strict to be with see references.
47 \newif\ifOnameauth@0ldSee

These three flags are used only for backward compatibility. The first broadly deter-
mines how per-name flags are reset. The second affects the behavior of \JustIndex.
The third toggles whether or not the name argument token registers are set globally.
The fourth toggles the inclusion of xargs and suffix for legacy cases where user
customizations were made.

48 \newif\if@nameauth@0ldReset

49 \newif\if@nameauth@0ldPass

50 \newif\if@nameauth@01ldToks

51 \newif\if@nameauth@0ldArgs

15.2 Token Registers, Hooks, and Internal Values
15.2.1 Name Argument Token Registers

\@nameauth@toksa These three token registers contain the current values of the name arguments passed
\@nameauth@toksb to \Name, its variants, and the cross-reference arguments of \AKA. Users can access
\@nameauth@toksc them especially in formatting hooks.

137

\NamesFormat

\MainNameHook

\FrontNamesFormat

\FrontNameHook

\NameauthName

\NameauthLName

\NameauthFName

\NameauthIndex

\NameauthPattern

52 \newtoks\@nameauth@toksa
53 \newtoks\@nameauth@toksb
54 \newtoks\@nameauth@toksc

These three token registers contain the current values of the name arguments in each
line of the nameauth environment, thus, @nameauth®@e for that environment.

55 \newtoks\@nameauth@etoksb
56 \newtoks\@nameauth@etoksc
57 \newtoks\@nameauth@etoksd

15.2.2 Hooks

Post-process “first” instance of final complete name form in text. See Sections 9.1
and 11.1. Called when both \@nameauth@MainFormat and \@nameauth@FirstFormat
are true.

58 \newcommand*\NamesFormat{}
Post-process subsequent instance of final complete name form in main-matter text.

See Sections 9.1 and 11.1f. Called when \@nameauth@MainFormat is true and the
Boolean flag \@nameauth@FirstFormat is false.

59 \newcommand*\MainNameHook{}
Post-process “first” instance of final complete name form in front-matter text. Called
when \@nameauth@MainFormat is false and \@nameauth@FirstFormat is true.
60 \newcommand*\FrontNamesFormat{}
Post-process subsequent instance of final complete name form in front-matter text.
Called when \@nameauth@MainFormat is false and \@nameauth@FirstFormat is false.
61 \newcommand*\FrontNameHook{}
The following three macros usually point to the core name engine, \@nameauth@Name.
They allow users to customize the naming macros in the fullest sense. See Section 13.3.
Hook called when no special name modification is made.

62 \newcommand*\NameauthName{\@nameauth@Name}

Hook called after a name is forced long via \if@nameauth@name being set to true.

63 \newcommand*\NameauthLName{\@nameauth@Name}

Hook called after \if@nameauth@FirstName is set true.

64 \newcommand*\NameauthFName{\@nameauth@Name}
This hook allows one to redefine what happens when any naming macro or indexing
macro calls the equivalent of \index. See Section 7.1.

65 \newcommand*\NameauthIndex{\index}

Gives access to the current name control pattern. This hook can be used, e.g., in
formatting hooks to recall a name tag (Section 11.2). We preset it to an empty value.
With every call to a macro that takes name arguments (Section 1.6.1), this hook is
updated.

66 \let\NameauthPattern\Qempty

138

15.2.3 Internal Values

\@nameauth@Actual This sets the “actual” character used by nameauth for index sorting. This lets one
use, for example, \global\IndexActual{=}.

67 \def\@nameauth@Actual{@}

\@nameauth@Exclude This makes an xref into an “exclusion”. An exclusion is any name control sequence
ending in !PN that expands to this value. See \ExcludeName.

68 \newcommand*\@nameauth@Exclude{!}

\@nameauth@space This macro provides a consistent space character for index entries.

69 \def\@nameauth@space{ }

15.3 Package Options
15.3.1 Name Grammar and Syntax

Change the way that names are displayed, specifically with respect to their syntactic
forms.

70 \DeclareOption{nocomma}{\@nameauth@AlwaysCommafalse}
71 \DeclareOption{comma}{\@nameauth@AlwaysCommatrue}

72 \DeclareOption{normalcaps}{\@nameauth@AllCapsfalse}
73 \DeclareOption{allcaps}{\@nameauth@AllCapstrue}

74 \DeclareOption{notreversed}

75 {\@nameauth@RevAllfalse\@nameauth@RevAllCommafalse}
76 \DeclareOption{allreversedl}

77 {\@nameauth@RevAlltrue\@nameauth@RevAllCommafalse}
78 \DeclareOption{allrevcommal,

79 {\@nameauth@RevAllfalse\@nameauth@RevAllCommatrue}

15.3.2 Indexing

Global setting for enabling indexing, sort tags, and verbose warnings.

80 \DeclareOption{index}{\@nameauth@DoIndextrue}
81 \DeclareOption{noindex}{\@nameauth@oIndexfalse}
82 \DeclareOption{pretag}{\@nameauth@Pretagtrue}
83 \DeclareOption{nopretag}{\@nameauth@Pretagfalse}
84 \DeclareOption{verbose}{\@nameauth@Verbosetrue}

15.3.3 Formatting

Start off in a different naming regime or change formatting behavior in general or
for \AKA.

85 \DeclareOption{mainmatter}{\@nameauth@MainFormattrue}

86 \DeclareOption{frontmatter}{\@nameauth@MainFormatfalse}

87 \DeclareOption{alwaysformat}{\@nameauth@AlwaysFormattrue}
88 \DeclareOption{formatAKA}{\@nameauth@AKAFormattrue}

139

15.3.4 Predefined Formatting Hooks

89 \DeclareOption{noformat}{\renewcommand*\NamesFormat{}}

90 \DeclareOption{smallcaps}{\renewcommand*\NamesFormat{\scshapel}}
91 \DeclareOption{italic}{\renewcommand*\NamesFormat{\itshapel}}

92 \DeclareOption{boldface}{\renewcommand*\NamesFormat{\bfseries}}

15.3.5 Alternate Formatting

Enable alternate formatting.

93 \DeclareOption{altformat}{/
94 \@nameauth@AltFormattrue\@nameauth@DoAlttrue}

15.3.6 Scope

Name test paths are either local or the same scope in which they are called.

95 \DeclareOption{globaltest}{\@nameauth@GlobalScopetrue}

15.3.7 Version Compatibility

Revert package behavior to mimic older versions.

96 \DeclareOption{oldAKA}{\@nameauth@01dAKAtrue}

97 \DeclareOption{oldreset}{\@nameauth@0ldResettrue}
98 \DeclareOption{oldpass}{\@nameauth@lldPasstrue}
99 \DeclareOption{oldtoks}{\@nameauth@lldTokstrue}
100 \DeclareOption{oldsee}{\@nameauth@dldSeetrue}

101 \DeclareOption{oldargs}{\@nameauth@0ldArgstrue}

15.4 Package Initialization

Execute default options and process options passed by the user. Load required
packages for e-TEX features, trimming spaces from arguments, starred commands,
and optional arguments.

102 \ExecuteOptions

103 {nocomma,mainmatter,index,pretag,
104 normalcaps,notreversed,noformat}
105 \ProcessOptions\relax

106 \RequirePackage{etoolbox}

107 \RequirePackage{trimspaces}

108 \RequirePackage{xparse}

Test for the OldArgs flag and include legacy packages if the flag is true.

109 \if@nameauth@0ldArgs

110 \RequirePackage{xargs}
111 \RequirePackage{suffix}
112 \fi

140

\@nameauth@Clean

\@nameauth@MakeCS

\@nameauth@Root

\@nameauth@@Root

\@nameauth@TrimTag

\@nameauth@@TrimTag

\@nameauth@Suffix

\@nameauth@@Suffix

\@nameauth@GetSuff

15.5 Internal Macros
15.5.1 Fundamental Macros

The following macros are the most essential to the concept of “name”.

Name Control Sequence: Who Am 17

Thanks to Heiko Oberdiek, this macro produces a “sanitized” string to make a control
sequence for a name. Testing the existence of that control sequence is the core of
nameauth.

113 \newcommand*\@nameauth@Clean[1]
114 {\expandafter\zap@space\detokenize{#1} \@empty}
Unless we are in \AKA, create a name control sequence in the core name engine.

115 \newcommand*\@nameauth@MakeCS [1]

116 {%

117 \unless\ifcsname#1\endcsname

118 \unless\if@nameauth@InAKA\csgdef{#1}{}\fi
119 \fi

120 }

Parsing: Root and Suffix

These two macros return everything before a comma in (SNN). We do this with
a delimited macro as a helper that determines the root, the suffix, and the end of
input.

121 \newcommand*\@nameauth@Root [1] {\@nameauth@@Root#1,\\}

Throw out the comma and suffix, return the radix.

122 \def\@nameauth@QRoot#1,#2\\{\trim@spaces{#1}}

These two macros return everything before a vertical bar (|) in an index tag (for
sorting xrefs). We do this with a delimited macro as a helper, as above.

123 \newcommand*\@nameauth@TrimTag[1] {\Onameauth@@TrimTag#1|\\}

Throw out the bar and suffix, return the radix.

124 \def\@nameauth@@TrimTag#1 [#2\\{#1}

These two macros parse (SNN) into a radix and a comma-delimited suffix, returning
only the suffix after a comma in the argument, or nothing. We do this with a delimited
macro as a helper, but more complicated this time.

125 \newcommand*\@nameauth@Suffix [1] {\@nameauth@@Suffix#1,,\\}

Throw out the radix; return the suffix with no leading spaces. Used to print the
suffix.

126 \def\@nameauth@eSuffix#1,#2,#3\\{%
127 \ifx\\#2\\\Q@empty\else\trim@spaces{#2}\fi
128 }

These two macros test the suffix for a leading active Unicode character. We use this
for capitalization to avoid errors.

129 \newcommand*\@nameauth@GetSuff [1] {\@Gnameauth@@GetSuff#1,,\\}

141

\@nameauth@@GetSuff Throw out the radix; return the suffix.

130 \def\@nameauth@QGetSuff#1,#2,#3\\{#2}

Parsing: Capitalization

\@nameauth@TestToks Test if the leading token is the same as the leading token of an active Unicode
character, using an Fsszett (8) as the control. We only run this macro if we are in
the inputenc regime (using pdflatex and latex). Otherwise we use native Unicode.

131 \newcommand*\@nameauth@TestToks [1]

132 {%

133 \toks@\expandafter{\Qcar#1\@nil}y,
134 \edef\@nameauth@one{\the\toks@}},

135 \toks@\expandafter{\@carB\@nill}}

136 \edef\@nameauth@two{\the\toks@}/,

137 \ifx\@nameauth@one\@nameauth@two

138 \@nameauth@UTFtrueY
139 \else

140 \@nameauth@UTFfalseY
141 \fi

142 }

\@nameauth@UTFtest We choose how to capitalize a letter by determining if we are using native Unicode
(xelatex or lualatex). We test for \Umathchar. Then we see if inputenc is loaded.
We set up the comparison and pass off to \@nameauth@TestToks.

143 \newcommand*\@nameauth@UTFtest [1]
144 {%

145 \def\@nameauthQtestarg{#1}/

146 \ifdefined\Umathchar

147 \@nameauth@UTFfalseY

148 \else

149 \ifdefined\UTFviii@twoQ@octets

150 \if@nameauth@Accent

151 \@nameauth@UTFtrue\@nameauth@Accentfalse,
152 \else

153 \expandafter\@nameauth@TestToks

154 \expandafter{\@nameauth@testargl}y
155 \fi

156 \else

157 \@nameauth@UTFfalse},

158 \fi

159 \fi

160 }

\@nameauth@UTFtestS This test is like the one above, but a special case when we have a suffix. We have
to do a bit more in the way of expansion to get the comparison to work properly.
Moreover, we only use this when the regular suffix macro is not \@empty.

161 \newcommand*\@nameauth@UTFtestS[1]

162 {%
163 \expandafter\def\expandafter\@nameauthQtestargi
164 \expandafter{\@nameauth@GetSuff{#1}1}/

142

This following token register assignment looks weird, but it is how we get a test

that works.
165 \expandafter\toks@},
166 \expandafter\expandafter\expandafter{\@nameauth@testarg}ty,

We take that token register and assign its value to a macro to do the test.

167 \expandafter\def\expandafter\@nameauthQ@testQrg
168 \expandafter{\the\toks@}/,
169 \ifdefined\Umathchar

170 \@nameauth@UTFfalseY

171 \else

172 \ifdefined\UTFviii@two@octets

173 \if@nameauth@Accent

174 \@nameauth@UTFtrue\@nameauth@Accentfalse},
175 \else

176 \expandafter\@nameauth@TestToks%
177 \expandafter{\@nameauth@test@rg}j
178 \fi

179 \else

180 \@nameauth@UTFfalse,

181 \fi

182 \fi

183 }

\@nameauth@Cap These two macros cap the first letter of the argument. Since they partition the
argument into two segments, this can break some macro arguments unless one uses
\noexpand.

184 \newcommand*\@nameauth@Cap [1]{\@nameauth@COp#1\\}

\@nameauth@C@p Helper macro for the one above.

185 \def \@nameauth@Cop#1#2\\{%
186 \expandafter\trim@spaces\expandafter{\MakeUppercase{#1}#2}}
187 }

\@nameauth@CapUTF These two macros cap the first active Unicode letter when one is using inputenc (an
argument “twice as wide” as normal, native Unicode).

188 \newcommand*\@nameauth@CapUTF [1] {\@nameauth@COpUTF#1\\}

\@nameauth@CepUTF Helper macro for the one above.

189 \def \@nameauth@COpUTF#1#2#3\\{%
190 \expandafter\trim@spaces\expandafter{\MakeUppercase{#1#2}#3}}
191 }

\@nameauth@CapArgs Capitalize the first letter of all name arguments. Implements capitalization on demand
in the body text (not the index) when not in alternate formatting. We only use this
macro in the local scope of \@nameauth@Parse. Uses the foregoing macros.

192 \newcommand*\@nameauth@CapArgs [3]

193 {%

194 \ifdefined\@nameauth@InParser
195 \unless\if@nameauth@AltFormat
196 \let\carga\argal,

197 \let\crootb\rootb¥

198 \let\csuffb\suffby

199 \let\cargc\argc

143

We test (FNN) for active, non-native Unicode characters, then cap the first letter.

200 \unless\ifx\arga\@empty
201 \def\test{#1}},
202 \expandafter\@nameauthQUTFtest\expandafter{\testl}’

Capitalize the first active Unicode character.

203 \if@nameauth@UTF
204 \expandafter\def\expandafter\carga\expandafter{’
205 \expandafter\@nameauth@CapUTF\expandafter{\test}}/

Capitalize the first native Unicode character (not active).

206 \else

207 \expandafter\def\expandafter\carga\expandafter{’
208 \expandafter\@nameauth@Cap\expandafter{\test}}’
209 \fi

210 \fi

We test (SNN) for active Unicode characters, then cap the first letter.

211 \def\test{#2}%
212 \expandafter\@nameauth@UTFtest\expandafter{\test}/

Capitalize the first active Unicode character.

213 \if@nameauth@UTF
214 \expandafter\def\expandafter\crootb\expandafter{y,
215 \expandafter\@nameauth@CapUTF\expandafter{\rootb}}%

Capitalize the first native character (not active).

216 \else

217 \expandafter\def\expandafter\crootb\expandafter{y,
218 \expandafter\@nameauth@Cap\expandafter{\rootb}}%
219 \fi

We test (Affiz) for active Unicode characters, then cap the first letter.

220 \unless\ifx\suffb\Qempty

221 \def\test{#2}/,

222 \expandafter\@nameauthQUTFtestS\expandafter{\testl}%
223 \protected@edef\test{\O@nameauth@GetSuff{#2}1}/

Capitalize the first active Unicode character.

224 \if@nameauth@UTF

225 \protected@edef\test{\@nameauth@Suffix{#2}}%

226 \expandafter\def\expandafter\csuffb\expandafter{y
227 \expandafter\@nameauth@CapUTF\expandafter{\test}}%

Capitalize the first native Unicode character (not active).

228 \else

229 \edef\@nameauth@test{\Cnameauth@Suffix{#2}}%

230 \expandafter\def\expandafter\csuffb\expandafter{y
231 \expandafter\@nameauth@Cap\expandafter{\testl}}/
232 \fi

233 \fi

We test (Alternate) for active Unicode characters, then cap the first letter.

234 \unless\ifx\argc\Q@empty
235 \def\test{#3}%
236 \expandafter\@nameauthQUTFtest\expandafter{\testl}%

144

Capitalize the first active Unicode character.

237 \if@nameauth@UTF
238 \expandafter\def\expandafter\cargc\expandafter{’
239 \expandafter\@nameauth@CapUTF\expandafter{\test}}/

Capitalize the first native Unicode character (not active).

240 \else

241 \expandafter\def\expandafter\cargc\expandafter{’
242 \expandafter\@nameauth@Cap\expandafter{\testl}}/
243 \fi

244 \fi

Let the local arguments be the macros with caps. We cap them all and let the macros
sort them out because we do not know which will be displayed.

245 \let\arga\carga
246 \let\rootb\crootb’,
247 \let\suffb\csuffby,
248 \let\argc\cargch
249 \fi

250 \fi

251 }

Parsing: Full Stops
\@nameauth@TestDot This macro, based on a snippet by Uwe Lueck, checks for a full stop at the end of its
argument using the two internal helper macros below.

252 \newcommand*\@nameauth@TestDot [1]
253 {%

If no full stop is present, ##1 is associated with the first \@End. The second \@End
gets absorbed, leaving ##2 empty. If a full stop is present, ##2 will contain it.

254 \def\@nameauth@TestDOt##1.\QEnd##2\\{\@nameauth@TestPunct{##2}1}/,

The two control sequences are equal if ##1 is empty (no full stop). If ##1 is not empty,
it sets \@nameauth@Puncttrue, which triggers the call to \@nameauth@CheckDot
below. One cannot use \unless below.

255 \def\@nameauth@TestPunct##1Y,

256 {%

257 \ifx\@nameauth@TestPunct##1\@nameauth@TestPunct
258 \else

259 \global\@nameauth@Puncttrue,

260 \fi

261 }%

262 \global\@nameauth@Punctfalse,
263 \@nameauth@TestD@t#1\@End.\Q@End\\Y%
264 }

\@nameauth@CheckDot We assume that \expandafter precedes the invocation of \@nameauth@CheckDot,
which only is called if the terminal character of the input is a period. We evaluate
the lookahead \@nameauth@token while keeping it on the list of input tokens.

265 \newcommand*\@nameauth@CheckDot
266 {\futurelet\@nameauth@token\@nameauth@EvalDot}

145

\@nameauth@EvalDot If \@nameauth@token, the lookahead, is a full stop, we gobble the next token because
it is that full stop.

267 \newcommand*\@nameauth@EvalDot

268 {%

269 \let\@nameauth@stop=.%

270 \ifx\@nameauth@token\@nameauth@stop
271 \expandafter\Q@gobble \fi

272 }

Parsing: Breaking, Spaces, and Commas

\@nameauth@AddPunct Here we govern whether (in the text, not the index) spaces between name elements
break or not, and whether to add commas or not. Much applies only to Western names,
thus we check if (FNN) is empty or not. We only use this macro in \@nameauth@Parse.

273 \newcommand*\@nameauth@AddPunct
274 {%

275 \ifdefined\@nameauth@InParser
276 \def\Space{ }%

277 \def\SpaceW{ }%

\SpaceW is used for the space between a Western name and an affix, specifically tied
to \KeepAffix. \Space is used for all other spaces between name elements.

278 \if@nameauth@NBSP \edef\Space{\nobreakspace}\fi
279 \if@nameauth@NBSPX \edef\SpaceW{\nobreakspace}\fi

Western names have a set of comma-use conventions that differ from all other name
forms, so we only use the following logic if (FNN) is not empty, thus, a Western

name.

280 \unless\ifx\arga\Qempty

281 \if@nameauth@AlwaysComma

282 \def\Space{, }%

283 \if@nameauth@NBSP\edef\Space{, \nobreakspace}\fi
284 \fi

285 \if@nameauth@ShowComma

286 \def\Space{, }%

287 \if@nameauth@NBSP\edef\Space{, \nobreakspace}\fi
288 \fi

289 \if@nameauth@NoComma

290 \def\Space{ }/

291 \if@nameauth@NBSP\edef\Space{\nobreakspace}\fi
292 \fi

293 \fi

204 \fi

295 }

Parsing: Name Argument Loading

\@nameauth@LoadArgs Assign name arguments to internal macros to determine name syntax. This is used
in all macros that take name arguments.

296 \newcommand*\@nameauth@LoadArgs [3]
297 {%

We want these arguments to expand to \@empty (or not) when we test them.

298 \protected@edef\@nameauth@A{\trim@spaces{#1}}%

146

\@nameauth@Choice

299 \protected@edef\@nameauth@B{\@nameauth@Root{#2}1}%
300 \protected@edef\@nameauth@SB{\@nameauth@Suffix{#2}}%
301 \protected@edef\@nameauth@C{\trim@spaces{#3}1}/

Make (usually) unique control sequence values from the name arguments.

302 \def\@nameauth@csb{\@nameauth@Clean{#2}1}/

303 \def\@nameauth@csbc{\@nameauth@Clean{#2,#3}1}%
304 \def\@nameauth@csab{\@nameauth@Clean{#1'!#2}}
305 }

Parsing: Standard Parsing Logic

This standard logic applies to all macros that take name arguments. Here we update
\NameauthPattern, \ifNameauthWestern, and \ifNameauthObsolete to show the
resulting name pattern and type of name, usable in formatting hooks.

306 \newcommand\@nameauth@Choice[3]

307 {%
308 \ifx\@nameauth@A\Qempty
309 \ifx\@nameauth@C\Q@empty

This path is for nonwestern names. The #1 argument is used both here and below
when \@nameauth@SB is present. The #1 path always corresponds to the present
syntax. Thus, when printing names in the text, the #1 argument must test both
\@nameauth@C and \@nameauth®@SB, replacing the latter with former ifit exists. With
indexing and other macros, one ignores \@nameauth@C.

310 \let\NameauthPattern\@nameauth@csb}

311 \NameauthWesternfalse \NameauthObsoletefalse},
312 #1%

313 \else

314 \ifx\@nameauth@SB\Qempty

The #2 argument is only for nonwestern names that use the obsolete syntax. Here
\@nameauth@SB never occurs. For indexing and control sequences, one cannot ignore
the use of \@nameauth@C in this path.

315 \let\NameauthPattern\@nameauth@csbc}

316 \NameauthWesternfalse \NameauthObsoletetrue},
317 #2%,

318 \else

But if both \@nameauth@SB and \@nameauth®C are present, we invoke the #1 argu-
ment instead and let it do any further testing and processing. That shows we are
again using the current syntax with a potential name swap.

319 \let\NameauthPattern\@nameauth@csb¥

320 \NameauthWesternfalse \NameauthObsoletefalse},
321 #17

322 \fi

323 \fi

324 \else

This decision path is for Western names. When printing names in the text, somewhere
in the #3 argument one must test for \@nameauth@C and swap it for \@nameauth®A.
One also must check for and handle \@nameauth@SB. Otherwise, for indexing and
control sequences, one ignores \@nameauth®@C in this path and handles \@nameauth@SB
appropriately.

147

325 \let\NameauthPattern\@nameauth@csab¥,

326 \NameauthWesterntrue \NameauthObsoletefalse,
327 #3%

328 \fi

329 }

\@nameauth@Flags Reset flags after the naming macros and \AKA and friends create output in the text.
Other places in the core naming engine where flags are reset are for special cases like
\JustIndex.

330 \newcommand*\@nameauth@Flags

331 {%
332 \if@nameauth@0ldReset

The oldreset option implies not only a difference in scope regarding how flags are
reset, but it also lets the effects of \ForgetThis and \SubvertThis to pass through
\AKA and \AKAx*. Regardless, we only reset \if@nameauth@A1tAKA here due to macros

like \PName.

333 \if@nameauth@InAKA\@nameauth@AltAKAfalse\fi
334 \@nameauth@SkipIndexfalse’
335 \if@nameauth@InName

336 \@nameauth@Forgetfalse,

337 \@nameauth@Subvertfalse,
338 \fi

339 \@nameauth@NBSPfalse}

340 \@nameauth@NBSPXfalse,

341 \@nameauth@oCapsfalse,

342 \@nameauth@Accentfalse,

343 \@nameauth@AllThisfalse’

344 \@nameauth@ShowCommafalse},
345 \@nameauth@NoCommafalse},

346 \@nameauth@RevThisfalse,

347 \@nameauth@RevThisCommafalse},
348 \@nameauth@ShortSNNfalse},

349 \@nameauth@EastFNfalse,

350 \else

The current way that the flags are reset makes them both global and more uniform,
hopefully eliminating a few chances for errors that might be quite difficult to debug.

351 \if@nameauth@InAKA\global\@nameauth@AltAKAfalse\fi
352 \global\@nameauth@SkipIndexfalse},
353 \global\@nameauth@Forgetfalse’

354 \global\@nameauth@Subvertfalse,
355 \global\@nameauth@NBSPfalse}

356 \global\@nameauth@NBSPXfalse,

357 \global\@nameauth@DoCapsfalse
358 \global\@nameauth@Accentfalse’,
359 \global\@nameauth@AllThisfalse}
360 \global\@nameauth@ShowCommafalse,
361 \global\@nameauth@NoCommafalse
362 \global\@nameauth@RevThisfalse}
363 \global\@nameauth@RevThisCommafalse,
364 \global\@nameauth@ShortSNNfalse}
365 \global\@nameauth@EastFNfalse}
366 \fi

367 F

148

\@nameauth@Error

\@nameauth@IdxPageref

15.5.2 Error Detection and Debugging

The nameauth package will halt with a meaningful error when a required name
argument is empty, expands to empty, has an empty root in a malformed root/suffix
pair.

368 \newcommand*\@nameauth@Error [2]

369 {%

370 \edef\@nameauth@msga{#2 SNN arg empty}’

371 \edef\@nameauth@msgb{#2 SNN arg malformed}%

372 \protected@edef\@nameauth@testname{\trim@spaces{#1}1}/
373 \protected@edef\@nameauth@testroot{\@nameauth@Root{#1}}/
374 \ifx\G@nameauth@testname\Qempty

375 \PackageError{nameauth}{\@nameauth@msgal}y,
376 \fi

377 \ifx\@nameauth@testroot\Qempty

378 \PackageError{nameauth}{\@nameauth@msgbl}’
379 \fi

380 }

Here we set up a local scope because we make changes that would otherwise affect
normal nameauth output. We redefine \NameauthIndex to print an argument in the
text instead of the index, and we force indexing to occur.

381 \newcommand*\@nameauth@IdxPageref [3]
382 {%

Warn if \SkipIndex was called before \ShowIdxPageref, and reset it.
383 \if@nameauth@SkipIndex

384 \PackageWarning{nameauth}

385 {\string\SkipIndex precedes \string\ShowIdxPageref; checkl}/
386 \unless\if@nameauth@0ldReset

387 \@nameauth@SkipIndexfalse,

388 \fi

389 \fi

Start a local scope to isolate any changes and redefine \NameauthIndex (the index
macro hook) to print an entry in the text.

390 \begingroup,

391 \def\NameauthIndex##1{##1}/,

392 \@nameauth@oIndextrue},

We locally delete any tag and xref control sequences as needed. They will be restored
when the scope ends. If \ShowIdxPageref set \@nameauth@LongIdxDebugtrue we
produce a full index entry that shows all the tags and the “actual” character as well
as the name. Otherwise we produce a short index entry that shows only the name.

393 \@nameauth@Choice{}{}{}V%

394 \csundef{\NameauthPattern!PN}J,
395 \unless\if@nameauth@LongIdxDebug
396 \csundef{\NameauthPattern!PRE}Y,
397 \csundef{\NameauthPattern!TAG}%
398 \fi

399 \IndexName [#1] {#2} [#3]%

We close the scope and reset the flags.

400 \endgroup%
401 \global\@nameauth@LongIdxDebugfalse},
402 }

149

\@nameauth@Name

15.5.3 Core Name Engine

Argument Processing Layer
Marc van Dongen provided the original basic structure. Parsing, indexing, and
formatting are more modularized than in earlier versions.

403 \NewDocumentCommand{\@nameauth@Name}{0{} m 0{}}
404 {%

Both \@nameauth@Name and \AKA engage the lock below, preventing a stack overflow.
Tell the formatting mechanism that it is being called from \@nameauth@Name.

405 \if@nameauth@BigLock \@nameauth@Locktrue\fi
406 \unless\if@nameauth@Lock

407 \@nameauth@Locktrue,

408 \@nameauth@InNametrue?,

Test for malformed input.
409 \@nameauth@Error{#2}{macro \string\@nameauth@namely,

If we use \JustIndex then skip everything else. The oldpass option restores what we
did before version 3.3, where we locally reset \@nameauth@JustIndexfalse and were
done. Now, however, the default is a global reset to avoid undocumented behavior.

410 \if@nameauth@JustIndex

411 \IndexName [#1]{#2} [#3]7

412 \if@nameauth@0ldPass

413 \@nameauth@JustIndexfalse},

414 \else

415 \if@nameauth@0ldReset

416 \@nameauth@FullNamefalse},

417 \@nameauth@FirstNamefalse},

418 \@nameauth@JustIndexfalse},

419 \else

420 \global\@nameauth@FullNamefalse},
421 \global\@nameauth@FirstNamefalse},
422 \global\@nameauth@JustIndexfalse},
423 \fi

424 \fi

425 \else

Create or delete name pattern if directed. Deletion has priority because it occurs
after creation. Ensure that names are printed in horizontal mode. Wrap the name
with two index entries in case a page break occurs between them.

426 \if@nameauth@Subvert \SubvertName [#1]{#2} [#3]\fi

427 \if@nameauth@Forget \ForgetName [#1]{#2} [#3]\fi

428 \leavevmode\hbox{}%

429 \unless\if@nameauth@SkipIndex \IndexName [#1]{#2} [#3]\fi
430 \if@nameauth@MainFormat

431 \@nameauth@Parse{#1}{#2}{#3}{IMN}

432 \else

433 \@nameauth@Parse{#1}{#2}{#3}{!NF}%

434 \fi

435 \unless\if@nameauth@SkipIndex \IndexName [#1]{#2} [#3]\fi

Reset all the “per name” Boolean values after printing a name. The default is global.

436 \@nameauth@Flags?,

150

\@nameauth@Parse

437 \fi
438 \@nameauth@Lockfalse’,
439 \@nameauth@InNamefalse?,

Close the “locked” branch and complete the full stop detection and removal.

440 \fi
441 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi
442 }

Syntactic Element Layer

Parse and print a name in the text. The final required argument tells us which
naming system we are in (Section 6.1). Both \@nameauth@Name and \AKA call this
parser, which only works in a locked state.

443 \newcommand\@nameauth@Parse [4]

444 {7,
445 \if@nameauth@BigLock \@nameauth@Lockfalse\fi
446 \if@nameauth@Lock

Make token register copies of the current name args to be available for the hook
1acros.

447 \if@nameauth@01dToks

448 \@nameauth@toksa\expandafter{#11}/

449 \@nameauth@toksb\expandafter{#23}/

450 \@nameauth@toksc\expandafter{#33}/

451 \else

452 \global\@nameauth@toksa\expandafter{#1}J,
453 \global\@nameauth@toksb\expandafter{#21}/,
454 \global\@nameauth@toksc\expandafter{#3}%
455 \fi

If global caps. reversing, and commas are true, set the per-name flags true.

456 \if@nameauth@AllCaps \@nameauth@AllThistrue\fi
457 \if@nameauth@RevAll \@nameauth@RevThistrue\fi
458 \if@nameauth@RevAllComma \@nameauth@RevThisCommatrue\fi

Now we enter a local scope where we can use simple control strings without needing
to worry about collisions. We process and load the arguments into the appropriate
macros.

459 \begingroup/

460 \def\@nameauth@InParser{}%

461 \@nameauth@LoadArgs{#1}{#2}{#3}/

Copy the protected control sequences to local, unprotected ones.

462 \let\arga\@nameauth®@A’,
463 \let\rootb\@nameauth®@BY,
464 \let\suffb\@nameauth@SBY,
465 \let\argc\@nameauthC,

Capitalization on demand in the body text if not in alternate formatting.

466 \if@nameauth@DoCaps
467 \@nameauth@CapArgs{#1}{#2}{#3}/,
468 \fi

151

We capitalize the entire surname when desired; different from above and overrides it.

469 \if@nameauth@AllThis

470 \protected@edef\rootb,

471 {\MakeUppercase{\@nameauth@Root{#2}}}%
472 \fi

Use non-breaking spaces and commas as desired.

473 \@nameauth@AddPunct},

We parse names by attaching “meaning” to patterns of macro arguments primarily via
\FNN and \SNN. Then we call the name printing macros, based on optional arguments.

474 \1let\SNN\rootb
475 \@nameauth@Choice

Nonwestern names, current syntax. We test \argc and \suffb as needed.

476 {%

477 \ifx\argc\@empty

478 \let\FNN\suffb},

479 \else

480 \let\FNN\argc%

481 \fi

482 \@nameauth@NonWest{\@nameauth@csb#4}},
483 \@nameauth@akeCS{\@nameauth@csb#4}/,
484 %

Nonwestern names, obsolete syntax. Here \argc is significant.

485 {%

486 \let\FNN\argc¥

487 \@nameauth@NonWest{\@nameauth@csbc#4},
488 \@nameauth@MakeCS{\@nameauth@csbc#41}Y
489 1A

Western names. We test for \argc and swap it for \arga and account for \suffb.

490 {%

491 \ifx\argc\@empty

492 \let\FNN\arga’,

493 \else

494 \let\FNN\argc%

495 \fi

496 \unless\ifx\suffb\Qempty

497 \def\SNN{\rootb\Space\suffb}y,

498 \if@nameauth@ShortSNN

499 \let\SNN\rootb%

500 \fi

501 \fi

502 \@nameauth@West{\@nameauth@csab#4}Y
503 \@nameauth@MakeCS{\@nameauth@csab#4}7,
504 %

We end the local group and reset the flags for name forms here.

505 \endgroup’,

506 \if@nameauth@0ldReset

507 \@nameauth@FullNamefalse,
508 \@nameauth@FirstNamefalse},
509 \@nameauth@FirstFormatfalse},

152

510 \else

511 \global\@nameauth@FullNamefalse},
512 \global\@nameauth@FirstNamefalsey
513 \global\@nameauth@FirstFormatfalse}
514 \fi

515 \fi

516 }

Name Display Layer

\@nameauth@NonWest Arrange forms of nonwestern names. We inherit macros from the parser and only
use this macro in the local scope of the parser.

517 \newcommand*\@nameauth@NonWest [1]

518 {%

519 \ifdefined\@nameauth@InParser
520 \@nameauth@Form{#1}%

521 \ifx\FNN\@empty

522 \@nameauth@Hook{\SNN}%

523 \else

524 \if@nameauth@FullName

525 \if@nameauth@RevThis

526 \@nameauth@Hook{\FNN\Space\SNN}/
527 \else

528 \@nameauth@Hook{\SNN\Space\FNN1}
529 \fi

530 \else

531 \if@nameauth@FirstName

532 \if@nameauth@EastFN

533 \@nameauth@Hook{\FNN}/
534 \else

535 \@nameauth@Hook{\SNN}%
536 \fi

537 \else

538 \@nameauth@Hook{\SNN}%
539 \fi

540 \fi

541 \fi

542 \fi

543 }

\@nameauth@West Arrange forms of Western names and “non-native” Eastern names. We inherit macros
from the parser and only use this macro in the local scope of the parser.

544 \newcommand*\@nameauth@West [1]

545 {%

546 \ifdefined\@nameauth@InParser

547 \@nameauth@Form{#11}%

548 \edef\RevSpace{, \SpaceW}/,

549 \if@nameauth@FullName

550 \if@nameauth@RevThis

551 \@nameauth@Hook{\SNN\SpaceW\FNN}/,
552 \else

553 \if@nameauth@RevThisComma

554 \@nameauth@Hook{\SNN\RevSpace\FNN1}/
555 \else

556 \@nameauth@Hook{\FNN\SpaceW\SNN1}

153

557 \fi

558 \fi

559 \else

560 \if@nameauth@FirstName

561 \@nameauth@Hook{\FNN}%
562 \else

563 \@nameauth@Hook{\rootbl}}
564 \fi

565 \fi

566 \fi

567 }

\@nameauth@Form Set up the flags per the formatting rules for first, subsequent, long, and short uses.
We only use this macro in the local scope of the parser.

568 \newcommand*\@nameauth@Form[1]
569 {%
570 \ifdefined\@nameauth@InParser

If the name does not exist yet or if the alwaysformat option is used, force first-use
formatting, force a long name, and inhibit a short name.

571 \unless\ifcsname#1\endcsname

572 \@nameauth@FirstFormattrue},

573 \@nameauth@FullNametrue,

574 \@nameauth@FirstNamefalse},

575 \else

576 \if@nameauth@AlwaysFormat\@nameauth@FirstFormattrue\fi
577 \fi

If we are not in \AKA, if a short name form is desired, inhibit a long form.

578 \unless\if@nameauth@InAKA
579 \if@nameauth@FirstName\@nameauth@FullNamefalse\fi
580 \else

If we are in \AKA use special formatting rules. \AKA* acts like \FName, while \AKA
acts like \Name*. Both prefer using the subsequent-use hooks unless the formatAKA
option or the alwaysformat option are used.

581 \if@nameauth@AIltAKA

582 \if@nameauth@01dAKA\@nameauth@EastFNtrue\fi
583 \@nameauth@FullNamefalse,

584 \@nameauth@FirstNametrue},

585 \else

586 \@nameauth@FullNametrue,

587 \@nameauth@FirstNamefalse},

588 \fi

589 \unless\if@nameauth@AlwaysFormat
590 \unless\if@nameauth@AKAFormat
591 \@nameauth@FirstFormatfalse},
592 \fi

593 \fi

594 \fi

595 \fi

596

154

\@nameauth@Hook

\@nameauth@Index

Format Hook Dispatcher

Boolean flags control which hook is called (first/subsequent use, name type). We
only use this macro in the local scope of the parser.

597 \newcommand*\@nameauth@Hook [1]
598 {%
599 \ifdefined\@nameauth@InParser

We tell the formatting hooks that they are in the hook dispatcher to enable alternate
formatting. We test the printed name form to see if it has a trailing full stop. The flag
\if@nameauth@InHook will reset outside of the local scope in \@nameauth@Parse.

600 \@nameauth@InHooktrue,

601 \protected@edef\test{#1}/

602 \expandafter\@nameauth@TestDot\expandafter{\testl}’
603 \if@nameauth@MainFormat

We use the formatting hooks for the main-matter system.

604 \if@nameauth@FirstFormat

605 \bgroup\NamesFormat{#1}\egroup%
606 \else

607 \bgroup\MainNameHook{#1}\egroup%
608 \fi

609 \else

We use the formatting hooks for the front-matter system.

610 \if@nameauth@FirstFormat

611 \bgroup\FrontNamesFormat{#1}\egroup’,
612 \else

613 \bgroup\FrontNameHook{#1}\egroup,
614 \fi

615 \fi

616 \fi

617 }

15.5.4 Indexing

This is the core index mechanism. If the indexing flag is true, create an index entry,
otherwise do nothing. Add any tags automatically if they exist.

618 \newcommand*\@nameauth@Index[2]
619 {%
620 \if@nameauth@DoIndex

If an index tag exists for the entry, get it. Also create a short version of the tag
without any vertical bar or trailing macro. If we are creating a cross-reference, use
the short tag, otherwise use the long tag.

621 \ifcsname#1!TAG\endcsname

622 \protected@edef\@nameauth@Tag{\csname#1!TAG\endcsnamel}/,

623 \expandafter\def\expandafter\@nameauth@ShortTag\expandafter{y,
624 \expandafter\@nameauth@TrimTag\expandafter{\@nameauth@Tag}l}

Create entries with a sorting tag and an info tag.

625 \ifcsname#1!PRE\endcsname

626 \protected@edef\@nameauth@Pre{\csname#1!PRE\endcsnamel}/,
627 \if@nameauth@Xref

628 \protected@edef\@nameauth@IdxEntry

155

629 {\@nameauth@Pre#2\@nameauth@ShortTag}t¥%

630 \else

631 \protected@edef\@nameauth@IdxEntry
632 {\@nameauth@Pre#2\0nameauth@Tag}’
633 \fi

634 \else

Create entries with just an info tag.

635 \if@nameauth@Xref

636 \protected@edef\@nameauth@IdxEntry
637 {#2\@nameauth@ShortTag}’

638 \else

639 \protected@edef\@nameauth@IdxEntry
640 {#2\@nameauth@Tagl}’

641 \fi

642 \fi

643 \else

Create entries with just a sorting tag.

644 \ifcsname#1!PRE\endcsname

645 \protected@edef\@nameauth@Pre{\csname#1!PRE\endcsnamel}
646 \protected@edef\@nameauth@IdxEntry{\@nameauth@Pre#2}%
647 \else

648 \protected@edef\@nameauth@IdxEntry{#2}/,

649 \fi

650 \fi

Create entries with no tag.

651 \expandafter\NameauthIndex\expandafter{\@nameauth@IdxEntryl}/
652 \fi
653 F

15.6 For Users: Prefix Macros
All prefix macros are meant to precede a particular name and only affect a particular
name.
15.6.1 Name Syntax
Commas Before Affixes
\ShowComma Put comma between name and suffix one time.

654 \newcommand*\ShowComma{\@nameauth@ShowCommatrue}

\NoComma Remove comma between name and suffix one time (with comma option).

655 \newcommand*\NoComma{\@nameauth@NoCommatrue}

Capitalization

\CapThis Tells the root capping macro to cap the first character of all name elements.

656 \newcommand*\CapThis{\@nameauth@DoCapstrue}

156

\AccentCapThis

\CapName

\RevName

\ForceFN

\RevComma

\DropAffix

\KeepAffix

\KeepName

\SkipIndex

\JustIndex

\SeelAlso

Overrides the automatic test for active Unicode characters. This is a fall-back in case
the automatic test for active Unicode characters does not work.

657 \newcommand*\AccentCapThis
658 {\@nameauth@Accenttrue\@nameauth@DoCapstrue}

Capitalize entire (SNN). Overrides \CapThis for surnames.

659 \newcommand*\CapName{\@nameauth@Al1Thistrue}

Reversing
Reverse name order.

660 \newcommand*\RevName{\@nameauth@RevThistrue}

Force the printing of an Eastern forename or ancient affix in the text, but only when
using the “short name” macro \FName and the \S(macro).

661 \newcommand*\ForceFN{\@nameauth@EastFNtrue}

Reversing with Commas

Last name, comma, first name.

662 \newcommand*\RevComma{\@nameauth@RevThisCommatrue}

Affixes and Breaking

Suppress the affix in a long Western name.

663 \newcommand*\DropAffix{\@nameauth@ShortSNNtrue}

Trigger a name-suffix pair to be separated by a non-breaking space.

664 \newcommand*\KeepAffix{\@nameauth@NBSPtrue}

Use non-breaking spaces between name syntactic forms.

665 \newcommand*\KeepName
666 {\@nameauth@NBSPtrue\@nameauth@NBSPXtrue}
15.6.2 Indexing

Turn off the next instance of indexing in \Name, \FName, and starred forms.

667 \newcommand*\SkipIndex{\@nameauth@SkipIndextrue}

Makes the next call to \Name, \FName, and starred forms act like \IndexName.
Overrides \SkipIndex.

668 \newcommand*\JustIndex{\@nameauth@JustIndextrue}

Change the type of cross-reference from a see reference to a see also reference. Works
once per xref, unless one uses \Includex.

669 \newcommand*\SeeAlso{\@nameauth@SeeAlsotrue}

157

15.6.3 Formatting and Name Decisions

\ForceName Set \@nameauth@FirstFormat to be true even for subsequent name uses. Makes the
core name engine use \NamesFormat. Works for one name only.

670 \newcommand*\ForceName{\@nameauth@FirstFormattrue}

\ForgetThis Have the naming engine \@nameauth@Name call \ForgetName internally.

671 \newcommand*\ForgetThis{\@nameauth@Forgettrue}

\SubvertThis Have the naming engine \@nameauth@Name call \SubvertName internally.

672 \newcommand*\SubvertThis{\@nameauth@Subverttrue}

15.7 For Users: Helper Macros

Helper macros do not need to precede a particular name and their effects endure for
multiple names. They tend to affect an entire scope. That is why they usually come
in pairs.
15.7.1 Name Syntax
Capitalization
\AllCapsInactive Turn off global surname capitalization.

673 \newcommand*\AllCapsInactive{\@nameauth@AllCapsfalse}

\AllCapsActive Turn on global surname capitalization. Activates \CapName for every name.

674 \newcommand*\AllCapsActive{\@nameauth@AllCapstrue}

Reversing
\ReverseInactive Turn off global name reversing.

675 \newcommand*\ReverseInactive{\@nameauth@RevAllfalse}

\ReverseActive Turn on global name reversing. Activates \RevName for every name.

676 \newcommand*\ReverseActive{\@nameauth@RevAlltrue}

Reversing with Commas

\ReverseCommaInactive Turn off global “last-name-comma-first”.
677 \newcommand*\ReverseCommaInactive{\@nameauth@RevAllCommafalse}
\ReverseCommaActive Turn on global “last-name-comma-first”. Activates \RevComma for every name. The

macro \ReverseActive takes priority over this macro due to the structure of the
parser.

678 \newcommand*\ReverseCommaActive{\@nameauth@RevAllCommatrue}

158

\IndexActual

\IndexInactive

\IndexActive

\IndexWarnVerbose

\IndexWarnTerse

\IndexProtect

\NamesInactive

\NamesActive

\AltFormatActive
\AltFormatActive*

\AltFormatInactive

15.7.2 Indexing

Change the “actual” character from the default. This allows one to use, for example,
\global\IndexActual{=} in dtx files.

679 \newcommand*\IndexActual [1]{\def\@nameauth@Actual{#1}}

Turn off global indexing of names.

680 \newcommand*\IndexInactive{\@nameauth@DoIndexfalse}

Turn on global indexing of names.

681 \newcommand*\IndexActive{\@nameauth@DoIndextrue}

Turn on verbose warnings for indexing.

682 \newcommand*\IndexWarnVerbose{\@nameauth@Verbosetrue}

Turn off verbose warnings for indexing.
683 \newcommand*\IndexWarnTerse{\@nameauth@Verbosefalse}
We shut down all output from the naming and indexing macros to protect against

problems in the index in case a macro in the index contains one of the naming macros.
This macro is deliberately local, so one can use scoping to isolate its effects.

684 \newcommand*\IndexProtect
685 {\@nameauth@DoIndexfalse\@nameauth@BigLocktrue}

15.7.3 Formatting

Switch to the front-matter name system.

686 \newcommand*\NamesInactive{\@nameauth@MainFormatfalse}

Switch to the main-matter name system.

687 \newcommand*\NamesActive{\@nameauth@MainFormattrue}

15.7.4 Alternate Formatting

Turn on alternate formatting and disengage the formatting macros if using the
starred form or engage the formatting macros if using the un-starred form.

688 \NewDocumentCommand{\AltFormatActive}{s}
689 {%

690 \global\@nameauth@AltFormattrue,

691 \IfBooleanTF{#1}

692 {\global\@nameauth@oAltfalse}
693 {\global\@nameauth@DoAlttruel’,
694 }

Turn off alternate formatting altogether.

695 \newcommand*\AltFormatInactive
696 {\global\@nameauth@AltFormatfalse\global\@nameauth@DoAltfalse}

159

\A1tOn Locally turn on alternate formatting.

697 \newcommand*\AltOn

698 {%

699 \if@nameauth@InHook

700 \if@nameauth@AltFormat\@nameauth@DoAlttrue\fi
701 \fi

702 }

\A1t0ff Locally turn off alternate formatting.

703 \newcommand*\A1tOff

704 {%

705 \if@nameauth@InHook

706 \if@nameauth@AltFormat\@nameauth@DoAltfalse\fi
707 \fi

708 }

\AltCaps Alternate discretionary capping macro triggered by \CapThis.

709 \newcommand*\AltCaps[1]

710 {%

711 \if@Gnameauth@InHook

712 \if@nameauth@oCaps\MakeUppercase{#1}\else#1\fi

713 \else
714 #1%
715 \fi
716

\textSC Alternate formatting macro: small caps when active.

717 \newcommand*\textSC[1]

718 {\if@nameauth@DoAlt\textsc{#1}\else#1\fi}
\textUC Alternate formatting macro: uppercase when active.

719 \newcommand*\textUC[1]

720 {\if@nameauth@DoAlt\MakeUppercase{#1}\else#1\fi}
\textIT Alternate formatting macro: italic when active.

721 \newcommand*\textIT[1]

722 {\if@nameauth@DoAlt\textit{#1}\else#1\fi}
\textBF Alternate formatting macro: boldface when active.

723 \newcommand*\textBF [1]
724 {\if@nameauth@DoAlt\textbf{#1}\else#1\fi}

15.7.5 Name Decisions

\LocalNameTest Causes decision paths in the name decision macros to be in a local scope.

725 \newcommand*\LocalNameTest{\global\@nameauth@GlobalScopefalse}

\GlobalNameTest Causes decision paths in the name decision macros to have no scoping.
726 \newcommand*\GlobalNameTest{\global\@nameauth@GlobalScopetrue}
\LocalNames \LocalNames sets @nameauth@LocalNames true so \ForgetName and \SubvertName

do not affect both main and front matter name systems at once, only the current
one.

727 \newcommand*\LocalNames{\global\@nameauth@LocalNamestrue}

160

\GlobalNames \GlobalNames restores the default behavior of \ForgetName and \SubvertName,
which affect both name systems at once.

728 \newcommand*\GlobalNames{\global\@nameauth@LocalNamesfalse}

15.7.6 User-Accessible Name Parser

\NameParser Print a name form based on the current state of the nameauth flags in the locked
path. Used only in the hook macros, within the local scope of \@nameauth@Parse.

729 \newcommand*\NameParser

730 {%

731 \if@nameauth@InHook
732 \1let\SNN\rootb¥%
733 \@nameauth@Choice

Nonwestern names. We test both \argc and \suffb as needed.

734 %

735 \ifx\argc\@empty \let\FNN\suffb \else \let\FNN\argc \fi
736 \1fx\FNN\Q@empty

737 \SNN%

738 \else

739 \if@nameauth@FullName

740 \if@nameauth@RevThis \FNN\Space\SNN \else \SNN\Space\FNNY
741 \fi

742 \else

743 \if@nameauth@FirstName

744 \if@nameauth@EastFN \FNN \else \SNN \fi

745 \else

746 \SNNY

747 \fi

748 \fi

749 \fi

750 %

Nonwestern names, obsolete syntax. Using \argc in this path affects indexing.

751 %

752 \let\FNN\argc’

753 \if@nameauth@FullName?,

754 \if@nameauth@RevThis \FNN\Space\SNN \else \SNN\Space\FNN \fi
755 \else

756 \if@nameauth@FirstName

757 \if@nameauth@EastFN \FNN \else \SNN \fi
758 \else

759 \SNN%

760 \fi

761 \fi

762 %

Western names. We test for \argc and swap it for \arga, and account for \suffb.

763 Tk

764 \ifx\argc\@empty \let\FNN\arga \else \let\FNN\argc \fi
765 \unless\ifx\suffb\Qempty

766 \def\SNN{\rootb\Space\suffbl}y

767 \if@nameauth@ShortSNN \let\SNN\rootb \fi

768 \fi

769 \if@nameauth@FullName

161

\Name
\Namex*

\FName
\FNamex*

nameauth (env.)

770 \if@nameauth@RevThis

771 \SNN\SpaceW\FNNY,

772 \else

773 \if@nameauth@RevThisComma
774 \SNN\RevSpace\FNN%

775 \else

776 \FNN\SpaceW\SNN%,

s \fi

778 \fi

779 \else

780 \if@nameauth@FirstName \FNN \else \let\SNN\rootb \SNN \fi
781 \fi

782 YA

783 \fi

784 }

15.8 For Users: Macros That Take Name Arguments

The rest of the nameauth macros all take name arguments. They all update
\NameauthPattern, \ifNameauthWestern, and \ifNameauthObsolete when called.
The file examples.tex iterates through all possible argument variations of these
macros except the debugging macros, the non-printing arguments of \AKA, and
\PName. It thus tests for spurious spaces and any possible bad output.

15.8.1 Basic Interface

\Name calls \NameauthName, the interface hook, printing a long name and calling
\NameauthLName when using the starred form.

785 \NewDocumentCommand{\Name}{s}

786 {%

787 \IfBooleanTF{#1}

788 {\@nameauth@FullNametrue\NameauthLName}
789 {\NameauthNamel}?%

790 }

\FName sets up a short name instance and calls \NameauthFName, the interface
hook. Its starred form is identical in function.

791 \NewDocumentCommand{\FName}{s}
792 {\@nameauth@FirstNametrue\NameauthFName}

15.8.2 Quick Interface

Here we create macro shorthands. First we define a macro \< that takes four
arguments, delimited by three ampersands and >. This macro is local to the nameauth
environment, but the shorthand macros that it creates are global.

793 \newenvironment{nameauth}

794 {%

795 \begingroup

796 \let\ex\expandafter,

797 \csdef{<I##1&##24##34#t#4>{Y,

798 \protected@edef\Qarga@{\trim@spaces{##1}1}/,
799 \protected@edef\Q@larga@{L\trim@spaces{##1}}%
800 \protected@edef\@sarga@{S\trim@spaces{##1}}%

162

801
802
803
804
805

The first argument must have some text to create a set of control sequences with it.
The third argument is the required name argument. Redefining a shorthand creates

\protected@edef\Q@testb@{\trim@spaces{##2}}/,
\protected@edef\Qtestd@{\trim@spaces{##4}}/
\@nameauth@etoksb\ex{##21}/,
\@nameauth@etoksc\ex{##3}%
\@nameauth@etoksd\ex{##41}%

a warning.

806 \ifx\@arga®\Qempty

807 \PackageError{nameauth},

808 {environment nameauth: Macro name missing;

809 \expandafter\detokenize\expandafter{##3}1}/

810 \fi

811 \@nameauth@Error{##3}{macro: \ex\zap@space\string\ \Qempty##13}J,
812 \ifcsname\@arga@\endcsname

813 \PackageWarning{nameauth}

814 {Environment nameauth: shorthand macro already existsl},
815 \fi

Set up shorthands according to name form. We use \expandafter due to
\protected@edef in the naming macros. We begin with nonwestern names that use
the new syntax. We use one \ex per token because we only have one argument to

expand first.

816
817
818
819
820
821
822
823
824
825
826

Next we have Western names with no alternate names. Here we have two arguments
to expand in reverse order, so we need three uses, then one use of \ex per token.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

\ifx\@testd@\Qempty
\ifx\Q@testb@\Qempty
\ex\csgdef\ex{\ex\Qarga®\ex}/
\ex{\ex\NameauthName\ex{\the\@nameauth@etoksc}}
\ex\csgdef\ex{\ex\@larga®\ex}/,
\ex{\ex\@nameauth@FullNametrue
\ex\NameauthLName\ex{\the\@nameauth@etoksc}}’
\ex\csgdef\ex{\ex\@sarga®\exl}}
\ex{\ex\@nameauth@FirstNametrue},
\ex\NameauthFName\ex{\the\@nameauth@etoksc}}
\else

\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Q@arga@\ex\ex\ex}%
\ex\ex\ex{\ex\ex\ex\NameauthNameY,
\ex\ex\ex[\ex\the\ex\@nameauth@etoksb\ex]
\ex{\the\@nameauth@etokscl}}

\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Q@larga®\ex\ex\ex}}
\ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrue,
\ex\ex\ex\NameauthLName},
\ex\ex\ex[\ex\the\ex\@nameauth@etoksb\ex]
\ex{\the\@nameauth@etokscl}}

\ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\O@sarga®\ex\ex\ex}}
\ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametrue,
\ex\ex\ex\NameauthFName?,
\ex\ex\ex[\ex\the\ex\O@nameauth@etoksb\ex]’
\ex{\the\@nameauth@etokscl}}

\fi
\else

163

Below are “native” Eastern names with alternates and the older syntax. We again
have two arguments to expand first.

843 \ifx\@testb@\@empty

844 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\Q@arga@\ex\ex\ex}%
845 \ex\ex\ex{\ex\ex\ex\NameauthNameY,

846 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}’

847 \ex [\the\@nameauth@etoksd] }%

848 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\@larga®\ex\ex\ex1}/,
849 \ex\ex\ex{\ex\ex\ex\@nameauth@FullNametrue,

850 \ex\ex\ex\NameauthLName},

851 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}’

852 \ex [\the\@nameauth@etoksd] }%

853 \ex\ex\ex\csgdef\ex\ex\ex{\ex\ex\ex\@sarga®\ex\ex\ex}/,
854 \ex\ex\ex{\ex\ex\ex\@nameauth@FirstNametrue,

855 \ex\ex\ex\NameauthFName},

856 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}/,

857 \ex [\the\@nameauth@etoksd] }%

858 \else

Here are Western names with alternates. We have three arguments to expand, so we
have seven uses, three uses, and one use of \ex.

859 \ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%
860 \ex\ex\ex\ex\ex\ex\ex\Qarga®\ex\ex\ex\ex\ex\ex\ex}}
861 \ex\ex\ex\ex\ex\ex\ex{\ex\ex\ex\ex\ex\ex\ex\NameauthName?,
862 \ex\ex\ex\ex\ex\ex\ex[\ex\ex\ex\the

863 \ex\ex\ex\@nameauth@etoksb\ex\ex\ex]%

864 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}/

865 \ex [\the\@nameauth@etoksd] }%

866 \ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%
867 \ex\ex\ex\ex\ex\ex\ex\@larga®\ex\ex\ex\ex\ex\ex\ex}/,
868 \ex\ex\ex\ex\ex\ex\ex{

869 \ex\ex\ex\ex\ex\ex\ex\@nameauth@FullNametrue,

870 \ex\ex\ex\ex\ex\ex\ex\NameauthLName}

871 \ex\ex\ex\ex\ex\ex\ex [\ex\ex\ex\the\ex\ex\ex

872 \@nameauth@etoksb\ex\ex\ex]¥

873 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}/,

874 \ex [\the\@nameauth@etoksd] }%

875 \ex\ex\ex\ex\ex\ex\ex\csgdef\ex\ex\ex\ex\ex\ex\ex{%
876 \ex\ex\ex\ex\ex\ex\ex\@sarga®\ex\ex\ex\ex\ex\ex\ex},
877 \ex\ex\ex\ex\ex\ex\ex{%

878 \ex\ex\ex\ex\ex\ex\ex\@nameauth@FirstNametrue,

879 \ex\ex\ex\ex\ex\ex\ex\NameauthFName},

880 \ex\ex\ex\ex\ex\ex\ex[\ex\ex\ex\the\ex\ex\ex

881 \@nameauth@etoksb\ex\ex\ex]%

882 \ex\ex\ex{\ex\the\ex\@nameauth@etoksc\ex}’

883 \ex [\the\@nameauth@etoksd] }

884 \fi

885 \fi\ignorespaces

886 }\ignorespaces’,

887 }

888 {\endgroup\ignorespaces}

15.8.3 Debugging Macros

\ShowPattern This displays the pattern that the name arguments generate; useful for debugging.
We test for bad input, then load the argument values into the appropriate macros.

164

\ShowIdxPageref
\ShowIdxPageref*

\ShowNameInfo

We determine the name type and produce the output of the appropriate name control
sequence.

889 \NewDocumentCommand{\ShowPattern}{0{} m O{}}

890 {%

891 \@nameauth@Error{#2}{macro: \string\ShowPattern}/,
892 \@nameauth@LoadArgs{#1}{#2}{#3}%

893 \@nameauth@Choice{}{}{}\NameauthPattern,

894 }

Show an index page entry appearance for given name parameters.

895 \NewDocumentCommand{\ShowIdxPageref}{s 0{} m 0{}}

896 {%

897 \IfBooleanTF {#1}}
The starred form displays a basic index entry with no tag. Test for bad input, load
the argument values into the appropriate macros, then call the back-end.

go8 {%

899 \@nameauth@Error{#3}{macro: \string\ShowIdxPageref*}},

900 \@nameauth@LoadArgs{#2}{#3}{#41}%

901 \@nameauth@IdxPageref{#2}{#3}{#41}/,

902 Y%

The un-starred form displays (expanded, as printed) the index entry that will be
generated, but not exactly what is in the idx file. Test for bad input, load the
argument values into the appropriate macros, then call the back-end.

903 {%

904 \@nameauth@Error{#3}{macro: \string\ShowIdxPageref}},
905 \@nameauth@LoadArgs{#2}{#3}{#4}/

906 \global\@nameauth@LongIdxDebugtruel

907 \@nameauth@IdxPageref {#2}{#3}{#4}V,

908 }%

909 ¥

Show how the name arguments are being interpreted by the nameauth macros, but
as detokenized text,

910 \NewDocumentCommand{\ShowNameInfo}{0{} m O{}}
911 {%

Test for bad input, then load the argument values into the appropriate macros.

912 \@nameauth@Error{#2}{macro: \string\ShowNameInfol},
913 \@nameauth@LoadArgs{#1}{#2}{#3}/,

We produce what we know about the name arguments. First is nonwestern names
using the current syntax.

914 \@nameauth@Choice

915 {%

916 (SNN: \expandafter\detokenize\expandafter{\@nameauth@B})Y
917 \unless\ifx\@nameauth@SB\@empty

918 \ (Affixk:

919 \expandafter\detokenize\expandafter{\@nameauth@SB})7’
920 \fi

921 \unless\ifx\@nameauth@C\@empty

922 \ (Alt:

923 \expandafter\detokenize\expandafter{\@nameauth@C})Y
924 \fi

925 }%

165

Next is nonwestern names using the obsolete syntax.

926 {%

927 (SNN: \expandafter\detokenize\expandafter{\@nameauth@B})Y
928 \unless\ifx\@nameauth@C\Q@empty

929 \ (Altx*:

930 \expandafter\detokenize\expandafter{\@nameauth@C})¥

931 \fi

932 Yh

Finally we have Western names.

933 {h

934 (FNN: \expandafter\detokenize\expandafter{\@nameauth@A})
935 (SNN: \expandafter\detokenize\expandafter{\@nameauth@B})Y
936 \unless\ifx\@nameauth@SB\@empty

937 \ (Affix:

938 \expandafter\detokenize\expandafter{\@nameauth@SB})’
939 \fi

940 \unless\ifx\@nameauth@C\Q@empty

941 \ (Alt:

942 \expandafter\detokenize\expandafter{\@nameauth@C})?
943 \fi

944 Y%

945 }

\ShowNameState This macro tells the user what control sequence patterns exist for any given name.

946 \NewDocumentCommand{\ShowNameState}{0{} m 0{}}
947 {%

Create a local scope to kill any local definitions on exit. Test for bad input, then
load the argument values into the appropriate macros.

948 \begingroup’

949 \@nameauth@Error{#2}{macro: \string\NamePatternsl}y,

950 \@nameauth@LoadArgs{#1}{#2}{#3}V,

Parse the name arguments and determine name type. We use this method instead of
examining the Boolean flags because it is more efficient here.

951 \@nameauth@Choice

952 {\def\@nameauth@nametype{nw}}
953 {\def\@nameauth@nametype{nw,os}}
954 {\def\@nameauth@nametype{w}}

Check to see what control sequences exist and collect the information.

955 \ifcsname\NameauthPattern!MN\endcsname

956 \def\@nameauth@mainname{main}j,

957 \fi

958 \ifcsname\NameauthPattern!NF\endcsname
959 \def\@nameauth@frontname{frontl}

960 \fi

961 \ifcsname\NameauthPattern!PN\endcsname
962 \edef\@nameauth@testex

963 {\csname\NameauthPattern!PN\endcsname},
964 \ifx\@nameauth@testex\@nameauth@Exclude
965 \def\@nameauth@excl{excl})

966 \else

967 \def\@nameauth@xref{xrefl}y,

166

968
969
970
971
972
973
974
975
976
977
978

If either a main name or a front name exist, create a macro that reflects this condition.

979
980

\fi

\fi

\ifcsname\NameauthPattern!PRE\endcsname
\def\@nameauth@pre{pretag}ti,

\fi

\ifcsname\NameauthPattern!TAG\endcsname
\def\@nameauth@tag{idxtagl}y,

\fi

\ifcsname\NameauthPattern!DB\endcsname
\def\@nameauth@db{namedb}

\fi

\ifdefined \@nameauth@mainname \def\@nameauth@namecs{}\fi
\ifdefined \@nameauth@frontname \def\@nameauth@namecs{}\fi

If an xref and an exclusion exist for a name, something went wrong.

981
982
983
984
985
986

\ifdefined \@nameauth@xref
\ifdefined \@nameauth®@excl
\PackageWarning{nameauth}
{Both xref and exclusion exist for \NameauthPattern}/,
\fi
\fi

Determine the state of the “index finite state machine”.

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

\ifdefined \@nameauth@namecs
\def\@nameauth@idxstate{2}}
\ifdefined \@nameauth@xref

\def\@nameauth@idxstate{4}%
\fi
\ifdefined \@nameauth®@excl
\def\@nameauth@idxstate{61}
\fi
\else
\def\@nameauth@idxstate{1}%
\ifdefined \@nameauth@xref
\def\@nameauth@idxstate{3}%
\fi
\ifdefined \@nameauth@excl
\def\@nameauth@idxstate{5}%
\fi
\fi

Display the output.

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016 }

Pattern: {\NameauthPattern}

Type: {\@nameauth@nametype}

Index state: {\@nameauth@idxstate}

Systems:%

\ifdefined \@nameauth@mainname\ \@nameauth@mainname \fi
\ifdefined \@nameauth@frontname\ \@nameauth@frontname \fi
\ifdefined \@nameauth@xref\ \@nameauth@xref \fi
\ifdefined \@nameauth@excl\ \@nameauth®@excl \fi
\ifdefined \@nameauth@pre\ \@nameauth@pre \fi
\ifdefined \@nameauth@tag\ \@nameauth@tag \fi
\ifdefined \@nameauth@db\ \@nameauth@db \fi

\endgroup%

167

\IndexName

15.8.4 Indexing

This creates an index entry with page entries. It warns if the \SkipIndex prefix
macro was used before it was called. It issues additional warnings if the verbose
option is selected. It prints nothing.

1017 \NewDocumentCommand{\IndexName}{0{} m 0{}}
1018 {%

Process and load the arguments into the appropriate macros; test for malformed
input.

1019 \@nameauth@LoadArgs{#1}{#2}{#3}/
1020 \@nameauth@Error{#2}{macro \string\IndexNamel}/,

Warn if \SkipIndex was called before \IndexName and reset it unless the oldreset
option was used.

1021 \if@nameauth@SkipIndex

1022 \PackageWarning{nameauth}

1023 {\string\SkipIndex precedes \string\IndexName; check for issues}),
1024 \unless\if@nameauth@01ldReset

1025 \@nameauth@SkipIndexfalse,

1026 \fi

1027 \fi

Warn if \SeeAlso was called before \IndexName and reset it.

1028 \unless\if@nameauth@0ldReset

1029 \if@nameauth@SeeAlso

1030 \global\@nameauth@SeeAlsofalse,

1031 \PackageWarning{nameauth}{\string\SeeAlso was resetl}y
1032 \fi

1033 \fi

Create the appropriate index entries, calling \@nameauth@Index to handle sorting
and tagging. We do not create an index entry for a cross-reference or exclusion.

1034 \@nameauth@Choice

Nonwestern names. We ignore \@nameauth@C and handle \@nameauth@SB appropri-
ately.

1035 {%

1036 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2}1}%
1037 \ifcsname\@nameauth@csb!PN\endcsname

1038 \if@nameauth@Verbose

1039 \edef\@nameauth@testex

1040 {\csname\@nameauth@csb!PN\endcsnamel}

1041 \ifx\@nameauth@testex\@nameauth@Exclude

1042 \PackageWarning{nameauth}

1043 {\string\IndexName: exclusion exists \@nameauth@Templ}%
1044 \else

1045 \PackageWarning{nameauth}

1046 {\string\IndexName: xref exists \@nameauth@Temply,
1047 \fi

1048 \fi

1049 \else

1050 \ifx\@nameauth@SB\Qempty

1051 \@nameauth@Index{\@nameauth@csb}{\Cnameauth@B}Y

1052 \else

168

1053 \@nameauth@Index{\@nameauth@csb}

1054 {\@nameauth@B\@nameauth@space\@nameauth@SB}/
1055 \fi

1056 \fi

1057 }%

Nonwestern names, obsolete syntax. Using \@nameauth@C in this path affects indexing.

1058 {%

1059 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}/
1060 \ifcsname\@nameauth@csbc!PN\endcsname

1061 \if@nameauth@Verbose

1062 \edef\@nameauth@testex

1063 {\csname\@nameauth@csbc!PN\endcsname}y,

1064 \ifx\@nameauth@testex\@nameauth@Exclude

1065 \PackageWarning{nameauth}

1066 {\string\IndexName: exclusion exists \@nameauth@Templ}%
1067 \else

1068 \PackageWarning{nameauth}

1069 {\string\IndexName: xref exists \@nameauth@Temply,

1070 \fi

1071 \fi

1072 \else

1073 \@nameauth@Index{\@nameauth@csbc}

1074 {\@nameauth@B\@nameauth@space\@nameauth@C}%

1075 \fi

1076 Y%

Western names. We ignore \@nameauth@C and handle \@nameauth@SB appropriately.

w77 {%

1078 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#1 #2}}%
1079 \ifcsname\@nameauth@csab!PN\endcsname

1080 \if@nameauth@Verbose

1081 \edef\@nameauth@testex

1082 {\csname\@nameauth@csab!PN\endcsnamel}V

1083 \ifx\@nameauth@testex\@nameauth@Exclude

1084 \PackageWarning{nameauth}

1085 {\string\IndexName: exclusion exists \@nameauth@Templ}}
1086 \else

1087 \PackageWarning{nameauth}

1088 {\string\IndexName: xref exists \@nameauth@Temply,
1089 \fi

1090 \fi

1091 \else

1092 \ifx\@nameauth@SB\Qempty

1093 \@nameauth@Index{\@nameauth@csab}

1094 {\@nameauth@B, \@Gnameauth@space\@nameauth@A}’,

1095 \else

1096 \@nameauth@Index{\@nameauth@csab}

1097 {\@nameauth®@B, \@nameauth@space,

1098 \@nameauth®@4, \@nameauth@space\@nameauth@SB}/

1099 \fi

1100 \fi

1101 }%

1102 }

169

\IndexRef Create a cross-reference that is not already an exclusion or a cross-reference. Print
nothing.

1103 \NewDocumentCommand{\IndexRef}{0{} m 0{} m}
1104 {%

Process and load the arguments into the appropriate macros.

1105 \@nameauth@LoadArgs{#1}{#2}{#3}V
1106 \protected@edef\@nameauthQ@Target{#41}%

Test for malformed input.

1107 \@nameauth@Error{#2}{macro \string\IndexRef}},
1108 \@nameauth@Xreftrue,

Warn if \SkipIndex was called before \IndexName, and reset it unless the
oldreset option was used.

1109 \if@nameauth@SkipIndex

1110 \PackageWarning{nameauth}

1111 {\string\SkipIndex preceded \string\IndexRef; check for issuesl}
1112 \unless\if@nameauth@0ldReset

1113 \@nameauth@SkipIndexfalse,

1114 \fi

1115 \fi

1116 \@nameauth@Choice

Nonwestern name, new syntax. First check if an xref or excluded, and if so, do
nothing except issue warnings if so desired.

it {%

1118 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2}1}/
1119 \if csname\@nameauth@csb!PN\endcsname

1120 \if@nameauth@Verbose

1121 \edef\@nameauth@testex

1122 {\csname\@nameauth@csb!PN\endcsnamel}

1123 \ifx\@nameauth@testex\@nameauth@Exclude

1124 \PackageWarning{nameauth}

1125 {\string\IndexRef: exclusion exists \@nameauth@Templ}’,
1126 \else

1127 \PackageWarning{nameauth}

1128 {\string\IndexRef: xref exists \@nameauth@Temply

1129 \fi

1130 \fi

If no xref or exclusion exists, either create a see also or a see reference. We permit
the latter when a name exists only if the oldsee option is used; then issue a warning.

1131 \else

1132 \ifx\@nameauth@SB\Qempty

1133 \if@nameauth@SeeAlso

1134 \@nameauth@Index{\@nameauth@csb}

1135 {\@nameauth@B|seealso{\@nameauth@Target}1}’
1136 \csgdef{\@nameauth@csb!PN}{}/,

1137 \else

1138 \unless\if@nameauth@0ldSee

1139 \unless\ifcsname\@nameauth@csb!MN\endcsname
1140 \unless\ifcsname\@nameauth@csb!NF\endcsname
1141 \@nameauth@Index{\@nameauth@csb}

1142 {\@nameauth®B|see{\@nameauth@Target}}’

170

1143 \csgdef{\@nameauth@csb!PN}{}%

1144 \else

1145 \PackageWarning{nameauth}

1146 {\string\IndexRef: extant name;

1147 no xref \@nameauth@Temply,

1148 \fi

1149 \else

1150 \PackageWarning{nameauth}

1151 {\string\IndexRef: extant name;

1152 no xref \@nameauth@Templ}’

1153 \fi

1154 \else

1155 \if@nameauth@Verbose

1156 \PackageWarning{nameauth}

1157 {\string\IndexRef: non-strict xref \@nameauth@Templ’
1158 \fi

1159 \@nameauth@Index{\O@nameauth@csb}

1160 {\@nameauth@B|see{\@nameauth@Target}}%
1161 \csgdef{\Onameauth@csb!PN}{}%

1162 \fi

1163 \fi

When the suffix is non-empty, either create a see also or a see reference. We permit
the latter when a name exists only if the oldsee option is used; then issue a warning.

1164 \else

1165 \if@nameauth@SeeAlso

1166 \@nameauth@Index{\@nameauth@csb}

1167 {\@nameauth@B\@nameauth@space},

1168 \@nameauth@SB|seealso{\@nameauth@Target}}/,
1169 \csgdef{\@nameauth@csb!PN}{}%

1170 \else

1171 \unless\if@nameauth@0ldSee

1172 \unless\ifcsname\@nameauth@csb!MN\endcsname
1173 \unless\ifcsname\@nameauth@csb!NF\endcsname
1174 \@nameauth@Index{\@nameauth@csb}

1175 {\@nameauth@B\@nameauth@space,

1176 \@nameauth@SB|see{\@nameauth@Target}}’
1177 \csgdef{\@nameauth@csb!PN}{}%

1178 \else

1179 \PackageWarning{nameauth}

1180 {\string\IndexRef: extant name;

1181 no xref \@nameauth@Temply,

1182 \fi

1183 \else

1184 \PackageWarning{nameauth}

1185 {\string\IndexRef: extant name;

1186 no xref \@nameauth@Templ’

1187 \fi

1188 \else

1189 \if@nameauth@Verbose

1190 \PackageWarning{nameauth}

1191 {\string\IndexRef: non-strict xref \@nameauthQTempl}
1192 \fi

1193 \@nameauth@Index{\@nameauth@csb}

1194 {\@nameauth@B\@nameauth@space

1195 \@nameauth®@SB|see{\@nameauth@Target}}%

171

1196 \csgdef{\@nameauth@csb!PN}{1}%

1197 \fi
1198 \fi
1199 \fi

1200 \fi

12010 }%

Eastern or ancient name, obsolete syntax. First check if an xref or excluded.

1202 {%

1203 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}%
1204 \ifcsname\@nameauth@csbc!PN\endcsname

1205 \if@nameauth@Verbose

1206 \edef\@nameauth@testex

1207 {\csname\@nameauth@csbc!PN\endcsnamel}

1208 \ifx\@nameauth@testex\@nameauth@Exclude

1209 \PackageWarning{nameauth}

1210 {\string\IndexRef: exclusion exists \@nameauth@Templ}%
1211 \else

1212 \PackageWarning{nameauth}

1213 {\string\IndexRef: xref exists \@nameauth@Templ}%

1214 \fi

1215 \fi

If no xref control sequence exists, either create a see also or a see reference. We
permit the latter when a name exists only if the oldsee option is used; then issue a
warning.

1216 \else

1217 \if@nameauth@SeelAlso

1218 \@nameauth@Index{\@nameauth@csbc}

1219 {\@nameauth@B\@nameauth@space’,

1220 \@nameauth@C|seealso{\@nameauth@Target}}%
1221 \csgdef{\@nameauth@csbc!PN}{}},

1222 \else

1223 \unless\if@nameauth@0ldSee

1224 \unless\ifcsname\@nameauth@csbc!MN\endcsname
1225 \unless\ifcsname\@nameauth@csbc!NF\endcsname
1226 \@nameauth@Index{\@nameauth@csbc}

1227 {\@nameauth@B\@nameauth@space

1228 \@nameauth@C|see{\@nameauth@Target}}%
1229 \csgdef{\@nameauth@csbc!PN}{}

1230 \else

1231 \PackageWarning{nameauth}

1232 {\string\IndexRef: extant name;

1233 no xref \@nameauth@Templ}’

1234 \fi

1235 \else

1236 \PackageWarning{nameauth}

1237 {\string\IndexRef: extant name;

1238 no xref \@nameauth@Temply,

1239 \fi

1240 \else

1241 \if@nameauth@Verbose

1242 \PackageWarning{nameauth}

1243 {\string\IndexRef: non-strict xref \@nameauth@Templ}},
1244 \fi

1245 \@nameauth@Index{\@nameauth@csbc}

172

1246 {\@nameauth@B\@nameauth@space?,

1247 \@nameauth@C|see{\@nameauth@Target}}’
1248 \csgdef{\@nameauth@csbc!PN}{}%

1249 \fi

1250 \fi

1251 \fi

1252}

Western name, without and with affix. First check if an xref or excluded.

1253 {%

1254 \def\@nameauth@Temp{\expandafter\detokenize\expandafter{#1 #2}1}/
1255 \ifcsname\@nameauth@csab!PN\endcsname

1256 \if@nameauth@Verbose

1257 \edef\@nameauth@testex

1258 {\csname\@nameauth@csab!PN\endcsnamel}

1259 \ifx\@nameauth@testex\@nameauth@Exclude

1260 \PackageWarning{nameauth}

1261 {\string\IndexRef: exclusion exists \@nameauth@Templ}y
1262 \else

1263 \PackageWarning{nameauth}

1264 {\string\IndexRef: xref exists \@nameauth@Templ}%

1265 \fi

1266 \fi

If no xref control sequence exists, either create a see also or a see reference. We
permit the latter when a name exists only if the oldsee option is used; then issue a
warning.

1267 \else

1268 \ifx\@nameauth@SB\Qempty

1269 \if@nameauth@SeeAlso

1270 \@nameauth@Index{\@nameauth@csab}

1271 {\@nameauth@B, \@nameauth@space,

1272 \@nameauth@A|seealso{\@nameauth@Targetl}}%
1273 \csgdef{\@nameauth@csab!PN}{}%

1274 \else

1275 \unless\if@nameauth@0ldSee

1276 \unless\ifcsname\@nameauth@csab!MN\endcsname
1277 \unless\ifcsname\@nameauth@csab!NF\endcsname
1278 \@nameauth@Index{\@nameauth@csab}

1279 {\@nameauth®B, \@nameauth@space},

1280 \@nameauth®A | see{\@nameauth@Target}}/,
1281 \csgdef{\@nameauth@csab!PN}{}/,

1282 \else

1283 \PackageWarning{nameauth}

1284 {\string\IndexRef: extant name;

1285 no xref \@nameauth@Temply,

1286 \fi

1287 \else

1288 \PackageWarning{nameauth}

1289 {\string\IndexRef: extant name;

1290 no xref \@nameauth@Templ’

1291 \fi

1292 \else

1293 \if@nameauth@Verbose

1294 \PackageWarning{nameauth}

1295 {\string\IndexRef: non-strict xref \@nameauth@Templ}y,

173

1296 \fi

1297 \@nameauth@Index{\@nameauth@csab}

1298 {\@nameauth®@B, \@nameauth@space’,

1299 \@nameauth@A | see{\O@nameauth@Target}}’
1300 \csgdef{\@nameauth@csab!PN}{}%

1301 \fi

1302 \fi

When the suffix is non-empty, either create a see also or a see reference. We permit
the latter when a name exists only if the oldsee option is used; then issue a warning.

1303 \else

1304 \if@nameauth@SeeAlso

1305 \@nameauth@Index{\@nameauth@csab}

1306 {\@nameauth@B, \@nameauth@space,

1307 \@nameauth@A, \Gnameauth@spacey,

1308 \@nameauth@SB|seealso{\@nameauth@Target}1}/
1309 \csgdef{\@nameauth@csab!PN}{}%

1310 \else

1311 \unless\if@nameauth@0ldSee

1312 \unless\ifcsname\@nameauth@csab!MN\endcsname
1313 \unless\ifcsname\@nameauth@csab!NF\endcsname
1314 \@nameauth@Index{\@nameauth@csab}

1315 {\@nameauth®B, \@nameauth@space},

1316 \@nameauth®@4, \@nameauth@space’,

1317 \@nameauth@SB|see{\@nameauth@Target}}%
1318 \csgdef{\@nameauth@csab!PN}{}%

1319 \else

1320 \PackageWarning{nameauth}

1321 {\string\IndexRef: extant name;

1322 no xref \@nameauth@Temply,

1323 \fi

1324 \else

1325 \PackageWarning{nameauth}

1326 {\string\IndexRef: extant name;

1327 no xref \@nameauth@Templ/,

1328 \fi

1329 \else

1330 \if@nameauth@Verbose

1331 \PackageWarning{nameauth}

1332 {\string\IndexRef: non-strict xref \@nameauth@Templ}
1333 \fi

1334 \@nameauth@Index{\@nameauth@csab}

1335 {\@nameauth®@B, \@nameauth@space’,

1336 \@nameauth@A, \Gnameauth@space

1337 \@nameauth®@SB|see{\@nameauth@Target}}%
1338 \csgdef{\@nameauth@csab!PN}{}/,

1339 \fi

1340 \fi

1341 \fi

1342 \fi

1343 Y

1344 \Cnameauth@Xreffalse’,

1345 \if@nameauth@0ldReset

1346 \@nameauth@SeeAlsofalse’,

1347 \else

1348 \global\@nameauth@SeeAlsofalse,

174

1349 \fi
1350 }

\ExcludeName Prevent a name from being indexed by initializing a regular cross-reference control
sequence with the value of \@nameauth@Exclude.

1351 \NewDocumentCommand{\ExcludeName}{0{} m O{}}
1352 {%

Process and load the arguments into the appropriate macros.

1353 \@nameauth@LoadArgs{#1}{#2}{#3}/,
1354 \@nameauth@Error{#2}{macro \string\ExcludeNamel}%

Parse the name arguments and create an excluded xref, unless one already exists.

1355 \@nameauth@Choice

1356 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2}}}
1357 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}}
1358 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#1 #2}}}/

Verbose warnings say that an extant name is being excluded; the operation is
allowed.

1359 \if@nameauth@Verbose

1360 \ifcsname\NameauthPattern!MN\endcsname

1361 \PackageWarning{nameauth}

1362 {\string\ExcludeName: extant name \@nameauth@Templ}
1363 \fi

1364 \ifcsname\NameauthPattern!NF\endcsname

1365 \PackageWarning{nameauth}

1366 {\string\ExcludeName: extant name \@nameauth@Temp}
1367 \fi

1368 \fi

One cannot exclude an extant cross-reference or exclusion. Verbose warnings only.

1369 \ifcsname\NameauthPattern!PN\endcsname

1370 \if@nameauth@Verbose
1371 \edef\@nameauth@testex
1372 {\csname\NameauthPattern!PN\endcsname},
1373 \ifx\@nameauth@testex\@nameauth@Exclude
1374 \PackageWarning{nameauth}
1375 {\string\ExcludeName: exclusion exists \@nameauth@Templ}’
1376 \else
1377 \PackageWarning{nameauth}
1378 {\string\ExcludeName: xref exists \@nameauth@Templ}’
1379 \fi
1380 \fi
1381 \else
1382 \csxdef{\NameauthPattern!PN}{\@nameauth@Exclude},
1383 \fi
1384 }
\IncludeName Allow names to be included as page entries, even if they have been used as

\IncludeName* cross-references.

1385 \NewDocumentCommand{\IncludeName}{s 0{} m 0{}}
1386 {%
1387 \IfBooleanTF {#1}/,

175

\PretagName

The starred form allows any name to be indexed by voiding any exclusion or cross-
reference. Process and load the arguments into the appropriate macros. Check for
errors, get the current name pattern, then nuke it.

1388 {
1389 \@nameauth@LoadArgs{#2}{#3}{#4}/
1390 \@nameauth@Error{#3}{macro \string\IncludeNamex1}}

1391 \@nameauth@Choice{}H{}{}%
1392 \global\csundef{\NameauthPattern!PN}J,
1393 %

The un-starred form allows a name to be indexed once again only if it had been
excluded. Process and load the arguments into the appropriate macros. Get the
current name type, pattern, and contents if a warning is needed.

1394 {%

1395 \@nameauth@LoadArgs{#2}{#3}{#4}/

1396 \@nameauth@Error{#3}{macro \string\IncludeName},

1397 \@nameauth@Choice

1398 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#3}}}
1399 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#3 #4}}}
1400 {\def\@Gnameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}}/

Test whether the name is an exclusion or a regular xref. If the former, delete its
control sequence. If the latter, do nothing and issue a warning.

1401 \if csname\NameauthPattern!PN\endcsname

1402 \edef\@nameauth@testex

1403 {\csname\NameauthPattern!PN\endcsname}’,
1404 \ifx\@nameauth@testex\@nameauth@Exclude
1405 \global\csundef{\NameauthPattern!PN}7
1406 \else

1407 \if@nameauth@Verbose

1408 \PackageWarning{nameauth}

1409 {\string\IncludeName: extant xref \@nameauth@Templ}%
1410 \fi

1411 \fi

1412 \fi

1413 Y

1414 }

This creates an index entry tag that is applied before a name by \@nameauth@Index.

1415 \NewDocumentCommand{\PretagName}{0{} m 0{} m}
1416 {%

Process and load the arguments into the appropriate macros.

1417 \@nameauth@LoadArgs{#1}{#2}{#3}/
1418 \@nameauth@Error{#2}{macro \string\PretagNamel/,

Sort only when permitted. Get the current name type, pattern, and contents if a
warning is needed.

1419 \if@nameauth@Pretag

1420 \@nameauth@Choice

1421 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2}}}
1422 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}}
1423 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#1 #2}}}%

176

\TagName

Create the sort tag. Verbose warnings let us know if we are sorting either exclusions
or cross-references.

1424 \if@nameauth@Verbose

1425 \edef\@nameauth@testex

1426 {\csname\NameauthPattern!PN\endcsnamel},

1427 \ifx\@nameauth@testex\@nameauth@Exclude

1428 \PackageWarning{nameauth}

1429 {\string\PretagName: tag exclusion \@nameauth@Temp}’
1430 \else

1431 \PackageWarning{nameauth}

1432 {\string\PretagName: tag xref \@nameauth@Templ}j,
1433 \fi

1434 \fi

1435 \csgdef{\NameauthPattern!PRE}{#4\@nameauth@Actually
1436 \else

1437 \PackageWarning{nameauth}

1438 {\string\PretagName: deactivatedl}}
1439 \fi

1440 }

This creates an index entry tag for a name that is not either an exclusion or a
cross-reference.

1441 \NewDocumentCommand{\TagName}{0{} m 0{} m}
1442 {%

Process and load the arguments into the appropriate macros. Get the current name
type, pattern, and contents if a warning is needed.

1443 \@nameauth@LoadArgs{#1}{#2}{#3}%

1444 \@nameauth@Error{#2}{macro \string\TagNamel}/,

1445 \@nameauth@Choice

1446 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2}}}
1447 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#2 #3}}}
1448 {\def\@nameauth@Temp{\expandafter\detokenize\expandafter{#1 #2}}}/

Verbose warnings let us know if we are sorting either exclusions or cross-references.
Do not create a tag if that is the case; otherwise, create a tag.

1449 \ifcsname\NameauthPattern!PN\endcsname

1450 \if@nameauth@Verbose

1451 \edef\@nameauth@testex

1452 {\csname\NameauthPattern!PN\endcsname},

1453 \ifx\@nameauth@testex\@nameauth@Exclude

1454 \PackageWarning{nameauth}

1455 {\string\TagName: no tag, exclusion \@nameauth@Templ}%
1456 \else

1457 \PackageWarning{nameauth}

1458 {\string\TagName: no tag, xref \@nameauth@Templ}%
1459 \fi

1460 \fi

1461 \else

1462 \csgdef{\NameauthPattern! TAG}{#41}/,

1463 \fi

1464 }

177

\UntagName

\NameAddInfo

\NameQueryInfo

\NameClearInfo

\IfMainName

This deletes an index tag.

1465 \NewDocumentCommand{\UntagName}{0{} m 0{}}

1466 {%

1467 \@nameauth@LoadArgs{#1}{#2}{#3}V

1468 \@nameauth@Error{#2}{macro \string\UntagNamel}’
1469 \@nameauth@Choice{}{}{}/

1470 \global\csundef{\NameauthPattern!TAG}/

1471 }

15.8.5 Name Tags

This creates a macro that expands to information associated with a given name,
similar to an index tag, but usable in the body text.

1472 \NewDocumentCommand{\NameAddInfo}{0{} m 0{} +m}
1473 {%

1474 \@nameauth@LoadArgs{#1}{#2}{#3}/

1475 \@nameauth@Error{#2}{macro \string\NameAddInfoly,
1476 \@nameauth@Choice{}{}{}%

1477 \csgdef{\NameauthPattern!DB}{#41}/

1478 }

This prints the information created by \NameAddInfo if it exists.

1479 \NewDocumentCommand{\NameQueryInfo}{0{} m 0{}}
1480 {%

1481 \unless\if@nameauth@BigLock

1482 \@nameauth@LoadArgs{#1}{#2}{#3}%

1483 \@nameauth@Error{#2}{macro \string\NameQueryInfol}
1484 \@nameauth@Choice{}{}{}%

1485 \if csname\NameauthPattern!DB\endcsname

1486 \csname\NameauthPattern!DB\endcsnameY,

1487 \fi

1488 \fi

1489 }

This deletes a text tag. It has the same structure as \UntagName.

1490 \NewDocumentCommand{\NameClearInfo}{0{} m 0{}}

1491 {%

1492 \@nameauth@LoadArgs{#1}{#2}{#3}%

1493 \@nameauth@Error{#2}{macro \string\NameClearInfol}J,
1494 \@nameauth@Choice{}{}{}%

1495 \global\csundef{\NameauthPattern!DB}%

1496 }

15.8.6 Name Decisions

This macro expands one path if a main matter name exists, or else the other. The
state of \if@nameauth@GlobalScope determines whether or not the paths are in a
local scope. First we load the arguments into the standard macros, check for error,
and get the current name pattern.

1497 \NewDocumentCommand{\IfMainName}{0{} m 0{} +m +m}
1498 {%

1499 \@nameauth@LoadArgs{#1}{#2}{#3}V

1500 \@nameauth@Error{#2}{macro \string\IfMainNamel,
1501 \@nameauth@Choice{}{}{}V

178

\IfFrontName

\IfAKA

Take this path if the pattern exists.

1502 \ifcsname\NameauthPattern!MN\endcsname
1503 \if@nameauth@GlobalScope #4\else {#4}\fi
1504 \else

Take this path if the pattern does not exist.

1505 \if@nameauth@GlobalScope #5\else {#5}\fi
1506 \fi
1507 Y

This macro expands one path if a front matter name exists, or else the other. The
state of \if@nameauth@GlobalScope determines whether or not the paths are in a
local scope. First we load the arguments into the standard macros, check for error,
and get the current name pattern.

1508 \NewDocumentCommand{\IfFrontName}{0{} m 0{} +m +m}
1509 {%

1510 \@nameauth@LoadArgs{#1}{#2}{#3}/

1511 \@nameauth@Error{#2}{macro \string\IfFrontNamel}/
1512 \@nameauth@Choice{}{}{}/

Take this path if the pattern exists.

1513 \ifcsname\NameauthPattern!NF\endcsname
1514 \if@nameauth@GlobalScope #4\else {#4}\fi
1515 \else

Take this path if the pattern does not exist.

1516 \if@nameauth@GlobalScope #5\else {#5}\fi
1517 \fi
1518 }

This macro expands one path if a cross-reference exists, another if it does not exist,
and a third if it is excluded. The state of \if@nameauth@GlobalScope determines
whether or not the paths are in a local scope. First we load the arguments into the
standard macros, check for error, and get the current name pattern.

1519 \NewDocumentCommand{\IfAKA}{O{} m 0{} +m +m +m}
1520 {%

1521 \@nameauth@LoadArgs{#1}{#2}{#3}%

1522 \@nameauth@Error{#2}{macro \string\IfAKAl}Y
1523 \@nameauth@Choice{}{}{}V%

1524 \ifcsname\NameauthPattern!PN\endcsname

1525 \edef\@nameauth@testex

1526 {\csname\NameauthPattern!PN\endcsname}},

Take this path if the pattern is an exclusion.

1527 \ifx\@nameauth@testex\@nameauth@Exclude
1528 \if@nameauth@GlobalScope #6\else {#6}\fi
1529 \else

Take this path if the pattern exists.

1530 \if@nameauth@GlobalScope #4\else {#4}\fi
1531 \fi
1532 \else

179

\ForgetName

\SubvertName

Take this path if the pattern does not exist.

1533 \if@nameauth@GlobalScope #5\else {#5}\fi
1534 \fi
1535 }

This undefines a control sequence to force a “first use”.

1536 \NewDocumentCommand{\ForgetName}{0{} m 0{}}
1537 {%

Process and load the arguments into the appropriate macros.

1538 \@nameauth@LoadArgs{#1}{#2}{#3}V,
1539 \@nameauth@Error{#2}{macro \string\ForgetNamel}},

Now we parse the arguments, destroying the control sequences either by current
name system type or completely. @nameauth@LocalNames toggles current system or
both, while we select the type of name with @nameauth@MainFormat.

1540 \@nameauth@Choice{}{}{}%
1541 \if@nameauth@LocalNames

1542 \if@nameauth@MainFormat

1543 \global\csundef{\NameauthPattern!MN}/,
1544 \else

1545 \global\csundef{\NameauthPattern!NF}J,
1546 \fi

1547 \else

1548 \global\csundef{\NameauthPattern!MN}J,
1549 \global\csundef{\NameauthPattern!NF}J,
1550 \fi

1551 }

This defines a control sequence to force a “subsequent use”.

1552 \NewDocumentCommand{\SubvertName}{0{} m 0{}}

1553 {%

1554 \@nameauth@LoadArgs{#1}{#2}{#3}V

1555 \@nameauth@Error{#2}{macro \string\SubvertNamely,

Now we parse the arguments, defining the control sequences either by current name
system type or completely. @nameauth@LocalNames toggles current system or both,
while we select the type of name with @nameauth@MainFormat.

1556 \@nameauth@Choice{}{}{}%
1557 \if@nameauth@LocalNames

1558 \if@nameauth@MainFormat

1559 \csgdef{\NameauthPattern!MN}{1}/,
1560 \else

1561 \csgdef{\NameauthPattern!NF}{}/,
1562 \fi

1563 \else

1564 \csgdef{\NameauthPattern!MN}{}/
1565 \csgdef{\NameauthPattern!NF}{}/,
1566 \fi

1567 }

180

\AKA
\AKA*

15.8.7 Pseudonyms

\AKA prints an alternate name and creates index cross-references. The starred
form displays the alternate name like \FName.

1568 \NewDocumentCommand{\AKA}{s 0{} m O{} m O{}}
1569 {%

Prevent entering \AKA via itself or \@nameauth@Name. Prevents and resets \JustIndex.
Tell the formatting system that \AKA is running.

1570 \if@nameauth@BigLock

1571 \@nameauth@Locktrue’

1572 \fi

1573 \IfBooleanTF {#1}{\@nameauth@AltAKAtrue}{}%
1574 \unless\if@nameauth@Lock

1575 \@nameauth@LocktrueY

1576 \@nameauth@InAKAtrueY,

1577 \if@nameauth@0ldReset

1578 \@nameauth@JustIndexfalse},

1579 \else

1580 \global\@nameauth@JustIndexfalse’,
1581 \fi

Test for malformed input.

1582 \@nameauth@Error{#3}{macro \string\AKA}/
1583 \@nameauth@Error{#5}{macro \string\AKA})

Names occur in horizontal mode; we ensure that. Next we make copies of the target
name arguments and we parse and print the cross-reference name.

1584 \leavevmode\hbox{}V

1585 \protected@edef\@nameauth@Ai{\trim@spaces{#2}1}/

1586 \protected@edef\@nameauth@Bi{\@nameauth@Root{#3}}/
1587 \protected@edef\@nameauth@Si{\@nameauth@Suffix{#3}}/
1588 \@nameauth@Parse{#4}{#5}{#6}{! PN}/

Create an index cross-reference based on the arguments.

1589 \unless\if@nameauth@SkipIndex

1590 \ifx\@nameauth@Ai\@empty

1591 \ifx\@nameauth@Si\Qempty

1592 \IndexRef [#4]{#5} [#6]{\Cnameauth®Bil}/,

1593 \else

1594 \IndexRef [#4]{#5} [#6]

1595 {\@nameauth@Bi\@nameauth@space\@nameauth@Si}j,
1596 \fi

1597 \else

1598 \ifx\@nameauth@Si\Q@empty

1599 \IndexRef [#4]{#5} [#6]

1600 {\@nameauth@Bi, \@nameauth@space\@nameauth@Ail}y
1601 \else

1602 \IndexRef [#4]{#5} [#6]

1603 {\@nameauth@Bi, \@nameauth@space

1604 \@nameauth@Ai, \@nameauth@space\@nameauth@Sil}y
1605 \fi

1606 \fi

1607 \fi

181

\PName
\PNamex*

Reset all the “per name” Boolean values. The default is global.

1608 \@nameauth@Flags?,
1609 \@nameauth@Lockfalse,
1610 \@nameauth@InAKAfalse’,

Close the “locked” branch and call the full stop detection. This conditional statement
must be on one line.

1611 \fi
1612 \if@nameauth@Punct\expandafter\@nameauth@CheckDot\fi
1613 }

\PName is a convenience macro that calls \NameauthName, then \AKA. Its starred
form prints a long name.

1614 \NewDocumentCommand{\PName}{s 0{} m O{} m 0{}}
1615 {%

If we have a starred form, we will display a long name. If we used \JustIndex, we
ignore and reset its flag to false.

1616 \IfBooleanTF {#1}{\@nameauth@FullNametruel}{1}/
1617 \if@nameauth@OldReset

1618 \@nameauth@JustIndexfalse},

1619 \else

1620 \global\@nameauth@JustIndexfalse},
1621 \fi

If we used \SkipIndex, we reset the flag of \SeeAlso and activate \SkipIndex for
both \NameauthName and \AKA.

1622 \if@nameauth@SkipIndex

1623 \unless\if@nameauth@0ldReset
1624 \global\@nameauth@SeeAlsofalse,
1625 \fi

1626 \NameauthName [#2] {#3} (\SkipIndex\AKA [#2]{#3} [#4]{#5} [#6]1)7%
1627 \else

Otherwise, if we used \SeeAlso we set the flag of \SeeAlso false for \NameauthName
and true for \AKA. The “normal” case after that is trivial.

1628 \if@nameauth@SeeAlso

1629 \@nameauth@SeeAlsofalse\NameauthName [#2] {#3}

1630 \@nameauth@SeeAlsotrue (\AKA [#2] {#3} [#4]{#5} [#6]1)Y%
1631 \else

1632 \NameauthName [#2] {#3}

1633 (\AKA [#2]{#3} [#4]{#5} [#61)%

1634 \fi

1635 \fi

Warn if \SkipIndex remains in effect (potentially due to the oldreset option).
Normally, this state should not occur.

1636 \if@nameauth@SkipIndex

1637 \PackageWarning{nameauth}

1638 {\string\SkipIndex still active after \string\PName; checkl}%
1639 \fi

1640 }

182

16 Change History

0.7 \IndexActual: Added 159
General: Initial release 1 \IndexName: Fix spaces, tagging 168
0.75 nameauth: Better arg handling 162
General: Standardized arguments 1 \PretagName: Added 176
0.85 \TagName: Redesign tagging 177
General: Show or hide commas 1 \UntagName; Redesign tagglng 178
0.9 2.1
\@nameauth@@Suffix: Added 141 \@nameauth@Name: Fix Unicode 150
\@nameauth@Suffix: Added 141 \AccentCapThis: Added 157
QFName: Added Addd ----------------- 162 \AKA: Fix Unicode 181
SubvertName: ed L. 180 2.2
0.94 \NameauthFName: Added 138
i@nameautl;@dlélddex: Added 155 \NameauthName: Added 138
CapThis: ed ... ool 156 93
\ExcludeName: Added 175 General: New back-end for naming macros ... 1
\IndexActive: Added 159 \@nameauth@Name: Now internal 150
\IndexInactive: Added 159 \AKA: Fix starred mode 181
1.0))) \ExcludeName: New xref test 175
L General: Works with microtype, memoir 1 \ForgetName: Global or local 180
) \GlobalNames: Added 161
\TagName: Added ... 7T \IfAKA: Added 179
1'26\UntagName: Added 178 \IfFrontName: Added 179
\AKA: Fix affixes 181 \IfMainName: Added 17,8
\IndexName: Fix affixes 168 \LocalNames: Added 160
1.4 oo T ety \NameauthLName: Added 138
’) cn \PName: Work with hooks 182
15 \ShowComma: Added 196 \SubvertName: Global or local 180
\@nameauth@@Suffix: Trim spaces 141 2.4
\Cnameauth@Nane: Reversing /caps 150 \@nameauth@Hook: Current form 155
g/cap:
\AKA: Reversing/caps 181 \@nameauth@ame: Set; token regs 1?0
\AllCapsActive: Added 158 \FrontNameHook: Added 1338
\Al1CapsInactive: Added 158 \GlobalNames: Ensure global 161
\CapName: Addedoouuron... 157 \IfAKA: Test for excluded 179
\RevComma: Added oo 157 \LocalNames: Ensure global 160
\ReverseActive: Added 158 \MainNameHook: Added 138
\ReverseCommaActive: Added 158 \NameAddInfo: Added 178
\ReverseCommaInactive: Added 158 \NameClearInfo: Added 178
\ReverseInactive: Added 158 \NameQueryInfo: Added 178
\RevName: Added 157 241
1.6 \@nameauth@Name: Fix token regs 150
nameauth: Environment added 162 \AKA: Fix token regs 181
1.9 nameauth: No local \newtoks 162
\ForgetName: Global undef 180 25
\KeepAffix: Added 157 General: No default format 1
\TagName: Fix cs collisions 177 \@nameauth@Hook: Improve hooks 155
\UntagName: Global undef, no cs collisions 178 \@nameauth@Name: Fix old syntax 150
2.0 \FrontNamesFormat: Added 138
\@nameauth@@Root: Trim spaces 141 2.6
\@nameauth@Actual: Added 139 \@nameauth@Name: Better indexing 150
\@nameauth@Index: New tagging 155 \AKA: Fix index commas 181
\@nameauth@Name: Trim spaces; fix tags 150 \IndexName: Fix commas 168
\AKA: Trim spaces; fix tags 181 \NoComma: Added 156

3.0
\@nameauth@@Root: Redesigned
\@nameauth@@Suffix: New test
\@nameauth@@TrimTag: Added
\@nameauth@Error: Added
\@nameauth@Hook: Fix punct. detection
\@nameauth@Name: Redesigned
\@nameauth@NonWest: Added
\@nameauth@Parse: Added
\@nameauth@TrimTag: Added
\@nameauth@UTFtest: Added
\@nameauth@West: Added
\AKA: Redesigned
\DropAffix: Added
\ExcludeName: Redesigned
\ForceFN: Added
\IfAKA: Redesigned
\IncludeName: Added
\IndexName: Redesigned
\IndexRef: Added
\NameParser: Added
\SeeAlso: Added

3.01
\@nameauth@Error: Fixed

3.02
\@nameauth@NonWest: Restrict \ForceFN

3.03
\NameParser: Restrict first names

3.1
\@nameauth@Cep: Added
\@nameauth@COpUTF: Added
\@nameauth@Cap: Redesigned
\@nameauth@Name: New workflow
\@nameauth@Parse: New workflow, caps
\@nameauth@UTFtest: Can skip test
\AKA: Can skip index
\AltCaps: Added
\AltFormatActive: Added
\AltFormatInactive: Added
\A1t0ff: Added
\A1tOn: Added
\ForceName: Added
\ForgetThis: Added
\IndexName: Better tests
\IndexRef: Better tests
\JustIndex: Added
\KeepName: Added
\NameParser: Fix old syntax; add NBSP . ..
\NameQueryInfo: Short macro
\PName: Can skip index
\SkipIndex: Added
\SubvertName: Fix old syntax
\SubvertThis: Added
\textBF: Added
\textIT: Added
\textSC: Added

\textUC: Added 160
3.2

General: Root, suffix macros renamed,

redesigned 1
\@nameauth@@GetSuff: Added 142
\@nameauth@@Root: Renamed 141
\@nameauth@@Suffix: Renamed 141
\@nameauth@Cep: Renamed, use

\MakeUppercase 143
\@nameauth@C@pUTF: Use \MakeUppercase 143
\@nameauth@Cap: Non-UTF 143
\@nameauth@CapUTF: Added 143
\@nameauth@GetSuff: Added 141

\@nameauth@Parse: Fix alt. format, affixes, use

\MakeUppercase 151
\@nameauth@TestToks: Added 142
\@nameauth@TrimTag: Renamed 141
\@nameauth@UTFtest: Non-suffix only 142
\@nameauth@UTFtestS: Added 142
\AltCaps: Use \MakeUppercase 160
\NameParser: Fix alt. format, affixes 161
\textUC: Use \MakeUppercase 160

3.3
\@nameauth@IdxPageref: Added 149
\@nameauth@Index: Support hyperref 155
\@nameauth@Name: Global flag reset 150
\@nameauth@NonWest: global flag reset 153
\@nameauth@West: global flag reset 153
\AKA: Global flag reset 181
\ExcludeName: Better warnings 175
\IncludeName: Added warnings 175
\IndexProtect: Added 159
\IndexRef: Global flag reset 169
\NameQueryInfo: Lock added 178
\ShowIdxPageref: Added 165
\ShowPattern: Added 164
3.4
General: Update manual, examples.tex 1
3.5
General: Update manual, Readme .md,

Makefile,examples.tex; combine

Readme.md and examples.tex files in dtx

file 1
\@nameauth@Actual: Use \def 139
\@nameauth@AddPunct: Added 146
\@nameauth@CapArgs: Added 143
\@nameauth@Choice: Added 147
\@nameauth@Error: Fix namespace 149
\@nameauth@Exclude: Added 139
\@nameauth@Flags: Added 148
\@nameauth@Form: Added 154
\@nameauth@Hook: Fix namespace 155

\@nameauth@IdxPageref: Use index hook,
optimize logic, fix name space, use Boolean
flags

\@nameauth@Index: Fix namespace

\@nameauth@LoadArgs: Added 146
\@nameauth@akeCS: Added 141
\@nameauth@Parse: Global token regs,

optimize logic, fix namespace 151
\@nameauth@TestDot: Redesigned 145
\@nameauth@TestToks: Fix namespace 142
\@nameauth@UTFtest: Fix namespace 142
\@nameauth@UTFtestS: Fix namespace 142
\AKA: Fix namespace 181
\ExcludeName: New warnings, new exclusion

test, fix bug in old syntax, new logic, fix

NAMESPACE + v v v e e e oo 175
\ForgetName: Improve logic, fix namespace . 180
\GlobalNameTest: Added 160
\IfAKA: New exclusion test, optimize logic, fix

namespace, local or global scope 179
\IfFrontName: Improve logic, fix namespace,

local or global scope 179
\IfMainName: Improve logic, fix namespace,

local or global scope 178
\IncludeName: New exclusion test, optimize

logic, fix namespace 175
\IndexActual: Use \def 159
\IndexName: New warnings, new exclusion test,

improve logic, fix namespace 168
\IndexRef: Strict see refs, new warnings, new

exclusion test, improve logic, fix namespace 169
\LocalNameTest: Added 160
\NameAddInfo: Improve logic, fix namespace 178
nameauth: Fix namespace 162
\NameauthIndex: Added 138
\NameClearInfo: Improve logic, fix

NAMESPACE « ¢ v o e v e e 178
\NameParser: Optimize logic 161
\NameQueryInfo: Improve logic, fix

NAMESPACE « ¢ v v v v e e e 178
\PName: Warning and flag resets added 182
\PretagName: New warnings, new exclusion

test, improve logic, fix namespace 176
\ShowIdxPageref: Fix name space, use

Boolean flags 165
\SubvertName: Improve logic, fix namespace 180
\TagName: New warnings, new exclusion test,

improve logic, fix namespace 177
\UntagName: Improve logic, fix namespace .. 178
General: Update Readme .md, Makefile 1
General: Major updates to all files 1

\@nameauth@Choice: Access name pattern and
type; redesigned to optimize many macros 147
\@nameauth@IdxPageref: Renamed; only show
index entries; add warning; optimized 149
\@nameauth@West: always define local macros 153
\@nameauth@space: Made global 139

\ExcludeName: Fix warnings, optimized
\ForgetName: Optimized
\IfAKA: Optimized
\IfFrontName: Optimized
\IfMainName: Optimized
\IncludeName: Fix warnings, optimized
\IndexName: Fix warnings
\IndexRef: Fix warnings
\IndexWarnTerse: Added
\IndexWarnVerbose: Added
\NameAddInfo: Optimized
nameauth: Improve warnings
\NameauthPattern: Added
\NameClearInfo: Optimized
\NameQueryInfo: Optimized
\PName: Fix warnings
\PretagName: Fix warnings, optimized
\ShowIdxPageref: Use common back-end
\ShowNameInfo: Added
\ShowNameState: Added
\ShowPattern: Redesigned
\SubvertName: Optimized
\TagName: Optimized
\UntagName: Optimized
4.0
General: Improve manual, Readme . md,
compat.tex
\@nameauth@Name: Use xparse
\AKA: Combine starred, un-starred macros . .
\AltFormatActive: Combine starred,
un-starred macros
\ExcludeName: Use xparse
\FName: Combine starred, un-starred macros
\ForgetName: Use xparse
\IfAKA: Use xparse
\IfFrontName: Use xparse
\IfMainName: Use xparse
\IncludeName: Combine starred, un-starred
macros
\IndexName: Use xparse
\IndexRef: Use xparse
\Name: Combine starred, un-starred macros .
\NameAddInfo: Use xparse
\NameClearInfo: Use xparse
\NameQueryInfo: Use xparse
\PName: Combine starred, un-starred macros
\PretagName: Use xparse

\ShowIdxPageref: Combine starred, un-starred

macros
\ShowNameInfo: Use xparse, improve output
\ShowNameState: Use xparse
\ShowPattern: Use xparse

\SubvertName: Use xparse

\TagName: Use xparse
\UntagName: Use xparse

185

175
180
179
179
178
175
168
169
159
159
178
162
138
178
178
182
176
165
165
166
164
180
177
178

159
175
162
180
179
179
178

175
168
169
162
178
178
178
182
176

165
165

17 Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers
underlined refer to the code line of the definition; numbers in roman refer to the code lines where the

entry is used.

Symbols
\@nameauth@@GetSuff 130
\@nameauth@@Root 122
\@nameauth@@Suffix 126
\@nameauth@Q@TrimTag 124
\@nameauth@Actual 67
\@nameauth@AddPunct 273
\@nameauth@C@p 185
\@nameauth@C@pUTF 189
\@nameauth@Cap 184
\@nameauth@CapArgs 192
\@nameauth@CapUTF 188
\@nameauth@CheckDot 265
\@nameauth@Choice 306
\@nameauth@Clean 113
\@nameauth@Error 368
\@nameauth@EvalDot 267
\@nameauth@Exclude 68
\@nameauth@Flags 330
\@nameauth@Form 568
\@nameauth@GetSuff 129
\@nameauth@Hook 597
\@nameauth@IdxPageref ... 381
\@nameauth@Index 618
\@nameauth@LoadArgs 296
\@nameauth@MakeCS 115
\@nameauth@Name 403
\@nameauth@NonWest 517
\@nameauth@Parse 443
\@nameauth@Root 121
\@nameauth@Suffix 125
\@nameauth@TestDot 252
\@nameauth@TestToks 131
\@nameauth@TrimTag 123
\@nameauth@UTFtest 143
\@nameauth@UTFtestS ... 161
\@nameauth@West 544
\@nameauth@space 69
\@nameauth@toksa 52, 88
\@nameauth@toksb 52, 88
\@nameauth@toksc 52, 88

A
\AccentCapThis 39, 657
Athelred 11, king 18, 34, 38, 56, 64
NAKA oo 116, 1568
NAKA .o 116, 1568

a Kempis, Thomas
. see Thomas a Kempis

\AllCapsActive 37, 674

\AllCapsInactive 37, 673
\AltCaps 95, 709
\AltFormatActive 93, 688
\AltFormatActivex* 93, 688
\AltFormatInactive 94, 695
\ALEOEE ..o 96, 703
\AltOn 96, 697

Andreae, Ioannes

. see d’Andrea, Giovanni
Antiochus III the Great, king 105
Antiochus IV Epiphanes, king 90
Aristotle 14, 18, 42, 64, 112
Arouet, Francois-Marie see Voltaire

Ataturk see Kemal, Mustafa
Auden, WH. 44
B
Babbage, Charles .. 95, 96, 112
Bailey, Betsey D, 72
Bernard of Clairvaux 118
Bernstein, Leonard 3
Bess, Good Queen see Elizabeth I

Boéthius 34, 45
BURNS, Robert 115
C
Caesar, Julius, imperator ... 101
\CapName 37, 659
\CapThis 39, 656
Carnap, Rudolph 48, 68, 74

Carter, J.E., Jr., pres.
22,27, 28, 46, 83

Carter, Jimmy see Carter, J.E. Jr.

Chaplin, Charlie 71
Chesnutt, Charles W.
Chiang Kai-sheki, pres. 120
Cicero, M.T. ... 8,9, 68, 69, 101
civil rights leaders, quotes of
.............. 5, 25, 82
Clemens, Samuel L.
see Twain, Mark
Colfax, Schuyler, v.p. 65
Confucius 27, 28, 46, 66, 68
Cornelius Scipio Barbatus, Lu-
cius, consul 108, 109
Cratylus
creatives, quotes of
30, 43, 44, 79, 100, 115, 120
cummings, e.e. 21, 83

D
Dagobert If, king 120
d’Andrea, Giovanni 85

Davis, Sammy, Jr. 54
Demetrius I Soter, king 42, 91, 106

De Pamele, Jacques 85
, Pierre-Jean .. 122, 124

de Soto, Hernando 18, 39, 45, 46, 64
Doctor angelicus
see Thomas Aquinas
Doctor mellifluus

. see Bernard of Clairvaux

Dongen, Marc van 6, 150
Douglass, Frederick 5, 64
\DropAffix 36, 663
DuBois, WE.B.
..... see Du Bois, W.E.B.
Du Bois, W.E.B. 56, 81, 82
du Cange see du Fresne, Charles
du Fresne, Charles 117

Einstein, Albert
27, 28, 30, 68, 70, 110, 127
Eisenhower, Dwight D., pres. .
28, 62, 64
Elizabeth I, queen 14, 21, 27, 28,
46, 68, 73, 81, 110, 118, 119
environments:

nameauth 15,793
Erikson, Leif 8
\ExcludeName 52, 1351

F
Fairbairns, Robin 6
\FName 28, 791
\FName* 28, 7191
foo§ 50
\ForceFN 28, 661
\ForceName 68, 670
\ForgetName 70, 1536
\ForgetThis 70, 671
\FrontNameHook 61, 68
\FrontNamesFormat .. 60, 68
FUKUYAMA Takeshif . 119, 120

G
GARBO, Greta 100
Ghazali 132
\GlobalNames 70, 728

\GlobalNameTest 73, 726

Goethe, J.W. von 39, 75
Gracchus, Tiberius Sempronius,

consul 106
Grant, Ulysses S., pres. 65, 77-79
Gregorio, Enrico 6
Gregory I the Great, pope ... 59

H
Hammerstein, Oskar, IT 35, 36, 38
Harnack, Adolf 42, 69, 126
Hearn, Lafcadio 117
Henry VIII, king 42, 46, 48, 110, 120
Hermogenes 133
Hope, Bob 73, 117
Hope, Leslie Townes see Hope, Bob
Humperdinck, E. (composer) . 59

Humperdinck, E. (singer) ... 59
Humphrey, Hubert H., v.p. .. 72
I
\IfAKA 74, 1519
\IfFrontName 74, 1508
\IfMainName 73, 1497
\IncludeName 52, 1385
\IncludeName* 52, 1385
\IndexActive 49, 681
\IndexActual 56, 679
\IndexInactive 49, 680
\IndexName 50, 1017
\IndexProtect 50, 684
\IndexRef 51, 1103
\IndexWarnTerse 49, 683
\IndexWarnVerbose 49, 682
J
Janos, James see Ventura, Jesse
JEFFERSON, Thomas, pres. .. 98
Jesus Christ 8,9, 25, 76
John Eriugena 14, 18
\JustIndex 54, 668
K
KANADE Takeo 95,96, 112
\KeepAffix 36, 664
\KeepName 36, 665
Kemal, Mustafa 93
Kennedy, John F., pres. 19
Kim Jong Un 36

King, Martin Luther, Jr.
.......... 25, 31-33, 64

Koizumi Yakumo
see Hearn, Lafcadio

Lao-tzu
Lewis, Clive Staples

117, 118
11, 17, 18, 58

LiEr see Lao-tzu
Lincoln, Abraham, pres. 64
Liszt, Franz . see Liszt, Frenec
Liszt, Frenect 8, 110

Livius, Titus

Llywelyn ap Gruffudd, prince . 8
\LocalNames 70, 727
\LocalNameTest 78, 725
Louis XIV, king 35, 36, 117
Lovelace, Ada 95, 96, 112

Lueck, Uwe 6, 145
Luecking, Dan 6
LUTHER, Martin . 47, 48, 97, 125
M

Maimonides 84, see also Rambam
\MainNameHook 59, 68
Malebranche, Nicolas 68
Martin, Dean 54
MEebici, Catherine de’ 46, 97, 125
MIsSOrRA Hibari 100
Miyazaki Hayao 13,

17, 18, 27, 28, 30, 37, 46, 127
Molnér, Frenect 12
Montgomery, L.M. 100
Moses ben-Maimon see Maimonides
Mr. Baseball ... see Uecker, Bob
Mulvany, Nancy C.

N
\Name 27, 7185
\Name* 27, 785
Name, Lost§ perdit(60)
\NameAddInfo 65, 1472
nameauth (env.) 15, 793
\NameauthFName 64, 125
\NameauthIndex 49, 65
\NameauthLName 63, 125
\NameauthName 62, 125
\NameauthPattern 41, 66
\NameClearInfo 66, 1490
\NameParser 109, 729
\NameQueryInfo 65, 1479
\NamesActive 67, 687
\NamesFormat 58, 68
\NamesInactive 67, 686
Nippon Gakki 49, 54, 55
\NoComma 36, 655

Noguchi, Hideyof 12, 17, 37, 38, 42
north star, concept of 5, 66

Oberdiek, Heiko 6, 59, 141
O’Connor, Sandra Day, justice 36

P
Pamelius, Jacobus
see De Pamele, Jacques

187

Patton, George S., Jr. 10,
11, 17, 36, 38, 42, 64, 67

Paul see Saul of Tarsus
philosophers, quotes of 66, 121, 133
Plato 64, 133
\PName 117, 1614
\PName* 117, 1614

politicians, quotes of
9,11, 19, 28, 64, 72

Pontius Pilate 8,9, 101
\PretagName 56, 1415
Ptolemy IV Philopator, king 105
Ptolemy V Epiphanes, king . 105
R

Rambam 84, see also Maimonides
Ranieri, Luke 102
Rat Pack, the 54, see

also Davis, Sammy, Jr.;
Martin, Dean; Sinatra, Frank

\RevComma 38, 662
\ReverseActive 37, 676
\ReverseCommaActive 38, 678
\ReverseCommaIlnactive 38, 677
\ReverseInactive 37, 675
\RevName 37, 660

Rockefeller, Jay
see Rockefeller, J.D., IV
Rockefeller, J.D., IV 11, 17, 53, 58
Romans, quotes of 57, 69, 101, 106
Roosevelt, Theodore, pres. 9

RUHMANN, Heinrich Wilhelm
see RUHMANN, Heinz

RUHMANN, Heinz 100
Rushdie, Salman 120
S
Saul of Tarsus 76
Schlicht, Robert 6
scientists, quotes of 18

Scipio Africanus, Publius Cor-

nelius 105, 106
\SeeAlso 54, 669
Seleucus IIT Ceraunus, king . 105
Sergius Paulus, Lucius ... 76, 101
SHAKESPEARE, William .. 79, 115

Shakespearian rose, references

to 72, 79, 95, 100
\ShowComma 36, 654
\ShowIdxPageref 45, 895
\ShowIdxPageref* 46, 895
\ShowNameInfo 46, 910
\ShowNameState 47, 946
\ShowPattern 45, 889
Sinatra, Frank 54
\SkipIndex 54, 667
Snel van Royen, R. 84

Snel van Royen, W. 84 Thomas a Kempis 40, 48 %%

Snellius . see Snel van Royen, Thomas Aquinas 57 Washington, George, pres.

R.; Snel van Royen, W. Tully see Cicero, M.T. 10, 11, 16,
Socrates 133 Twain, Mark 43, 118 17, 54, 62, 64*66, 77*79, 92
Stephani, Philipp 6 Tyson, Mike 80 White, E.B. 15, 33
Strietelmeier, John ... 34, 35, 46 William I, king 118
\SubvertName 0,152 U _, William the Conqueror
\SubvertThis 70, 672 ecker, bob ... o4 . see William 1

. . \UntagName 58, 1465
Sun King see Louis XIV

Urey, Harold 18 Y
Sun Yat-sen, pres. . 35, 37, 38, 64 Yamaha Corp 55
T \4 Yamaha Torakusu 49,
Van Buren, Martin, pres. 39 50, see also Nippon Gakki
\TagName 98, 1441 Vegetius Renatus, Publius ... 57 Vamamoto Isoroku 42, 67
\textBF 95,723 Ventura, Jesse 74 Yoshida Shigeruf, PM 120
\textIT 95,721 Vlad II Dracul 88
\textSC 95, 717 Vlad III Dracula 88 Z
\textUC 95,719 Vlad Tepes see Vlad III Ziegler, Caspar 85
theologians, quotes of 25, 48, 121 Voltaire 118 Zusge, Konrad 95, 96

188

	Contents
	1 Quick Start
	1.1 Simple Example
	1.2 How To Use the Manual
	1.3 Basic Concepts
	1.3.1 Name Arguments
	1.3.2 Name Ambiguity

	1.4 Basic Interface
	1.4.1 Western Names
	1.4.2 Reversed Western
	1.4.3 Eastern Names
	1.4.4 Ancient Names

	1.5 Quick Interface
	1.5.1 Name Shorthands
	1.5.2 Name Variants
	1.5.3 Alternate Field

	1.6 Select Macro Overview
	1.6.1 With Name Args
	1.6.2 Prefix Macros

	1.7 Names and Complexity

	2 Package Options
	2.1 Name Grammar and Syntax
	2.1.1 Affix Commas
	2.1.2 Surname in Caps
	2.1.3 Reverse Name Order

	2.2 Indexing
	2.2.1 Toggle Indexing
	2.2.2 Toggle Index Sorting
	2.2.3 Verbose Warnings

	2.3 Formatting
	2.3.1 Choose System
	2.3.2 Predefined Hooks

	2.4 Alternate Formatting
	2.5 Scope of Decisions
	2.6 Version Compatibility

	3 Feature Priority
	4 Naming Macros
	4.1 \Name and \Name*
	4.2 Forenames: \FName
	4.3 Technical Details
	4.3.1 Final Optargs
	4.3.2 Name Arg Caveats
	4.3.3 Full Stop Detection
	4.3.4 Grouping, Spaces
	4.3.5 Formatting Initials

	5 Language Topics
	5.1 Active Characters
	5.2 Hyphenation
	5.3 Affixes Need Commas
	5.4 Eastern Names, Name Caps
	5.5 Reversed Names
	5.6 Listing by Surname
	5.7 Particles in Names
	5.7.1 Standard Rules
	5.7.2 Non-Breaking Spaces
	5.7.3 Look-Alike Particles
	5.7.4 Capitalizing

	5.8 Medieval Names

	6 Debugging
	6.1 Name Patterns
	6.2 Indexing: States
	6.3 Debugging Macros

	7 Indexing Macros
	7.1 General Control
	7.1.1 Toggle Indexing
	7.1.2 Multiple Indexes
	7.1.3 Verbose Warnings
	7.1.4 Index Protection

	7.2 Page Entries
	7.3 Cross-References
	7.3.1 Basic Macro
	7.3.2 Fine Control

	7.4 Prefix Macros
	7.5 Automatic Rules
	7.6 Sorting Names
	7.6.1 General Approach
	7.6.2 Sorting Initials

	7.7 Index Tags
	7.7.1 General Approach
	7.7.2 Identical Names
	7.7.3 Special Tags

	7.8 Categories/Sub-entries

	8 Name Tags
	9 Formatting and Decisions
	9.1 Basic Formatting
	9.2 Application: Footnotes
	9.3 Making Name Decisions
	9.4 Formatting and Decisions
	9.5 Testing Name Decisions
	9.5.1 Testing Macros
	9.5.2 Applications
	9.5.3 Beamer Example

	10 Name Authority Basics
	10.1 Variant Names
	10.1.1 Alternate Argument
	10.1.2 Multiple Variants
	10.1.3 Nonstandard Caps
	10.1.4 Variants and Xrefs

	10.2 Using a Name Authority

	11 Advanced Formatting
	11.1 Formatting Hooks
	11.2 Name Tags in Hooks
	11.2.1 Hook Templates
	11.2.2 Ancient Names
	11.2.3 Life Dates

	11.3 Alternate Formatting
	11.3.1 Enabling/Disabling
	11.3.2 Using \noexpand
	11.3.3 Capitalization
	11.3.4 Formatting Features
	11.3.5 History Text
	11.3.6 Inflected Names
	11.3.7 Reference Work I

	11.4 Roman Names
	11.4.1 General Market
	11.4.2 Student Reference
	11.4.3 Scholarly Reference

	11.5 Special Uses
	11.5.1 Reference Work II
	11.5.2 Marginalia

	12 Planned Obsolescence
	12.1 Pseudonyms
	12.1.1 Special Syntax
	12.1.2 The Macros
	12.1.3 Workarounds

	12.2 Obsolete Syntax

	13 Advanced Customization
	13.1 Using Package Internals
	13.2 Using Separate Macros
	13.3 Full Customization
	13.3.1 Names In Boxes
	13.3.2 Change Parsing

	14 Technical Notes and Tips
	14.1 Tips: General
	14.2 Tips: Indexing
	14.3 Tips: Name Args
	14.4 Active Unicode
	14.4.1 General Information
	14.4.2 Compatibility
	14.4.3 Fragility

	15 Implementation
	15.1 Boolean Flags
	15.1.1 Flow Control
	15.1.2 Syntax
	15.1.3 Debugging
	15.1.4 Indexing
	15.1.5 Formatting
	15.1.6 Name Decisions
	15.1.7 Compatibility

	15.2 Registers, Hooks, Values
	15.2.1 Token Registers
	15.2.2 Hooks
	15.2.3 Internal Values

	15.3 Package Options
	15.3.1 Syntax
	15.3.2 Indexing
	15.3.3 Formatting
	15.3.4 Predefined Hooks
	15.3.5 Alternate Format
	15.3.6 Scope
	15.3.7 Compatibility

	15.4 Package Initialization
	15.5 Internal Macros
	15.5.1 Fundamental Macros
	15.5.2 Errors/Debugging
	15.5.3 Core Name Engine
	15.5.4 Indexing

	15.6 User Macros: Prefixes
	15.6.1 Syntax
	15.6.2 Indexing
	15.6.3 Format/Decisions

	15.7 User Macros: Helpers
	15.7.1 Syntax
	15.7.2 Indexing
	15.7.3 Formatting
	15.7.4 Alternate Format
	15.7.5 Name Decisions
	15.7.6 Name Parser

	15.8 User Macros: Name Args
	15.8.1 Basic Interface
	15.8.2 Quick Interface
	15.8.3 Debugging Macros
	15.8.4 Indexing
	15.8.5 Name Tags
	15.8.6 Name Decisions
	15.8.7 Pseudonyms

	16 Change History
	17 Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

