
The nnext package

Nicholas LaCara
nick.lacara@gmail.com

October 6, 2020

Abstract

This package is an add-on for the gb4e example package used in linguis-
tics. It implements the \Next, \NNext, \Last, and \LLast commands from
the linguex package or the \nextx, \anextx, \lastx, \blastx, and \bblastx

commands from the expex package. The package takes its name from the dis-
tinctively named \NNext command found in linguex.

1 Introduction
The popular linguistics example package linguex and the less popular (though
more powerful) package expex allow users to refer to previously or to-be de-
fined examples through mnemonic commands such as \Next or \nextx. The
popular package gb4e lacks any such functionality. The goal of this package is
to provide this functionality for gb4e and related packages so that users that
need (or want) to use gb4e but are more comfortable with linguex or expex can
still have access to these macros while using gb4e.

This package is currently compatible with the original gb4e package as well
as the modified version langsci-gb4e used by Language Science Press and with
gb4e-emulate by Alan Munn (which reimplements gb4e’s functionality with the
package enumitem).1

2 Usage

2.1 Loading the package
The package should be loaded in your preamble with \usepackage{nnext}.
It should be loaded after gb4e (or whichever variant you are using).

2.2 Package options
The package has a few options that may be specified when loaded:

1Unfortunately, gb4e-emulate is not on CTAN. It is, however, available at its GitHub repository:
https://github.com/amunn/gb4e-emulate

1

linguex This option defines the macros \Next, \NNext, \Last, and \LLast,
as found in the linguex package. It is the default package option and does
not need to be specified.

expex This option defines the macros \nextx, \anextx, \lastx, \blastx, and
\bblastx, as found in the expex package.

noparens This option disables the use of parentheses around example num-
bers that are on by default when linguex emulation is used. This is the
typical behavior for gb4e and expex.

2.3 Macros

2.3.1 linguex emulation mode (default)

If the user loads the package with the linguex option or, indeed, with no options
specified, the package will provide the following macros.

• The macro \Next will print the next example number. So, if the previous\Next

example was (15), this will print (16).

• The macro \NNext will print the example number after next. So, if the\NNext

previous example was (15), this will print (17).

• The macro \Last will print the previous example number. So, if the\Last

previous example was (15), this will print (15).

• The macro \LLast will print the example number before last. So, if the\LLast

previous example was (15), this will print (14).

Usage of these macros is straightforward. Simply deploy them in running text,
as in the following code:

If you want to refer to the next example, type \Next.

If you want to refer to the example after that, type \NNext.

\begin{exe}

\ex[]{This is an example.}

\ex[*]{This are another example.}

\end{exe}

\noindent If you want to refer to the previous example,

type \Last. If you want to refer to the example before

that, type \LLast.

This code produces the following output:

If you want to refer to the next example, type (1). If you want to refer
to the example after that, type (2).

(1) This is an example.

(2) * This are another example.

If you want to refer to the previous example, type (2). If you want to
refer to the example before that, type (1).

2

2.3.2 expex emulation mode

If the user loads the package with the expex option the package will provide
the following macros.

• The macro \nextx will print the next example number. So, if the previ-\nextx

ous example was (15), this will print (16).

• The macro \anextx will print the example number after next. So, if the\anextx

previous example was (15), this will print (17).

• The macro \lastx will print the previous example number. So, if the\lastx

previous example was (15), this will print (15).

• The macro \blastx will print the example number before last. So, if the\blastx

previous example was (15), this will print (14).

• The macro \bblastx will print the example number before last. So, if\bblastx

the previous example was (15), this will print (13).

Usage of these macros is straightforward. Simply deploy them in running text,
as in the following code:

If you want to refer to the next example, type (\nextx).

If you want to refer to the example after that, type (\anextx).

\begin{exe}

\ex[]{This is an example.}

\ex[*]{This are another example.}

\end{exe}

\noindent If you want to refer to the previous example,

type (\lastx). If you want to refer to the example before

that, type (\blastx). If you want to refer to the example

before that, type (\bblastx).

This code produces the following output:

If you want to refer to the next example, type (3). If you want to refer
to the example after that, type (4).

(3) This is an example.

(4) * This are another example.

If you want to refer to the previous example, type (4). If you want to
refer to the example before that, type (3). If you want to refer to the
example before that, type (2).

2.4 Class compatibility
I have tested the package with a variety of common LATEX document classes
(including the ams-LATEX classes, scr* group of classes, tufte-handout, and the
exam class, among several others) and believe it should be broadly compatible
with most people’s set-ups (so far I have only found it to be incompatible with

3

the standalone class). If you have an issue, drop me an email and I’ll see if I
can’t make it work for you.

3 Rationale
This package is really just a quality-of-life add-on for people using the gb4e
example package.

The initial motivation for this package came from a colleague who needed
to typeset a document for submission to a publisher but was unable to use
linguex due to constraints imposed by the publisher’s class file. She asked
specifically if there was any way to get gb4e to replicate the functionality of
the linguex commands \Next, \NNext, and \Last, among others.

I figured it wouldn’t be too difficult to code up a solution and send it to
her (which I did!), but given that there are likely other people who, due to
various externally imposed requirements, might need to use gb4e when they
are used to another example pacakge, I thought a more robust solution might
be appropriate. This package attempts to provide that.

I also hope that this package can help people migrate to gb4e from linguex.
There are several benefits to using gb4e over linguex, including a more robust
syntax that is more aligned with standard LATEX syntax and less sensitive to code
formatting such as line-breaks. That said, gb4e is a little less user-friendly than
linguex, so I think that providing one of the features that linguex users expect
can help people to migrate if they so choose.

4 Some notes for linguex users
The gb4e package behaves slightly differently from linguex in a handful of
ways. A few of those differences may impact how you experience using this
package.

• gb4e handles example numbering in footnotes poorly, using numbering
from the main body of the text (linguex uses roman numerals in foot-
notes, one of the ways in which it is better). This is something to keep in
mind if you put an example in a footnote.

• Relatedly, if you use gb4e’s commands for customizing example label
numbers (e.g., \exi and \exr), the code here will not use those special
labels.

5 Implementation
In the following section, I present the fully commented code for the package.

5.1 Dependencies
I use the xspace package to make the spacing after example numbers right
when using the \Next, \Last, etc., commands. This mimics the behavior of
linguex.

4

1 \RequirePackage{xspace}

I also use ifthen for various booleans set by the package options.

2 \RequirePackage{ifthen}

Because this package is designed to work with a range of gb4e variants,
there is no line in the code for loading gb4e. Documents loading nnext without
loading a gb4e variant will compile will compile, but using any of the included
macros will cause an error.

5.2 Booleans
Here I define what the booleans will be. The first will set the package to
emulate linguex’s \Next, \NNext, \Last, and \LLast commands. The boolean
is set to ‘false’ initially.

3 \newboolean{emulatelinguex}

4 \setboolean{emulatelinguex}{false}

The next boolean will set the package to emulate expex’s \nextx, \lastx,
\blastx, \anextx, and \bblastx commands. The boolean is set to ‘false’
initially.

5 \newboolean{emulateexpex}

6 \setboolean{emulateexpex}{false}

The final boolean will set whether the example numbers in the text should be
set with surrounding parentheses or not. The boolean is set to ‘true’ initially.

7 \newboolean{parentheses}

8 \setboolean{parentheses}{true}

5.3 Package options
Here is where various package options are defined. All the package options do
is manipulate the values of the booleans declared in the previous subsection.

By using the package option linguex, the user sets the emulatelinguex

boolean to ‘true’.

9 \DeclareOption{linguex}{

10 \setboolean{emulatelinguex}{true}

11 }

By using the package option expex, the user sets the emulateexpex boolean
to ‘true’ and the emulatelinguex and parentheses booleans to ‘false’.

12 \DeclareOption{expex}{

13 \setboolean{emulateexpex}{true}

14 \setboolean{emulatelinguex}{false}

15 \setboolean{parentheses}{false}

16 }

By using the package option noparens, the user sets the parentheses boolean
to ‘false’.

17 \DeclareOption{noparens}{

5

18 \setboolean{parentheses}{false}

19 }

After defining our package options, we tell LATEX to use linguex emulation as
the default mode.

20 \ExecuteOptions{linguex}

21 \ProcessOptions\relax

5.4 Detecting gb4e variants
To make this compatible with different variants of gb4e, we need to detect
which variant of gb4e the user is using, since there is some variation in what
each variant uses for its example counter. Right now, the code is compatible
with the following gb4e-like packages:

• gb4e

• langsci-gb4e (for Language Science Press books)

• gb4e-emulate (by Alan Munn, which reimplements gb4e using the pack-
age enumitem)

The code below checks to see if langsci-gb4e is loaded; if it isn’t, it checks
to see if gb4e-emulate is loaded; if it isn’t, it checks to see if gb4e is loaded.
If this fails, the package defaults to using the exx counter from gb4e on the
assumption that the most likely package to be used instead of gb4e is a modded
version. It also prints a warning to the terminal.

The reason this needs to be done is because each of these packages uses a
different counter for example numbering under the hood:

• gb4e uses the counter exx

• langsci-gb4e uses the counter equation

• gb4e-emulate uses the counter exei

\@countername Once the right package is identified, the value of \@countername is defined to
match the counter used by that package. This allows the macros defined below
to get the current value of the example counter at any point in the document
regardless of what example package is being used.

22 \@ifpackageloaded{langsci-gb4e}%

23 {\newcommand{\@countername}{equation}}

24 {\@ifpackageloaded{gb4e-emulate}%

25 {\newcommand{\@countername}{exei}}

26 {\@ifpackageloaded{gb4e}%

27 {\newcommand{\@countername}{exx}}

28 {\PackageWarningNoLine{nnext}{No known compatible %

29 example package loaded! Examples may not be correctly %

30 referenced, or there may be fatal errors}%

31 \newcommand{\@countername}{exx}}}}%

6

5.5 Manipulating parentheses
\@lparens

\@rparens

\@afterspace

linguex and expex behave differently with regard to whether the output of
reference commands include parentheses: linguex includes them; expex (like
gb4e) does not. The code here defines whether the macros include parentheses
based on the booleans defined above. It does this by setting the commands
\@lparens and \@rparens to either be parentheses or by defining them to be
empty. It also defines whether there should be space included after the number
(as in linguex) or not (as in expex). It does so, again, by defining the macro
afterspace to either to expand to \xspace or to exapand to nothing. These
macros are then used in the \printtmpcounter macro below.

32 \ifthenelse{\boolean{emulatelinguex}%

33 \AND \boolean{parentheses}}{%

34 \newcommand{\@lparens}{(}

35 \newcommand{\@rparens}{)}

36 \newcommand{\@afterspace}{\xspace}}{%

37 \newcommand{\@lparens}{}

38 \newcommand{\@rparens}{}

39 \newcommand{\@afterspace}{}}%

5.6 Generic macros
linguex implements its commands by getting the current value of the exam-
ple counter, storing that value in a temporary counter, and then adding or
subtracting from that temporary counter. This is the approach that I take be-
low. To replicate this functionality with gb4e, we only have to do this with the
counter that it (or its variants) uses

5.6.1 Setting up the temporary counter

First, we create a temporary counter, which will be used to store the value of
the next, last, or whichever example number the macro is looking for.

40 \newcounter{tmpcounter}

\settmpcounter Now we define the command \settmpcounter, which gets the value of the
gb4e example counter (the name of which is stored in \@countername) and
sets the value of the temporary counter to this value plus some integer:

41 \newcommand{\settmpcounter}[1]{%

42 \setcounter{tmpcounter}{\value{\@countername}}%

43 \addtocounter{tmpcounter}{#1}}

\printtmpcounter Now we define a command for printing the value of temporary counter with
or without parentheses and with or without the trailing space, depending on
whether linguex or expex is being emulated. This relies on how \@lparens,
\@rparens, and \@afterspace were defined above.

44 \newcommand{\printtmpcounter}[1]{\settmpcounter{#1}%

45 \@lparens\thetmpcounter\@rparens\@afterspace}

7

5.6.2 Generic definitions

Now we define some generic, under-the-hood macros for commands that add
to or subtract from the temporary counters and print those numbers as though
they were references. These under-the-hood commands will be assigned user-
facing names depending on whether linguex or expex is being emulated.

\@Next The macro \@Next increments the tempory counter by one, which will be the
value of the next example:

46 \newcommand{\@Next}{\printtmpcounter{1}}

\@NNext The macro \@NNext increments the tempory counter by two, which will be the
value of the example after next:

47 \newcommand{\@NNext}{\printtmpcounter{2}}

\@Last The macro \@Last does not change the value of the temporary counter, since
this is the value of the previous example:

48 \newcommand{\@Last}{\printtmpcounter{0}}

\@LLast The macro \@LLast decreases the tempory counter by one, which will be the
value of the example before last:

49 \newcommand{\@LLast}{\printtmpcounter{-1}}

\@LLLast The macro \@LLLast decreases the tempory counter by two, which will be the
value of the example before the example before last:

50 \newcommand{\@LLLast}{\printtmpcounter{-2}}

5.7 Emulate linguex

\Next

\NNext

\Last

\LLast

If the user chooses to emulate the linguex commands, then this conditional
uses the command names from linguex and defines them to expand to the
macros defined in the previous subsection.

51 \ifthenelse{\boolean{emulatelinguex}}{%

52 \newcommand{\Next}{\@Next}

53 \newcommand{\NNext}{\@NNext}

54 \newcommand{\Last}{\@Last}

55 \newcommand{\LLast}{\@LLast}}{}

5.8 Emulate expex

\nextx

\anextx

\lastx

\blastx

\bblastx

If the user chooses to emulate the linguex commands, then this conditional
uses the command names from linguex and defines them to expand to the
macros defined in the previous subsection.

56 \ifthenelse{\boolean{emulateexpex}}{%

57 \newcommand{\nextx}{\@Next}

8

58 \newcommand{\anextx}{\@NNext}

59 \newcommand{\lastx}{\@Last}

60 \newcommand{\blastx}{\@LLast}

61 \newcommand{\bblastx}{\@LLLast}}{}

Index
Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; num-
bers in roman refer to the code lines where the entry is used.

Symbols
\@LLLast 50, 61
\@LLast . . 49, 55, 60
\@Last . . . 48, 54, 59
\@NNext . . 47, 53, 58
\@Next . . . 46, 52, 57
\@afterspace . 32, 45
\@countername 22, 42
\@ifpackageloaded

. . . . 22, 24, 26
\@lparens . . . 32, 45
\@rparens . . . 32, 45

A
\addtocounter . . . 43
\AND 33
\anextx 3, 56

B
\bblastx 3, 56
\blastx 3, 56
\boolean

. 32, 33, 51, 56

D
\DeclareOption .

. 9, 12, 17

E
\ExecuteOptions . 20

I
\ifthenelse . . .

. . . . 32, 51, 56

L
\Last 2, 51
\lastx 3, 56
\LLast 2, 51

N
\newboolean . 3, 5, 7
\newcounter 40
\Next 2, 51
\nextx 3, 56
\NNext 2, 51

P
\PackageWarningNoLine

. 28

\printtmpcounter

. . . . 44, 46–50
\ProcessOptions . 21

R
\relax 21
\RequirePackage

. 1, 2

S
\setboolean . . .

. . . 4, 6, 8,
10, 13–15, 18

\setcounter 42
\settmpcounter .

. 41, 44

T
\thetmpcounter . . 45

V
\value 42

X
\xspace 36

Change History

v0.0
General: Initial version 1

9

