numerica-tables

version 3.1.0

Andrew Parsloe
(ajparsloe@gmail . com)

September 6, 2023

ajparsloe@gmail.com

Abstract

The numerica-tables package defines a command \nmcTabulate which enables
the creation of multi-column tables of mathematical function values. Key—value
assignments allow presentation in a wide variety of table styles within the ‘for-
mal table’ framework of the booktabs package. numerica-tables requires the
numerica package to be loaded.

This document applies to version 3.1.0 of numerica-tables.

Version 3 of numerica needs to be loaded before numerica-tables;
(numerica requires amsmath, mathtools and a reasonably recent TEX
system).

The booktabs package is required.

I refer many times in this document to Handbook of Mathematical Func-
tions, edited by Milton Abramowitz and Irene A. Stegun, Dover, 1965,
abbreviated to HMF, and often followed by a reference, like Table 1.2, to
a specific table.

Version 3.1.0 of numerica-tables

— adds an index to the documentation;

— adds the ability to round table entries to different values depending
on row or column (or both) in the table;

— fixes two minor presentation bugs.

Version 3.0.0 of numerica-tables

adds the ability to use numbers or expressions from

* a comma list for row variable values, either as values or verbatim;

* a macro containing a comma list for row variable values, either
as values or verbatim;

x a file for row variable values, either as values or verbatim;

— adds the ability to use functions of a stepped variable to generate
varyingly stepped row variable values;

— adds the ability to suppress the header row;
— is compatible with the additional features of numerica version 3.0.0,

% including the decimal comma if the comma package option is used
with numerica; and

x fraction-form row variables, or fraction-form output if the / or
// ‘triggers’ are used in the number-format option;

— amends and adds to documentation.

Contents

1 Introduction 4
1.1 Table structure L 4
1.2 Shared syntax o 5

2 \nmcTabulate settings 7
2.1 Row-variable settings Lo L. 7

2.1.1 Row-variable specification: uniform case 7
2.1.2 Row variable specification: non-uniform case 9
2121 rfunc 10

2.1.2.2 rdata, rfile,rverb 10

2.1.3 Formatting row variable values & column 12
2.1.3.1 Rounding: rround 12

2.1.3.2 Font: rfont L. 13

2.1.3.3 Alignment: ralign 13

2.1.3.4 Row-variable header: rhead 14

2.1.3.5 Nudging the header: rhnudge 15

2.1.3.6 Position in the table: rpos 15

2.1.3.7 rvar’, rhead’, rhnudge’ 16

2.1.3.8 Fraction-form values: rfrac 16

2.1.4 Adjoined multi-function tables 17

2.2 Column-variable settings 17
2.2.1 Column header formatting 19
2.2.1.1 Single-column header 19

2.2.1.2 Multi-column header: chstyle 20

2.2.1.3 User-defined header: chead 21

2.2.1.4 Alignment: calign 22

2.2.1.5 Nudging header entries: chnudge 22

2.2.1.6 Rounding: chround 23

2.3 Multiple functions in a single table 24
2.4 Whole-of-table formatting 25
2.4.1 Title for function-value columns: ctitle 25
2.4.2 Between header & title: csubttl 27
2.4.3 Suppress/show headerrow 28
2.4.4 Footer row: foot L 28

2.4.4.1 TFooter functions 28

2.4.5 Horizontal rules: rules 28
2.4.6 Second row variable column: rpos=4 30
2.4.7 Separating blocks of rows: rbloc 31
2.4.7.1 Adjusting the extra space rblocsep 32

2.4.8 Table placement L. 33
2.4.8.1 Vertical alignment 33

2.5 Function value formatting 34
2.5.1 Trailing optional argument 34
2.5.1.1 Fraction-form output 34

2.5.1.2 Scientific notation 0oL 35

2.5.2 Thetoption 36
2.5.2.1 Padding the exponent: (pad) 36

2.5.3 Indicating signs outside the t-notation 38
2.5.4 Rounding to varying values 39
2.5.5 Differences: diffs 40
2.5.6 Formatting special values: Q7 and A!' 41
2.5.6.1 Star option: \nmcTabulate* 42

2.6 Other matters 44
2.6.1 Nesting 00 L 44
2.6.2 Saving tablestofile 0oL 45
2.6.3 Viewing the BTEX form 46

3 Reference summary 48
3.1 Commands defined in numerica-tables 48
3.2 Settings for \nmcTabulate 48
Index 51

Chapter 1

Introduction

Entering

\usepackage [<options>] {numerica}
\usepackage{numerica-tables}

in the preamble of a document gives access to a command for creating tables
of function values in a wide variety of styles. Contrary to previous practice,
for version 3.0.0 of numerica-tables, the numerica package is not loaded au-
tomatically but must be loaded explicitly (as above), with options if desired,
before numerica-tables. It is essential that the version of numerica loaded is
version 3.

All tables are ‘formal tables’ in the sense of the booktabs package, which
is loaded automatically. Such tables have no vertical rules and few horizontal
rules.

1.1 Table structure

I take as my source of models of mathematical tables those presented in Hand-
book of Mathematical Functions, edited by Milton Abramowitz and Irene A.
Stegun, Dover, 1965, not because the typesetting is elegant (it often isn’t) but
because HMF displays a wide variety of table styles. The editors of that volume
were faced with a host of different problems requiring a host of different solu-
tions. The \nmcTabulate command of numerica-tables aims to reproduce
most of those different solutions, within booktabs elegance.

To create a table we need to specify a function or functions to tabulate. The
values a function takes will generally depend on a primary parameter and, pos-
sibly, a number of secondary parameters (which is where much of the complexity
comes from). Mathematical tables are structured in columns. We (nearly al-
ways) read down a column as the primary parameter is incremented, generally
in regular steps. We need to decide on the range of values the primary parame-
ter will take and how fine-grained the tabulation will be — what the step size of

its increments will be. Assigning different values to a second parameter gener-

ates a second, third,... column. Sometimes rather than a second parameter, a
second, third, ... function of the first parameter is tabulated in the successive
columns.

In this document the first parameter is called the row wvariable — its value
determines which row we are in; the second parameter, if present, is called the
column variable — its value determines which column we are in. A table generally
(but not always) presents the values of the row variable in the first column, the
row variable column, sometimes in distinctive type (e.g. bolded). The values
of the column variable are presented in a header row above the table body of
function values. Above the header row there may be a title row and perhaps
a subtitle row where other explanatory material can be displayed. Sometimes
there is a footer row beneath the table body. Vertical rules are absent, horizontal
rules used sparingly — for example, at the top and bottom of the table, or under
the header row, but not in the body of the table.

1.2 Shared syntax

The \nmcTabulate command (short-name form \tabulate) shares the syntax
of \nmcEvaluate (see numerica.pdf). When all options are used the command
looks like

\nmcTabulate*[settings]{expr.}[vv-1list] [num. format]

1. * optional switch; if present ensures a single number output with no for-
matting, or an appropriate error message if the single number cannot be
produced; see §2.5.6.1;

2. [settings] comma-separated list of key=value settings; this option is at
the heart of creating a table of function values; see Chapter 2;

3. {expr.} mandatory argument specifying the mathematical expression or
expressions in ITEX form to be tabulated;

4. [vv-1list] comma-separated list (or semicolon-separated list if the comma
package option is used with numerica) of variable=value items, in partic-
ular containing the initial value of the row variable, and column variable
if one is used;

5. [num. format] optional format specification for presentation of the nu-
merical results (rounding, padding with zeros, scientific notation, fraction-
form output); see §2.5.1.

Unlike \nmcEvaluate (the main command in numerica), for \nmcTabulate the
two apparently optional arguments straddling the main argument (settings
and vv-list) are essential. Although both are delimited by square brackets,
that is in order to draw on the numerica code. Each argument contains items
necessary for the construction of any table of function values.

Should numerica be loaded with the comma package option, numbers in
tables will be displayed with a decimal comma. In this case items in the vv-
list must be separated by a semicolon since the decimal comma is likely to
feature there. Similarly, n-ary functions — \max, \min and \gcd — must use the
semicolon as their argument separator.

Math environments are significant for \nmcEvaluate. They are essentially
irrelevant for \nmcTabulate, although an external environment may determine
how a table is positioned on the page (\[<table> \] for instance will centre
the table between the margins). Environments specified in the main argument
(the formula) should be avoided. $ $, \(\) or \[\] will not cause error, but
a \begin—-\end environment there will.

Just as the syntax is shared, so the settings available to the command
\nmcEvaluate in numerica are also available to \nmcTabulate, although not
all will be relevant. See the associated document numerica.pdf for a list of
these and associated discussion. I will point out instances of their use in the
following examples.

Chapter 2

\nmcTabulate settings

In addition to the shared settings, \nmcTabulate has many settings specific to
it. They are discussed in groups in subsequent sections, some in more than one
place. For the main discussion of row variable settings, see §2.1; for column
variable settings see §2.2; for whole-of-table formatting see §2.4; for formatting
the function values in table cells see §2.5.

2.1 Row-variable settings

2.1.1 Row-variable specification: uniform case

Deciding on a function to tabulate (entered in the main or mandatory argument
of \nmcTabulate) will inevitably also mean deciding on the tabulation variable,
the row variable, rvar, what value to start tabulating from — that is specified
in the vv-list and so does not need a specific key — what value to tabulate
to, rstop, and how fine-grained the tabulation is to be, the step size rstep.
In the uniform case (which makes up the overwhelming majority of cases in
HMF for instance) the step size is constant. It does not change as the value
of the row variable changes. (The non-uniform case, available from version

Table 2.1: Row-variable specification

key type meaning comment

rvar token(s) row variable

rstep real num. step size

rstop real num. stop value use only one of rstop
rows int number of rows or rows

rspec comma list {rvar, step, rows} short form spec.

3.0.0 of numerica-tables, is discussed in §2.1.2 below. Quite different keys are
required.)

The two tables in the example below tabulate sin x and cos xz between 0 and
1 in increments of 0.2. Note that the start value of the tabulation variable is
entered in the vv-list. The reason for placing it there is that for more com-
plicated functions other parameters in the function and therefore in the vv-list
may depend on the row variable. Although it will often be the first entry in the
vv-list, it does not need to be. The initial value of the row variable may depend
on other quantities which must necessarily precede it — lie to the right of it — in
the list.

In the vv-list, the start value of the row variable may be a WTEX expression.
Both rstep and rstop may also be IXTEX expressions. They are evaluated after
the vv-list is evaluated and so may depend on the values of variables in the vv-
list, including the initial value of the row variable. Thus setting rstep=1/x,
where x is the row variable, will give a constant step size equal to the reciprocal
of the initial value of the row variable.

The difference in appearance of the two tables results from padding with
zeros in the second (the asterisk in the trailing optional argument has the same
effect in \nmcTabulate as in \nmcEvaluate). As you can see, padding applies
not only to the values of the function but also to the values of the row variable,
although that has been padded to only 1 decimal place rather than the 6 of the
function values. Padding makes an obvious improvement to the appearance.
(How many digits to pad to in the row variable column is discussed in §2.1.3.)

\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]\qquad

\tabulate [rvar=x,rstep=0.2,rstop=1]
{ \cos x }[x=0] [*]

T sin x T cosx

0 0 0.0 1.000000

0.2 0.198669 0.2 0.980067

= 0.4 0.389418 0.4 0.921061
0.6 0.564642 0.6 0.825336

0.8 0.717356 0.8 0.696707

1 0.841471 1.0 0.540302

Sometimes (perhaps often) it may prove more convenient to specify the num-
ber of rows, rows, to tabulate rather than a stop value. Only one of rows and
rstop should be given, but if both (inadvertently) are present, it is the value
of rows that prevails. The first of the following three tables shows an example
where rows is specified.

The second and third tables use an abbreviated form of the row variable
specification, rspec. This is a three-element comma list, {rvar,rstep,rows}.
The second table gives a straightforward example. In the third table a IMTEX
expression has been inserted for rows in the rspec comma list. Like rstep and

rstop, rows can be a ITEX expression, but it is evaluated before the vv-list and
therefore, unlike rstep and rstop, cannot depend on quantites specified there
like the initial row variable value.

\tabulate [rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0] [*] \qquad
\tabulate [rspec={x,0.2,6}]
{ \tan x }[x=0][*] \qquad
\tabulate [rspec={x,0.2,1+(1/0.2)}]
{ \sgrt{\sec™2 x - 1} }[x=0] [*]

x sinz/cosx x tan x z Vsec?x —1

0.0 0.000000 0.0 0.000000 0.0 0.000000
0.2 0.202710 0.2 0.202710 0.2 0.202710
= 04 0.422793 0.4 0.422793 0.4 0.422793
0.6 0.684137 0.6 0.684137 0.6 0.684137
0.8 1.029639 0.8 1.029639 0.8 1.029639
1.0 1.557408 1.0 1.557408 1.0 1.557408

2.1.2 Row variable specification: non-uniform case

Occasionally one wants to form a table in which the row variable does not
increase or decrease in regular steps; for examples, see HMF Tables 1.1 and 3.1.
(Tables 9.7, 10.5, 10.10 use two step values and could also be handled with these
settings.) For instance, one might want a table of values of simple functions of
a list of constants, or a table of function values at 7, 7/2, /3, w/4, ..., or at 1,
10, 100, 1000, ..., or a table of function values at thoroughly irregular, perhaps
experimentally determined, values.

numerica-tables provides two means of specifying such row variables, ei-
ther by means of a row variable function (rfunc), when the row variable values

Table 2.2: Non-uniform row variable specification

key type meaning comment
rdata comma list list of row-var. values comma list may be
stored in a macro
rfile chars filepath/name file of comma
separated values
rverb int (0/1) display rdata or rfile initialized to 0
values verbatim
rfunc token(s) function of a stepped
variable

change in a non-uniform but formulaic way, or by explicitly listing the row vari-
able values in a comma list (rdata, rfile). In this latter case, a setting rverb
enables the row variable column to be displayed either as a sequence of values
or verbatim as a sequence of expressions — like fractions of .

2.1.2.1 rfunc

Suppose — perhaps with an interest in the distribution of prime numbers — that
we want to create a small table of values of n/Inn for, say, n = 10, 100, 1000,
10000, ... The prospective row variable n is not increasing in constant steps,
although clearly in a regular manner. We handle such cases with the rfunc
setting; in the present instance rfunc=10"n where now n does increment by a
constant amount:

\tabulate[rpos=1,rfunc=10"n,rvar=n,rstep=1,
rows=7 ,rround=0]

{ n/\1n n }[n=1][0]

n n/lon

10 4
100 22
1000 145
10000 1086

100000 8686
1000000 72382
10000000 620421

The variable n has two different meanings here. Initially it is the variable of
a simple step function incrementing by 1 at each step. The function takes values
107n. Once the table is compiled however n is used to denote these successive
function values, 10, 100, . .., 10000000. To the reader of the table, only this latter
meaning is evident. Yes, it would be possible to add further keys to specify a
distinct step function variable and its start, step and stop values, but the list of
keys to specify a table is already large. The ‘double usage’ implemented, perhaps
confusing initially, economizes on keys and is invisible to the reader of the table.
The initial value n=1 in the vv-list applies to the row variable function 107n,
not to the function being tabulated (so the error-producing expression 1/\1n 1
does not arise).

2.1.2.2 rdata, rfile, rverb

One source of difficulty in reading the previous table is working out just how
many zeros there are in the larger numbers in the left column. It would be more
readable ‘at a glance’ if we could write those in scientific notation. To do that
we use the rdata and rverb keys. In the first of the examples below, rverb
is absent (corresponding to the default rverb=0); in the second rverb=1, the

10

effect of which is to use verbatim the row variable values provided in the rdata
comma list:

\tabulate[rdata={10,100,1000,1074,1075,1076,10"7},
rvar=n,rround=0,ralign=1]
{ n/\1n n }[0]\qquad
\tabulate[rdata={10,100,1000,1074,1075,1076,10"7},
rverb=1,rvar=n,rround=0,ralign=1]

{ n/\1n n }[0]

n n/lon n n/lnn

10 4 10 4

100 22 100 22

1000 145 1000 145
10000 1086 10* 1086
100000 8686 10° 8686
1000000 72382 106 72382
10000000 620421 107 620421

rverb is particularly useful if you want to make a table of simple functions
of constants. In the following example, with its initial setting (rverb=0), the
constants would be listed in the first column as numbers and repeated in the
second column (perhaps to a different number of decimal places), which would
all be rather pointless. With rverb=1, the constants are listed verbatim in the
first column against their numerical values in the second. In the example, the
data has been stored in macros, \mydatai and \mydataii, prior to calling the
\tabulate command. \mydataii uses the \sfrac command from the xfrac
package. By setting rdata equal to these macros, the \tabulate command
gains access to the values stored in them.

\def\mydatai{\tfrac12\pi,\tfrac13\pi,\tfrac23\pi,
\tfrac14\pi,\tfrac34\pi}

\renewcommand\arraystretch{1.2}

\tabulate[rdata=\mydatai,rverb=1,rvar=k,headless=1]

{ k }[6%]

\renewcommand\arraystretch{1} \qquad

\def\mydataii{\sfrac\pi2,\sfrac\pi3,\sfrac{2\pi}3,
\sfrac\pi4,\sfrac{3\pi}4}

\tabulate[rdata=\mydataii,rverb=1,rvar=k,headless=1]

{ k }[6%]

3™ 1570796 /o 1.570796

%7‘(‘ 1.047198 m/3 1.047198
= Zr 2.094395 2m/3 2.094395

ir 0.785398 /4 0.785398

Sr 2356194 Sr/a 2.356194

11

The setting headless=1 (see §2.4.3) means the tables have no header row.
To accommodate the tower of \tfrac-s in the first column of the first table,
\arraystretch has been used to add more space between the rows (and re-set
afterwards). Through the virtues of \sfrac it is unnecessary in the second table
which is neater and more readable to my eye. But even better is the example
at §2.1.3.8.

Note that the row variable can be chosen arbitrarily — I earlier used n and
have used k here but it could be anything. Nor does the function tabulated
need to be the identity — see the earlier n/Inn example or a later example in
a multi-column setting in §2.2.1.2. The identity function was appropriate for
tables showing the decimal values of symbolic constants, as was the rverb=1
setting. The rverb setting applies only to the rdata and rfile keys. It has no
effect otherwise.

In addition to a comma list or macro, data for the row variable can also be
stored in a file of comma-separated values — say mydata.txt. If mydata.txt is
placed in the directory of the current document and rfile=mydata.txt entered
in the settings option of the \tabulate command, the file will be found and
the values used for the row variable. Alternatively, the file could be placed in
your texmf tree and your TEX distro alerted to its presence (by refreshing the
filename database). Again rfile=mydata.txt in the settings option will ensure
the file is found and the contents used for the row variable values. Or, the
file could be stored elsewhere and the rfile key equated to the full path and
filename — something like rfile=e:/mydocs/mydatafiles/mydata.txt. This
ensures the file will be found and the contents used for the row variable values.
Note that even in Windows systems (where file paths use backslashes) the path
requires that forward slashes only be used.

2.1.3 Formatting row variable values & column

The padding option (*) of the trailing optional argument is one way of format-
ting the row variable values, but to how many decimal places? Aligned left or
right or centred? Under what heading — the example tables so far have simply
used the row variable for the header? And should the row variable column be
at the left of the table, or the right — or both? These and related questions are
answered by assigning values to the keys listed in Table 2.3.

2.1.3.1 Rounding: rround

After studying some of the previous tables, we might decide to adjust the step
size, say from 0.2 to 0.25. But changing rstep to the new value gives a dis-
concerting result. numerica-tables uses a default rounding value of 1 for the
row variable and has rounded 0.25 down to 0.2, then 0.2 4+ 0.25 = 0.45 down
to 0.4, then 0.4 4+ 0.25 = 0.65 down to 0.6, then 0.6 + 0.25 = 0.85 down to 0.8,
at which point it stops since 0.8 + 0.85 > 1 which is the stopping value. The
rounded-down values are the values used for caclulating the sines. The second
table corrects matters by adjusting the row variable rounding with rround=2.

12

Table 2.3: Formatting the row variable column

key type meaning initial

rround int rounding 1

rfont chars font (\math<chars>)

ralign char (r/c/1) horizontal alignment T

rhead tokens header rvar

rhnudge int nudge header <int> mu 0

rpos int (0...4) column placement 1

rvar’ tokens 2nd row variable col. spec. rvar

rhead’ tokens header of 2nd rv col. (if it rvar’
exists)

rhnudge’ int nudge 2nd rv col. header 0
<int> mu

rfrac int (0...5) fraction form 0

\tabulate [rvar=x,rstep=0.25,rstop=1]
{ \sin x }[x=0][*] (Eh?77) \quad
\tabulate [rvar=x,rstep=0.25,rstop=1,rround=2]

{ \sin x }[x=0] [*]

T sinx T sinx

0.0 0.000000 0.00 0.000000

— 0.2 0.198669 (Eh?7?7?) 0.25 0.247404
0.4 0.389418 0.50 0.479426

0.6 0.564642 0.75 0.681639

0.8 0.717356 1.00 0.841471

2.1.3.2 Font: rfont

In the second table below bolding by means of the setting rfont=bf has been
applied to emphasize the distinction between the row variable values and the
function values. Possible values for this key are those characters that can be
adjoined to \math to give a meaningful result. Thus other valid values are it
(italic), sf (sans serif), tt (typewriter); frak (Fraktur); also rm (roman) is
available, but that is the default.

2.1.3.3 Alignment: ralign

By default, the alignment of all columns is to the right, as in previous examples.
This lends itself to neat output when padding with zeros is activated (the * in
the trailing argument) and when some values are negative — the minus signs
interfere with neat output in left or centred alignments. But in a case like the

13

second table in the last example, you might prefer to centre the headers for both
the row and function-value columns. These alignments are independently set.
For the row variable column the default alignment is to the right ralign=r;
ralign=1 (lowercase L) aligns entries in the row variable column to the left,
and ralign=c centres entries in the row variable column. The tables of the
next example use a c alignment to centre the row variable column header. The
third of those tables shows how minus signs spoil the effect.

2.1.3.4 Row-variable header: rhead

In the second and third tables, the header for the row variable column has
also been bolded. The default header is the row variable symbol. That can be
replaced by giving a value to the key rhead. I have used rhead=\boldsymbol{x}
(rather than \mathbf{x}) in order to get an italicized bold symbol. Note that
you do not need to include math delimiters in the specification. It is assumed
that rhead will sit between $ $ delimiters which are inserted automatically by
numerica-tables.

\tabulate [rvar=x,rstep=0.25,rstop=1,
rround=2,ralign=c]
{ \sin x }[x=0] [*]\qquad
\tabulate [rvar=x,rstep=0.25,rstop=1,rround=2,
ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=0] [*]\qquad
\tabulate [rvar=x,rstep=0.25,rstop=0.5,rround=2,
ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=-0.5][*]

x sinx x sinx x sin x

0.00 0.000000 0.00 0.000000 —0.50 —0.479426

— 0.25 0.247404 0.25 0.247404 —0.25 —0.247404
0.50 0.479426 0.50 0.479426 0.00 0.000000

0.75 0.681639 0.75 0.681639 0.25 0.247404

1.00 0.841471 1.00 0.841471 0.50 0.479426

In these tables the row variable column has been given a centred alignment.
The third table shows what goes wrong when some values in the row variable
column are negative. Better then is to use padding, a right alignment (the
default), and to use a phantom in the header. The first table below does this.
The second table incorporates kerning into the header to achieve the same effect:

\tabulate [rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\hphantom{0}]
{ \sin x }[x=-0.5] [*]\qquad
\tabulate [rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x}\mkern 9 mul
{ \sin x }[x=-0.5][*]

14

x sinx x sinx

—0.50 —0.479426 —0.50 —0.479426

— —0.25 —0.247404 —-0.25 —0.247404
0.00 0.000000 0.00 0.000000

0.25 0.247404 0.25 0.247404

0.50 0.479426 0.50 0.479426

(To my eye, aligning the & above the first column of digits after the decimal
point gives a better result than truly centring it in the column; compare these
examples with the first two tables of the previous example.)

2.1.3.5 Nudging the header: rhnudge

However, you might prefer to avoid inserting positioning commands into the
actual row variable header, obscuring its true content. You can avoid doing this
by setting the key rhnudge.

The first table below reverts to the default right alignment, avoids any posi-
tioning commands in the row variable header, but instead nudges it into position
with the setting rhnudge=9. For positive nudge values, nudging works in the
opposite sense to the alignment. The units for nudging are mu (math units, 18
to a quad), but only a number — generally an integer — should be specified; the
‘mu’ is supplied by numerica-tables.

In the second table below the row variable takes single digit integer values,
while the row variable name now occupies more than one character. With a
right alignment the header would protrude out to the left. By giving rhnudge
a negative value (rhnudge=-12 in the example) it is brought back to a centred
position in the row variable column.

\tabulate [rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x},rhnudge=9]
{ \sin x }[x=-0.5] [4*]\qquad
\tabulate [rvar=x_{\text{int}},rstep=1,rstop=4,
rround=0,rfont=bf,rhnudge=-12,
rhead=\boldsymbol{x_{\text{int}}}]
{ \sin x_{\text{int}} }[x_{\text{int}}=0] [4x*]

x sinx Tint SiN Xing

—0.50 —0.4794 0 0.0000

— —0.25 -0.2474 1 0.8415
0.00 0.0000 2 0.9093

0.25 0.2474 3 0.1411

0.50 0.4794 4 —0.7568

2.1.3.6 Position in the table: rpos

By default, the row variable column is the first column of the table. Its position
is determined by the value of the key rpos:

15

¢ rpos=0, suppressed (no row variable column);
o rpos=1, first column (the default);

e rpos=2, last column;

e rpos=3, first and last columns;

e rpos=4, first and last columns, with the values in the last column a user-
defined function of the first; see §2.4.6;

e Any other integer acts like rpos=1.

An example with rpos=3 is given shortly below, §2.3.

2.1.3.7 rvar’, rhead’, rhnudge’

These settings become relevant only when rpos=4; see §2.4.6.

2.1.3.8 Fraction-form values: rfrac

By giving the setting rfrac an integer value between 1 and 5 inclusive it is
possible to render the row variable values as fractions with no more than rround
digits in the denominator. Initially rfrac=0, which gives decimal output.

e rfrac=1 produces a slash fraction like 2/3;

2
e rfrac=2 produces a scalable \frac-tion like % in textstyle and 3 in dis-
playstyle;

e rfrac=3 produces a non-scalable \tfrac like %;

2
e rfrac=4 produces a non-scalable \dfrac like 5;

e rfrac=5 produces a slash fraction like 2/3 (by means of the \sfrac com-
mand) in text- and displaystyles if the xfrac package is loaded and like
2/3 if it isn’t; when used as a super- or sub-script, the fractions reduce in
size like €*/® or e*/?.

The following table repeats an earlier table from §2.1.2.2, but more neatly,
through using \sfrac (with the rfrac=5 call) instead of \tfrac, and moving
7 from the row variable column into the formula:

\def\mydataii{1/2,1/3,2/3,1/4,3/4}
\tabulate[rdata=\mydataii,rpos=1,
rvar=k,rfrac=5,rhnudge=6,chnudge=18]
{ k\pi }[k=0][6%]

16

k km

/2 1.570796
_. 13 1.047198
23 2.094395
/1 0.785398
3/s 2.356194

2.1.4 Adjoined multi-function tables

How might one tabulate multiple functions simultaneously? HMF has many,
many examples where multiple functions (like the trigonometric or the hyper-
bolic functions) are tabulated in separate columns of the same table.

With the settings described so far, one way is to adjoin single column tables.
In the tables below, which display as a single multi-columned table, I have used
three different rpos settings (rpos=1 is implicit in the first). This is one way to
build a table that displays as multi-column. If you use this method, note that
the % comment characters are essential at the end of the last argument of the
\tabulate commands if you want the tables to abut exactly. Omitting them
results in a space between the tables.

\tabulate [rspec={x,0.2,61}]
{ \sin x }[x=0] [*]%

\tabulate [rpos=0,rspec={x,0.2,6}]
{ \cos x }[x=0][*]%

\tabulate [rpos=2,rspec={x,0.2,6}]
{ \tan x }[x=0] [*]

T sinx CcosS T tan x x

0.0 0.000000 1.000000 0.000000 0.0
0.2 0.198669 0.980067 0.202710 0.2
= 0.4 0.389418 0.921061 0.422793 0.4
0.6 0.564642 0.825336 0.684137 0.6
0.8 0.717356 0.696707 1.029639 0.8
1.0 0.841471 0.540302 1.557408 1.0

However, tabulating more than one function at a time is too common a need
to have to resort to a fudge like adjoining tables. numerica-tables offers a
systematic way of doing this; see §2.3.

2.2 Column-variable settings

When a function of two variables is being tabulated, we generally think of one
variable as the primary variable and the other as a parameter. To tabulate
such a function, one way to proceed, as we have seen, is to create and adjoin
separate tables, one per parameter value, but that is clumsy. A more systematic

17

Table 2.4: Column-variable specification

key type meaning comment

cvar token(s) column variable

cstep real num. step size

cstop real num. stop value either cstop
cols int number of columns or cols

cspec comma list {cvar,cstep,cols} short form spec.

procedure is to specify, in addition to the row variable, a column variable and
its start, step and stop values.

In the following example cvar=k is the column variable. I have chosen a
step size cstep=2 and a stop value cstop=9. As with the row variable, the start
value (k=3) of the column variable is specified in the vv-list. Although in the
example these values are numbers, all three values could be EXTEX expressions
that evaluate to numbers. In particular, the expressions for step and stop values
may include the row and column variables (in the example and k) which are
assigned their initial vv-list values. Note also the setting for rhead which shows
the reader of the table that the numerical values displayed in the column headers
are values of k. This usage occurs throughout HMF.

\tabulate [rspec={x,0.2,63},rhead=x\backslash k,
cvar=k,cstep=2, cstop=9]
{ \sin kx }[k=3,x=0] [*]

2\k 3 5 7 9

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450 0.973848
= 0.4 0.932039 0.909297 0.334988 —0.442520
0.6 0.973848 0.141120 —0.871576 —0.772764
0.8 0.675463 —0.756802 —0.631267 0.793668
1.0 0.141120 —0.958924 0.656987 0.412118

Again, as with the row variable, rather than using an explicit stop value
cstop, you might prefer to specify the number of columns, cols, explicitly. 1
could have replaced cstop=9 with cols=4 to get the same result. Note that the
number of columns specified here is the number of function-value columns; the
row variable column is ignored for this count.

It is worth pointing out explicitly that if cols is specified, then it is possible
to have a zero step size, cstep=0. (A similar comment applies to rows and
rstep.)

And again, as with the row variable, it is possible to condense the specifica-
tion into a comma list with the key cspec. This is a 3-element comma list of

18

the form {cvar,cstep,cols}. Thus, for the preceding table I could also have
written

\tabulate [rspec={x,0.2,63},rhead=x\backslash k,
cvar=k,cstep=2,cols=4]
{ \sin kx }[k=3,x=0] [*]

or more succinctly

\tabulate [rspec={x,0.2,6},rhead=x\backslash k,
cspec={k,2,4}]
{ \sin kx }[k=3,x=0] [*]

and produced the same table.

As with the row equivalents, cstep, cstop and cols can all be ITEX ex-
pressions. Again like the row equivalents, the first two are evaluated after the
vv-list and so may depend not only on numbers and constants but also the ini-
tial values of the row and column variables, which are given those values in the
vv-list. cols is evaluated before the vv-list; it may be a IMTEX expression but
cannot depend on the row or column variable.

2.2.1 Column header formatting

There are four built-in style settings for the header to the column variable (or
function-value) columns (the ‘ch’ prefix evoking ‘column header’). If these don’t
meet your needs or otherwise satisfy, then it is possible to define your own header
to the function value columns using the key chead. First I discuss the built-in
styles.

2.2.1.1 Single-column header

When there is only one column of function values, the function being tabulated
is by default set as the header to the column. This corresponds to setting
ctitle=* (see §2.4.1 below). You may want some other header. Then give
ctitle some other value (although note that giving it the value ** will set both

Table 2.5: Formatting the column variable header

key type meaning initial
chstyle int (0...4) header style 0
ctitle tokens single col. alt. header

chead tokens user-defined header

calign char (r/c/l) column alignment r
chnudge int nudge header int mu 0
chround int rounding 0

19

the function and the vv-list as the header; again see §2.4.1). Whatever value
you set, it will be typeset between math delimiters ($ signs) and can be nudged
(see §2.2.1.5) left or right to fine-tune its position in the column. (If you want
an asterisk as the header, you will need to place it between two pairs of braces,
ctitle={{*}}, to prevent it being misinterpreted as the default setting.)

If you want some more complicated header, perhaps not constrained by the
$ delimiters, then give chead a value. This key I discuss below in §2.2.1.3.
chead is entirely up to the user to specify, including any math delimiters and
positioning (nudging) of elements.

If both ctitle and chead are given, the chead value prevails.

2.2.1.2 Multi-column header: chstyle

chstyle=0 which is the default gives a header of the form displayed in the
last example, with only the column variable value at the head of each column.
This style generally requires the row variable header to indicate what the values
denote, as in the example above where rhead=x\backslash k, the backslash
separating row from column variable. HMF contains a multitude of instances
of this style; see Tables 9.7, 17.5, 21.1, 24.3, 27.4, etc. for examples.
chstyle=1 changes the header of the first function value column to the form
variable=value — in the example below, to kK = 1. This may be an appropriate
choice when a small rounding value is being used and the resulting columns are
narrow. I can find only one real instance in HMF, Table 26.7. In the example
I have used the rdata setting to collect an assortment of nonsense values and
for some weird reason wish to tabulate the sines of multiples of these oddballs.
Note that the row variable setting rhead (producing X\k) is no longer needed
since the column variable is now explicitly indicated. (But the table is lacking
a title — what on earth are we calculating with this strange group of numbers?)

\tabulate[rdata={-e~2,1.234e2,3.1416,\pi/\gamma,1/9},
~,rvar=X,rverb=1, cspec={k,1,3},chstyle=1]
{ \sin kX }[k=1] [3x%]

X k=1 2 3

—e? —0.894 —0.802 0.175

— 1.234e2 —0.769 0.983 —0.486
3.1416 0.000 0.000 0.000

w/y —0.745 —0.994 —0.581

1/9 0.111 0.220 0.327

chstyle=2 changes the header of all function-value columns to the form
variable=value. In HMF examples are Tables 7.4, 7.9, 10.10, 16.6, etc. Again,
the row variable setting rhead no longer needs the \backslash k part since the
column variable is now explicitly indicated.

\tabulate [rspec={x,0.2,67},
cspec=1{k,2,3},chstyle=2]
{ \sin kx }[k=3,x=0] [3%]

20

xr k=3 k=5 k=7

0.0 0.000 0.000 0.000
0.2 0.565 0.841 0.985
= 04 0.932 0.909 0.335
0.6 0974 0.141 —0.872
0.8 0.675 —0.757 —0.631
1.0 0.141 —-0.959 0.657

chstyle=3 fills each column variable header with the expression being tab-
ulated but with the column variable replaced by its respective values. See HMF
Tables 5.4, 8.1, 9.1, 19.1, etc. for examples. Note that if the column variable
value is 1, the 1 will be displayed:

\tabulate [rspec={x,0.2,67},
cspec={k,2,3},chstyle=3]
{ \sin kx }[k=1,x=0] [4%*]

r sinlzx sin3x sin bx

0.0 0.0000 0.0000 0.0000
0.2 0.1987 0.5646 0.8415
= 04 0.3894 0.9320 0.9093
0.6 0.5646 0.9738 0.1411
0.8 0.7174 0.6755 —0.7568
1.0 0.8415 0.1411 —0.9589

In this last example you may not want the 1 displayed. To achieve that effect
put chstyle=4. This results in a header as for chstyle=3 but if the column
variable takes the value 1, it has an empty replacement:

\tabulate [rspec={x,0.2,67},
cspec={k,2,3},chstyle=4]
{ \sin kx }[k=1,x=0] [4%*]

T sinx sindx sin bx

0.0 0.0000 0.0000 0.0000
0.2 0.1987 0.5646 0.8415
= 04 0.3894 0.9320 0.9093
0.6 0.5646 0.9738 0.1411
0.8 0.7174 0.6755 —0.7568
1.0 0.8415 0.1411 —0.9589

2.2.1.3 User-defined header: chead

If the function in the last example were, for instance, k + sin kx, then neither
replacing k£ by 1 nor an empty replacement would be appropriate. In that case
the only recourse is to use the chead key. Users can assign whatever value

21

they like to chead. The assignment must contain the correct number of tab
characters (&) for the column variable columns only. It is a header only to the
function-value columns. The user will need to insert $ signs or other math
delimiters as appropriate. This differs from the practice for rhead, but chead
is potentially far more complicated. Thus for k + sin kx,

\tabulate [rspec={x,0.2,6},cspec={k, 2,3},
chead=$1+\sin x$&$3+\sin3x$&$5+\sin 5x$]
{ k+\sin kx }[k=1,x=0] [4%*]

r 14sinzx 3+sin3z 5+sinbx

0.0 1.0000 3.0000 5.0000
0.2 1.1987 3.5646 5.8415
= 0.4 1.3894 3.9320 5.9093
0.6 1.5646 3.9738 5.1411
0.8 1.7174 3.6755 4.2432
1.0 1.8415 3.1411 4.0411

Non-empty content for the chead key overrides any chstyle setting and, in the
case of a table with only a single function-value column, overrides any ctitle
setting.

2.2.1.4 Alignment: calign

The function-value columns are aligned right, calign=r, by default. Also avail-
able are calign=c for centred alignment and calign=1 (lowercase L) for left
alignment. Using centred alignment with chstyle=2 in a previous example
table gives

\tabulate [rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2,calign=c]
{ \sin kx }[k=3,x=0] [*]

0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450
= 0.4 0.932039 0.909297 0.334988
0.6 0.973848 0.141120 —0.871576
0.8 0.675463 —0.756802 —0.631267
1.0 0.141120 —0.958924 0.656987

The first column of function values looks better, but the minus signs spoil the
effect in the others. Handling signs in tables is discussed below; see §2.5.2.1.

2.2.1.5 Nudging header entries: chnudge

In left or right alignment it is possible to nudge the column headers in the
opposite direction by giving a numerical value to the the key chnudge. The

22

header is moved by the specified number of mu (math units; 18 to a quad).
Note that the ‘mu’ does not need to be written. numerica-tables provides
that. In the next example I have chosen chnudge=12 to nudge the column
headers to the left to give a centred effect to the header but leaving the function
values with their (potentially) awkward minus signs right aligned.

\tabulate [rspec={x,0.2,6},ralign=c,
cspec={k,2,3},chstyle=2, chnudge=12]
{ \sin kx }[k=3,x=0] [*]

0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450
= 0.4 0.932039 0.909297 0.334988
0.6 0.973848 0.141120 —0.871576
0.8 0.675463 —0.756802 —0.631267
1.0 0.141120 —0.958924 0.656987

The chnudge value does not need to be positive. Negative nudges can be
useful when a column header is longer than the rounded function values. In the
second example below, I've reduced the rounding value for function values to 3,
and chosen an initial k£ value of 100 to ensure this circumstance. To centre the
column headers I have used chnudge=-9.

\tabulate [rspec={x,0.2,6},ralign=c,
cspec=1{k,2,3},chstyle=2, chnudge=-9]
{ \sin kx }[k=100,x=0] [3x*]

r k=100 k=102 k=104

0.0 0.000 0.000 0.000
0.2 0.913 1.000 0.929
= 04 0.745 0.041 —0.688
0.6 —-0.305 —0.998 —0.419
0.8 —-0.994 -0.081 0.999
1.0 —0.506 0.995 —0.322

2.2.1.6 Rounding: chround

In the examples so far, the column variable has incremented in integer steps.
The default rounding value for the column variable is 0 (for the row variable it is
1), so if it increments by some non-integer amount, the result will be confusing
— if k& incremented by, say, 0.25, starting from k& = 3, then the next column
would also have a header k = 3 (since 3.25 with a rounding value 0 rounds to
3). The appropriate key to remedy this state of affairs is chround. For a step
size of 0.25 the appropriate setting is chround=2.

23

\tabulate[rspec={x,0.2,6},ralign=c,
cspec=1{k,0.25,3},chstyle=2, chround=2]
{ \sin kx }[k=3,x=0] [*]

x k=3.00 k=3.25 k = 3.50

0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.605186 0.644218
= 0.4 0.932039 0.963558 0.985450
0.6 0.973848 0.928960 0.863209
0.8 0.675463 0.515501 0.334988
1.0 0.141120 —0.108195 —0.350783

2.3 Multiple functions in a single table

As already noted in §2.1.4, tabulating more than one function at a time is too
common a need to have to resort to a fudge like adjoining tables. The systematic
way of handling this task is to enter the functions in the main argument of a
\tabulate command separated by a specified mark then alert \tabulate that
this has happened with the £f key in the settings option.

By default the multi-function delimiter is the comma if the decimal point is
a dot (or period), or the semicolon if the decimal point is a comma (numerica
loaded with the comma package option). If you are content with the default
delimiter then it suffices to enter £f in the settings option. If not, then enter
ff=<mark> there. For example ff=| would make the ‘pipe’ character | the
multi-formula delimiter. If the £f key is overlooked then multiple formulas in
the main argument of \tabulate will almost certainly cause a IXTEX error.

In the following example, using the default comma, note first the £f setting,
and then the o setting indicating that the arguments of the trig functions are in
degrees and (just to amuse myself) I have put the row variable column on both
sides with the rpos=3 setting:

\tabulate[ff,o0,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90]
{ \sin \theta, \cos \theta }[\theta=0] [*]

0 sin 0 cos 0

0 0.000000 1.000000 0O

10 0.173648 0.984808 10

20 0.342020 0.939693 20

30 0.500000 0.866025 30

= 40 0.642788 0.766044 40
50 0.766044 0.642788 50

60 0.866025 0.500000 60

70 0.939693 0.342020 70

80 0.984808 0.173648 80

90 1.000000 0.000000 90

24

The tables suggest a space saving possibility: since sin and cos are comple-
mentary functions (cosf = sin(90 — 6)), the values in the bottom half of the
table duplicate values in the top half, only with the columns reversed. This is
the reason for the space saving rpos=4 setting (§2.4.6) which enables comple-
mentary functions to be tabulated in ‘half tables’ (HMF Tables 4.10-4.12 are
examples for the trigonometric functions).

In the next example, the row variable column is again duplicated, left and
right, with the rpos=3 setting, and a centred alignment is used for the function
values. Because sin and cos are complementary, I have stopped the table at
rstop=45 since continuing to 90 would simply give a mirror reflection of the
preceding values. To accommodate the use of the comma in \max and \min
I have stipulated ff=|. Visually, the table has an unsatisfactory, sprawling
appearance — which directs attention to how tables might be titled (§2.4.1):

\tabulate[ff=|,0,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,calign=c]
{ \max(\sin \theta,\cos \theta) |
\min(\sin \theta,\cos \theta) }
[\theta=0] [*]

0 max(sinf,cosd) min(sinf,cosd) 0

0 1.000000 0.000000 0

— 10 0.984808 0.173648 10
20 0.939693 0.342020 20

30 0.866025 0.500000 30

40 0.766044 0.642788 40

2.4 Whole-of-table formatting

There are a number of settings pertaining to the appearance of the table as
a whole, things like the position of the row variable column, division of the
function values into blocks to aid readability, the presence of horizontal rules or
of a collective column title or of a footer row. I discuss these here.

2.4.1 Title for function-value columns: ctitle

The function-value columns have individual headers, formatted in the various
ways provided by the settings discussed in previous sections, but it can also
be helpful to have a collective title for these columns. We saw the need in
the last example. The need is met with the ctitle key. This can be set to
whatever you like (e.g. ctitle=\text{Fred}) but, to more purpose, I shall use
the setting to improve the look of the table in the last example. Note that the
content of the ctitle key is enclosed in braces. This is to shield the commas
there from being misinterpreted as item separators in the settings option. For an
analogous reason I have specified the semicolon (£f£=;) as the function separator
in the main argument:

25

Table 2.6: Table formatting

key type meaning initial
ctitle token(s) collective title for

function-value columns

token(s) subtitle row for function-

value cols
header int (0/1) suppress/show header row 1
foot token(s) table-wide footer row
rules char(s) horizontal rule spec. ThB
rpos int (0...4) row variable col. position(s) 1
rbloc integer comma list row block specification

valign char (t/m/b)

vertical alignment of table m
relative to text baseline

\tabulate[ff=;,0,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=45,
ctitle={\max,\min(\sin\theta, \cos\theta)},
chead=max\hphantom{00} & min\hphantom{003}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) } [\theta=0] [*]

max, min(sin 6, cos 6)

0 max min 0

0 1.000000 0.000000 O

= 10 0.984808 0.173648 10
20 0.939693 0.342020 20

30 0.866025 0.500000 30

40 0.766044 0.642788 40

Now it is clearer what is being tabulated and the wide separation of the function-

value columns is reduced.

There are two built-in values for the ctitle key: ctitle=%, which forms
the title from the function being tabulated, and ctitle=** which uses the
function and vv-list for the title. Obviously these, particularly the latter, could
easily become too long to be useful. An example of ctitle=x* is presented
below in §2.4.5. In the following example, inclusion of the vv-list in the title
is pointless since the variables there form the row and column variables of the

table; ctitle=+* is all that is needed:

\tabulate [rspec={n,1,5},rround=0,
cspec={m,1,4},chstyle=2,ctitle=*]
{ \cos(m\pi/n) }[n=3,m=2] [*4]

26

cos(mm/n)

n m =2 m=3 m=4 m=>5
3 —=0.5000 —1.0000 —0.5000 0.5000
== 4 0.0000 —0.7071 —1.0000 —0.7071
5 0.3090 —0.3090 —0.8090 —1.0000
6 0.5000 0.0000 —0.5000 —0.8660
7 0.6235 0.2225 —0.2225 —0.6235

2.4.2 Between header & title: csubttl

Some tables need to fit more header or title material into their rows than can be
comfortably accommodated in either row alone. For examples, see HMF Tables
7.9 (error function for complex arguments), 17.7 (Jacobian zeta function), 21.1
(eigenvalues of spheroidal wave functions), and 26.7 (probability integrals). One
way of handling this problem is to resort to more complicated environments in
header and title rows. Another, more direct way, is to insert a row between the
header and title rows.

I have chosen csubttl, a contraction of ‘column variable subtitle’ for the
key name. (In version 2 of numerica-tables the name cmidrow was used; that
will still work but csubttl gives a clearer indication of what the key does.) The
initial ‘c’ emphasizes that like chead and ctitle it is constrained to the span of
the column variable (or function-value) columns only. The content of csubttl
is entirely the responsibility of the user, including insertion of the necessary
number of tab characters, &, and any math delimiters required.

\tabulate[ff,rspec={x,1,7},rround=0, chnudge=18,
ctitle=\text{Hyperbolic functions},
csubttl=\multicolumn{3}{c}{$\sinh x=\tfraci2

(e”x-e"{-x}),\ \cosh x=\tfrac12(e~x+e"{-x})$}]

{ \tfraci12e”x, \sinh x, \cosh x }

[{x}=0] [8%]

Hyperbolic functions
sinhz = 3(e® —e™"), coshz = 1(e” + e ™)
x

T %e‘ sinh x cosh x
0 0.50000000 0.00000000 1.00000000
— 1 1.35914091 1.17520119 1.54308063
2 3.69452805 3.62686041 3.76219569
3 10.04276846 10.01787493 10.06766200
4 27.29907502 27.28991720 = 27.30823284
5 74.20657955 74.20321058 74.20994852
6 201.71439675 201.71315737 201.71563612

27

2.4.3 Suppress/show header row

Usually the header row in a table is shown. It carries essential information as to
the table’s contents. However, there are occasions when it should be suppressed.
An example where this is appropriate is given in §2.1.2.2 where a table listing
fractions of m and their values is shown. As in that example, to suppress the
header enter the setting headless=1. (Otherwise tables default to headless=0.)

2.4.4 Footer row: foot

Some tables have a footer row and numerica-tables allows such a row to be
inserted, but its entire content, with one exception, is the responsibility of the
user, including insertion of the necessary number of tab characters & This
will usually be 1 less than the total number of columns (including row variable
columns) in the table — or some adjustment thereof if you use \multicolumn.
(HMF uses the footer mainly for cryptic descriptions of the accuracy and needs
of interpolation methods.)

You can put into the footer what you wish with the setting foot=<tokens>.

The one exception is when foot=*. This will fill the footer with the header,
but with the items of the header presented in reversed order — the last item first,
and so on. This is useful for tabulating complementary functions like the sine
and cosine or, more generally, f(z) and g(x) where g(x) = f(k — x) for some
constant k. Values for the complementary function are read from the bottom
up and require a reversed row variable column on the right of the table; see
§2.4.6.

2.4.4.1 Footer functions

In previous versions of numerica-tables it was possible to perform certain
simple operations on columns — calculate the sum, the average and maximum
and minimum values. This is no longer so in version 3. Not only does it seem
tangential to the primary function of the \tabulate command but it was also
acutely dependent on the format of the numbers being operated on. A simple
change in the number-format option could cause a ITEX error.

2.4.5 Horizontal rules: rules

The booktabs package which numerica uses is most emphatic that one should
‘1. Never, ever use vertical rules. 2. Never use double rules! Most of the tables
proper in HMF lack rules of any kind although closer inspection shows smaller
tables within the text generally are delimited by horizontal rules (often also
with vertical rules). In the various examples in the present document I have
used horizontal rules because these too are tables within text. Some form of
delineation seems necessary. (Although many of HMF’s tables are inelegantly
typeset, I have used it as a valuable source for the variety of structures that one
might need for presenting a multitude of different kinds of numerical data.)

28

The rules key allows one to specify precisely which rules are used. The
content of the key is a ‘word’ — a sequence of letters — where the characters have
the significance and default thicknesses (from booktabs) shown in Table 2.7.
The default setting is rules=ThB. To insert a rule beneath the title, for example,
change this to rules=TthB.

If you are using a subtitle row between header and title rows and want a rule
beneath that too, then the spec. is rules=TtshB. (For legacy reasons, m — from
‘midrow’ — can also be used instead of s, as in version 2 of numerica-tables.)
To my eye rules beneath both title and subtitle don’t work; a rule beneath
the subtitle alone gives a better result. The subtitle rule changes its behaviour
depending on whether there are two row variable columns — on the left and right
of the table — or not. If there is only such column then, like the title rule, the
subtitle rule spans only the function-value columns. If there are two row variable
columns then the subtitle rule spans the table but is trimmed by 0.5 em at each
end. That degree of trim is the booktabs default but can be changed by giving
a different value to \cmidrulekern in the preamble, e.g. \cmidrulekern=1em.
Note that the changed trim will also apply to the title rule.

If you are using a footer row and want a rule above it, then add £ to the
specification, e.g. rules=TthfB. In version 3 of numerica-tables the rule is
trimmed at each end. Visually, having two table-spanning rules close together,
the £ and B rules, doesn’t work. The trimming makes a difference. (For the T
and h rules, the occurrence of the table body beneath the h rule seems to make
a difference to the visual impact of the rules.) But the question should always
be: is a rule necessary at all? Usually, less is more.

If you wish to change the thickness of a rule from its default, then enter new
values for any or all of \heavyrulewidth, \lightrulewidth, \cmidrulewidth
in the preamble. The values listed in Table 2.7 are the default values in the
booktabs package (except for the midrow and footer rules, which booktabs
does not cover; in numerica-tables these rules are assigned a thickness of
\cmidrulewidth).

Table 2.7: Rules. (In the ‘span’ column, ‘f-v’=function-value; ‘r-v’=row variable;
‘< table’ indicates that the rule spans the table but is trimmed at each end.)

char rule position span default rule thickness

T top above table table \heavyrulewidth=.08em
t title below title f-v cols \cmidrulewidth =.03em
s subtitle below subtitle f-v cols (if 1 r-v col.) \cmidrulewidth =.03em

< table (if 2 r-v cols)

h header = below header table \lightrulewidth=.05em
f footer above footer < table \cmidrulewidth =.03em
B bottom below table table \heavyrulewidth=.08em

29

The order in which rules are placed in the specification doesn’t matter. I
have entered them in their ‘natural’ order simply because it feels natural to do
so, but it is their occurrence in the spec., not their position, that matters.

In the example table below, a rule for the column title has been specified
(the t in the setting rules=TthB). Also note the use of ctitle=**. The formula
contains an extra parameter a, assigned a value in the vv-list. It now makes
sense to display the vv-list in the column title (but note the braces around k
and x in the vv-list so that they don’t display).

\tabulate
[rspec={x,0.25,5},rround=2, rhnudge=9,
cspec={k,0.25,3},chstyle=2,chround=2,
ctitle=**,rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0] [*]

asinkz, (a=2/m)
x k=3.00 k=325 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 —0.068879 —0.223316

2.4.6 Second row variable column: rpos=4

In §2.1.3.6 I discussed the settings rpos=0,1,2 and in §2.3 gave an example of
using rpos=3 where repeating the row variable column on the right is helpful.
There is another value available for this key, rpos=4. Like rpos=3 this adds the
row variable column to both left and right sides of the table, but for the right
column the values are a function of those in the left column (rpos=3 corresponds
to the function being the identity). The value given to the key rvar' determines
the function used and the value given to the key rhead' determines the header
for the right-hand row variable column. If rhead' is omitted it defaults to a
blank header, unless the rvar' setting is also omitted, when rpos=4 behaves
like rpos=3.

For example, the sine and cosine are complementary functions; when work-
ing in degrees, cosf = sin(90 — §). We can exploit this fact to halve the ta-
ble size needed to tabulate the two functions. In the table, # = 90 — # and
rhead'=\theta'. Simply to illustrate the use of rhnudge' I have nudged the
header in the second (right) row variable column to sit above the tens digits of
the row variable values. The example also gives an illustration of the use of an
expression in the third element of rspec.

\tabulate[ff=;,0,rpos=4,
rspec={\theta,5,1+45/5},rround=0,
chnudge=14,rvar'=90-\theta,rhnudge'=4,

30

rhead'=\theta',rules=ThfB, foot=x%]
{ \sin\theta;\cos\theta }[\theta=0] [*]

0 sin @ cos 0’

0 0.000000 1.000000 90

5 0.087156 0.996195 85
10 0.173648 0.984808 80
15 0.258819 0.965926 75
20 0.342020 0.939693 70
25 0.422618 0.906308 65
30 0.500000 0.866025 60
35 0.573576 0.819152 55
40 0.642788 0.766044 50
45 0.707107 0.707107 45

0 cos @ sin 6 0

The values of sines from 0 to 45 degrees are read downwards from the first
column of function values, and from 45 to 90 degrees are read upwards from the
second column of function values. For cosines it is downwards from the second
column and upwards from the first column. The reversed footer line indicates
the change of columns to use. In the example note

o the setting of rvar' to a function 90-\theta of the row variable;
o the footer setting foot=* to obtain the reversed header in the footer;

e the rule above the footer row specified by the £ added to the rules setting,
rules=ThfB.

Note also the degree setting o in the settings option.

Although there is a significant space saving with tables like this (see HMF
Tables 4.10, 4.11, 4.12), they are not ‘kind to the reader’. They require a certain
concentration to read and in my view should be avoided unless space is seriously
constrained. HMF Tables 6.1 and 6.2 are tables of the gamma function and its
relatives where y = x — 1 is used in the row variable column on the right
(stemming from y! = I'(z —1)); HMF Table 6.5 in effect uses (1/x) (the nearest
integer to 1/x) for the row variable on the right.

2.4.7 Separating blocks of rows: rbloc

Readability of long columns of figures can be aided by breaking the columns
into blocks with extra white space between blocks of rows. This is achieved
with the rbloc key:

rbloc = <comma list of positive integers>

specifies how many rows belong to each block. For example, rbloc={5,5,6}
breaks the table into blocks of 5 rows, 5 rows, then 6 rows. If the number of

31

rows in the table is greater than the sum of the entries in the comma list, then
division into blocks continues as specified by the last entry in the comma list.
Thus rbloc=5 (strictly rbloc={5} but the braces can be omitted in this case
since no comma is enclosed) divides a table into blocks of 5 rows; rbloc={1,5%}
divides a table into 1 row followed by blocks of 5 rows. A division of this kind
may be appropriate when, say, the row variable runs from 0 to 1 in increments
of 0.1 — there are 11 rows of which the first (when the row variable is zero) may
have distinctive values.

The pull of the nice round number

However, this is not how HMF sets out its tables. The dominant practice in
HMF is division into blocks of (generally) 5 rows, many of which start with
a zero value for the row variable. Rather than isolate this initial value, they
include it in the first block of 5, then continue with blocks of 5 until a single
isolated row is left at the bottom of the page or the table. There seems to be a
psychological need to finish a page or table with the row variable set to a nice
round number. Thus: tabulate from 0 to 10 rather than 0 to 9, from 0 to 1
rather than 0 to 0.9, and even from 0 to 30 or 0 to 2 rather than 0 to 29 or 0 to
1.9. Using blocks of 5 the consequence is that there is always an isolated line at
the end — a kind of punctuation mark to signal the end of the page or the table.

In the next example I have divided the rows into blocks of 5 by means of the
setting rbloc=5.

\tabulate[ff=;,0,rspec={\theta,10,1+90/10},
rround=0,rbloc=5]
{ \sin\theta; \cos\theta }[\theta=0] [*]

0 sin 6 cosf

0 0.000000 1.000000

10 0.173648 0.984808

20 0.342020 0.939693

30 0.500000 0.866025

= 40 0.642788 0.766044

50 0.766044 0.642788
60 0.866025 0.500000
70 0.939693 0.342020
80 0.984808 0.173648
90 1.000000 0.000000

2.4.7.1 Adjusting the extra space rblocsep

By default numerica sets the extra space between blocks of rows at 1 ex. This
value can easily by changed with the setting rblocsep=<length>. The units
need to be included in the specification.

32

2.4.8 Table placement

Tables can be nudged vertically with the W TEX commands \bigskip, \medskip\medskip,
\smallskip, usually about 1, 1/2 and 1/4 line spaces (with stretch and shrink).
booktabs provides \abovetopsep and \belowbottomsep, both set by default

to Oex and easily changed by writing, e.g., \abovetopsep=1.25ex if you want

to insert 1.25ex of space above the table (perhaps to fit captions).

2.4.8.1 Vertical alignment

By writing valign=<char> where <char> is one of t, m or b the vertical align-
ment of the table can be set relative to the text baseline. valign=t aligns the
top of the table with the text baseline, valign=b the bottom of the table with
the text baseline, valign=m aligns the middle of the table with the text baseline.
By default valign=m is set. Repeating an example from earlier (§2.1) I have
added letters A, B, C to show where the baseline is. In the first table the top of
the table aligns with the baseline; in the second table (default case) the middle
of the table aligns with the baseline; in the third table, the bottom of the table
aligns with the baseline.

A \tabulate[valign=t,rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \quad

B \tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \tan x }[x=0][*] \quad

C \tabulate[valign=b,rspec={x,0.2,(6)}]
{ \sqrt{\sec™2 x - 1} }[x=0] [*]

r sec?zr —1

0.0 0.000000
0.2 0.202710
0.4 0.422793

x tan x
0.6 0.684137
0.0 0.000000 0.8 1.029639
0.2 0.202710 1.0 1.557408
— A : B 04 0422793 C
x sinz/cosz 0.6 0.684137
00 0.000000 0.8 1.029639
0.2 0.202710 1.0 1.557408

0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

As explained in §2.1.4, tables can be adjoined to give the appearance of a
single larger table. If tables with different numbers of rows are adjoined in this
manner, then a middle alignment fails and a top alignment is necessary (so that
the header rows of the tables align).

33

Table 2.8: Formatting function values

key type meaning initial

(pad) int t-notation phantom padding

signs int sign handling for function-values 0
diffs int insert differences & pre-pad with 0
Zeros

round tokens row or col. dependent rounding

value
Q7 tokens special cell conditional
Al tokens special cell formatting

2.5 Function value formatting

In previous tables in this document, function values have generally been limited
to a fairly narrow range of values. What happens when function values span
orders of magnitude? Can we accommodate scientific notation, expressly de-
signed to cope with such orders of magnitude, in a natural way? Can we round
rows or columns to different rounding values? Or, in a different direction, can
we form tables of function values in fraction form?

2.5.1 Trailing optional argument

The primary tool for function-value formatting is the trailing optional argument
of the \tabulate command where the rounding value is specified, padding with
zeros is set or not (generally set in tables), scientific notation is set or not, and
fraction-form output can be specified.

2.5.1.1 Fraction-form output

In §2.1.3.8 we saw how to display the row variable in fraction form. Function
values can also be presented in that form. The problem is that such output
requires far more computation than other output since finding denominators
at the specified accuracy is an iterative process that needs to be performed for
every function value. However, it is feasible for small tables. In the tables
below, approximations to small positive and inverse powers of 7 are listed to
2 and 4 decimal places of accuracy. It is interesting that all the powers listed
can be approximated to 4-place accuracy by 3-figure denominators (and 72 by
a 2-figure denominator).

\def\mydataiii{\pi,\pi~2,\pi~3,
\pi~{\sfrac12},\pi~{\sfrac13}}

\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=1,chead={\small 2 places}]

34

{ kx }[2/s] \qquad
\tabulate[rdata=\mydataiii,rverb=1,rpos=1,
rvar=k,ralign=1,chead={\small 4 places}]

{ k }[4/s]

k 2 places k 4 places

™ 22/7 v 355/113
, 148/15 w2 227 o3

3 2760 /39 3 4930 /159

'/ 23/13 T 257/145

/3 19/13 m'/s 186197

A second example shows that all four built-in constants to numerica and
their first few inverse powers can be approximated to 5 decimal places with
3-figure denominators:

\tabulate[rdata={\pi ,e,\phi,\gamma},rverb=1,rvar=k,
cspec={n, 1,4}, chstyle=3, chnudge=9,rules=TthB, /max=1000,
ctitle=\lvert k~{\sfracin}-p/q \rvert<0.5\times107{-5}]

{ k"{\sfracin} }[n=1,k=1][/s5]

|k'/" —p/ql < 0.5 x 1075

ko K k' k' k'
= 7 355/113 296/167 517/353 667/501
e 1264/465 582/353 1210/g67 217/169
¢ 610/377 491/386 668/569 397/352
v 228395 48T/ea1 194/333 421/4g3

2.5.1.2 Scientific notation

Elegant scientific notation, set with an x in the trailing optional argument, is
generally not appropriate for use in tables; see the first table below. Repeating
the x — xx — in the trailing optional argument (the second table) so that scientific
notation extends to numbers in the range [1,10) helps, particularly with the left
alignment chosen for the function-value column, but the result is wasteful of
space and the repetition of the ‘x10’ is distracting and would be more so for a
larger table. The x specification should be used in tables, if at all, only for small
tables and special cases. The t option is much preferred; see §2.5.2 below.

\tabulate [rspec={x,1,2%3+1},rround=0]
{ e”x}[x=-5] [*x]\qquad

\tabulate [rspec={x,1,2*3+1},rround=0,calign=1]
{ e7x}[x=-3] [*xx]

35

T e’ r er

—3 4.978707 x 1072 —3 4.978707 x 1072
-2 1.353353 x 1071 -2 1.353353 x 1071
— —1 3.678794 x 107t -1 3.678794 x 1071
0 1.000000 0 1.000000 x 10°
1 2.718282 1 2.718282 x 10°
2 7.389056 2 7.389056 x 10°
3 2.008554 x 10! 3 2.008554 x 10!

2.5.2 The t option

HMF uses a special notation for coping with function values spanning orders of
magnitude. This notation can be invoked by inserting t in the trailing optional
argument. Repeating the previous two tables, and adding a chnudge value,
gives a more compact and visually appealing result:

\tabulate [rspec={x,1,2*3+1},rround=0, chnudge=24]
{ e7x}[x=-3] [*t]\qquad

\tabulate [rspec={x,1,2%3+1},rround=0, chnudge=24]
{ e™x}[x=-3] [*tt]

x x

x (& X &
—3 (—2)4.978707 —3 (—2)4.978707
—2 (—1)1.353353 —2 (—1)1.353353
. —1 (—1)3.678794 —1 (—1)3.678794
0 1.000000 0 (0)1.000000
1 2.718282 1 (0)2.718282
2 7.389056 2 (0)7.389056
3 (1)2.008554 3 (1)2.008554

2.5.2.1 Padding the exponent: (pad)

In the second table of the last example some might quibble at the lack of align-
ment of the left parentheses. HMF tends to align these and numerica-tables
offers the setting

(pad) = <integer>

to achieve the effect. (The parentheses are part of the key — a reminder of the
t-form of scientific notation.) <integer> is the number of digits/characters to
pad to. Repeating the last two tables with the setting (pad)=2 produces the
following results:

\tabulate [rspec={x,1,2%3+1},rround=0,
chnudge=24, (pad)=2]
{ e”x}[x=-3] [*t]\qquad
\tabulate [rspec={x,1,2%3+1},rround=0,

36

chnudge=24, (pad)=2]
{ e”x}[x=-3] [*tt]

x x

x e X e
—3 (—2)4.978707 —3 (—2)4.978707
—2 (—1)1.353353 —2 (—1)1.353353
. —1 (—1)3.678794 —1 (—1)3.678794
0 1.000000 0 (0)1.000000
1 2.718282 1 (0)2.718282
2 7.389056 2 (0)7.389056
3 (1)2.008554 3 (1)2.008554

Note that this setting is relevant only when the t option is used in the
trailing number-formatting argument of the \tabulate command. Examples in
HMF of the style exemplified by the first table are, among others, Tables 8.6,
9.2, 20.1, and of the style exemplified by the second table, among many, Tables
9.9, 10.5, 13.1, 14.1, 19.1.

Accommodating signs: signs Instead of e* as the test function, use e* — 1.
Now there are positive, zero and negative function values to contend with. Recall
that in the t-notation the exponent is the parenthesized integer part of a number
and the significand the following decimal figures. numerica-tables offers the
signs key to align (or not) the exponents. The setting is

signs = <integer>

Besides the do-nothing default (signs=0), there are four effective values for
<integer>:

e signs=2 inserts a + sign between exponent and significand of every non-
negative number;

e signs=1 inserts a + sign between exponent and significand of every non-
negative number that immediately precedes or follows a negative number;

e signs=-1 inserts a + sign between exponent and significand of any non-
negative number that immediately precedes or follows a negative number,
and inserts a phantom + sign between exponent and significand of every
other non-negative number;

e signs=-2 inserts a phantom + sign between exponent and significand of
every non-negative number;

In the following examples, signs=-2, signs=-1 and signs=2, all give acceptable
results.

\tabulate [rspec={x,1,2%3+1},rround=0,
(pad)=2,signs=-2]
{ e”x-1}[x=-3] [4*tt] \qquad

37

\tabulate [rspec={x,1,2%3+1},rround=0,
(pad)=2,signs=-1]
{ e”x-1}[x=-3] [4*tt] \qquad
\tabulate [rspec={x,1,2%3+1},rround=0,
(pad)=2,signs=2]
{ e™x-1}[x=-3] [4*tt]

T et —1 T e’ —1 T et —1

-3 (-1)—-9.5021 -3 (-1)-9.5021 -3 (-1)-9.5021

—2 (—1)—8.6466 -2 (—1)—8.6466 -2 (—1)—8.6466

— -1 (—1)—6.3212 -1 (-1)-6.3212 -1 (-1)-6.3212
0 (0) 0.0000 0 (0)+0.0000 0 (0)+0.0000

1 (0) 1.7183 1 (0) 1.7183 1 (0)+1.7183

2 (0) 6.3801 2 (0) 6.3801 2 (0)+6.3891

3 (1) 1.9086 3 (1) 1.9086 3 (1)+1.9086

In HMF Table 23.2 illustrates signs=-2; Tables 10.1, 13.1, 14.1, 19.1 among
many others illustrate signs=-1; and Tables 9.4, 10.6, 20.2, 22.11 among others
illustrate signs=2.

signs=1, however, is an inappropriate setting for these function values in
the t-notation:

\tabulate [rspec={x,1,2%3+1},rround=0,
(pad)=2,signs=1]
{ e”x-1}[x=-3] [4*tt] \qquad

T e’ —1

-3 (-1)-9.5021

-2 (—1)-—8.6466

— -1 (-1)-6.3212
0 (0)+0.0000

1 (0)1.7183

2 (0)6.3891

3 (1)1.9086

2.5.3 Indicating signs outside the t-notation

The signs key is not limited to the t-notation. In the following tables where
the notation is not used, positive values for the key, including signs=1, give
good results (I've included also the default setting — the third table):

\tabulate [rspec={x,0.1,9}, (pad)=2,signs=2]
{ 10\sin 5x}[x=-0.4] [*4]\qquad
\tabulate [rspec={x,0.1,9%}, (pad)=2,signs=1]
{ 10\sin 5x}[x=-0.4] [*4]\qquad
\tabulate [rspec={x,0.1,9}, (pad)=2]
{ 10\sin 5x}[x=-0.4] [*4]

38

xz 10sinbx x 10sinbx x 10sinbx

—0.4 —9.0930 —0.4 —9.0930 —0.4 —9.0930

—-0.3 —=9.9749 —-0.3 —=9.9749 —-0.3 —9.9749

—0.2 —8.4147 —-0.2 —8.4147 —-0.2 —8.4147

— —01 —4.7943 —-0.1 —4.7943 —-0.1 —4.7943
0.0 +0.0000 0.0 +0.0000 0.0 0.0000

0.1 +4.7943 0.1 4.7943 0.1 4.7943

0.2 +8.4147 0.2 8.4147 0.2 8.4147

0.3 +9.9749 0.3 9.9749 0.3 9.9749

0.4 +9.0930 0.4 9.0930 0.4 9.0930

HMF seems to use signs=2 when the sign of the function values changes every
few entries and signs=1 when there are runs of entries of the same sign. Over
the range tabulated here for 10sin 5z, they would use the middle table of the
three, signs=1.

2.5.4 Rounding to varying values

Above, in §2.5.1.1, we created two tables of fraction-form approximations to
simple power functions of 7, one accurate to two places of decimals, one to four
places. Version 3.1 of numerica-tables (as distinct from version 3.0) offers the
means of producing tables with rounding values depending on position in the
table. This is effected through the key

round = f(rvar,cvar)

where f (rvar,cvar) denotes a function of row and column variables. Usually
this will mean dependence either on row variable or column variable rather than
both. In the present instance we form a multi-function table and with the round
key let the rounding value equal the row variable value r (round=r) to obtain
fractional approximations to simple powers of 7 at rounding values from 1 to
5 (and discover that all these values can be approximated to 5 decimal places
with 3 figure denominators — 72 only just).

\tabulate[ff,rspec={r,1,5},round=r, /max=999,chstyle=2,
ctitle=\1lvert\pi~k-\sfrac mn\rvert<0.5\times10~{-r}]
{ \pi,\pi~2,\pi~3,\pi~{1/2},\pi~{1/3}}[r=1] [/s]

|7k —m/n| < 0.5 x 107"
3

r s w2 T ml/2 7l/3
1 19/6 59/ 31/) /4 3/2
= 9 22/7 148/15 2760 /g9 23/13 19/13
3 26745 227/p3 4589148 39 /29 41 /g
4 355113 22T/p3 4930/159 257/145 186197
5 355/113 9840/g97 14821/478 296/167 517/353

Another place where a variable rounding value can be of value is when a
function being tabulated changes slowly for each step in the row variable value;

39

the value of the cosine for instance changes from 1.0000 to 0.9848 between 0°
and 10°. Part of a table of the cosine might be something like the following,
where values in the initial rows of the table are rounded to a higher value than in
later rows. round is set to an expression involving the row variable in boolean
elements \theta<11l and \theta>10 which evaluate to 0 or 1 so that round
takes the value 6 for the initial rows of the table and the value 4 thereafter.

\tabulate[o,rspec={\theta,1,6},calign=1,chnudge=15,
round=6 (\theta<11)+4(\theta>10)]
{ \cos\theta }[\theta=8]

0 cos

8 0.990268

9 0.987688

= 10 0.984808
11 0.9816
12 0.9781

13 0.9744

2.5.5 Differences: diffs

In fine-grained tables where function values change only slowly from entry to
entry it can be helpful to include a difference entry between function-value
entries as an aid to interpolation (and a test of eyesight). By entering

diffs = <non-negative integer>

the \tabulate command will include differences in a table. The <non-negative
integer> is the maximum number of digits in a difference.

\tabulate [rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9, chnudge=21,diffs=3]
{ \sinh x }[x=1] [*4]

T sinh x

1.00 1.1752
.01 1.1907""°
= 1.02 1.2063""°
1.03 1.2220"""
1.04 1.2379"°
1.05 1.2539""

I have deliberately chosen the function and settings here — particularly
diffs=3 — to give a good result. With the default right alignment of the
function-value columns, it is easy to get this wrong. The evidence will be either
in the misalignment of the first row of function values or unnecessary padding

40

of differences with leading zeros. It is a good idea to create your table first,
see how function values change between successive rows and judge how many
digits there will be in a difference. In the following examples I have deliberately
put diffs=2 and diffs=4 to show the effect of a misjudgement. In the first
table the first row of function values is misaligned by one character. (diffs=1
would have produced a two-character misalignment.) In the second table the
unnecessary fourth digit for the differences results in pre-padding with 0.

In the second table the function —sinhz is decreasing, showing how it is
the absolute value of the difference between successive function values that is
tabulated. A difference is always a non-negative value.

\tabulate [rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9, chnudge=21,diffs=2]
{ \sinh x }[x=1] [*4]\qquad
\tabulate [rspec={x,0.01,1.05},rround=2,
rhnudge=9, chnudge=30,diffs=4]
{ -\sinh x }[x=1][*4]

T sinh x T —sinhz
.00 1.1752 1.00 —1.1752
.01 1.1907"° .01 —1.1907""
= 1.02 1.2063 " .02 —1.2063""°
.03 1.2220"7 1.03 —1.2220""
1.04 1.2379"° 1.04 —1.2379""
1.05 1.2539 " 1.05 —1.2539"""

When the diffs setting is too small, function values in the first row are mis-
aligned, the amount depending on how much too small. (A left alignment of the
function value column is another way of tackling this issue.) When the diffs
setting is too big, alignment is fine but differences are padded with unnecessary
leading zeros, meaning the column header will need a bigger nudge to bring it
into alignment.

2.5.6 Formatting special values: Q7 and A!

You may wish to highlight or display in some special way a particular func-
tion value or values. \nmcTabulate has two related settings that enable this:
Q7=<tokens> and A!=<tokens>. As the names suggest: Question? and Answer!

The question should be an expression that 13fp can digest and produce a
boolean answer to (1 for ‘true’, 0 for ‘false’). This is not a BTEX expression;
this is an 13fp expression.' For the user it should be enough to know that an
expression formed from decimal numbers (but only with the dot decimal point),
parentheses (), the familiar arithmetic symbols, +, -, *, / and ~, relation
symbols <, > = and combinations like != (for #), >= (for >), and <= (for

IDocumentation about 13fp can be found in interface3.pdf, which is part of the 13kernel
bundle.

41

<) will be digested by 13fp. In addition there are || for logical Or, && for
logical And, and ! for logical Not; exp(1) for e and pi (no backslash) for
7. numerica-tables provides MAX and MIN for the maximum and minimum
function values tabulated, and uses @ to denote the current function value.

So, a query might be Q7=@<0, Is the current function value negative?, or
Q7={@>=pi}, Is the current function value greater than or equal to w? (The
braces hide the equality sign in the key=wvalue settings option.) Q?={@=MIN}
(again note the braces) is the question: Is the current function value equal to
the minimum function value for the whole table?

The answer must be in the form of a I TEX 2¢ formatting statement, again
using @ to denote the current function value. Thus A!'=\mathbf{@} is a valid
answer; so is A!=\color{red}{@} (provided you have \usepackage{color} in
the preamble); and so is A!'=(@). Another valid answer is A!= | meaning that
function values satisfying the Q7 question are omitted from the output.

This can be useful to suppress ‘irrelevant’ values in a particular context. For
example, suppose we wish to focus on the values of cos(mm/n) lying between 0
and % inclusive for certain values of m and n. Rather than cluttering the table
with values outside that interval, we suppress them (the two occurrences of
‘le-14’ in the query are there to prevent rounding errors confusing the result):

\tabulate[rspec={n,1,1+(15-4)},rules=Tth,rround=0,
rpos=2,cspec={m,1,1+(5-2)},chstyle=2,
ctitle=*,Q7={0<-1e-14]||@>0.5+1e-14},A!=]

{ \cos(m\pi/n) }[n=4,m=2] [*4]

0.5000 0.1736
0.3090 0.0000
0.4154 0.1423 11
0.5000 0.2588 12

cos(mm/n)
m=2 m=3 m=4 m=5 n
0.0000 4
0.3090 5
0.5000 0.0000 6
0.2225 7
= 0.3827 0.0000 8
9
10

0.3546 13
0.4339 14
0.5000 15

2.5.6.1 Star option: \nmcTabulatex*

If the Q7 question is satisfied by at least one function value then adding a
star (asterisk) to the \tabulate command will display the first such instance.
Like other starred commands in the numerica suite (\eval#, info*, \macrosx,
\constants*, \iter*, \solve* and \recur*), \tabulate* outputs a single

42

number. Using the star means you do not need an answering A! to the query
Q7 since no formatting of table values is involved.

\tabulate* [rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q7={0<-1e-14||©>0.5+1e-14}]
{ \cos(m\pi/n) }[n=4,m=2] [*4]

= 0.6235. Indeed, if you omit the Q7 and A! settings from the previous table
so that all function values are visible then this is the value that follows 0.5000
in the m=2 column — the first function value encountered outside the interval
[0,0.5].

If you want the mazimum value that has been tabulated then, from ver-
sion 3 of numerica-tables, you do not even need the query: when \tabulate
is starred, Q7 is initialized behind the scenes to @=MAX.? Thus, repeating the
example from §2.2,

\tabulate[rspec={x,0.2,6},rhead=x\backslash k,
cvar=k,cstep=2, cstop=9]
{ \sin kx }[k=3,x=0]
\tabulatex* [rspec={x,0.2,6},rhead=x\backslash k,
cvar=k, cstep=2, cstop=9]
{ \sin kx }[k=3,x=0]

2\k 3 5 7 9

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450 0.973848

= 0.4 0.932039 0.909297 0.334988 —0.442520 0-985450
0.6 0.973848 0.141120 —0.871576 —0.772764
0.8 0.675463 —0.756802 —0.631267 0.793668
1.0 0.141120 —0.958924 0.656987 0.412118

Errors If no function value satisfies a query then a message is generated:

\tabulate* [rspec={n,1,1+(15-4)},
cspec={m,1,1+(5-2)},Q7=0>1]
{ \cos(m\pi/n) }[n=4,m=2] [*4]

= Il No table value satisfies query Q7 in: settings. !!!

Scientific notation If you want the number output in scientific notation
when the star option is chosen, then enter the exponent mark in the trailing
number-format option. This is straightforward for a letter like the commonly
used e, but remember that if you enter the x option you will need to place the
\tabulate* command between math delimiters, otherwise the \times symbol
resulting from the x option will generate a WTEX error (‘Missing $ inserted’):

2In the unlikely event that someone consistently wanted some other query to be asked —
the minimum value perhaps, or first negative value or ... — please let the author know. It
would be straightforward to use a package option to give a choice in this matter.

43

$
\tabulate* [rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q7={0<-1e-14||©@>0.5+1e-14},A!=]
{ \cos(m\pi/n) }[n=4,m=2] [*4x]
$

= 6.2349 x 1071,

2.6 Other matters

Here I group items that do not fit naturally into the earlier categories.

2.6.1 Nesting

A \tabulate command can be nested within other commands from the numerica
suite, and those other commands can be nested within a \tabulate command.

Occasionally one might want to extract a value from a table to insert in
another command. This can be done by nesting a \tabulate* command with
an appropriate Q7 setting within the other command. In fact, from version 2
of numerica on, the star is unnecessary. All we require is that the Q7 setting is
satisfied by at least one tabulated function value.

\eval [env=$]{(\tabulate
[rspec={n,1,15},cspec={m,1,5},Q7={@=MAX}]
{ \cos(m\pi/n) }[n=4,m=2] [*4])\sinh t +
(\tabulate[rspec={n,1,15},cspec={m,1,5},

Q7={@=MIN}]
{ \sin(m\pi/n) }[n=4,m=2] [*4])\cosh t
}t=2][4]

= (0.9397) sinh ¢ + (—1.0000) cosht = —0.354, (¢ =2).
Forming the table

\tabulate[rspec={n,1,15},rround=0,rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]
{ \cos(m\pi/n) }[n=4,m=2] [*4]

for the cosine and the table

\tabulate [rspec={n,1,15},rround=0,rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]
{ \sin(m\pi/n) }[n=4,m=2] [*4]

for the sine and checking the entries shows that indeed the maximum and min-
imum values are 0.9397 and —1.0000 respectively.

If the Q7 setting is not satisfied by any function value a familiar error message
is shown — with a tweak:

44

\eval{$ (\tabulate
[rspec={n,1,15},cspec={m,1,5},Q7=0>2]
{ \cos(m\pi/n) }[n=4,m=2] [*4])\sinh t
$3} [t=2] [4]

= Il No table value satisfies query Q7 in: settings (2). !!!
Here, the (2) tells us that the message refers to a command at the second level,
a nested command.

Perhaps a more likely situation is to want to nest other commands within a
\tabulate command. I give an example in the documentation to the associated
package numerica-plus around the timing of signals between points fixed on a
rotating disk.

2.6.2 Saving tables to file

In earlier versions of numerica-tables it was possible to save a table to file, or
a row or a column or a particular value from a table, by giving a setting reuse
a value. From version 3.0.0, in the interests of simplifying use (and avoiding
code complications) the reuse setting has been discontinued. The \reuse (or
\nmcReuse) command remains (as part of the numerica package) and can be
used to save the most recent table to file.

In the following example, a table is created and then saved to file and to the
macro \mytable by the subsequent \reuse command:

\tabulate
[rspec={x,0.25,5},rround=2,rhead=x,
ralign=r,rhnudge=9,
cspec={k,0.25,3},chstyle=2,
chround=2,calign=r,ctitle=x*,
rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0] [*]
\reuse{mytable}

asinkz, (a=2/7)
x k= 3.00 k=3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 —0.068879 —0.223316

Now test the content of the control sequence

45

asinkz, (a=2/m)
z k=3.00 k=325 k = 3.50

0.00 0.000000 0.000000 0.000000
\mytable == o5 (433945 0462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 —0.068879 —0.223316

Certainly \mytable contains the table.
If we use the view setting with \reuse we can see that \mytable and its
contents have also been saved to file:

\reuse [view]{}
—

saved: \mytable {\begin {tabular}[m]{rrrr}\toprule &\multicolumn {3}{c}{$a\sin
kx,\mskip 18muminuslsmu(a=2/\pi)$}\\ \cmidrule (Ir){2-4}$x\mkern
Imu$&Sk=3.008&$k=3.25$&$k=3.50$\\ \midrule
${0.00}$&3$0.000000$&0.000000&0.000000\ \
${0.25}$&3$0.433945$&$0.4621915&$0.488633$\ \
${0.501$&$0.635025$4:0.635685£:50.6264258\ \
${0.75}$&0.495337&0.412111&0.314439\ \
${1.00}$&50.089840$&$-0.068879$&$-0.223316$\\ \bottomrule \end
{tabular}}

The file that \mytable is saved to is the .nmc file of the current document,
hence numerica-tables.nmc in the present instance. The contents of this file
can be edited in a text editor, or some limited file operations can be effected with
the \reuse command. These have been described in the associated document
numerica.pdf.

2.6.3 Viewing the ETEX form

In previous versions of numerica-tables the dbg and view settings were dis-
abled. In version 3, they have been enabled to the extent that the KTEX form
of a table can be viewed by entering either dbg=11 or, less nerdishly, view into
the settings option of \nmcTabulate. In the example I first create the table and
then use the view setting:

\tabulate[view,rvar=x,rstep=0.2,rstop=1]

{ \sin x }[x=0]

46

=

LaTeX: \begin {tabular}[m]{rr}\toprule x&$\sin x$\\ \midrule ${0}$&3$0%\\
${0.218&$0.1986698\\ ${0.4}$&$0.3894188\\ ${0.6}$&$0.5646428\\
${0.8}$&$0.717356%\\ ${1}$&$0.841471%\\ \bottomrule \end {tabular}

47

Chapter 3

Reference summary

3.1 Commands defined in numerica-tables

\nmcTabulate, \tabulate

3.2 Settings for \nmcTabulate

Row-variable specification: uniform case §2.1.1

key type meaning comment

rvar token(s) row variable

rstep real num step size

rstop real num stop value either rstop or
rows int number of rows rows, not both
rspec comma list {start, step, rows} short form spec.

Row-variable specification: non-uniform case §2.1.2

key type meaning comment
rdata comma list list of row-var. values may be stored in a
macro
rfile chars file of row-var. values file path/name
rverb int (0/1) display rdata or rfile default 0
values verbatim
rfunc token(s) step function specifying

row-var. values

48

Row-variable column formatting §2.1.3

key type meaning initial

rround int rounding

ralign char (r/c/1) horizontal alignment T

rfont chars font (\math<chars>)

rhead tokens header rvar

rhnudge int nudge header rhnudge mu 0

Tpos int (0...4) 1

rvar’ token(s) 2nd row variable col. spec. rvar

rhead’ token(s) header of 2nd r-v col. (ifit rvar’
exists)

rhnudge’ int nudge 2nd r-v col. header 0
rhnudge' mu

rfrac int (0...5) fraction form 0

Column-variable specification §2.2.

key type meaning default

cvar token(s) column variable

cstep real num step size

cstop real num stop value either cstop
cols int number of columns or cols, not both
cspec comma list {cvar,cstep,cols} short form spec.

Column-variable header formatting §2.2.1.

key type meaning default
chstyle int (0...4) header style 0
ctitle token(s) single col. alternative

header
chead token(s) user-defined header
calign char (r/c/l) column alignment T
chnudge int nudge header chnudge mu 0
chround int rounding 0

49

Function-value formatting §2.5.

key type meaning default
(pad) int t-notation phantom
padding
signs int sign handling for 0
function-values
diffs int insert differences & pre-pad 0
with zeros
Q7 tokens special cell conditional
A token(s) special cell formatting

Whole-of-table formatting §2.4.

key type meaning default
ctitle token(s) collective title for
function-value columns
token(s) inter-header/title row for
function-value columns
header int (0/1) suppress/show header row 1
rules char(s) horizontal rules template ThB
foot token(s) content of footer line
rpos int (0...4) row variable 1
rbloc comma list division of rows into blocks
valign char (t/m/b) vertical alignment of table m

relative to text baseline

Miscellaneous settings

view, equivalent to dbg=11: show the XTEX expression for the table.

50

Index

Al 41-43 error messages 43
\abovetopsep 33
adjoined tables 17 £f 24, 25, 31
\arraystretch 12 foot 28, 30
footer functions 28
\belowbottomsep 33 footer row 28, 29
\bigskip 33 complementary functions 31
booktabs 4, 28, 29, 33 formatting
column variable header 19-24

calign 22 function values 34-44
chead 20-22 grouping rows 31-32
chnudge 22-23 row variable header 14-15
chround 23-24 row variable values 12-13
chstyle 20-21 rules 28-30
cmidrow see csubttl title, subtitle, footer 25-28
\cmidrulekern 29 fraction form
\cmidrulewidth 29 function values 34-35, 39
cols 18-19 row variable values 16-17
column variable 5 row/col-dependent rounding 39

initial value in vv-list 18 function value formatting 34-44

start, step, stop values 18-19 fraction form 34-35, 39
column variable header 19-24 highlighting special values 41-44

multi-column case 20-24 padding with zeros 8

chstyle 20-21 scientific notations 35-38

single column case 19 sign handling 13, 37-39
complementary functions 25, 30-31
cspec 18-19 header row see column variable header,
cstep 18-19 headless, row variable header
cstop 18-19 headless 12, 28
csubttl 27 \heavyrulewidth 29
ctitle 19, 25-27

* setting 19 \lightrulewidth 29

**x setting 19, 30
cvar 18-19 MAX 42, 43

MIN 42

decimal comma 6, 24 multi-function tables 17, 24-25, 39
differences 40-41 function delimiter 24
environments 6 n-ary functions 6, 25

o1

\nmcTabulate 5, 6
nesting 44
star (*) option 42

padding with phantoms 36-38
padding with zeros 8

Q7 41-43

ralign 13

rbloc 31-32

rblocsep 32

rdata 10-12

rfile 10, 12

rfont 13, 14

rfunc 9-10

rhead’ 30-31

rhead 14-18

rhnudge’ 30-31

rhnudge 15

round 39-40

rounding value 5, 34
header row 23-24
row variable 12-13
row/col-dependent 39-40

row grouping 31-32

row variable 5
fraction form 16-17
initial value in vv-list 7
start, step, stop values 7-9

values from list, macro or file 10-12

variably stepped 10

verbatim values 11-12, 34-35

row variable column
alignment 13
position in table 15, 30
row variable header 14-15
rows 8

92

rpos 15, 17, 24, 25, 30

rround 12-13
rspec 8
rstep 7
rstop 7
rules 4, 28-30
edicts 28
rules 28-30
rvar’ 30-31
rvar 7
rverb 10-12

saving tables to file 45

scientific notation see also t-notation, 35
semicolon and decimal comma 6, 24

\sfrac 12, 16, 34, 35
signs 37-39
\smallskip 33

t-notation 36-38

accommodating signs 37
table placement

on the line 33

on the page 6, 33
table structure 4
tables

saving to file 45

viewing I¥TEX form 46
\tabulate see \nmcTabulate
title row 2527

subtitle row 27

valign 33
view 46
vv-list
and decimal comma 6

row/col. variable initial values 7, 10,

18, 19

	1 Introduction
	1.1 Table structure
	1.2 Shared syntax

	2 \nmcTabulate settings
	2.1 Row-variable settings
	2.1.1 Row-variable specification: uniform case
	2.1.2 Row variable specification: non-uniform case
	2.1.2.1 rfunc
	2.1.2.2 rdata, rfile, rverb

	2.1.3 Formatting row variable values & column
	2.1.3.1 Rounding: rround
	2.1.3.2 Font: rfont
	2.1.3.3 Alignment: ralign
	2.1.3.4 Row-variable header: rhead
	2.1.3.5 Nudging the header: rhnudge
	2.1.3.6 Position in the table: rpos
	2.1.3.7 rvar', rhead', rhnudge'
	2.1.3.8 Fraction-form values: rfrac

	2.1.4 Adjoined multi-function tables

	2.2 Column-variable settings
	2.2.1 Column header formatting
	2.2.1.1 Single-column header
	2.2.1.2 Multi-column header: chstyle
	2.2.1.3 User-defined header: chead
	2.2.1.4 Alignment: calign
	2.2.1.5 Nudging header entries: chnudge
	2.2.1.6 Rounding: chround

	2.3 Multiple functions in a single table
	2.4 Whole-of-table formatting
	2.4.1 Title for function-value columns: ctitle
	2.4.2 Between header & title: csubttl
	2.4.3 Suppress/show header row
	2.4.4 Footer row: foot
	2.4.4.1 Footer functions

	2.4.5 Horizontal rules: rules
	2.4.6 Second row variable column: rpos=4
	2.4.7 Separating blocks of rows: rbloc
	2.4.7.1 Adjusting the extra space rblocsep

	2.4.8 Table placement
	2.4.8.1 Vertical alignment

	2.5 Function value formatting
	2.5.1 Trailing optional argument
	2.5.1.1 Fraction-form output
	2.5.1.2 Scientific notation

	2.5.2 The t option
	2.5.2.1 Padding the exponent: (pad)

	2.5.3 Indicating signs outside the t-notation
	2.5.4 Rounding to varying values
	2.5.5 Differences: diffs
	2.5.6 Formatting special values: Q? and A!
	2.5.6.1 Star option: \nmcTabulate*

	2.6 Other matters
	2.6.1 Nesting
	2.6.2 Saving tables to file
	2.6.3 Viewing the LaTeX form

	3 Reference summary
	3.1 Commands defined in numerica-tables
	3.2 Settings for \nmcTabulate

	Index

