

Candidate Theory #3: Expected utility

Let Z be an arbitrary set of outcomes. Let $u: Z \to R$ be a utility representation of the DM's preferences over the elements of Z as certain outcomes. (I.e., $u(y) \ge u(z)$ iff $y \ge z$.)

Expected utility & the St. Petersburg Paradox

This can get around even St. Petersburg Paradox, because we don't require that utility be linear in money:

Slide 4

Slide 3

Prize	\$2	\$4	\$8	\$16	•••
$u(z) = \log_2(z)$	1	2	3	4	
Prob.	1/2	1/4	1/8	1/16	

Expected utility is $\sum_{k=1}^{\infty} k/2^k = 2$, and so lottery gives same expected utility as getting \$4 for sure.